2,434
Views
61
CrossRef citations to date
0
Altmetric
Reviews

Maleimides As a Building Block for the Synthesis of High Performance Polymers

, , , , &

References

  • Sharma, R. K.; Chan, W. G.; Wang, J.; Waymack, B. E.; Wooten, J. B.; Seeman, J. I.; Hajaligol, M. R. “On the role of peptides in the pyrolysis of amino acids”, Journal of Analytical and Applied Pyrolysis, 2004, 72, 153–163.
  • Taherpour, A.; Kheradmand, K. “One-pot microwave-assisted solid phase synthesis of cyclic imides from cyclic anhydrides”, Asian J. Chem., 2008, 20, 3341–3344.
  • Sanyal, A. “Diels-Alder Cycloaddition-Cycloreversion: a Powerful Combo in Materials Design”, Macromol. Chem. Phys., 2010, 211, 1417–1425.
  • Nair, D. P.; Podgorski, M.; Chatani, S.; Gong, T.; Xi, W.; Fenoli, C. R.; Bowman, C. N. “The thiol-Michael addition click reaction. A powerful and widely used tool in materials chemistry”, Chem. Mater. 2014, 26, 724–744.
  • Jin, S.; Yee, A. F. “Preparation and characterization of maleimide-terminated poly(arylene ether sulfone) oligomers of various molecular weights”, Journal of Applied Polymer Science, 1991, 43, 1849–1858.
  • US3179631 “Aromatic polyimide particles from polycyclic diamines, US3179631”, 1965.
  • Galipeau, D. W.; Vetelino, J. F.; Feger, C. “The study of polyimide film properties and adhesion using a surface acoustic wave device”, Journal of Plastic Film and Sheeting 1993, 8, 540–551.
  • Syrett, J. A.; Mantovani, G.; Barton, W. R. S.; Price, D.; Haddleton, D. M. “Self-healing polymers prepared via living radical polymerisation”, Polymer Chemistry 2010, 1, 102–106.
  • Heath, W. H.; Palmieri, F.; Adams, J. R.; Long, B. K.; Chute, J.; Holcombe, T. W.; Zieren, S.; Truitt, M. J.; White, J. L.; Willson, C. G. “Degradable Cross-Linkers and Strippable Imaging Materials for Step-and-Flash Imprint Lithography”, Macromolecules 2008, 41, 719–726.
  • Mison, P.; Sillion, B. Advances in Polymer Science; Springer Science & Business Media: New York, 1997.
  • Mizori, F., WO 2008092168 A2 “Methods for the preparation of imides, maleimides and maleimide-terminated polyimide compounds, US Patent 20080262191”, 2008.
  • King, H. D.; Dubowchik, G. M.; Walker, M. A. “Facile synthesis of maleimide bifunctional linkers”, Tetrahedron Letters 2002, 43, 1987–1990.
  • White, J. E.; Snider, D. A.; Scaia, M. D. “Synthesis and properties of some new polyimidosulfides with highly mobile backbones”, J. Polym. Sci., Polym. Chem. Ed. 1984, 22, 589–596.
  • Auvergne, R.; Morel, M.-H.; Menut, P.; Guilbert, S.; Robin, J.-J. “The impact of bifunctional molecules on the gluten network during mixing”,Reactive and Functional Polymers 2011, 71, 70–79.
  • Nirogi, R.; Dwarampudi, A.; Kambhampati, R.; Bhatta, V.; Kota, L.; Shinde, A.; Badange, R.; Jayarajan, P.; Bhyrapuneni, G.; Dubey, P. K. “Rigidized 1-aryl sulfonyl tryptamines: Synthesis and pharmacological evaluation as 5-HT6 receptor ligands”, Bioorganic & Medicinal Chemistry Letters 2011, 21, 4577–4580.
  • Wang, Z. Y. “Syntheses of Some N-Alkylmaleimides”, Synthetic Communications 1990, 20, 1607–1610.
  • Harwood, H. J.; Pyriadi, T. M. “Use of acetyl chloride-triethylamine and acetic anhydride-triethylamine mixtures in the synthesis of isomaleimides from maleamic acids”, The Journal of Organic Chemistry 1971, 36, 821–823.
  • Popov-Pergal, K.; Pergal, M.; Babić, D.; Marinović-Cincović, M.; Jovanović, R. “Thermal, oxidative and radiation stability of polyimides I. Bismaleimidoethane and different diamine-based polyimides”, Polymer Degradation and Stability 2000, 67, 547–552.
  • Sauer, J. “Diels-Alder reactions II: The Reaction Mechanism”, Angewandte Chemie International Edition in English, 1967, 6, 16–33.
  • Kogan, T. P. “The Synthesis of Substituted Methoxy-Poly(Ethyleneglycol) Derivatives Suitable for Selective Protein Modification”, Synthetic Communications 1992, 22, 2417–2424.
  • Altıntaş, Z.; Karataş, S.; Kayaman-Apohan, N.; Güngör, A. “The maleimide modified epoxy resins for the preparation of UV-curable hybrid coatings”, Polymers for Advanced Technologies 2011, 22, 270–278.
  • Grubb, W. T. “A Rate Study of the Silanol Condensation Reaction at 25° in Alcoholic Solvents1”, Journal of the American Chemical Society 1954, 76, 3408–3414.
  • Vorbrueggen, H. “Adventures in Silicon-Organic Chemistry”, Accounts of Chemical Research 1995, 28, 509–520.
  • Mizawa, T.; Takenaka, K.; Shiomi, T. “Synthesis of α-maleimide-ω-dienyl heterotelechelic poly(methyl methacrylate) and its cyclization by the intramolecular Diels–Alder reaction”, Journal of Polymer Science Part A: Polymer Chemistry 2000, 38, 237–246.
  • Reddy, P. Y.; Kondo, S.; Toru, T.; Ueno, Y. “Lewis Acid and Hexamethyldisilazane-Promoted Efficient Synthesis of N-Alkyl- and N-Arylimide Derivatives”, The Journal of Organic Chemistry 1997, 62, 2652–2654.
  • Habibi, D.; Marvi, O. “Montmorillonite KSF and montmorillonite K-10 clays as efficient catalysts for the solventless synthesis of bismaleimides and bisphthalimides using microwave irradiation”, ARKIVOC, 2006, 2006, 8–15.
  • Schwartz, A. L.; Lerner, L. M. “Preparation of N-substituted maleimides by direct coupling of alkyl or aralkyl halides with heavy metal salts of maleimide”, The Journal of Organic Chemistry 1974, 39, 21–23.
  • Wang, M.-L.; Chen, W.-H. “Synthesis of N-substituted imides via solid-liquid phase-transfer catalytic reaction”, React Kinet Catal Lett. 2006, 89, 377–385.
  • Harada, N.; Kimura, H.; Ono, M.; Saji, H. “Preparation of Asymmetric Urea Derivatives that Target Prostate-Specific Membrane Antigen for SPECT Imaging”, Journal of Medicinal Chemistry 2013, 56, 7890–7901.
  • Shahraki, A.; Hassanabadi, A. “Pyridine-mediated N-vinylation of heterocyclic compounds: a mild, stereoselective and general synthesis”, Journal of Chemical Research 2014, 38, 577–638.
  • de Nanteuil, F.; Waser, J. “Synthesis of Aminocyclobutanes by Iron-Catalyzed [2+2] Cycloaddition”, Angewandte Chemie International Edition, 2013, 52, 9009–9013.
  • Serino, A. J. “Synthesis of 2-imidoglycolic acids and a new heterobifunctional cross-linking agent, N-succinimidyl-(2-maleimido)-glycolate”, J. Org. Chem. 1988, 53, 2661–2662.
  • Hsieh, K. H.; Han, J. L.; Yu, C. T.; Fu, S. C. “Graft interpenetrating polymer networks of urethane-modified bismaleimide and epoxy (I): mechanical behavior and morphology”, Polymer 2001, 42, 2491–2500.
  • Alagic, A.; Koprianiuk, A.; Kluger, R. “Hemoglobin−Superoxide DismutaseChemical Linkages That Create a Dual-Function Protein”, Journal of the American Chemical Society 2005, 127, 8036–8043.
  • Fache, B.; Mekkid, S.; Milano, J. C.; Vernet, J. L. “Synthèse et tenue thermique de bisnadimides et bismaléimides avec groupement souple de type polyéthylène glycol”, European Polymer Journal 1998, 34, 1621–1627.
  • Upadhyay, S. K.; Pingali, S. R. K.; Jursic, B. S. “Comparison of microwave-assisted and conventional preparations of cyclic imides”, Tetrahedron Letters 2010, 51, 2215–2217.
  • Grigoras, M.; Sava, M.; Colotin, G.; Simionescu, C. I. “Synthesis and thermal behavior of some anthracene-based copolymers obtained by Diels–Alder cycloaddition reactions”, Journal of Applied Polymer Science 2008, 107, 846–853.
  • Patel, B. K.; Patel, H. S. “Synthesis, Characterization, and Glass Reinforcement of Flame Retardant Acrylated Poly(Ester-Amide) and Flame Retardant Poly(Ester-Imide) Resins Based on Brominated Epoxy Resin”, International Journal of Polymeric Materials and Polymeric Biomaterials 2013, 62, 455–461.
  • Kuo, M.-C.; Tung, Y.-C.; Yeh, C.-L.; Chang, H.-Y.; Jeng, R.-J.; Dai, S. A. “Synthesis and Rapid Polymerizations of Aryl- and Alkyl-bis(azetidine-2,4-dione)s to Polymalonamide Elastomers”, Macromolecules 2008, 41, 9637–9642.
  • Lorenzini, R. G.; Sotzing, G. A. “Furan/imide Diels–Alder polymers as dielectric materials”, Journal of Applied Polymer Science 2014, 131, 40179.
  • Asadirad, A. M.; Boutault, S.; Erno, Z.; Branda, N. R. “Controlling a Polymer Adhesive Using Light and a Molecular Switch”, Journal of the American Chemical Society 2014, 136, 3024–3027.
  • Mayo, J. D.; Adronov, A. “Effect of spacer chemistry on the formation and properties of linear reversible polymers”, J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 5056–5066.
  • Marref, M.; Mignard, N.; Jegat, C.; Taha, M.; Belbachir, M.; Meghabar, R. “Epoxy-amine based thermoresponsive networks designed by Diels–Alder reactions”, Polymer International 2013, 62, 87–98.
  • García-Astrain, C.; Algar, I.; Gandini, A.; Eceiza, A.; Corcuera, M. Á.; Gabilondo, N. “Hydrogel synthesis by aqueous Diels-Alder reaction between furan modified methacrylate and polyetheramine-based bismaleimides”, Journal of Polymer Science Part A: Polymer Chemistry 2015, 53, 699–708.
  • Okhay, N.; Jegat, C.; Mignard, N.; Taha, M. “PMMA thermoreversible networks by Diels-Alder reaction”, React. Funct. Polym. 2013, 73, 745–755.
  • US 20130137817 A1 “Cure-On-Demand Liquid Sealant Composition, Process For The Preparation Thereof And Uses Thereof”, 2013.
  • Vazquez, C. P.; Joly-Duhamel, C.; Boutevin, B. “Open-Air Acceptor/Donor Copolymerization of Bismaleimides: Simple Polymerization Conditions for New Thermoplastic Elastomer Production”, Macromol. Chem. Phys. 2013, 214, 1621–1628.
  • Soules, A.; Pozos Vázquez, C.; Améduri, B.; Joly-Duhamel, C.; Essahli, M.; Boutevin, B. “Use of fluorinated maleimide and telechelic bismaleimide for original hydrophobic and oleophobic polymerized networks”, Journal of Polymer Science Part A: Polymer Chemistry 2008, 46, 3214–3228.
  • Matuszak, N.; Muccioli, G. G.; Labar, G.; Lambert, D. M. “Synthesis and in Vitro Evaluation of N-Substituted Maleimide Derivatives as Selective Monoglyceride Lipase Inhibitors”, Journal of Medicinal Chemistry 2009, 53, 7410–7420.
  • Usta, H.; Kim, C.; Wang, Z.; Lu, S.; Huang, H.; Facchetti, A.; Marks, T. J. “Anthracenedicarboximide-based semiconductors for air-stable, n-channel organic thin-film transistors: materials design, synthesis, and structural characterization”, J. Mater. Chem. 2012, 22, 4459–4472.
  • Onimura, K.; Matsushima, M.; Yamabuki, K.; Oishi, T. “Synthesis and properties of N-substituted maleimides conjugated with 1,4-phenylene or 2,5-thienylene polymers”, Polym. J. (Tokyo, Jpn.) 2010, 42, 290–297.
  • Walker, M. A. “The Mitsunobu reaction: A novel method for the synthesis of bifunctional maleimide linkers”, Tetrahedron Letters 1994, 35, 665–668.
  • Gómez-SanJuan, A.; Sotomayor, N.; Lete, E. “RCM Approach to Complex Polycyclic α-Hydroxy γ-Lactams: Synthesis of Indolizinones and Pyrroloazepinones”, European Journal of Organic Chemistry 2013, 2013, 6722–6732.
  • Akiyama, M.; Shimizu, K.; Aiba, S.; Banba, F. “Synthesis of N-hydroxymaleimide and N-hydroxyitaconimide and their related derivatives”, Journal of the Chemical Society, Perkin Transactions 1980, 1, 2122–2125.
  • Tawney, P. O.; Snyder, R. H.; Conger, R. P.; Leibbrand, K. A.; Stiteler, C. H.; Williams, A. R. “The Chemistry of Maleimide and Its Derivatives. II. Maleimide and N-Methylolmaleimide”, The Journal of Organic Chemistry 1961, 26, 15–21.
  • Patil, S. V.; Mahale, K. A.; Gosavi, K. S.; Deshmukh, G. B.; Patil, N. S. “Solvent-mediated One-pot Synthesis of Cyclic N-Substituted Imides”, Organic Preparations and Procedures International 2013, 45, 314–320.
  • Sortino, M.; Cechinel Filho, V.; Correa, R.; Zacchino, S. “N-Phenyl and N-phenylalkyl-maleimides acting against Candida spp.: Time-to-kill, stability, interaction with maleamic acids”, Bioorg. Med. Chem. 2008, 16, 560–568.
  • Paira, R.; Anwar, T.; Banerjee, M.; Bharitkar, Y. P.; Mondal, S.; Kundu, S.; Hazra, A.; Maulik, P. R.; Mondal, N. B. “Copper–phenanthroline catalysts for regioselective synthesis of pyrrolo[3′;,4′:3,4]pyrrolo[1,2-a]furoquinolines/phenanthrolines and of pyrrolo[1,2-a]phenanthrolines under mild conditions”, Beilstein Journal of Organic Chemistry 2014, 10, 692–700.
  • Samgina, T. Y.; Gorshkov, V. A.; Vorontsov, E. A.; Bagrov, V. V.; Nifant'ev, I. E.; Lebedev, A. T. “New cysteine-modifying reagents: Efficiency of derivatization and influence on the signals of the protonated molecules of disulfide-containing peptides in matrix-assisted laser desorption/ionization mass spectrometry”, J. Anal. Chem. 2010, 65, 1320–1327.
  • Curran, D. P.; Geib, S.; DeMello, N. “Rotational features of carbon-nitrogen bonds in N-aryl maleimides. Atroposelective reactions of o-tert-butylphenylmaleimides”, Tetrahedron 1999, 55, 5681–5704.
  • Jha, A.; Mukherjee, C.; Prasad, A. K.; Parmar, V. S.; Vadaparti, M.; Das, U.; De Clercq, E.; Balzarini, J.; Stables, J. P.; Shrivastav, A.; Sharma, R. K.; Dimmock, J. R. “Derivatives of aryl amines containing the cytotoxic 1,4-dioxo-2-butenyl pharmacophore”, Bioorganic & Medicinal Chemistry Letters 2010, 20, 1510–1515.
  • Kwon, O.; Park, S. B.; Schreiber, S. L. “Skeletal Diversity via a Branched Pathway:  Efficient Synthesis of 29 400 Discrete, Polycyclic Compounds and Their Arraying into Stock Solutions”, Journal of the American Chemical Society 2002, 124, 13402–13404.
  • Budke, B.; Kalin, J. H.; Pawlowski, M.; Zelivianskaia, A. S.; Wu, M.; Kozikowski, A. P.; Connell, P. P. “An Optimized RAD51 Inhibitor That Disrupts Homologous Recombination without Requiring Michael Acceptor Reactivity”, Journal of Medicinal Chemistry 2012, 56, 254–263.
  • Salvati, M. E.; Balog, A.; Shan, W.; Rampulla, R.; Giese, S.; Mitt, T. “Identification and optimization of a novel series of [2.2.1]-oxabicyclo imide-based androgen receptor antagonists”, Bioorganic & Medicinal Chemistry Letters 2008, 18, 1910–1915.
  • Aravind, K.; Ganesh, A. “Microwave-assisted synthesis and characterization of 1-[4-(3-substituted-acryloyl)-phenyl]-pyrrole-2,5-diones”, Pharma Chem. 2013, 5, 261–264.
  • Trujillo-Ferrara, J.; Montoya Cano, L.; Espinoza-Fonseca, M. “Synthesis, anticholinesterase activity and structure–Activity relationships of m-Aminobenzoic acid derivatives”, Bioorganic & Medicinal Chemistry Letters 2003, 13, 1825–1827.
  • Bansode, T. N.; Shelke, J. V.; Dongre, V. G. “Synthesis and antimicrobial activity of some new N-acyl substituted phenothiazines”, European Journal of Medicinal Chemistry 2009, 44, 5094–5098.
  • Borah, H. N.; Boruah, R. C.; Sandhu, J. S. “Microwave-induced One-pot Synthesis of N-carboxyalkyl Maleimides and Phthalimides”, Journal of Chemical Research, Synopses 1998, 5, 272–273.
  • Han, J.; Sun, L.; Chu, Y.; Li, Z.; Huang, D. “Synthesis, and Biological Activity of Novel Dicoumarol Glucagon-like Peptide 1 Conjugates”, Journal of Medicinal Chemistry 2013, 56, 9955–9968.
  • Song, H. Y.; Ngai, M. H.; Song, Z. Y.; MacAry, P. A. “Practical synthesis of maleimides and coumarin-linked probes for protein and antibody labelling via reduction of native disulfides”, Org. Biomol. Chem. 2009, 7, 3400–3406.
  • Palani, A.; Badea, V.; Gerasimou, E.; Nitu, S. “Synthesis of N-carbamylimides by a new more efficient method”, Rev. Chim. (Bucharest, Rom.) 2011, 62, 614–617.
  • US8802801B1 “Reconfigurable polymeric self-healing coatings”, 2014.
  • Fu, Y.; Kao, W. J. “In situ forming poly(ethylene glycol)-based hydrogels via thiol-maleimide Michael-type addition”, Journal of Biomedical Materials Research Part A 2011, 98A, 201–211.
  • Darmory, F. P. “Polyimides. High-performance thermosets”, Plast. Des. Process. 1974, 14, 18–21.
  • US3705870A “Soluble polyimides from aromatic dianhydrides and 2,4-diaminodiphenylamines and 2,4-diaminodiphenylsulfides”, 1972.
  • DE2461023A1 “Workable polyimides and poly(amide-imides)”, 1975.
  • S. Billiet, W. Van Camp, X. K. D. Hillewaere, H. Rahier and F. E. Du Prez “Development of optimized autonomous self-healing systems for epoxy materials based on maleimide chemistry”, Polymer 2010, 53, 2320–2326.
  • Gherasim, M. G.; Zugravescu, I. “Polyaddition reactions of aliphatic and aromatic diamines to N,N'-bismaleimide”, Eur. Polym. J. 1978, 14, 985–990.
  • White, J. E.; Scaia, M. D.; Snider, D. A. “Reactions of diaminoalkanes with bismaleimides: synthesis of some unusual polyimides”, J. Appl. Polym. Sci. 1984, 29, 891–899.
  • Dix, L. R.; Ebdon, J. R.; Flint, N. J.; Hodge, P.; O'Dell, R. “Chain extension and crosslinking of telechelic oligomers. I. Michael additions of bisamines to bismaleimides and bis(acetylene ketone)s”, Eur. Polym. J. 1995, 31, 647–652.
  • White, J. E.; Scaia, M. D. “Polymerization of N,N'-bismaleimido-4,4'-diphenylmethane with arenedithiols. Synthesis of some new polyimidosulfides”, Polymer 1984, 25, 850–854.
  • Dix, L. R.; Ebdon, J. R.; Hodge, P. “Chain extension and crosslinking of telechelic oligomers. II. Michael additions of bisthiols to bismaleimides, bismaleates and bis(acetylene ketone)s to give linear and crosslinked polymers”, Eur. Polym. J. 1995, 31, 653–658.
  • White, J. E.; Snider, D. A.; Scaia, M. D. “Synthesis and properties of some new polyimidosulfides with highly mobile backbones”, J. Polym. Sci., Polym. Chem. Ed. 1984, 22, 589–596.
  • Di Giulio, C.; Gautier, M.; Jasse, B. “Fourier transform infrared spectroscopic characterization of aromatic bismaleimide resin cure states”, Journal of Applied Polymer Science 1984, 29, 1771–1779.
  • Kumar, D.; Fohlen, G. M.; Parker, J. A. “High-temperature resins based on aromatic amine-terminated bisaspartimides”, Journal of Polymer Science: Polymer Chemistry Edition 1983, 21, 245–267.
  • Fullerton, R.; Roylance, D.; Allred, R.; Acton, A. “Cure analysis of printed wiring boards containing reactive adhesive layers”, Polymer Engineering & Science 1988, 28, 372–376.
  • Curliss, D. B.; Cowans, B. A.; Caruthers, J. M. “Cure Reaction Pathways of Bismaleimide Polymers: A Solid-State 15N NMR Investigation”, Macromolecules 1998, 31, 6776–6782.
  • Crivello, J. V. Polyaspartimides: Condensation of Aromatic Diamines and Bismaleimide Compounds; Wiley: NY, 1973.
  • Hariharan, R.; Bhuvana, S.; Malbi, M. A.; Sarojadevi, M. “Synthesis and characterization of polyimides containing pyridine moiety”, Journal of Applied Polymer Science, 2004, 93, 1846–1853.
  • Hariharan, R.; Sarojadevi, M. “Synthesis and properties of novel organosoluble bismaleimides and polyaspartimides containing bis(4-maleimido-3, 5-dimethyl phenyl) halo phenyl methane”, Journal of Applied Polymer Science 2008, 108, 1126–1135.
  • Yerlíkaya, Z. Y.; Öktem, Z.; Bayramli, E. “Chain-Extended bismaleimides. I. Preparation and characterization of maleimide-terminated resins”, Journal of Applied Polymer Science 1996, 59, 165–171.
  • Patel, R. R.; Patel, M. C. “Novel Interecting Blends Based on Amino Terminited Oligoimides by Using Michael Addition Reaction-II”, Journal of Chemistry 2012, 9, 1960–1967.
  • Liaw, D.-J.; Liaw, B.-Y.; Chen, J.-J. “Synthesis and characterization of new soluble polyaspartimides derived from bis(3-ethyl-5-methyl-4-maleimidophenyl)methane and various diamines”, Polymer 2001, 42, 867–872.
  • Crivello, J. V. “Polyimidothioethers”, Journal of Polymer Science: Polymer Chemistry Edition 1976, 14, 159–182.
  • Crivello, J. V. “Poly(imidothio ethers)”, Polym. Prepr., Amer. Chem. Soc., Div. Polym. Chem. 1972, 13, 924–929.
  • Yen, H.-J.; Liou, G.-S. “A facile approach towards optically isotropic, colorless, and thermoplastic polyimidothioethers with high refractive index”, Journal of Materials Chemistry 2010, 20, 4080–4084.
  • Tsai, C.-C.; Chao, T.-Y.; Lin, H.-L.; Liu, Y.-H.; Chang, H.-L.; Liu, Y.-L.; Jeng, R.-J. “The facile synthesis and optical nonlinearity of hyperbranched polyaspartimides with azobenzene dyes”, Dyes and Pigments 2009, 82, 31–39.
  • WO 2008092168 A2 “Methods for the preparation of imides, maleimides and maleimide-terminated polyimide compounds”, 2008.
  • DE2234166A1 “Polyimides”, 1973.
  • DE2234148A1 “Polyimides”, 1973.
  • US4430153A “An RIE etch barrier by in situ conversion of a silicon containing alkyl polyamide/polyimide, US4430153A”, 1984.
  • WO9008797A1 “Preparation of heat-resistant thermoplastic polyimide and polyketone elastomers”, 1990.
  • US20120225101A1 “Multifunctional in situ polymerized network via thiol-ene and thiol-maleimide chemistry for biomaterials”, 2012.
  • US 20040072933 A1 “Curable adhesive compositions containing maleimide-multifunctional thiol oligomers suitable for optical applications”, 2004.
  • Hagiwara, T.; Suzuki, I.; Takeuchi, K.; Hamana, H.; Narita, T. “Synthesis and polymerization of N-(4-vinylphenyl)maleimide”, Macromolecules 1991, 24, 6856–6858.
  • Hagiwara, T.; Shimizu, T.; Someno, T.; Yamagishi, T.; Hamana, H.; Narita, T. “Anionic polymerization of N-substituted maleimide. 4. “Living” characteristics of anionic polymerization of N-phenylmaleimide”, Macromolecules 1988, 21, 3324–3327.
  • Hagiwara, T.; Mizota, J.; Hamana, H.; Narita, T. “Anionic polymerization of N-substituted maleimide, 1. Polymerization of N-phenylmaleimide”, Makromol. Chem., Rapid Commun. 1985, 6, 169–174.
  • Hagiwara, T.; Shimizu, T.; Hamana, H.; Narita, T. “Anionic polymerization of N-substituted maleimide. VI. Effects of counter cation on the anionic polymerization of N-phenylmaleimide with alkali metal tert-butoxides”, J. Polym. Sci., Part A: Polym. Chem. 1990, 28, 2437–2444.
  • Hagiwara, T.; Shimizu, T.; Uda, T.; Hamana, H.; Narita, T. “Anionic polymerization of N-substituted maleimide. V. A study on the kinetic features of anionic polymerization of N-phenylmaleimide”, J. Polym. Sci., Part A: Polym. Chem., 1990, 28, 185–192.
  • Hagiwara, T.; Someno, T.; Hamana, H.; Narita, T. “Anionic polymerization of N-substituted maleimide. II. Polymerization of N-ethylmaleimide”, J. Polym. Sci., Part A: Polym. Chem. 1988, 26, 1011–1020.
  • Agarwal, P.; Yu, Q.; Harant, A.; Berglund, K. A. “Synthesis and Characterization of Polymaleimide”, Ind. Eng. Chem. Res., 2003, 42, 2881–2884.
  • Azechi, M.; Toyota, N.; Yamabuki, K.; Onimura, K.; Oishi, T. “Anionic polymerization of N-substituted maleimide with achiral and chiral amines as an initiator”, Polym. Bull. (Heidelberg, Ger.) 2011, 67, 631–640.
  • Oishi, T.; Onimura, K. “Asymmetric anionic polymerization of N-substituted maleimide using optically active ligand”, Kobunshi Kako, 2001, 50, 170–176.
  • Onimura, K.; Tsutsumi, H.; and Oishi, T. “Asymmetric polymerization of N-substituted maleimides with organolithium-bisoxazolines complex”, Polym. Bull. (Berlin) 1997, 39, 437–444.
  • Yanase, M.; Kawabata, K.; Miyata, T.; Kagawa, T. “Synthesis and application of optically active polymaleimide derivatives as chiral stationary phases”, Toso Kenkyu, Gijutsu Hokoku 2005, 49, 29–37.
  • Wolfgang, H. B. Self-healing Polymers: From Principles to Applications; Wiley: NJ, 2013.
  • Satoh, H.; Mineshima, A.; Nakamura, T.; Teramoto, N.; Shibata, M. “Thermo-reversible Diels-Alder polymerization of difurfurylidene diglycerol and bismaleimide”, React. Funct. Polym. 2014, 76, 49–56.
  • Gandini, A.; Coelho, D.; Gomes, M.; Reis, B.; Silvestre, A. “Materials from renewable resources based on furan monomers and furan chemistry: work in progress”, Journal of Materials Chemistry 2009, 19, 8656.
  • Tesoro, G. C.; Sastri, V. R. “Synthesis of siloxane-containing bis(furans) and polymerization with bis(maleimides)”, Ind. Eng. Chem. Prod. Res. Dev. 1986, 25, 444–448.
  • Liu, Y.-L.; Chuo, T.-W. “Self-healing polymers based on thermally reversible Diels–Alder chemistry”, Polymer Chemistry 2013, 4, 2194.
  • Bibiao, J.; Jianjun, H.; Wenyun, W.; Luxia, J.; Xinxian, C. “Synthesis and properties of novel polybismaleimide oligomers”, European Polymer Journal 2001, 37, 463–470.
  • Flory, P. J. Principles of Polymer Chemistry; Cornell University Press: Ithaca, NY, 1953.
  • Gandini, A.; Silvestre, A. J. D.; Coelho, D. “Reversible click chemistry at the service of macromolecular materials”, Polymer Chemistry 2013, 2, 1713–1719.
  • Tian, Q.; Rong, M. Z.; Zhang, M. Q.; Yuan, Y. C. “Synthesis and characterization of epoxy with improved thermal remendability based on Diels-Alder reaction”, Polymer International 2010, 59, 1339–1345.
  • US6403753B1 “Method of making thermally removable Diels-Alder adduct-containing polyurethanes, US6403753B1”, 2002.
  • US 6337384 B1 “Method of making thermally removable epoxy resins, US 6337384 B1”, 2002.
  • US7022861B1 “Thermally cleavable surfactants based on furan-maleimide Diels-Alder adducts, scheme for Gemini surfactant, and surfactant manufacture, US 7022861 B1”, 2006.
  • US 6403753 B1 “Method of making thermally removable polyurethanes, US 6403753 B1”, 2002.
  • US 6825315 B2 “Reacting bismaleimide compound, a furan containing oxirane groups and amine curing agent, US 6825315 B2”, 2004.
  • Bai, N.; Simon, G. P.; Saito, K. “Investigation of the thermal self-healing mechanism in a cross-linked epoxy system”, RSC Adv. 2013, 3, 20699–20707.
  • US 6337384 B1 “Mixing bismaleimide with furan compound with oxirane group to form diepoxy compound, adding amine curing agent, US 6337384 B1”, 2002.
  • Varganici, C.-D.; Ursache, O.; Gaina, C.; Gaina, V.; Rosu, D.; Simionescu, B. C. “Synthesis and Characterization of a New Thermoreversible Polyurethane Network”, Industrial & Engineering Chemistry Research 2013, 53, 5287–5295.
  • Yu, S.; Zhang, R.; Wu, Q.; Chen, T.; Sun, P. “Bio-Inspired High-Performance and Recyclable Cross-Linked Polymers”, Adv. Mater. 2013, 25, 4912–4917.
  • Zhang, R.; Yu, S.; Chen, S.; Wu, Q.; Chen, T.; Sun, P.; Li, B.; Ding, D. “Reversible Cross-Linking, Microdomain Structure, and Heterogeneous Dynamics in Thermally Reversible Cross-Linked Polyurethane as Revealed by Solid-State NMR”, J. Phys. Chem. B 2014, 118, 1126–1137.
  • Pratama, P. A.; Peterson, A. M.; Palmese, G. R. “The role of maleimide structure in the healing of furan-functionalized epoxy-amine thermosets”, Polym. Chem. 2013, 4, 5000–5006.
  • Pratama, P. A.; Sharifi, M.; Peterson, A. M.; Palmese, G. R. “Room Temperature Self-Healing Thermoset Based on the Diels-Alder Reaction”, ACS Appl. Mater. Interfaces 2013, 5, 12425–12431.
  • Peterson, A. M.; Palmese, G. R. “Reaction Kinetics and Thermodynamic Aspects of Thermoreversibly Cross-Linked Polymer Networks”, Macromol. Chem. Phys. 2013, 214, 1798–1805.
  • Nguyen, L.-T. T.; Devroede, J.; Plasschaert, K.; Jonckheere, L.; Haucourt, N.; Du Prez, F. E. “Providing polyurethane foams with functionality: a kinetic comparison of different "click" and coupling reaction pathways”, Polym. Chem. 2013, 4, 1546–1556.
  • Liu, Y.-L.; Hsieh, C.-Y. “Crosslinked epoxy materials exhibiting thermal remendability and removability from multifunctional maleimide and furan compounds”, J. Polym. Sci., Part A: Polym. Chem. 2005, 44, 905–913.
  • Magana, S.; Zerroukhi, A.; Jegat, C.; Mignard, N. “Thermally reversible crosslinked polyethylene using Diels-Alder reaction in molten state”, Reactive and Functional Polymers 2010, 70, 442–448.
  • Billiet, L.; Gok, O.; Dove, A. P.; Sanyal, A.; Nguyen, L.-T. T.; Du Prez, F. E. “Metal-Free Functionalization of Linear Polyurethanes by Thiol-Maleimide Coupling Reactions”, Macromolecules 2011, 44, 7874–7878.
  • Dispinar, T.; Sanyal, R.; Sanyal, A. “A diels-alder/retro diels-alder strategy to synthesize polymers bearing maleimide side chains”, J. Polym. Sci., Part A: Polym. Chem. 2007, 45, 4545–4551.
  • Onbulak, S.; Tempelaar, S.; Pounder, R. J.; Gok, O.; Sanyal, R.; Dove, A. P.; Sanyal, A. “Synthesis and Functionalization of Thiol-Reactive Biodegradable Polymers”, Macromolecules 2012, 45, 1715–1722.
  • Yilmaz, I. I.; Arslan, M.; Sanyal, A. “Design and Synthesis of Novel "Orthogonally" Functionalizable Maleimide-Based Styrenic Copolymers”, Macromol. Rapid Commun. 2012, 33, 856–862.
  • Mantovani, G.; Lecolley, F.; Tao, L.; Haddleton, D. M.; Clerx, J.; Cornelissen, J. J. L. M.; Velonia, K. “Design and Synthesis of N-Maleimido-Functionalized Hydrophilic Polymers via Copper-Mediated Living Radical Polymerization: A Suitable Alternative to PEGylation Chemistry”, J. Am. Chem. Soc. 2005, 127, 2966–2973.
  • Canary, S. A.; Stevens, M. P. “Thermally reversible crosslinking of polystyrene via the furan-maleimide Diels-Alder reaction”, J. Polym. Sci., Part A: Polym. Chem. 1992, 30, 1755–1760.
  • Zhang, Y.; Broekhuis, A. A.; Stuart, M. C. A.; Picchioni, F. “Polymeric amines by chemical modifications of alternating aliphatic polyketones”, Journal of Applied Polymer Science 2008, 107, 262–271.
  • Liu, Y.-L.; Chen, Y.-W. “Thermally reversible cross-linked polyamides with high toughness and self-repairing ability from maleimide- and furan-functionalized aromatic polyamides”, Macromol. Chem. Phys. 2007, 208, 224–232.
  • Damiron, D.; Okhay, N.; Akhrass, S. A.; Cassagnau, P.; Drockenmuller, E. “Crosslinked PDMS elastomers and coatings from the thermal curing of vinyl-functionalized PDMS and a diazide aliphatic crosslinker”, J. Polym. Sci., Part A: Polym. Chem. 2012, 50, 98–107.
  • Mignard, N.; Okhay, N.; Jegat, C.; Taha, M. “Facile elaboration of PMMA/polyurethane interpenetrating networks using Diels-Alder reactions”, J. Polym. Res. 2013, 20, 1–13.
  • Okhay, N.; Mignard, N.; Jegat, C.; Taha, M. “Diels-Alder thermoresponsive networks based on high maleimide-functionalized urethane prepolymers”, Des. Monomers Polym. 2013, 16, 475–487.
  • Li, W.; Liu, F.; Wei, L.; Zhao, T. “Curing behavior study of polydimethylsiloxane-modified allylated novolac/4,4′-bismaleimidodiphenylmethane resin”, Journal of Applied Polymer Science 2008, 107, 554–561.
  • Cunningham, I. D.; Brownhill, A.; Hamerton, I.; Howlin, B. J. “The ene reaction between maleimides and allyl-substituted aromatics”, Tetrahedron 1997, 53, 13473–13494.
  • Rozenberg, B. A.; Dzhavadyan, E. A.; Morgan, R.; Shin, E. “High-performance bismaleimide matrices: cure kinetics and mechanism”, Polymers for Advanced Technologies 2002, 13, 837–844.
  • Kumar, K. S. S.; Nair, C. P. R.; Sadhana, R.; Ninan, K. N. “Benzoxazine-bismaleimide blends: Curing and thermal properties”, Eur. Polym. J. 2007, 43, 5084–5096.
  • Alfrey, T.; Price, C. C. “Relative reactivities in vinyl copolymerization”, Journal of Polymer Science 1947, 2, 101–106.
  • Iwatsuki, S.; Yamashita, Y. “Estimation of relative reactivity ratios in radical alternating copolymerization by means of terpolymerization”, Die Makromolekulare Chemie 1967, 104, 263–274.
  • Van Paesschen, G.; Timmerman, D. “The copolymerisation of maleimide”, Die Makromolekulare Chemie 1964, 78, 112–120.
  • Greenley, R. Z. “An Expanded Listing of Revised Q and e Values”, Journal of Macromolecular Science: Part A - Chemistry 1980, 14, 427–443.
  • Camelia, H. “Functional maleimide-based strucural polymers”, Revue Roumaine de Chimie 2008, 9, 743–752.
  • Hiran, B. L.; Boriwal, R.; Bapana, S.; Paliwal, S. N. “Synthesis and characterization of polymers of substituted maleimide derivative”, Journal of the University of Chemical Technology and Metallurgy 2010, 45, 127–132.
  • Zhang, X.; Chen, G.-C.; Collins, A.; Jacobson, S.; Morganelli, P.; Dar, Y. L.; and Musa, O. M. “Thermally degradable maleimides for reworkable adhesives”, Journal of Polymer Science Part A: Polymer Chemistry 2009, 47, 1073–1084.
  • Morel, F.; Decker, C.; Jonsson, S.; Clark, S. C.; Hoyle, C. E. “Kinetic study of the photo-induced copolymerization of N-substituted maleimides with electron donor monomers”, Polymer 1999, 40, 2447–2454.
  • Decker, C.; Bianchi, C.; Morel, F.; Jonsson. S.; Hoyle, C. “Mechanistic study of the light-induced copolymerization of maleimide/vinyl ether systems”, Macromol. Chem. Phys. 2000, 201, 1493–1503.
  • Pozos Vazquez, C. PhD Thesis. “Etude de la synthèse, de la polymérisation et de la caractérisation de nouvelles formulations photoréticulables sans photoamorceur”, University of Montpellier, France 2007.
  • Boyer, C.; Otazaghine, B.; Boutevin, B.; Joly-Duhamel, C.; Robin, J.-J. “Synthesis of maleimide-terminated n-butyl acrylate oligomers by atom transfer radical polymerization: Study of their copolymerization with vinyl ethers”, J. Polym. Sci., Part A: Polym. Chem. 2005, 43, 4303–4322.
  • Vazquez, C. P.; Joly-Duhamel, C.; Boutevin, B. “Photopolymerization without photoinitiator of bismaleimide-containing oligo(oxypropylene)s: effect of oligoethers chain length”, Macromol. Chem. Phys. 2009, 210, 269–278.
  • Beaune, O.; Bessiere, J. M.; Boutevin, B.; Robin, J. J. “Synthesis of amorphous fluoro high polymers with high Tg values: copolymerization of fluorinated maleimides with vinyl ethers”, J. Fluorine Chem. 1994, 67, 159–167.
  • Beaune, O.; Bessiere, J. M.; Boutevin, B.; Robin, J. J. “Synthesis of new maleimide monomers having a perfluoroaliphatic side chain and study of their copolymerization with vinyl ethers”, Polym. Bull. (Berlin) 1992, 29, 605–612.
  • Ameduri, B.; Boutevin, B.; Malek, F. “Synthesis and characterization of styrenic polymers with pendent pyrazole groups. II”, J. Polym. Sci., Part A: Polym. Chem. 1994, 32, 729–740.
  • Raetzsch, M.; Schicht, G. “Studies on the kinetics of photoinitiated copolymerization of styrene with maleic anhydride”, Acta Polym. 1980, 31, 419–423.
  • Raetzsch, M.; Schicht, G.; Arnold, M.; Barton, J.; Capek, I. “Photopolymerization of styrene with maleic anhydride”, Chem. Zvesti 1984, 38, 823–838.
  • Lee, C.; Hall Jr., H. K. “Photocopolymerizations of electron-rich olefins with electron-poor olefins by irradiation of their EDA complexes”, Macromolecules 1989, 22, 21–25.
  • Hall Jr., H. K.; Padias, A. B. “Zwitterion and diradical tetramethylenes as initiators of "Charge-Transfer" polymerizations”, Account Chemical Research 1990, 23, 6.
  • Li, T.; Lee, C.; Hall Jr., H. K. “The role of tetramethylene diradicals in photo-induced charge-transfer cycloadditions and copolymerization”, Adv. Polym. Sci. 1990, 97, 1–39.
  • Jonsson, E. S.; Sundell, P.-E.; Hultgren, J.; Sheng, D.; Hoyle, C. E. “Radiation chemistry aspects of polymerization and crosslinking. A review and future environmental trends in "non-acrylate" chemistry”, Prog. Org. Coat. 1996, 27, 107–122.
  • Jonsson, E. S.; Sundell, P. E.; Shimose, M.; Owens, J.; Hoyle, C. E. “Photoinduced polymerization from direct photolysis of donor - acceptor complexes”, Polymeric Materials: Science & Engineering, Proceedings of the American Chemical Society Division of Polymeric Materials: Science & Engineering. 1995, 72, 3.
  • Olson, K. G.; Butler, G. B. “Stereochemical evidence for the participation of a comonomer charge-transfer complex in alternating copolymerization”, Macromolecules 1983, 16, 707–710.
  • Olson, K. G.; Butler, G. B. “Stereochemical evidence for participation of a Donor-acceptor complex in alternating copolymerization. 1. Model compound synthesis”, Macromolecules 1984, 17, 2480–2486.
  • Wagener, K. B.; Butler, G. B.; Do, C. H.; Johnson, M.; Smith, M. A. Donor-Acceptor Polymerization Chemistry as a Vehicle to Low-Energy Cure of Matrix Resins: Evolution of the 2-Tg [Glass Temperature] Concept to Produce high-Tg Polymers at Ambient Temperatures; University of Florida Press: Gainesville, FL, 1989.
  • Smith, M. A.; Do, C. H.; Wagener, K. B. “Bismaleimide/vinyl ether matrix copolymers”, Polym. Prepr. (Am. Chem. Soc., Div. Polym. Chem.) 1988, 29, 337–338.
  • Andersson, H.; Gedde, U. W.; Hult, A. “Synthesis and Polymerization of Liquid Crystalline Donor-Acceptor Monomers”, Macromolecules 1996, 29, 1649–1654.
  • Andersson, H.; Hult, A. “Initiator-free photopolymerization of an aliphatic vinyl ether-maleimide monomer”, J. Coat. Technol. 1997, 69, 91–95.
  • Jonsson, S.; Sundell, P.-E.; Shimose, M.; Owens, J.; Miller, C.; Clark, S.; Hoyle, C. E. “Photoinitiated copolymerization of maleimides and vinyl ethers”, Polym. Mater. Sci. Eng. 1996, 74, 319–320.
  • Miller, C. W.; Hoyle, C. E.; Howard, C.; Joensson, S. “Donor/acceptor copolymerization of maleimide systems”, Polym. Prepr. (Am. Chem. Soc., Div. Polym. Chem.) 1996, 37, 346–347.
  • Clark, S. C.; Doucet, G. J.; Joensson, S.; Mattson, G. A.; Hoyle, C. E. “Photoinduced polymerization of monofunctional maleimides and donor monomers”, Polym. Prepr. (Am. Chem. Soc., Div. Polym. Chem.) 1997, 38, 178–179.
  • Hoyle, C. E.; Jonsson, S.; Shimose, M.; Owens, J.; Sundell, P. E. “Photoinitiator free polymerization of maleimides and vinyl ethers”, ACS Symp. Ser. 1997, 673, 133–149.
  • Joensson, S.; Sundell, P. E.; Shimose, M.; Clark, S.; Miller, C.; Morel, F.; Decker, C.; Hoyle, C. E. “Photo-induced alternating copolymerization of N-substituted maleimides and electron donor olefins”, Nucl. Instrum. Methods Phys. Res., Sect. B, 1997, 131, 276–290.
  • Decker, C.; Morel, F.; Jonsson, S.; Clark, S.; Hoyle, C. E. “Light-induced polymerization of photoinitiator-free vinyl ether/maleimide systems”, Macromol. Chem. Phys. 1999, 200, 1005–1013.
  • Jonsson, S.; K. Viswanathan, Hoyle, C. E.; Clark, S. C.; Miller, C.; Nguyen, C.; Zhao, W.; Shao, L.; Morel, F.; Decker, C. “Recent development in free radical photopolymerization. Direct and sensitized excitation of maleimides”, J. Photopolym. Sci. Technol. 2000, 13, 125–143.
  • Von, S. J.; Beckert, D.; Knolle, W.; Mehnert, R. “Electron transfer as the initiation mechanism of photocurable maleimide-vinyl ether based resins”, Radiat. Phys. Chem. 1999, 55, 609–613.
  • Decker, C.; Bianchi, C.; Morel, F.; Jonsson, F. S.; Hoyle, C. E. “Mechanistic study of the light-induced copolymerization of maleimide/vinyl ether”, Macromol. Chem. Phys. 2000, 201, 1493–1503.
  • Kohli, P.; Scranton, A. B.; Blanchard, G. J. “Co-Polymerization of Maleimides and Vinyl Ethers: A Structural Study”, Macromolecules 1998, 31, 5681–5689.
  • Vazquez, C. P.; Tayouo, R.; Joly-Duhamel, C.; Boutevin, B. “UV-curable bismaleimides containing poly(dimethylsiloxane): Use as hydrophobic agent”, J. Polym. Sci., Part A: Polym. Chem. 2010, 48, 2123–2134.
  • Clark, S. C.; Hoyle, C. E.; Jonsson, S.; Morel, F.; Decker, C. “Photopolymerization of acrylates using N-aliphatic maleimides as photoinitiators”, Polymer 1999, 40, 5063–5072.
  • Lee, C.-W.; Kim, J.-M.; Han, D. K.; Ahn, K.-D. “Photopolymerization of bifunctional maleimides based on electron-donor/acceptor systems”, J. Macromol. Sci., Pure Appl. Chem. 1999, A36, 1387–1399.
  • Jonsson, S. C.; Yang, D.; Kalyanaraman, V.; Shier, E.; Hoyle, C. E.; Belfield, K.; Lindgren, K. “Mechanistic aspects of donor structure in maleimide/donor photo-copolymerizations”, Polymer Preprints 2001, 42, 703–704.
  • Ng, L.-T.; Jonsson, S.; Swami, S.; Lindgren, K. “Synthesis of hydrogel for drug delivery studies utilizing photoinitiator-free photopolymerization based on the donor/acceptor pair, N-vinylpyrrolidinone and hydroxypentyl maleimide”, Polym. Int., 2002, 51, 1398–1403.
  • Liu, F.; Wang, Z.; Lue, C.; Gao, L.; Ding, M. “Gamma ray irradiation-initiated copolymerization of a binary casting system involving DPBMIn and vinylpyrrolidone”, Macromol. Mater. Eng. 2005, 290, 726–732.
  • Liu, F.; Wang, Z.; Lue, C.; Gao, L.; Ding, M. “Synthesis of novel maleimide-terminated thioetherimide oligomer and its bulk copolymerization with reactive solvents”, Polymer 2006, 47, 937–945.
  • Clark, S. C.; Joensson, S.; Hoyle, C. E. “Photoinitiated polymerization of acrylates using functional maleimides”, Polym. Prepr. (Am. Chem. Soc., Div. Polym. Chem.) 1996, 37, 348–349.
  • Clark, S. C.; Joensson, S.; Hoyle, C. E. “Maleimides with carbonate and urethane groups as photoinitiators for acrylate polymerization”, Polym. Prepr. (Am. Chem. Soc., Div. Polym. Chem.) 1997, 38, 363–364.
  • Hoyle, C. E.; Clark, S. C.; Joensson, S.; Shimose, M. “Photopolymerization using maleimides as photoinitiators”, Polymer 1997, 38, 5695–5697.
  • Sonntag, J. V.; Knolle, W. “Maleimides as electron-transfer photoinitiators: quantum yields of triplet states and radical-ion formation”, J. Photochem. Photobiol., A 2000, 136, 133–139.
  • Nguyen, C. K.; Hoyle, C. E.; Lee, T. Y.; Jönsson, S. “Three component ketocoumarin, amine, maleimide photoinitiator I”, Eur. Polym. J. 2007, 43, 172–177.
  • Senyurt, A. F.; Hoyle, C. E. “Three component ketocoumarin, amine, maleimide photoinitiator II”, Eur. Polym. J. 2006, 42, 3133–3139.
  • Wang, K.; Lu, Y.; Yin, R.; Jiang, Y.; Yu, Q. “Synthesis and photopolymerization kinetics of a single-molecular hydrogen-abstract free radical photoinitiator 1,3-Benzodioxole-5-yl-Methyl-Maleimide”, Polym. Sci., Ser. B 2014, 56, 148–153.
  • Pietschmann, N. “Clearcoats based on maleimide/vinyl ether combinations - investigations into their properties and curing behavior”, Macromol. Symp. 2002, 187, 225–234.
  • Wang, Z.; Ran, Q.; Zhu, R.; Gu, Y. “Reaction-induced phase separation in a bisphenol A-aniline benzoxazine-N,N'-(2,2,4-trimethylhexane-1,6-diyl)bis(maleimide)-imidazole blend: the effect of changing the concentration on morphology”, Phys. Chem. Chem. Phys. 2014, 16, 5326–5332.
  • Dumas, L.; Bonnaud, L.; Olivier, M.; Poorteman, M.; Dubois, P. “Bio-based high performance thermosets: Stabilization and reinforcement of eugenol-based benzoxazine networks with BMI and CNT”, Eur. Polym. J. 2015, 67, 494–502.
  • Wang, Z.; Ran, Q.; Zhu, R.; Gu, Y. “Curing behaviors and thermal properties of benzoxazine and N, N'-(2, 2, 4-trimethylhexane-1, 6-diyl) dimaleimide blend”, J. Appl. Polym. Sci. 2013, 129, 1124–1130.
  • Cheng, Y.; Qi, T.; Jin, Y.; Deng, D.; Xiao, F. “Highly cross-linked thermosetting resin of maleimidobenzoxazine functionalized with benzocyclobutene”, Polymer 2013, 54, 143–147.
  • Gao, Y.; Huang, F.; Zhou, Y.; Du, L. “Synthesis and characterization of a novel acetylene- and maleimide-terminated benzoxazine and its high-performance thermosets”, J. Appl. Polym. Sci. 2013, 128, 340–346.
  • Chaisuwan, T.; Ishida, H. “Highly processible maleimide and nitrile functionalized benzoxazines for advanced composites applications”, J. Appl. Polym. Sci. 2010, 117, 2559–2565.
  • Ishida, H.; Ohba, S. “Thermal analysis and mechanical characterization of maleimide-functionalized benzoxazine/epoxy copolymers”, J. Appl. Polym. Sci. 2006, 101, 1670–1677.
  • Liu, Y.-L.; Yu, J.-M. “Cocuring behaviors of benzoxazine and maleimide derivatives and the thermal properties of the cured products”, J. Polym. Sci., Part A: Polym. Chem. 2006, 44, 1890–1899.
  • Agag, T.; Takeichi, T. “characterization, and polymerization of maleimidobenzoxazine monomers as a novel class of thermosetting resins”, J. Polym. Sci., Part A: Polym. Chem. 2006, 44, 1424–1435.
  • Ishida, H.; Ohba, S. “Synthesis and characterization of maleimide and norbornene functionalized benzoxazines”, Polymer, 2005, 46, 5588–5595.
  • Liu, Y.-L.; Yu, J.-M.; Chou, C.-I. “Preparation and properties of novel benzoxazine and polybenzoxazine with maleimide groups”, J. Polym. Sci., Part A: Polym. Chem. 2004, 42, 5954–5963.
  • Jin, L.; Agag, T.; Ishida, H. “Bis(benzoxazine-maleimide)s as a novel class of high performance resin: Synthesis and properties”, Eur. Polym. J. 2010, 46, 354–363.
  • Lin, S.-C.; Wu, C.-S.; Yeh, J.-M.; Liu, Y.-L. “Reaction mechanism and synergistic anticorrosion property of reactive blends of maleimide-containing benzoxazine and amine-capped aniline trimer”, Polym. Chem. 2014, 5, 4235–4244.
  • Gacal, B.; Cianga, L.; Agag, T.; Takeichi, T.; Yagci, Y. “Synthesis and characterization of maleimide (Co)polymers with pendant benzoxazine groups by photoinduced radical polymerization and their thermal curing”, J. Polym. Sci., Part A: Polym. Chem. 2007, 45, 2774–2786.
  • Ke, L.; Hu, D.; Lu, Y.; Feng, S.; Xie, Y.; Xu, X. “Copolymerization of maleimide-based benzoxazine with styrene and the curing kinetics of the resultant copolymer”, Polym. Degrad. Stab. 2012, 97, 132–138.
  • US7378533B1 “Method for preparing thermally cleavable surfactants without deprotonation , US Patent US7378533”, 2008.
  • Gandini, A.; Silvestre, A. J. D.; Coelho, D. “Reversible Click Chemistry at the Service of Macromolecular Materials. 2. Thermoreversible Polymers Based on the Diels-Alder Reaction of an A-B Furan/Maleimide Monomer”, J. Polym. Sci., Part A: Polym. Chem., 2010, 48, 2053–2056.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.