2,138
Views
7
CrossRef citations to date
0
Altmetric
Reviews

Approaches to Improve Therapeutic Efficacy of Biodegradable PLA/PLGA Microspheres: A Review

, , , , , & show all
Pages 495-536 | Received 27 Jun 2017, Accepted 31 Jan 2018, Published online: 08 Mar 2018

References

  • Huang, X.; Brazel, C. S. “On the importance and mechanisms of burst release in matrix-controlled drug delivery systems”, J. Control. Release. 2001, 73, 121–136. doi:10.1016/S0168-3659(01)00248-6
  • Vasir, J. K.; Tambwekar, K.; Garg, S. “Bioadhesive microspheres as a controlled drug delivery system”. Int. J. Pharm. 2003, 255, 13–32. doi:10.1016/S0378-5173(03)00087-5
  • Ma, W. J.; Yuan, X. B; Kang, C. S.; Su, T.; Yuan, X. Y.; Pu, P. Y.; Sheng, J. “Evaluation of blood circulation of polysaccharide surface-decorated PLA nanoparticles”, Carbohydr. Polym. 2008, 72, 75–81. doi:10.1016/j.carbpol.2007.07.033
  • Freiberg, S.; Zhu, X. “Polymer microspheres for controlled drug release”, Int. J. Pharm. 2004, 282, 1–18. doi:10.1016/j.ijpharm.2004.04.013
  • Versypt, A. N. F.; Pack, D. W.; Braatz, R. D. “Mathematical modeling of drug delivery from autocatalytically degradable PLGA microspheres—a review”, J. Control. Release 2013, 165, 29–37. doi:10.1016/j.jconrel.2012.10.015
  • Andhariya, J. V.; Choi, S.; Wang, Y.; Zhou, Y.; Burgess, D. J.; Shen, J. “Accelerated in vitro release testing method for naltrexone loaded PLGA microspheres”, Int. J. Pharm. 2017, 520, 79–85. doi:10.1016/j.ijpharm.2017.01.050
  • Hines, D. J.; Kaplan, D. L. “Poly (lactic-co-glycolic) acid− controlled-release systems: experimental and modeling insights”, Crit. Rev. Ther. Drug. Carrier Syst. 2013, 30, 257–276. doi:10.1615/CritRevTherDrugCarrierSyst.2013006475
  • Szlęk, J.; Pacławski, A.; Lau, R.; Jachowicz, R.; Kazemi, P.; Mendyk, A. “Empirical search for factors affecting mean particle size of plga microspheres containing macromolecular drugs”, Comput. Methods Programs Biomed. 2016, 134, 137–147. doi:10.1016/j.cmpb.2016.07.006
  • Virlan, M. J. R.; Miricescu, D.; Totan, A.; Greabu, M.; Tanase, C.; Sabliov, C. M.; Caruntu, C.; Calenic, B. “Current uses of poly (lactic-co-glycolic acid) in the dental field: a comprehensive review”, J. Chem. 2015, 2015, article ID 525832. doi:10.1155/2015/525832
  • Correia, D. M.; Sencadas, V.; Ribeiro, C.; Martins, P. M.; Martins, P.; Gama, F. M.; Botelho, G.; Lanceros-Méndez, S. “Processing and size range separation of pristine and magnetic poly (L-lactic acid) based microspheres for biomedical applications”, J. Colloid Interface Sci. 2016, 476, 79–86. doi:10.1016/j.jcis.2016.05.012
  • Terukina, T.; Naito, Y.; Tagami, T.; Morikawa, Y.; Henmi, Y.; Prananingrum, W.; Ichikawa, T.; Ozeki, T. The effect of the release behavior of simvastatin from different PLGA particles on bone regeneration in vitro and in vivo: comparison of simvastatin-loaded PLGA microspheres and nanospheres. J. Drug Deliv. Sci. Technol. 2016, 33, 136–142. doi:10.1016/j.jddst.2016.03.005
  • Lee, B.K.; Yun, Y.; Park, K. PLA micro-and nano-particles. Adv. Drug Deliv. Rev. 2016, 107, 176–191. doi:10.1016/j.addr.2016.05.020
  • Hyon, S. H. Biodegradable poly (lactic acid) microspheres for drug delivery systems. Yonsei Med. J. 2000, 41, 720–734. doi:10.3349/ymj.2000.41.6.720
  • Makadia, H. K.; Siegel, S. J. Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier. Polymer 2011, 3, 1377–1397. doi:10.3390/polym3031377
  • Garner, J.; Skidmore, S.; Park, H.; Park, K.; Choi, S.; Wang, Y. A protocol for assay of poly (lactide-co-glycolide) in clinical products. Int. J. Pharm. 2015, 495, 87–92. doi:10.1016/j.ijpharm.2015.08.063
  • Wan, F.; Yang, M. Design of PLGA-based depot delivery systems for biopharmaceuticals prepared by spray drying. Int. J. Pharm. 2016, 498, 82–95. doi:10.1016/j.ijpharm.2015.12.025
  • Kerimoğlu, O.; Alarçin, E. Poly (lactic-co-glycolic acid) based drug delivery devices for tissue engineering and regenerative medicine. ANKEM Derg. 2012, 26, 86–98. doi:10.5222/ankem.2012.086
  • Shantha Kumar, T.; Soppimath, K.; Nachaegari, S. Novel delivery technologies for protein and peptide therapeutics. Curr. Pharm. Biotechnol. 2006, 7, 261–276. doi:10.2174/138920106777950852
  • Kumar, R.; Palmieri, M. J. Points to consider when establishing drug product specifications for parenteral microspheres. AAPS J. 2010, 12, 27–32. doi:10.1208/s12248-009-9156-6
  • Wischkie, C.; Schwendeman, S. P. Principles of encapsulating hydrophobic drugs in PLA/PLGA microparticles. Int. J. Pharm. 2008, 364, 298–327. doi:10.1016/j.ijpharm.2008.04.042
  • Anderson, J. M.; Shive, M. S. Biodegradation and biocompatibility of PLA and PLGA microspheres. Adv. Drug Deliv. Rev. 2012, 64, 72–82. doi:10.1016/j.addr.2012.09.004
  • Floyd, J. A.; Galperin, A.; Ratner, B. D. Drug encapsulated polymeric microspheres for intracranial tumor therapy: a review of the literature. Adv. Drug Deliv. Rev. 2015, 91, 23–37. doi:10.1016/j.addr.2015.04.008
  • O'Donnell, P. B.; McGinity, J. W. Preparation of microspheres by the solvent evaporation technique. Adv. Drug Deliv. Rev. 1997, 28, 25–42. doi:10.1016/S0169-409X(97)00049-5
  • Sadeghi, A. R.; Nokhasteh, S.; Molavi, A. M.; Khorsand-Ghayeni, M.; Naderi-Meshkin, H.; Mahdizadeh, A. Surface modification of electrospun PLGA scaffold with collagen for bioengineered skin substitutes. Mater. Sci. Eng., C. 2016, 66, 130–137. doi:10.1016/j.msec.2016.04.073
  • Sabee, M. M.; Kamalaldin, N. A.; Yahaya, B. H.; Hamid, Z. A. Characterization and in vitro study of surface modified PLA microspheres treated with NaOH. J. Polym. Mater. 2016, 33, 191–200.
  • Huang, Y. Y.; Chung, T. W.; Tzeng, T. W. A method using biodegradable polylactides/polyethylene glycol for drug release with reduced initial burst. Int. J. Pharm. 1999, 182, 93–100. doi:10.1016/S0378-5173(99)00060-5
  • Croll, T. I.; O'Connor, A. J.; Stevens, G. W.; Cooper-White, J. J. Controllable surface modification of poly (lactic-co-glycolic acid)(PLGA) by hydrolysis or aminolysis I: physical, chemical, and theoretical aspects. Biomacromolecules 2004, 5, 463–473. doi:10.1021/bm0343040
  • Duan, K.; Tang, A.; Wang, R. Accelerating calcium phosphate growth on NaOH-treated poly-(lactic-co-glycolic acid) by evaporation-induced surface crystallization. Appl. Surf. Sci. 2008, 255, 2442–2448. doi:10.1016/j.apsusc.2008.07.114
  • Ma, Z.; Cao, C.; Yuan, J.; Ji, J.; Gong, Y.; Shen, J. Surface modification of poly‐L‐lactide by photografting of hydrophilic polymers towards improving its hydrophilicity. J. Appl. Polym. Sci. 2002, 85, 2163–2171. doi:10.1002/app.10803
  • Wang, X.; Wenk, E.; Hu, X.; Castro, G. R.; Meinel, L.; Wang, X.; Li, C.; Merkle, H.; Kaplan, D. L. Silk coatings on PLGA and alginate microspheres for protein delivery. Biomaterials 2007, 28, 4161–4169. doi:10.1016/j.biomaterials.2007.05.036
  • Ramazani, F.; Chen, W.; van-Nostrum, C. F.; Storm, G.; Kiessling, F.; Lammers, T.; Hennink, W. E.; Kok, R. J. Strategies for encapsulation of small hydrophilic and amphiphilic drugs in PLGA microspheres: state-of-the-art and challenges. Int. J. Pharm. 2016, 499, 358–367. doi:10.1016/j.ijpharm.2016.01.020
  • Freitas, S.; Merkle, H. P.; Gander, B. Microencapsulation by solvent extraction/evaporation: reviewing the state of the art of microsphere preparation process technology. J. Control. Release 2005, 102, 313–332. doi:10.1016/j.jconrel.2004.10.015
  • Ouchi, T.; Toyohara, M.; Arimura, H.; Ohya, Y. Preparation of poly (L-Lactide)-based microspheres having a cationic or anionic surface using biodegradable surfactants. Biomacromolecules 2002, 3, 885–888. doi:10.1021/bm0200231
  • Reza, M.; Whateley, T. Iodo-2′-Deoxyuridine (IUdR) and 125IUdR loaded biodegradable microspheres for controlled delivery to the brain. J. Microencapsul. 1998, 15, 789–801. doi:10.3109/02652049809008261
  • Zhang, H.; Gao, S. Temozolomide/PLGA microparticles and antitumor activity against glioma C6 cancer cells in vitro. Int. J. Pharm. 2007, 329, 122–128. doi:10.1016/j.ijpharm.2006.08.027
  • Couvreur, P.; Blanco-Prieto, M. J.; Puisieux, F.; Roques, B.; Fattal, E. Multiple emulsion technology for the design of microspheres containing peptides and oligopeptides. Adv. Drug Deliv. Rev. 1997, 28, 85–96. doi:10.1016/S0169-409X(97)00052-5
  • Iqbal, M.; Zafar, N.; Fessi, H.; Elaissari, A. Double emulsion solvent evaporation techniques used for drug encapsulation. Int. J. Pharm. 2015, 496, 173–190. doi:10.1016/j.ijpharm.2015.10.057
  • Rosca, I. D.; Watari, F.; Uo, M. Microparticle formation and its mechanism in single and double emulsion solvent evaporation. J. Control. Release 2004, 99, 271–280. doi:10.1016/j.jconrel.2004.07.007
  • Morita, T.; Sakamura, Y.; Horikiri, Y.; Suzuki, T.; Yoshino, H. Protein encapsulation into biodegradable microspheres by a novel S/O/W emulsion method using poly (ethylene glycol) as a protein micronization adjuvant. J. Control. Release 2000, 3, 435–444. doi:10.1016/S0168-3659(00)00326-6
  • Choi, J. W.; Park, J. H.; Baek, S. Y.; Kim, D. D.; Kim, H. C.; Cho, H. J. Doxorubicin-loaded poly (lactic-co-glycolic acid) microspheres prepared using the solid-in-oil-in-water method for the transarterial chemoembolization of a liver tumor. Colloids Surf., B 2015, 132, 305–312. doi:10.1016/j.colsurfb.2015.05.037
  • Xu, Q.; Crossley, A.; Czernuszka, J. Preparation and characterization of negatively charged poly (lactic‐co‐glycolic acid) microspheres. J. Pharm. Sci. 2009, 98, 2377–2389. doi:10.1002/jps.21612
  • Lamprecht, A.; Torres, H. R.; Schäfer, U.; Lehr, C. M. Biodegradable microparticles as a two-drug controlled release formulation: a potential treatment of inflammatory bowel disease. J. Control. Release 2000, 69, 445–454. doi:10.1016/S0168-3659(00)00331-X
  • Nafea, E. H.; El-Massik, M. A.; El-Khordagui, L. K.; Marei, M. K.; Khalafallah, N. M. Alendronate PLGA microspheres with high loading efficiency for dental applications. J. Microencapsul. 2007, 24, 525–538. doi:10.1080/02652040701439807
  • Chaw, C. S.; Yang, Y. Y.; Lim, I. J.; Phan, T. T. Water-soluble betamethasone-loaded poly (lactide-co-glycolide) hollow microparticles as a sustained release dosage form. J. Microencapsul. 2003, 20, 349–359. doi:10.3109/02652040309178074
  • Weidenauer, U.; Bodmer, D.; Kissel, T. Microencapsulation of hydrophilic drug substances using biodegradable polyesters. Part I: evaluation of different techniques for the encapsulation of pamidronate di-sodium salt. J. Microencapsul. 2003, 20, 509–524. doi:10.1080/0265204031000093050
  • Herrero-Vanrell, R.; Ramirez, L. Biodegradable PLGA microspheres loaded with ganciclovir for intraocular administration. Encapsulation technique, in vitro release profiles, and sterilization process. Pharm Res. 2000, 17, 1323–1328. doi:10.1023/A:1026464124412
  • Jeong, Y. I.; Na, H. S.; Nah, W.; Lee, J. H. C. Preparation of ciprofloxacin‐encapsulated poly (DL‐lactide‐co‐glycolide) microspheres and its antibacterial activity. J. Pharm. Sci. 2009, 98, 3659–3665. doi:10.1002/jps.21680
  • Han, F. Y.; Thurecht, K. J.; Whittaker, A. K.; Smith, M. T. Bioerodable PLGA-based microparticles for producing sustained-release drug formulations and strategies for improving drug loading. Front. Pharmacol. 2016, 7, 185. doi:10.3389/fphar.2016.00185
  • Barrow, W. W. Microsphere technology for chemotherapy of mycobacterial infections. Curr. Pharm. Des. 2004, 10, 3275–3284. doi:10.2174/1381612043383197
  • Qi, F.; Wu, J.; Fan, Q.; He, F.; Tian, G.; Yang, T.; Ma, G.; Su, Z. Preparation of uniform-sized exenatide-loaded PLGA microspheres as long-effective release system with high encapsulation efficiency and bio-stability. Colloids Surf., B 2013, 112, 492–498. doi:10.1016/j.colsurfb.2013.08.048
  • Liu, R.; Huang, S. S.; Wan, Y. H.; Ma, G. H.; Su, Z. G. Preparation of insulin-loaded PLA/PLGA microcapsules by a novel membrane emulsification method and its release in vitro. Colloids Surf., B 2006, 51, 30–38. doi:10.1016/j.colsurfb.2006.05.014
  • Doan, T. V. P.; Couet, W.; Olivier, J. C. Formulation and in vitro characterization of inhalable rifampicin-loaded PLGA microspheres for sustained lung delivery. Int. J. Pharm. 2011, 414, 112–117. doi:10.1016/j.ijpharm.2011.05.007
  • Doan, T. V. P.; Olivier, J. C. Preparation of rifampicin-loaded PLGA microspheres for lung delivery as aerosol by premix membrane homogenization. Int. J. Pharm. 2009, 382, 61–66. doi:10.1016/j.ijpharm.2009.08.008
  • Trentin, A.; Güell, C.; Gelaw, T.; De Lamo, S.; Ferrando, M. Cleaning protocols for organic microfiltration membranes used in premix membrane emulsification. Sep. Purif. Technol. 2012, 88, 70–78. doi:10.1016/j.seppur.2011.12.003
  • Park, J. H.; Han, C. M.; Lee, E. J.; Kim, H. W. Preparation of highly monodispersed porous-channeled poly (Caprolactone) microspheres by a microfluidic system. Mater. Lett. 2016, 181, 92–98. doi:10.1016/j.matlet.2016.06.020
  • Shah, R. K.; Shum, H. C.; Rowat, A. C.; Lee, D.; Agresti, J. J.; Utada, A. S.; Chu, L. Y.; Kim, J. W.; Fernandez-Nieves, A.; Martinez, C. J.; Weitz, D. A. Designer emulsions using microfluidics. Mater. Today 2008, 11, 18–27. doi:10.1016/S1369-7021(08)70053-1
  • Xu, Q.; Hashimoto, M.; Dang, T. T.; Hoare, T.; Kohane, D. S.; Whitesides, G. M.; Langer, R.; Anderson, D. G. Preparation of monodisperse biodegradable polymer microparticles using a microfluidic flow‐focusing device for controlled drug delivery. Small 2009, 5, 1575–1581. doi:10.1002/smll.200801855
  • Hung, L. H.; Teh, S. Y.; Jester, J.; Lee, A. P. PLGA micro/nanosphere synthesis by droplet microfluidic solvent evaporation and extraction approaches. Lab Chip 2010, 10, 1820–1825. doi:10.1039/c002866e
  • Wang, J.; Li, Y.; Wang, X.; Wang, J.; Tian, H.; Zhao, P.; Tian, Y.; Gu, Y.; Wang, L.; Wang, C. Droplet microfluidics for the production of microparticles and nanoparticles. Micromachines 2017, 8, 22. doi:10.3390/mi8010022
  • Marre, S.; Jensen, K. F. Synthesis of micro and nanostructures in microfluidic systems. Chem. Soc. Rev. 2010, 39, 1183–1202. doi:10.1039/b821324k
  • Tu, F.; Lee, D. Controlling the stability and size of double-emulsion-templated poly (lactic-co-glycolic) acid microcapsules. Langmuir 2012, 28, 9944–9952. doi:10.1021/la301498f
  • Utada, A. S.; Lorenceau, E.; Link, D. R.; Kaplan, P. D.; Stone, H. A.; Weitz, D. A. Monodisperse double emulsions generated from a microcapillary device. Science 2005, 308, 537–541. doi:10.1126/science.1109164
  • Wu, J.; Kong, T.; Yeung, K. W. K.; Shum, H. C.; Cheung, K. M. C.; Wang, L.; To, M. K. T. Fabrication and characterization of monodisperse PLGA–alginate core–shell microspheres with monodisperse size and homogeneous shells for controlled drug release. Acta Biomater 2013, 9, 7410–7419. doi:10.1016/j.actbio.2013.03.022
  • Liu, Z.; Li, X.; Xiu, B.; Duan, C.; Li, J.; Zhang, X.; Yang, X.; Dai, W.; Johnson, H.; Zhang, H.; Feng, X. A novel and simple preparative method for uniform-sized PLGA microspheres: preliminary application in antitubercular drug delivery. Colloids Surf., B 2016, 145, 679–687. doi:10.1016/j.colsurfb.2016.05.085
  • Gavini, E.; Chetoni, P.; Cossu, M.; Alvarez, M. G.; Saettone, M. F.; Giunchedi, P. PLGA microspheres for the ocular delivery of a peptide drug, vancomycin using emulsification/spray-drying as the preparation method: in vitro/in vivo studies. Eur. J. Pharm. Biopharm. 2004, 57, 207–212. doi:10.1016/j.ejpb.2003.10.018
  • da Silva-Junior, A. A.; de Matos, J. R.; Formariz, T. P.; Rossanezi, G.; Scarpa, M. V.; do Egito, E. S. T.; de Oliveira, A. G. Thermal behavior and stability of biodegradable spray-dried microparticles containing triamcinolone. Int. J. Pharm. 2009, 368, 45–55. doi:10.1016/j.ijpharm.2008.09.054
  • Sosnik, A.; Seremeta, K. P. Advantages and challenges of the spray-drying technology for the production of pure drug particles and drug-loaded polymeric carriers. Adv. Colloid Interface Sci. 2015, 223, 40–54. doi:10.1016/j.cis.2015.05.003
  • Zhu, C.; Huang, Y.; Zhang, X.; Mei, L.; Pan, X.; Li, G.; Wu, C. Comparative studies on exenatide-loaded poly (D, L-lactic-co-glycolic acid) microparticles prepared by a novel ultra-fine particle processing system and spray drying. Colloids Surf., B 2015, 132, 103–110. doi:10.1016/j.colsurfb.2015.05.001
  • Liu, W.; Chen, X. D.; Selomulya, C. On the spray drying of uniform functional microparticles. Particuology 2015, 22, 1–12. doi:10.1016/j.partic.2015.04.001
  • Jung, J.; Perrut, M. Particle design using supercritical fluids: literature and patent survey. J. Supercrit. Fluids 2001, 20, 179–219. doi:10.1016/S0896-8446(01)00064-X
  • Esfandiari, N. Production of micro and nano particles of pharmaceutical by supercritical carbon dioxide. J. Supercrit. Fluids 2015, 100, 129–141. doi:10.1016/j.supflu.2014.12.028
  • Reverchon, E.; Adami, R.; Cardea, S.; Della Porta, G. Supercritical fluids processing of polymers for pharmaceutical and medical applications. J. Supercrit. Fluids 2009, 47, 484–492. doi:10.1016/j.supflu.2008.10.001
  • Campardelli, R.; Baldino, L.; Reverchon, E. Supercritical fluids applications in nanomedicine. J. Supercrit. Fluids 2015, 101, 193–214. doi:10.1016/j.supflu.2015.01.030
  • Della Porta, G.; Castaldo, F.; Scognamiglio, M.; Paciello, L.; Parascandola, P.; Reverchon, E. Bacteria microencapsulation in PLGA microdevices by supercritical emulsion extraction. J. Supercrit. Fluids 2012, 63, 1–7. doi:10.1016/j.supflu.2011.12.020
  • Falco, N.; Reverchon, E.; Della Porta, G. Continuous supercritical emulsions extraction: packed tower characterization and application to poly (lactic-co-glycolic acid)+ insulin microspheres production. Ind. Eng. Chem. Res. 2012, 51, 8616–8623. doi:10.1021/ie300482n
  • Porta, G. D.; Falco, N.; Reverchon, E. Continuous supercritical emulsions extraction: a new technology for biopolymer microparticles production. Biotechnol. Bioeng. 2011, 108, 676–686. doi:10.1002/bit.22972
  • Campardelli, R.; Adami, R.; Della Porta, G.; Reverchon, E. Nanoparticle precipitation by supercritical assisted injection in a liquid antisolvent. Chem. Eng. J. 2012, 192, 246–251. doi:10.1016/j.cej.2012.04.010
  • Campardelli, R.; Oleandro, E.; Reverchon, E. Supercritical assisted injection in a liquid antisolvent for PLGA and PLA microparticle production. Powder Technol. 2016, 287, 12–19. doi:10.1016/j.powtec.2015.09.035
  • Li, M.; Rouaud, O.; Poncelet, D. Microencapsulation by solvent evaporation: state of the art for process engineering approaches. Int. J. Pharm. 2008, 363, 26–39. doi:10.1016/j.ijpharm.2008.07.018
  • Katou, H.; Wandrey, A. J.; Gander, B. Kinetics of solvent extraction/evaporation process for PLGA microparticle fabrication. Int. J. Pharm. 2008, 364, 45–53. doi:10.1016/j.ijpharm.2008.08.015
  • Ng, S. M.; Choi, J. Y.; Han, H. S.; Huh, J. S.; Lim, J. O. Novel microencapsulation of potential drugs with low molecular weight and high hydrophilicity: hydrogen peroxide as a candidate compound. Int. J. Pharm. 2010, 384, 120–127. doi:10.1016/j.ijpharm.2009.10.005
  • Dorati, R.; DeTrizio, A.; Genta, I.; Grisoli, P.; Merelli, A.; Tomasi, C.; Conti, B. An experimental design approach to the preparation of pegylated polylactide-co-glicolide gentamicin loaded microparticles for local antibiotic delivery. Mater. Sci. Eng., C 2016, 58, 909–917. doi:10.1016/j.msec.2015.09.053
  • Mao, S.; Xu, J.; Cai, C.; Germershaus, O.; Schaper, A.; Kissel, T. Effect of WOW process parameters on morphology and burst release of FITC-dextran loaded PLGA microspheres. Int. J. Pharm. 2007, 334, 137–148. doi:10.1016/j.ijpharm.2006.10.036
  • Chaisri, W.; Ghassemi, A. H.; Hennink, W. E.; Okonogi, S. Enhanced gentamicin loading and release of PLGA and PLHMGA microspheres by varying the formulation parameters. Colloids Surf., B 2011, 84, 508–514. doi:10.1016/j.colsurfb.2011.02.006
  • Ito, F.; Fujimori, H.; Makino, K. Incorporation of water-soluble drugs in PLGA microspheres. Colloids Surf., B 2007, 54, 173–178. doi:10.1016/j.colsurfb.2006.10.019
  • Sun, L.; Zhou, S.; Wang, W.; Li, X.; Wang, J.; Weng, J. Preparation and characterization of porous biodegradable microspheres used for controlled protein delivery. Colloids Surf., A 2009, 345, 173–181. doi:10.1016/j.colsurfa.2009.04.053
  • Gaignaux, A.; Réeff, J.; Siepmann, F.; Siepmann, J.; De Vriese, C.; Goole, J.; Amighi, K. Development and evaluation of sustained-release clonidine-loaded PLGA microparticles. Int. J. Pharm. 2012, 437, 20–28. doi:10.1016/j.ijpharm.2012.08.006
  • Flores, C.; Degoutin, S.; Chai, F.; Raoul, G.; Hornez, J. C.; Martel, B.; Siepmann, J.; Ferri, J.; Blanchemain, N. Gentamicin-loaded poly (lactic-co-glycolic acid) microparticles for the prevention of maxillofacial and orthopedic implant infections. Mater. Sci. Eng., C 2016, 64, 108–116. doi:10.1016/j.msec.2016.03.064
  • Chaisri, W.; Hennink, W. E.; Okonogi, S. Preparation and characterization of cephalexin loaded PLGA microspheres. Curr. Drug Deliv. 2009, 6, 69–75. doi:10.2174/156720109787048186
  • Srivastava, S.; Sinha, V. Stavudine loaded biodegradable polymeric microspheres as a depot system for parenteral delivery. Int. J. Pharm. Sci. Drug Res. 2013, 5, 1–13.
  • Al-Maaieh, A.; Flanagan, D. R. New drug salt formation in biodegradable microspheres. Int. J. Pharm. 2005, 303, 153–159. doi:10.1016/j.ijpharm.2005.06.029
  • Singh, D.; Saraf, S.; Dixit, V. K.; Saraf, S. Formulation optimization of gentamicin loaded Eudragit RS100 microspheres using factorial design study. Biol. Pharm. Bull. 2008, 31, 662–667. doi:10.1248/bpb.31.662
  • Al-Maaieh, A.; Flanagan, D. R. Salt and cosolvent effects on ionic drug loading into microspheres using an O/W method. J. Control. Release 2001, 70, 169–181. doi:10.1016/S0168-3659(00)00347-3
  • Cohen-Sela, E.; Chorny, M.; Koroukhov, N.; Danenberg, H. D.; Golomb, G. A new double emulsion solvent diffusion technique for encapsulating hydrophilic molecules in PLGA nanoparticles. J. Control. Release 2009, 133, 90–95. doi:10.1016/j.jconrel.2008.09.073
  • Haggag, Y.; Abdel-Wahab, Y.; Ojo, O.; Osman, M.; El-Gizawy, S.; El-Tanani, M.; Faheem, A.; McCarron, P. Preparation and in vivo evaluation of insulin-loaded biodegradable nanoparticles prepared from diblock copolymers of PLGA and PEG. Int. J. Pharm. 2016, 499, 236–246. doi:10.1016/j.ijpharm.2015.12.063
  • Ramazani, F.; Hiemstra, C.; Steendam, R.; Kazazi-Hyseni, F.; Van Nostrum, C. F.; Storm, G.; Kiessling, F.; Lammers, T. G. G. M.; Hennink, W. E.; Kok, R. J. Sunitinib microspheres based on [PDLLA-PEG-PDLLA]-b-PLLA multi-block copolymers for ocular drug delivery. Eur. J. Pharm. Biopharm. 2015, 95, 368–377. doi:10.1016/j.ejpb.2015.02.011
  • Keohane, K.; Brennan, D.; Galvin, P.; Griffin, B. T. Silicon microfluidic flow focusing devices for the production of size-controlled PLGA based drug loaded microparticles. Int. J. Pharm. 2014, 467, 60–69. doi:10.1016/j.ijpharm.2014.03.051
  • Lochmann, A.; Nitzsche, H.; von Einem, S.; Schwarz, E.; Mäder, K. The influence of covalently linked and free polyethylene glycol on the structural and release properties of rhBMP-2 loaded microspheres. J. Control. Release 2010, 147, 92–100. doi:10.1016/j.jconrel.2010.06.021
  • Buske, J.; König, C.; Bassarab, S.; Lamprecht, A.; Mühlau, S.; Wagner, K. G. Influence of PEG in PEG–PLGA microspheres on particle properties and protein release. Eur. J. Pharm. Biopharm. 2012, 81, 57–63. doi:10.1016/j.ejpb.2012.01.009
  • Ruan, G.; Feng, S. S. Preparation and characterization of poly (Lactic Acid)–poly (ethylene glycol)–poly (lactic acid)(PLA–PEG–PLA) microspheres for controlled release of paclitaxel. Biomaterials 2003, 24, 5037–5044. doi:10.1016/S0142-9612(03)00419-8
  • Chen, A. Z.; Zhao, Z.; Wang, S. B.; Li, Y.; Zhao, C.; Liu, Y. G. A continuous RESS process to prepare PLA–PEG–PLA microparticles. J Supercrit Fluids 2011, 59, 92–97. doi:10.1016/j.supflu.2011.08.012
  • Tran, V. T.; Karam, J. P.; Garric, X.; Coudane, J.; Benoît, J. P.; Montero-Menei, C. N.; Venier-Julienne, M. C. Protein-loaded PLGA–PEG–PLGA microspheres: a tool for cell therapy. Eur. J. Pharm. Sci. 2012, 45, 128–137. doi:10.1016/j.ejps.2011.10.030
  • Yeh, M. K.; Jenkins, P. G.; Davis, S. S.; Coombes, A. G. A. Improving the delivery capacity of microparticle systems using blends of poly (DL-lactide co-glycolide) and poly (ethylene glycol). J. Control. Release 1995, 37, 1–9. doi:10.1016/0168-3659(95)00039-B
  • Javiya, C.; Jonnalagadda, S. Physicochemical characterization of spray-dried PLGA/PEG microspheres, and preliminary assessment of biological response. Drug Dev. Ind. Pharm. 2016, 42, 1504–1514. doi:10.3109/03639045.2016.1151030
  • Ibrahim, M. A. Assessment of Insulin stability inside diblock copolymer PEG-PLA microspheres. Sci. Pharm. 2010, 78, 493–506. doi:10.3797/scipharm.1002-01
  • Sandker, M. J.; Duque, L. F.; Redout, E. M.; Chan, A.; Que, I.; Löwik, C. W.; Klijnstra, E. C.; Kops, N.; Steendam, R.; van Weeren, R.; Hennink, W. E. Degradation, intra-articular retention and biocompatibility of monospheres composed of [PDLLA-PEG-PDLLA]-b-PLLA multi-block copolymers. Acta Biomater. 2017, 48, 401–414. doi:10.1016/j.actbio.2016.11.003
  • Jiang, W.; Schwendeman, S. P. Stabilization and controlled release of bovine serum albumin encapsulated in poly (D, L-lactide) and poly (ethylene glycol) microsphere blends. Pharm. Res. 2001, 18, 878–885. doi:10.1023/A:1011009117586
  • Wei, Y.; Wang, Y. X.; Wang, W.; Ho, S. V.; Qi, F.; Ma, G. H.; Su, Z. G. Microcosmic mechanisms for protein incomplete release and stability of various amphiphilic mPEG-PLA microspheres. Langmuir 2012, 28, 13984–13992. doi:10.1021/la3017112
  • Mäder, K.; Bittner, B.; Li, Y.; Wohlauf, W.; Kissel, T. Monitoring microviscosity and microacidity of the albumin microenvironment inside degrading microparticles from poly (lactide-co-glycolide)(PLG) or ABA-triblock polymers containing hydrophobic poly (lactide-co-glycolide) a blocks and hydrophilic poly (ethyleneoxide) B blocks. Pharm. Res. 1998, 15, 787–793. doi:10.1023/A:1011939607573
  • Sharma, S.; Parmar, A.; Kori, S.; Sandhir, R. PLGA-based nanoparticles: a new paradigm in biomedical applications. Trends Analyt. Chem. 2016, 80, 30–40. doi:10.1016/j.trac.2015.06.014
  • Garkhal, K.; Verma, S.; Jonnalagadda, S.; Kumar, N. Fast degradable poly (L‐lactide‐co‐ϵ‐caprolactone) microspheres for tissue engineering: synthesis, characterization, and degradation behavior. J. Polym. Sci., Part A: Polym. Chem. 2007, 45, 2755–2764. doi:10.1002/pola.22031
  • Zhou, W.; Qian, H.; Yan, L.; Luo, D.; Xu, N.; Wu, J. Controlled release of clodronate from PLA/PCL complex microsphere. Mater. Lett. 2015, 152, 293–297. doi:10.1016/j.matlet.2015.03.102
  • Dong, C. M.; Guo, Y. Z.; Qiu, K. Y.; Gu, Z. W.; Feng, X. D. In vitro degradation and controlled release behavior of D, L-PLGA50 and PCL-bD, L-PLGA50 copolymer microspheres. J. Control. Release 2005, 107, 53–64. doi:10.1016/j.jconrel.2005.05.024
  • Das, G. S.; Rao, G. H.; Wilson, R. F.; Chandy, T. Colchicine encapsulation within poly (ethylene glycol)-coated poly (lactic acid)/poly (ɛ-caprolactone) microspheres-controlled release studies. Drug delivery 2000, 7, 129–138. doi:10.1080/10717540050120160
  • Yang, L.; Zhang, J.; He, J.; Zhang, J.; Gan, Z. Fabrication, hydrolysis and cell cultivation of microspheres from cellulose-graft-poly (L-lactide) copolymers. RSC Adv. 2016, 6, 17617–17623. doi:10.1039/C5RA25993B
  • León-Rodriguez, L.; Leiro-Vidal, J.; Blanco-Méndez, J.; Luzardo-Álvarez, A. Incorporation of PVMMA to PLGA MS enhances lectin grafting and their in vitro activity in macrophages. Int. J. Pharm. 2010, 402, 165–174. doi:10.1016/j.ijpharm.2010.10.006
  • Donelli, I.; Freddi, G.; Nierstrasz, V. A.; Taddei, P. Surface structure and properties of poly-(ethylene terephthalate) hydrolyzed by alkali and cutinase. Polym. Degrad. Stab. 2010, 95, 1542–1550. doi:10.1016/j.polymdegradstab.2010.06.011
  • Davis, H. E.; Rao, R. R.; He, J.; Leach, J. K. Biomimetic scaffolds fabricated from apatite‐coated polymer microspheres. J. Biomed. Mater. Res., A. 2009, 90, 1021–1031. doi:10.1002/jbm.a.32169
  • Wang, F.; Liu, X.; Yuan, J.; Yang, S.; Li, Y.; Gao, Q. Synthesis and characterization of poly (lactic acid-co-glycolic acid) complex microspheres as drug carriers. J. Biomater. Appl. 2016, 31, 544–552. doi:10.1177/0885328216657548
  • Xiao, L.; Wang, B.; Yang, G.; Gauthier, M. “Poly(lactic acid)-based biomaterials: synthesis, modification and applications”, In Biomedical Science, Engineering and Technology; Ghista Dhanjoo, N., Ed.; In Tech, 2012; pp. 247–282.
  • Yuan, Y.; Shi, X.; Gan, Z.; Wang, F. Modification of porous PLGA microspheres by poly-L-lysine for use as tissue engineering scaffolds. Colloids Surf., B 2017, 161, 162–168. doi:10.1016/j.colsurfb.2017.10.044
  • Tham, C. Y.; Hamid, Z. A. A.; Ahmad, Z. A.; Ismail, H. Surface engineered poly (lactic acid)(PLA) microspheres by chemical treatment for drug delivery system. Key Eng. Mater. 2014, 594, 214–218.
  • Liu, D. Z.; Chen, W.; Lee, C. P.; Wu, S. L.; Wang, Y. C.; Chung, T. W. Effects of alginate coated on PLGA microspheres for delivery tetracycline hydrochloride to periodontal pockets. J. Microencapsul. 2004, 21, 643–652. doi:10.1080/02652040400000512
  • Lao, L.; Tan, H.; Wang, Y.; Gao, C. Chitosan modified poly (L-lactide) microspheres as cell microcarriers for cartilage tissue engineering. Colloids Surf., B 2008, 66, 218–225. doi:10.1016/j.colsurfb.2008.06.014
  • Qiao, F.; Zhang, J.; Wang, J.; Du, B.; Huang, X.; Pang, L.; Zhou, Z. Silk fibroin-coated PLGA dimpled microspheres for retarded release of simvastatin. Colloids Surf., B 2017, 158, 112–118. doi:10.1016/j.colsurfb.2017.06.038
  • Das, G. S.; Rao, G. H.; Wilson, R. F.; Chandy, T. Controlled delivery of taxol from poly (ethylene glycol)‐coated poly (lactic acid) microspheres. J. Biomed. Mater. Res., A. 2001, 55, 96–103. doi:10.1002/1097-4636(200104)55:1%3c96::AID-JBM130%3e3.0.CO;2-3
  • Gref, R.; Domb, A.; Quellec, P.; Blunk, T.; Müller, R. H.; Verbavatz, J. M.; Langer, R. The controlled intravenous delivery of drugs using PEG-coated sterically stabilized nanospheres. Adv. Drug Deliv. Rev. 2012, 64, 316–326. doi:10.1016/j.addr.2012.09.008
  • Kiss, É.; Gyulai, G.; Pénzes, C. B.; Idei, M.; Horváti, K.; Bacsa, B.; Bősze, S. Tuneable surface modification of PLGA nanoparticles carrying new antitubercular drug candidate. Colloids Surf., A 2014, 458, 178–186. doi:10.1016/j.colsurfa.2014.05.048
  • Faraasen, S.; Vörös, J.; Csúcs, G.; Textor, M.; Merkle, H. P.; Walter, E. Ligand-specific targeting of microspheres to phagocytes by surface modification with poly (L-lysine)-grafted poly (ethylene glycol) conjugate. Pharm Res. 2003, 20, 237–246. doi:10.1023/A:1022366921298
  • Müller, M.; Vörös, J.; Csucs, G.; Walter, E.; Danuser, G.; Merkle, H. P.; Spencer, N. D.; Textor, M. Surface modification of PLGA microspheres. J. Biomed. Mater. Res. A. 2003, 66, 55–61. doi:10.1002/jbm.a.10502
  • Fischer, S.; Foerg, C.; Ellenberger, S.; Merkle, H. P.; Gander, B. One-step preparation of polyelectrolyte-coated PLGA microparticles and their functionalization with model ligands. J. Control. Release 2006, 111, 135–144. doi:10.1016/j.jconrel.2005.11.015
  • Chandy, T.; Das, G. S.; Rao, G. H. R. 5-Fluorouracil-loaded chitosan coated polylactic acid microspheres as biodegradable drug carriers for cerebral tumours. J. Microencapsul. 2000, 17, 625–638. doi:10.1080/026520400417676
  • Chiou, S. H.; Wu, W. T.; Huang, Y. Y.; Chung, T. W. Effects of the Characteristics of chitosan on controlling drug release of chitosan coated PLLA microspheres. J. Microencapsul. 2001, 18, 613–625. doi:10.1080/02652040010019497
  • Chen, X.; Wang, L.; Liu, Q.; Jia, J.; Liu, Y.; Zhang, W.; Ma, G.; Su, Z. Polycation-decorated PLA microspheres induce robust immune responses via commonly used parenteral administration routes. Int. Immunopharmacol. 2014, 23, 592–602. doi:10.1016/j.intimp.2014.10.010
  • Chen, X.; Liu, Y.; Wang, L.; Liu, Y.; Zhang, W.; Fan, B.; Ma, X.; Yuan, Q.; Ma, G.; Su, Z. Enhanced humoral and cell-mediated immune responses generated by cationic polymer-coated PLA microspheres with adsorbed HBsAg. Mol. Pharm. 2014, 11, 1772–1784. doi:10.1021/mp400597z
  • Gómez, J. M. M.; Csaba, N.; Fischer, S.; Sichelstiel, A.; Kündig, T. M.; Gander, B.; Johansen, P. Surface coating of PLGA microparticles with protamine enhances their immunological performance through facilitated phagocytosis. J. Control. Release 2008, 130, 161–167. doi:10.1016/j.jconrel.2008.06.003
  • George, M.; Abraham, T. E. Polyionic hydrocolloids for the intestinal delivery of protein drugs: alginate and chitosan—a review. J. Control. Release 2006, 114, 1–14. doi:10.1016/j.jconrel.2006.04.017
  • Bidarra, S. J.; Barrias, C. C.; Granja, P. L. Injectable alginate hydrogels for cell delivery in tissue engineering. Acta Biomater. 2014, 10, 1646–1662. doi:10.1016/j.actbio.2013.12.006
  • Chandy, T.; Wilson, R. F.; Rao, G. H.; Das, G. S. Changes in cisplatin delivery due to surface-coated poly (lactic acid)–poly (∊-caprolactone) microspheres. J. Biomater. Appl. 2002, 16, 275–291. doi:10.1106/088532802024246
  • Fahmy, T. M.; Samstein, R. M.; Harness, C. C.; Saltzman, W. M. Surface modification of biodegradable polyesters with fatty acid conjugates for improved drug targeting. Biomaterials 2005, 26, 5727–5736. doi:10.1016/j.biomaterials.2005.02.025
  • Aishwarya, S.; Mahalakshmi, S.; Sehgal, P. K. Collagen-coated polycaprolactone microparticles as a controlled drug delivery system. J. Microencapsul. 2008, 25, 298–306. doi:10.1080/02652040801972004
  • Hong, Y.; Gao, C.; Xie, Y.; Gong, Y.; Shen, J. Collagen-coated polylactide microspheres as chondrocyte microcarriers. Biomaterials 2005, 26, 6305–6313. doi:10.1016/j.biomaterials.2005.03.038
  • Babu, C.; Subha, M. C. S.; Rao, K. C. Controlled delivery of imatinib mesylate from collagen coated poly (lactic acid) microspheres: in vitro release studies. Int. J. Drug Delivery 2015, 6, 373–379.
  • Koh, L. D.; Cheng, Y.; Teng, C. P.; Khin, Y. W.; Loh, X. J.; Tee, S. Y.; Low, M.; Ye, E.; Yu, H. D.; Zhang, Y. W.; Han, M. Y. Structures, mechanical properties and applications of silk fibroin materials. Prog. Polym. Sci. 2015, 46, 86–110. doi:10.1016/j.progpolymsci.2015.02.001
  • Wenk, E.; Merkle, H. P.; Meinel, L. Silk fibroin as a vehicle for drug delivery applications. J. Control. Release 2011, 150, 128–141. doi:10.1016/j.jconrel.2010.11.007
  • Ramot, Y.; Haim-Zada, M.; Domb, A. J.; Nyska, A. Biocompatibility and safety of PLA and its copolymers. Adv. Drug Deliv. Rev. 2016, 107, 153–162. doi:10.1016/j.addr.2016.03.012
  • Jabbarzadeh, E.; Deng, M.; Lv, Q.; Jiang, T.; Khan, Y. M.; Nair, L. S.; Laurencin, C. T. VEGF‐incorporated biomimetic poly (lactide‐co‐glycolide) sintered microsphere scaffolds for bone tissue engineering. J. Biomed. Mater. Res. B Appl. Biomater. 2012, 100, 2187–2196. doi:10.1002/jbm.b.32787
  • Kang, S. W.; Yang, H. S.; Seo, S. W.; Han, D. K.; Kim, B. S. Apatite‐coated poly (lactic‐co‐glycolic acid) microspheres as an injectable scaffold for bone tissue engineering. J. Biomed. Mater. Res. A. 2008, 85, 747–756. doi:10.1002/jbm.a.31572
  • Xu, Q.; Czernuszka, J. T. Controlled release of amoxicillin from hydroxyapatite-coated poly (lactic-co-glycolic acid) microspheres. J. Control. Release 2008, 127, 146–153. doi:10.1016/j.jconrel.2008.01.017
  • Zhe, Z.; Zhang, S.; Venkatraman, S. S.; Lei, S. Growth of hydroxyapatite coating on polymer microspheres. Nanosci Nanotechnol Lett. 2011, 3, 472–476. doi:10.1166/nnl.2011.1204
  • Fujii, S.; Okada, M.; Sawa, H.; Furuzono, T.; Nakamura, Y. Hydroxyapatite nanoparticles as particulate emulsifier: fabrication of hydroxyapatite-coated biodegradable microspheres. Langmuir 2009, 25, 9759–9766. doi:10.1021/la901100z
  • Dorati, R.; Genta, I.; Montanari, L.; Cilurzo, F.; Buttafava, A.; Faucitano, A.; Conti, B. the effect of γ-irradiation on PLGA/PEG microspheres containing ovalbumin. J. Control Release 2005, 107, 78–90. doi:10.1016/j.jconrel.2005.05.029
  • Keles, H.; Naylor, A.; Clegg, F.; Sammon, C. Studying the release of hGH from gamma-irradiated PLGA microparticles using ATR-FTIR imaging. Vib. Spectrosc 2014, 71, 76–84. doi:10.1016/j.vibspec.2014.01.012
  • Fernández-Carballido, A.; Puebla, P.; Herrero-Vanrell, R.; Pastoriza, P. Radiosterilisation of indomethacin PLGA/PEG-derivative microspheres: protective effects of low temperature during gamma-irradiation. Int, J. Pharm. 2006, 313, 129–135. doi:10.1016/j.ijpharm.2006.01.034
  • Igartua, M.; Hernández, R. M.; Rosas, J. E.; Patarroyo, M. E.; Pedraz, J. L. γ-Irradiation effects on biopharmaceutical properties of PLGA microspheres loaded with SPf66 synthetic vaccine. Eur. J. Pharm. Biopharm. 2008, 69, 519–526. doi:10.1016/j.ejpb.2007.12.014
  • Ninaya, Z. H. A.; Hamid, Z. A.; Ahmad, Z.; Jaafar, M.; Yahaya, B. H. Development and evaluation of surface modified poly (lactic acid) microsphere via irradiation techniques for drug delivery system. Procedia Chem. 2016, 19, 373–380. doi:10.1016/j.proche.2016.03.026
  • Juang, R. S.; Hou, W. T.; Huang, Y. C.; Tseng, Y. C.; Huang, C. Surface hydrophilic modifications on polypropylene membranes by remote methane/oxygen mixture plasma discharges. J. Taiwan Inst. Chem. Eng. 2016, 65, 420–426. doi:10.1016/j.jtice.2016.04.032
  • Baki, A.; Rahman, C. V.; White, L. J.; Scurr, D. J.; Qutachi, O.; Shakesheff, K. M. Surface modification of PdlLGA microspheres with gelatine methacrylate: evaluation of adsorption, entrapment, and oxygen plasma treatment approaches. Acta Biomater. 2017, 53, 450–459. doi:10.1016/j.actbio.2017.01.042
  • Rahman, N. A.; Mathiowitz, E. Localization of bovine serum albumin in double-walled microspheres. J. Control. Release 2004, 94, 163–175. doi:10.1016/j.jconrel.2003.10.010
  • Tan, H.; Ye, J. Surface morphology and in vitro release performance of double-walled PLLA/PLGA microspheres entrapping a highly water-soluble drug. Appl. Surf. Sci. 2008, 255, 353–356. doi:10.1016/j.apsusc.2008.06.085
  • Xu, Q.; Xia, Y.; Wang, C. H.; Pack, D. W. Monodisperse double-walled microspheres loaded with chitosan-p53 nanoparticles and doxorubicin for combined gene therapy and chemotherapy. J. Control. Release 2012, 163, 130–135. doi:10.1016/j.jconrel.2012.08.032
  • Zheng, W. A water-in-oil-in-oil-in-water (W/O/O/W) method for producing drug-releasing, double-walled microspheres. Int. J. Pharm. 2009, 374, 90–95. doi:10.1016/j.ijpharm.2009.03.015
  • Kokai, L. E.; Tan, H.; Jhunjhunwala, S.; Little, S. R.; Frank, J. W.; Marra, K. G. Protein bioactivity and polymer orientation is affected by stabilizer incorporation for double-walled microspheres. J. Control. Release 2010, 141, 168–176. doi:10.1016/j.jconrel.2009.09.003
  • Xia, Y.; Xu, Q.; Wang, C. H.; Pack, D. W. Protein encapsulation in and release from monodisperse double‐wall polymer microspheres. J. Pharm. Sci. 2013, 102, 1601–1609. doi:10.1002/jps.23511
  • Xia, Y.; Ribeiro, P. F.; Pack, D. W. Controlled protein release from monodisperse biodegradable double-wall microspheres of controllable shell thickness. J. Control. Release 2013, 172, 707–714. doi:10.1016/j.jconrel.2013.08.009
  • Tan, E. C.; Lin, R.; Wang, C. H. Fabrication of double-walled microspheres for the sustained release of doxorubicin. J. Colloid Interface Sci. 2005, 291, 135–143. doi:10.1016/j.jcis.2005.04.089
  • Lee, T. H.; Wang, J.; Wang, C. H. Double-walled microspheres for the sustained release of a highly water soluble drug: characterization and irradiation studies. J. Control. Release 2002, 83, 437–452. doi:10.1016/S0168-3659(02)00235-3
  • Li, X.; Li, L.; Wang, X.; Ren, Y.; Zhou, T.; Lu, W. Application of model‐based methods to characterize exenatide‐loaded double‐walled microspheres: in vivo release, pharmacokinetic/pharmacodynamic model, and in vitro and in vivo correlation. J. Pharm. Sci. 2012, 101, 3946–3961. doi:10.1002/jps.23236
  • Shi, M.; Yang, Y. Y.; Chaw, C. S.; Goh, S. H.; Moochhala, S. M.; Ng, S.; Heller, J. Double walled POE/PLGA microspheres: encapsulation of water-soluble and water-insoluble proteins and their release properties. J. Control. Release 2003, 89, 167–177. doi:10.1016/S0168-3659(02)00493-5
  • Zeng, W.; Liu, Z.; Li, Y.; Zhu, S.; Ma, J.; Li, W.; Gao, G. Development and characterization of cores–shell poly (lactide-co-glycolide)-chitosan microparticles for sustained release of GDNF. Colloids Surf., B 2017, 159, 791–799. doi:10.1016/j.colsurfb.2017.08.052
  • Zhu, K. J.; Zhang, J. X.; Wang, C.; Yasuda, H.; Ichimaru, A.; Yamamoto, K. Preparation and in vitro release behaviour of 5-fluorouracil-loaded microspheres based on poly (L-lactide) and its carbonate copolymers. J. Microencapsul. 2003, 20, 731–743. doi:10.3109/02652040309178084
  • Chen, M. M.; Cao, H.; Liu, Y. Y.; Liu, Y.; Song, F. F.; Chen, J. D.; Zhang, Q. Q.; Yang, W. Z. Sequential delivery of chlorhexidine acetate and bFGF from PLGA-glycol chitosan core-shell microspheres. Colloids Surf., B 2017, 151, 189–195. doi:10.1016/j.colsurfb.2016.05.045
  • Zhao, H.; Wu, F.; Cai, Y.; Chen, Y.; Wei, L.; Liu, Z.; Yuan, W. Local antitumor effects of intratumoral delivery of rlL-2 loaded sustained-release dextran/PLGA–PLA core/shell microspheres. Int. J. Pharm. 2013, 450, 235–240. doi:10.1016/j.ijpharm.2013.04.051
  • Sperling, L. E.; Reis, K. P.; Pranke, P.; Wendorff, J. H. Advantages and challenges offered by biofunctional core–shell fiber systems for tissue engineering and drug delivery. Drug Discov. Today 2016, 21, 1243–1256. doi:10.1016/j.drudis.2016.04.024

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.