1,489
Views
63
CrossRef citations to date
0
Altmetric
Reviews

Flammability of Polymer/Clay Aerogel Composites: An Overview

&
Pages 1-24 | Received 08 Jan 2018, Accepted 05 Mar 2018, Published online: 24 Apr 2018

References

  • Mackenzie, R. C. Clay-water relationships. Nature 1953, 171, 681–683. doi:10.1038/171681a0.
  • Call, F. Preparation of Dry Clay-Gels by Freeze-Drying. Nature 1953, 172, 126. doi:10.1038/172126a0.
  • Hostler, S. R.; Abramson, A. R.; Gawryla, M. D.; Bandi, S. A.; Schiraldi, D. A. Thermal Conductivity of a Clay-Based Aerogel. Int. J. Heat Mass Transfer 2009, 52, 665–669. doi:10.1016/j.ijheatmasstransfer.2008.07.002.
  • Gawryla, M. D.; Schiraldi, D. A. Novel Absorbent Materials Created via Ice Templating. Macromol. Mater. Eng. 2009, 294, 570–574. doi:10.1002/mame.200900094.
  • Nakazawa, H.; Yamada, H.; Fujita, T.; Ito, Y. Texture Control of Clay-Aerogel Through the Crystallization Process of Ice. Clay Sci. 1987, 6, 269–276.
  • Ohta, S.-i.; Nakazawa, H. Porous Clay-Organic Composites: Potential Substitutes for Polystyrene Foam. Appl. Clay Sci. 1995, 9, 425–431. doi:10.1016/0169-1317(95)00003-M.
  • Schiraldi, D. A.; Gawryla, M. D.; Alhassan, S. Clay Aerogel Composite Materials. Adv. Sci. Technol. 2011, 63, 147–151. doi:10.4028/www.scientific.net/AST.63.147.
  • Guo, J.; Nguyen, B. N.; Li, L.; Meador, M. A. B.; Scheiman, D. A.; Cakmak, M. Clay Reinforced Polyimide/Silica Hybrid Aerogel. J. Mater. Chem. A 2013, 1, 7211–7221. doi:10.1039/c3ta00439b.
  • Kim, H. M.; Ye, J. N.; Yu, J.; Kim, S. Y.; Youn, J. R. Silica Aerogel/Polyvinyl Alcohol (PVA) Insulation Composites With Preserved Aerogel Pores Using Interfaces Between the Superhydrophobic Aerogel And Hydrophilic PVA Solution. Compos. Part A Appl. Sci. Manuf. 2015, 75, 39–45. doi:10.1016/j.compositesa.2015.04.014.
  • Gawryla, M. D.; Nezamzadeh, M.; Schiraldi, D. A. Foam-Like Materials Produced From Abundant Natural Resources. Green Chem. 2008, 10, 1078–1081. doi:10.1039/b807473a.
  • Somlai, L. S.; Bandi, S. A.; Schiraldi, D. A.; Mathias, L. J. Facile Processing of Clays Into Organically-Modified Aerogels. AIChE J. 2006, 52, 1162–1168. doi:10.1002/aic.10710.
  • Arndt, E. M.; Gawryla, M. D.; Schiraldi, D. A. Elastic, Low Density Epoxy/Clay Aerogel Composites. J. Mater. Chem. 2007, 17, 3525–3529. doi:10.1039/b704114d.
  • Arndt, E. M.; Gawryla, M. D.; Schiraldi, D. A. PMSE 230-Torlon (R) poly(amide imide) Clay Aerogel Composite. Abstr. Papers Am. Chem. Soc. 2008, 235, 230–PMSE.
  • Gawryla, M. D.; Liu, L.; Grunlan, J. C.; Schiraldi, D. A. pH Tailoring Electrical and Mechanical Behavior of Polymer-Clay-Nanotube Aerogels. Macromol. Rapid Commun. 2009, 30, 1669–1673. doi:10.1002/marc.200900229.
  • Gawryla, M. D.; Schiraldi, D. A. Anisotropic Clay Aerogel Composite Materials. Architecture Multifunctional Mater. 2009, 1188, 103–108.
  • Chen, H. B.; Chiou, B. S.; Wang, Y. Z.; Schiraldi, D. A. Biodegradable Pectin/Clay Aerogels. ACS Appl. Mater. Interfaces 2013, 5, 1715–1721. doi:10.1021/am3028603.
  • Chen, H.-B.; Wang, Y.-Z.; Schiraldi, D. A. Foam-Like Materials Based on Whey Protein Isolate. Eur. Polym. J. 2013, 49, 3387–3391. doi:10.1016/j.eurpolymj.2013.07.019.
  • Bandi, S.; Bell, M.; Schiraldi, D. A. Temperature-Responsive Clay Aerogel Polymer Composites. Macromolecules 2005, 38, 9216–9220. doi:10.1021/ma051698+.
  • Bandi, S.; Schiraldi, D. A. Glass Transition Behavior of Clay Aerogel/Poly(Vinyl Alcohol) Composites. Macromolecules 2006, 39, 6537–6545. doi:10.1021/ma0611826.
  • Finlay, K.; Gawryla, M. D.; Schiraldi, D. A. Biologically Based Fiber-Reinforced/Clay Aerogel Composites. Ind. Eng. Chem. Res. 2008, 47, 615–619. doi:10.1021/ie0705406.
  • Shen, P.; Zhao, H. B.; Huang, W.; Chen, H. B. Poly (Vinyl Alcohol)/Clay Aerogel Composites With Enhanced Flame Retardancy. RSC Advances 2016, 6, 109809–109814. doi:10.1039/C6RA21689G.
  • Blomfeldt, T. O.; Nilsson, F.; Holgate, T.; Xu, J.; Johansson, E.; Hedenqvist, M. S. Thermal Conductivity and Combustion Properties of Wheat Gluten Foams. ACS Appl. Mater. Interfaces 2012, 4, 1629–1635. doi:10.1021/am2017877.
  • Chen, H. B.; Hollinger, E.; Wang, Y. Z.; Schiraldi, D. A. Facile Fabrication of Poly(Vinyl Alcohol) Gels and Derivative Aerogels. Polymer 2014, 55, 380–384. doi:10.1016/j.polymer.2013.07.078.
  • Chen, H. B.; Wang, Y. Z.; Sanchez-Soto, M.; Schiraldi, D. A. Low Flammability, Foam-Like Materials Based on Ammonium Alginate and Sodium Montmorillonite Clay. Polymer 2012, 53, 5825–5831. doi:10.1016/j.polymer.2012.10.029.
  • Shang, K.; Liao, W.; Wang, J.; Wang, Y. T.; Wang, Y. Z.; Schiraldi, D. A. Non-Flammable Alginate Nanocomposite Aerogels Prepared by a Simple Freeze Drying and Post-Crosslinking Method. ACS Appl. Mater. Interfaces 2016, 8, 643. doi:10.1021/acsami.5b09768.
  • Pojanavaraphan, T.; Magaraphan, R.; Chiou, B. S.; Schiraldi, D. A. Development of Biodegradable Foamlike Materials Based on Casein and Sodium Montmorillonite Clay. Biomacromolecules 2010, 11, 2640–2646.
  • Pojanavaraphan, T.; Liu, L.; Ceylan, D.; Okay, O.; Magaraphan, R.; Schiraldi, D. A. Solution Cross-Linked Natural Rubber (NR)/Clay Aerogel Composites. Macromolecules 2011, 44, 923–931.
  • Pojanavaraphan, T.; Schiraldi, D. A.; Magaraphan, R. Mechanical, Rheological, and Swelling Behavior of Natural Rubber/Montmorillonite Aerogels Prepared by Freeze-Drying. Appl. Clay Sci. 2010, 50, 271–279.
  • Wang, Y.; Al-Biloushi, M.; Schiraldi, D. A. Polymer/Clay Aerogel-Based Glass Fabric Laminates. J. Appl. Polym. Sci. 2012, 124, 2945–2953. doi:10.1002/app.35333.
  • Chen, H.-B.; Wang, Y.-Z.; Schiraldi, D. A. Preparation and Flammability of Poly (vinyl alcohol) Composite Aerogels. ACS Appl. Mater. Interfaces 2014, 6, 6790–6796.
  • Kang, A. H.; Shang, K.; Ye, D. D.; Wang, Y. T.; Wang, H.; Zhu, Z. M.; Liao, W.; Xu, S. M.; Wang, Y. Z.; Schiraldi, D. A. Rejuvenated Fly Ash in Poly(Vinyl Alcohol)-Based Composite Aerogels With High Fire Safety and Smoke Suppression. Chem. Eng. J. 2017, 327, 992–999. doi:10.1016/j.cej.2017.06.158.
  • Gawryla, M. D.; van den Berg, O.; Weder, C.; Schiraldi, D. A. Clay Aerogel/Cellulose Whisker Nanocomposites: A Nanoscale Wattle and Daub. J. Mater. Chem. 2009, 19, 2118–2124. doi:10.1039/b823218k.
  • Johnson, J. R.; Spikowski, J.; Schiraldi, D. A. Mineralization of Clay/Polymer Aerogels: A Bioinspired Approach to Composite Reinforcement. ACS Appl. Mater. Interfaces 2009, 1, 1305–1309. doi:10.1021/am9001919.
  • Zuo, K. H.; Zeng, Y.; Jiang, D. Effect of Cooling Rate and Polyvinyl Alcohol on the Morphology of Porous Hydroxyapatite Ceramics. Materials & Design 2010, 31, 3090–3094. doi:10.1016/j.matdes.2009.12.044.
  • Yunoki, S.; Ikoma, T.; Monkawa, A.; Ohta, K.; Kikuchi, M.; Sotome, S.; Shinomiya, K.; Tanaka, J. Control of Pore Structure and Mechanical Property in Hydroxyapatite/Collagen Composite Using Unidirectional Ice Growth. Mater. Lett. 2006, 60, 999–1002. doi:10.1016/j.matlet.2005.10.064.
  • Wang, Y. X.; Gawryla, M. D.; Schiraldi, D. A. Effects of Freezing Conditions on the Morphology and Mechanical Properties of Clay and Polymer/Clay Aerogels. J. Appl. Polym. Sci. 2013, 129, 1637–1641. doi:10.1002/app.39143.
  • Sun, H.; Schiraldi, D. A.; Chen, D. Y.; Wang, D. Q.; Sanchez-Soto, M. Tough Polymer Aerogels Incorporating a Conformal Inorganic Coating for Low Flammability and Durable Hydrophobicity. ACS Appl. Mater. Interfaces 2016, 8, 13051–13057. doi:10.1021/acsami.6b02829.
  • Chiellini, E.; Corti, A.; D'Antone, S.; Solaro, R. Biodegradation of Poly(Vinyl Alcohol) Based Materials. Prog. Polym. Sci. 2003, 28, 963–1014. doi:10.1016/S0079-6700(02)00149-1.
  • Hernandez, R.; A. S.; Lo´pez, D.; Mijangos, C. Viscoelastic Properties of Poly(Vinyl Alcohol) Hydrogels and Ferrogels Obtained Through Freezing-Thawing Cycles. Polymer 2004, 46, 5543–5549. doi:10.1016/j.polymer.2004.05.061.
  • Ricciardi, R.; Auriemma, F.; De Rosa, C. Structure and Properties of Poly(Vinyl Alcohol) Hydrogels Obtained by Freeze/Thaw Techniques. Macromol. Symp. 2005, 222, 49–63. doi:10.1002/masy.200550405.
  • Ricciardi, R.; D'Errico, G.; Auriemma, F.; Ducouret, G.; Tedeschi, A. M.; De Rosa, C.; Laupretre, F.; Lafuma, F. Short Time Dynamics of Solvent Molecules and Supramolecular Organization of Poy(Vinyl Alcohol) Hydrogels Obtained by Freeze/Thaw Techniques. Macromolecules 2005, 38, 6629–6639. doi:10.1021/ma0506031.
  • Ricciardi, R.; Mangiapia, G.; Lo Celso, F.; Paduano, L.; Triolo, R.; Auriemma, F.; De Rosa, C.; Laupretre, F. Structure Organization of Poly(Vinyl Alcohol) Hydrogels Obtained by Freezing and Thawing Techniques: A Sans Study. Chem. Mater. 2005, 17, 1183–1189. doi:10.1021/cm048632y.
  • Stauffer, S. R.; Peppas, N. A. Poly(Vinyl Alcohol) Hydrogels Prepared by Freezing-Thawing Cyclic Processing. Polymer 1992, 33, 3932–3936. doi:10.1016/0032-3861(92)90385-A.
  • Gohil, J. M.; Bhattacharya, A.; Ray, P. Studies on the Cross-Linking of Poly(Vinyl Alcohol). J. Polym. Res. 2005, 13, 161–169. doi:10.1007/s10965-005-9023-9.
  • Zhao, D.; Liao, G.; Gao, G.; Liu, F. Influences of Intramolecular Cyclization on Structure and Cross-Linking Reaction Processes of PVA Hydrogels. Macromolecules 2006, 39, 1160–1164. doi:10.1021/ma052419l.
  • Wang, Y. H.; Hsieh, Y. L. Crosslinking of Polyvinyl Alcohol (PVA) Fibrous Membranes with Glutaraldehyde and PEG Diacylchloride. J. Appl. Polym. Sci. 2010, 116, 3249–3255.
  • Zhang, Y.; Zhu, P. C.; Edgren, D. Crosslinking Reaction of Poly(Vinyl Alcohol) With Glyoxal. J. Polym. Res. 2010, 17, 725–730. doi:10.1007/s10965-009-9362-z.
  • Alhassan, S. M.; Qutubuddin, S.; Schiraldi, D. A. Influence of Electrolyte and Polymer Loadings on Mechanical Properties of Clay Aerogels. Langmuir 2010, 26, 12198–12202. doi:10.1021/la100874r.
  • Wang, D. L.; Liu, Y.; Wang, D. Y.; Zhao, C. X.; Mou, Y. R.; Wang, Y. Z. A Novel Intumescent Flame-Retardant System Containing Metal Chelates for Polyvinyl Alcohol. Polym. Degrad. Stab. 2007, 92, 1555–1564. doi:10.1016/j.polymdegradstab.2007.05.001.
  • Zhao, C. X.; Liu, Y.; Wang, D. Y.; Wang, D. L.; Wang, Y. Z. Synergistic Effect of Ammonium Polyphosphate and Layered Double Hydroxide on Flame Retardant Properties of Poly(Vinyl Alcohol). Polym. Degrad. Stab. 2008, 93, 1323–1331. doi:10.1016/j.polymdegradstab.2008.04.002.
  • Chen, H.-B.; Wang, Y.-Z.; Schiraldi, D. A. Preparation and Flammability of Poly (Vinyl Alcohol) Composite Aerogels. ACS Appl. Mater. Interfaces 2014, 6, 6790–6796. doi:10.1021/am500583x.
  • Chen, H. B.; Shen, P.; Chen, M. J.; Zhao, H. B.; Schiraldi, D. A. Highly Efficient Flame Retardant Polyurethane Foam with Alginate/Clay Aerogel Coating. 2016, 8, 32557–32564.
  • Chen, M.-J.; Chen, C.-R.; Tan, Y.; Huang, J.-Q.; Wang, X.-L.; Chen, L.; Wang, Y.-Z. Inherently Flame-Retardant Flexible Polyurethane Foam With Low Content of Phosphorus-Containing Cross-Linking Agent. Ind. Eng. Chem. Res. 2014, 53, 1160–1171. doi:10.1021/ie4036753.
  • Liu, A. D.; Medina, L. L.; Berglund, L. A. High-Strength Nanocomposite Aerogels of Ternary Composition: Poly(vinyl alcohol), Clay, and Cellulose Nanofibrils. ACS Appl. Mater. Interfaces 2017, 9, 6453–6461.
  • Wang, Y. T.; Zhao, H. B.; Degracia, K.; Han, L. X.; Sun, H.; Sun, M.; Wang, Y. Z.; Schiraldi, D. A. Green Approach to Improving the Strength and Flame Retardancy of Poly(vinyl alcohol)/Clay Aerogels: Incorporating Biobased Gelatin. ACS Appl. Mater. Interfaces 2017, 9, 42258–42265. doi:10.1021/acsami.7b14958.
  • Klock, G.; Pfeffermann, A.; Ryser, C.; Grohn, P.; Kuttler, B.; Hahn, H. J.; Zimmermann, U. Biocompatibility of Mannuronic Acid-Rich Alginates. Biomaterials 1997, 18, 707–713. doi:10.1016/S0142-9612(96)00204-9.
  • Mi, F. L.; Sung, H. W.; Shyu, S. S. Drug Release From Chitosan-Alginate Complex Beads Reinforced by A Naturally Occurring Cross-Linking Agent. Carbohydr. Polym. 2002, 48, 61–72. doi:10.1016/S0144-8617(01)00212-0.
  • Zhang, J. J.; Ji, Q.; Wang, F. J.; Tan, L. W.; Xia, Y. Z. Effects of Divalent Metal Ions on the Flame Retardancy and Pyrolysis Products of Alginate Fibers. Polym. Degrad. Stab. 2012, 97, 1034–1040. doi:10.1016/j.polymdegradstab.2012.03.004.
  • Liu, Y.; Zhao, J. C.; Zhang, C. J.; Guo, Y.; Zhu, P.; Wang, D. Y. Effect of Manganese and Cobalt Ions on Flame Retardancy and Thermal Degradation of Bio-Based Alginate Films. J. Mater. Sci. 2016, 51, 1052–1065. doi:10.1007/s10853-015-9435-9.
  • Wang, L.; Schiraldi, D. A.; Sánchez-Soto, M. Foamlike Xanthan Gum/Clay Aerogel Composites and Tailoring Properties by Blending with Agar. Ind. Eng. Chem. Res. 2014, 53, 7680–7687. doi:10.1021/ie500490n.
  • Zuo, L. Z.; Fan, W.; Zhang, Y. F.; Zhang, L. S.; Gao, W.; Huang, Y. P.; Liu, T. X. Graphene/Montmorillonite Hybrid Synergi Stically Reinforced Polyimide Compo Site Aerogels With Enhanced Fl Ame-Retardant Performance. Compos. Sci. Technol. 2017, 139, 57–63. doi:10.1016/j.compscitech.2016.12.008.
  • Wang, T. W.; Sun, H. Y.; Long, J. W.; Wang, Y. Z.; Schiraldi, D. A. Biobased Poly(furfuryl alcohol)/Clay Aerogel Composite Prepared by a Freeze-Drying Process. ACS Sustainable Chem. Eng. 2016, 4, 2601–2605.
  • Chatterjee, S.; Shanmuganathan, K.; Kumaraswamy, G. Fire-Retardant, Self-Extinguishing Inorganic/Polymer Composite Memory Foams. ACS Appl. Mater. Interfaces 2017, 9, 44864–44872. doi:10.1021/acsami.7b16808.
  • Kiliaris, P.; Papaspyrides, C. D. Polymer/Layered Silicate (Clay) Nanocomposites: An overview of Flame Retardancy. Prog. Polym. Sci. 2010, 35, 902–958. doi:10.1016/j.progpolymsci.2010.03.001.
  • Okoshi, M.; Nishizawa, H. Flame Retardancy of Nanocomposites. Fire & Materials 2004, 28, 423–429. doi:10.1002/fam.842.
  • Yang, F.; Yngard, R.; Nelson, G. L. Flammability of Polymer-Clay and Polymer-Silica Nanocomposites. J. Fire Sci. 2005, 23, 209–226. doi:10.1177/0734904105046615.
  • Jia, Z.; Luo, Y.; Guo, B.; Yang, B.; Du, M.; Jia, D. Reinforcing and Flame-Retardant Effects of Halloysite Nanotubes on LLDPE. Polymer-Plastics Technol. Eng. 2009, 48, 607–613. doi:10.1080/03602550902824440.
  • Li, Y. C.; Schulz, J.; Mannen, S.; Delhom, C.; Condon, B.; Chang, S.; Zammarano, M.; Grunlan, J. C. Flame Retardant Behavior of Polyelectrolyte-Clay Thin Film Assemblies on Cotton Fabric. Acs Nano 2010, 4, 3325. doi:10.1021/nn100467e.
  • Laoutid, F.; Bonnaud, L.; Alexandre, M.; Lopez-Cuesta, J. M.; Dubois, P. New Prospects in Flame Retardant Polymer Materials: From Fundamentals to Nanocomposites. Mater. Sci. Eng. R Rep. 2009, 63, 100–125. doi:10.1016/j.mser.2008.09.002.
  • Chen, H. B.; Liu, B.; Huang, W.; Wang, J. S.; Zeng, G.; Wu, W. H.; Schiraldi, D. A. Fabrication and Properties of Irradiation-Cross-Linked Poly(Vinyl Alcohol)/Clay Aerogel Composites. ACS Appl. Mater. Interfaces 2014, 6, 16227–16236. doi:10.1021/am504418w.
  • Chen, H. B.; Ao, Y. Y.; Liu, D.; Song, H. T.; Shen, P. Novel Neutron Shielding Alginate Based Aerogel with Extremely Low Flammability. Ind. Eng. Chem. Res. 2017, 56, 8563–8567. doi:10.1021/acs.iecr.7b01999.
  • He, C. L.; Huang, J. Y.; Li, S. H.; Meng, K.; Zhang, L. Y.; Chen, Z.; Lai, Y. K. Mechanical Resistant and Sustainable Cellulose-based Composite Aerogels with Excellent Flame Retardant, Sound-absorption and Super-antiwetting Ability for Advanced Engineering Materials. ACS Sustainable Chem. Eng. 2018, 6, 927–936.
  • Yuan, B.; Zhang, J. M.; Mi, Q. Y.; Yu, J.; Song, R.; Zhang, J. Transparent Cellulose-Silica Composite Aerogels with Excellent Flame Retardancy via an in Situ Sol -Gel Process. ACS Sustainable Chem. Eng. 2017, 5, 11117–11123. doi:10.1021/acssuschemeng.7b03211.
  • Johnson, J. R.; Schiraldi, D. A.; Spikowski, J. Mineralization of Polymer/Clay Aerogels: A Bioinspired Approach to Composite Reinforcement. ACS Appl. Mater. Interfaces 2008, 1, 1305–1309. doi:10.1021/am9001919.
  • Shang, K.; Ye, D. D.; Kang, A. H.; Wang, Y. T.; Liao, W.; Xu, S. M.; Wang, Y. Z. Robust Andfire Retardant Borate-Crosslinked Poly (Vinyl Alcohol)/Montmorillonite Aerogel via Melt-Crosslink. Polymer 2017, 131, 111–119. doi:10.1016/j.polymer.2017.07.022.
  • Chen, H.-B.; Zhao, Y.; Shen, P.; Wang, J.-S.; Huang, W.; Schiraldi, D. A. Effects of Molecular Weight upon Irradiation-Cross-Linked Poly (vinyl alcohol)/Clay Aerogel Properties. ACS Appl. Mater. Interfaces 2015, 7, 20208–20214. doi:10.1021/acsami.5b05776.
  • Chen, H.-B.; Hollinger, E.; Wang, Y.-Z.; Schiraldi, D. A. Facile Fabrication of Poly (Vinyl Alcohol) Gels and Derivative Aerogels. Polymer 2014, 55, 380–384. doi:10.1016/j.polymer.2013.07.078.
  • Gilman, J. W.; Ritchie, S. J.; Kashiwagi, T.; Lomakin, S. M. Fire‐Retardant Additives for Polymeric Materials—I. Char Formation from Silica Gel–Potassium Carbonate. Fire & Materials 2015, 21, 23–32. doi:10.1002/(SICI)1099-1018(199701)21:1%3c23::AID-FAM591%3e3.0.CO;2-O.
  • Levchik, S. V.; Weil, E. D. Flame retardancy of thermoplastic polyesters – a review of the recent literature (p 11-35). Polym. Int. 2010, 54, 11–35.
  • Haurie, L.; Fernández, A. I.; Velasco, J. I.; Chimenos, J. M.; Cuesta, J. M. L.; Espiell, F. Thermal Stability and Flame Retardancy of LDPE/EVA Blends Filled with Synthetic Hydromagnesite/Aluminium Hydroxide/Montmorillonite and Magnesium Hydroxide/Aluminium Hydroxide/Montmorillonite Mixtures. Polym. Degrad. Stab. 2007, 92, 1082–1087. doi:10.1016/j.polymdegradstab.2007.02.014.
  • Hornsby, P. R. The Application of Magnesium Hydroxide as a Fire Retardant and Smoke-Suppressing Additive for Polymers. Fire & Mater. 1994, 18, 269–276. doi:10.1002/fam.810180502.
  • Weil, E. D.; Levchik, S. V. Commercial Flame Retardancy of Unsaturated Polyester and Vinyl Resins: Review. J. Fire Sci. 2004, 22, 293–303. doi:10.1177/0734904104041210.
  • Morgan, A. B. Flame Retarded Polymer Layered Silicate Nanocomposites: A Review of Commercial and Open Literature Systems. Polym. Adv. Technol. 2010, 17, 206–217. doi:10.1002/pat.685.
  • Han, Y.; Zhang, X.; Wu, X.; Lu, C. Flame Retardant, Heat Insulating Cellulose Aerogels from Waste Cotton Fabrics by in Situ Formation of Magnesium Hydroxide Nanoparticles in Cellulose Gel Nanostructures. ACS Sustainable Chem. Eng. 2015, 3, 1853–1859. doi:10.1021/acssuschemeng.5b00438.
  • Wang, L.; Sánchez-Soto, M.; Maspoch, M. L. Polymer/clay aerogel composites with flame retardant agents: Mechanical, thermal and fire behavior. Mater. Design 2013, 52, 609–614. doi:10.1016/j.matdes.2013.05.096.
  • Wang, Y. T.; Liao, S. F.; Shang, K.; Chen, M. J.; Huang, J. Q.; Wang, Y. Z.; Schiraldi, D. A. Efficient Approach to Improving the Flame Retardancy of Poly(vinyl alcohol)/Clay Aerogels: Incorporating Piperazine-Modified Ammonium Polyphosphate. ACS Appl. Mater. Interfaces 2015, 7, 1780–6. doi:10.1021/am507409d.
  • Carosio, F.; Alongi, J. Ultra-Fast Layer-by-Layer Approach for Depositing Flame Retardant Coatings on Flexible PU Foams within Seconds. ACS Appl. Mater. Interfaces 2016, 8, 6315–6319. doi:10.1021/acsami.6b00598.
  • Kim, Y. S.; Davis, R.; Cain, A. A.; Grunlan, J. C. Development of Layer-by-Layer Assembled Carbon Nanofiber-Filled Coatings to Reduce Polyurethane Foam Flammability. Polymer 2011, 52, 2847–2855. doi:10.1016/j.polymer.2011.04.023.
  • Qian, L.; Feng, F.; Tang, S. Bi-Phase Flame-Retardant Effect of Hexa-Phenoxy-Cyclotriphosphazene on Rigid Polyurethane Foams Containing Expandable Graphite. Polymer 2014, 55, 95–101. doi:10.1016/j.polymer.2013.12.015.
  • Xu, W.; Wang, G.; Zheng, X. Research on Highly Flame-Retardant Rigid PU Foams by Combination of Nanostructured Additives and Phosphorus Flame Retardants. Polym. Degrad. Stab. 2015, 111, 142–150. doi:10.1016/j.polymdegradstab.2014.11.008.
  • Xie, H. Y.; Yang, W.; Yuen, A. C. Y.; Xie, C.; Xie, J. S.; Lu, H. D.; Yeoh, G. H. Study on Flame Retarded Flexible Polyurethane Foam/Alumina Aerogel Composites With Improved Fire Safety. Chem. Eng. J. 2017, 311, 310–317. doi:10.1016/j.cej.2016.11.110.
  • Hurwitz, F. I.; Gallagher, M.; Olin, T. C.; Shave, M. K.; Ittes, M. Α.; Olafson, K. N.; Fields, M. G.; Guo, H.; Rogers, R. B. Optimization of Alumina and Aluminosilicate Aerogel Structure for High‐Temperature Performance. Int. J. Appl. Glass Sci. 2014, 5, 276–286. doi:10.1111/ijag.12070.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.