2,435
Views
103
CrossRef citations to date
0
Altmetric
Reviews

The Future of Flame Retardant Polymers – Unmet Needs and Likely New Approaches

, Ph.D.
Pages 25-54 | Received 09 Jan 2018, Accepted 15 Mar 2018, Published online: 14 May 2018

References

  • Babrauskas, V.; Peacock, R. D. Heat Release Rate: The Single Most Important Variable in Fire Hazard. Fire Saf. J. 1992, 18, 255–272. DOI: 10.1016/0379-7112(92)90019-9.
  • Live Fire Tests with FDNY Will Guide Improvements in Fire Department Tactics. http://www.nist.gov/el/fire_research/fire-071112.cfm (accessed Feb 04, 2018).
  • Grenfell Tower fire. https://en.wikipedia.org/wiki/Grenfell_Tower_fire (accessed Feb 04, 2018).
  • October 2017 Northern California wildfires. https://en.wikipedia.org/wiki/October_2017_Northern_California_wildfires (accessed Feb 04, 2018).
  • Weil, E. D.; Levchik, S. V. Flame Retardants for Plastics and Textiles: Practical Applications; Hanser Publishers: Cincinnati, OH, 2009, ISBN 978-1-56990-454-1.
  • Chen, L.; Wang, Y-Z. A Review on Flame Retardant Technology in China. Part I: Development of Flame Retardants. Polym. Adv. Technol. 2010, 21, 1–26.
  • Wilkie, C. A.; Morgan, A. B. Fire Retardancy of Polymeric Materials, 2nd ed.; Taylor and Francis: Boca Raton, FL, 2010. ISBN 978-1-4200-8399-6.
  • Lu, H.; Song, L.; Hu, Y. A Review on Flame Retardant Technology in China. Part II: Flame Retardant Polymeric Nanocomposites and Coatings. Polym. Adv. Technol. 2011, 22, 379–394. DOI: 10.1002/pat.1891.
  • Morgan, A. B.; Worku, A. Z. Flame Retardants: Overview. In Kirk-Othmer Encyclopedia of Chemical Technology; Seidel A., Editor-in-Chief; John Wiley & Sons, 2015. DOI:10.1002/0471238961.
  • Morgan, A. B.; Wilkie, C. A. Non-Halogenated Flame Retardant Handbook; Scrivener Publishing LLC: Hoboken, NJ, 2014. ISBN 978-1-118-68624-9.
  • Landry, S. D. Flame Retardants – Regulatory Issues and Sustainability. In ACS Symposium Series; Morgan, A. B., Wilkie, C. A., Nelson, G. L. Eds.; Vol. 1118, 2013. ISBN 9780841227804. pp 523–538.
  • New Thinking on Flame Retardants. Environ. Health Perspect. 2008, 116, A210–A213. DOI: 10.1289/ehp.116-a210.
  • Stapleton, H. M.; Dodder, N. G.; Offenberg, J. H.; Schantz, M. M.; Wise, S. A. Polybrominated Diphenyl Ethers in House Dust and Clothes Dryer Lint. Environ. Sci. & Technol. 2005, 39, 925–931. DOI: 10.1021/es0486824.
  • Ashberger, K.; Campia, I.; Pesudo, L. Q.; Radovnikovic, A.; Reina, V. Chemical Alternatives Assessment of Different Flame Retardants – A Case Study Including Multi-Walled Carbon Nanotubes as Synergist. Environ. Int. 2017, 101, 27–45. DOI: 10.1016/j.envint.2016.12.017.
  • Vojta, S.; Melymuk, L.; Klariova, J. Changes in Flame Retardant and Legacy Contaminant Concentrations in Indoor Air during Building Construction, Furnishing, and Use. Environ. Sci. Technol. 2017, 51, 11891–11899. DOI: 10.1021/acs.est.7b03245.
  • Cooper, E. M.; Kroeger, G.; Davis, K.; Clark, C. R.; Ferguson, P. L.; Stapleton, H. M. Results from Screening Polyurethane Foam Based Consumer Products for Flame Retardant Chemicals: Assessing Impacts on the Change in the Furniture Flammability Standards. Environ. Sci. Technol. 2016, 50, 10653–10660. DOI: 10.1021/acs.est.6b01602.
  • Isarov, S. A.; Lee, P. W.; Towslee, J. H.; Hoffman, K. M.; Davis, R. D.; Maia, J. M.; Pokorski, J. K. DNA as a Flame Retardant Additive for Low-Density Polyethylene. Polymer 2016, 97, 504–514. DOI: 10.1016/j.polymer.2016.05.060.
  • Alongi, J.; Di Blasio, A.; Milnes, J.; Maiucelli, G.; Bourbigot, S.; Kandola, B.; Camino, G. Thermal Degradation of DNA, an All-in-One Natural Intumescent Flame Retardant. Polym. Degrad. Stab. 2015, 113, 110–118. DOI: 10.1016/j.polymdegradstab.2014.11.001.
  • Alongi, J.; Milnes, J.; Malucelli, G.; Bourbigot, S.; Kandola, B. Thermal degradation of DNA-treated cotton fabrics under different heating conditions. J. Anal. Appl. Pyrol. 2014, 108, 212–221. DOI: 10.1016/j.jaap.2014.04.014.
  • Alongi, J.; Carletto, R. A.; Di Blassio, A.; Carosio, F.; Bosco, F.; Malucelli, G. DNA: A Novel, Green, Natural Flame Retardant and a Suppressant for Cotton. J. Mater. Chem. A. 2013, 1, 4779–4785. DOI: 10.1039/c3ta00107e.
  • Pawlowski, K. H.; Schartel, B. Flame Retardancy Mechanisms Of Triphenyl Phosphate, Resorcinol Bis(diphenyl phosphate) and Bisphenol A Bis(diphenyl phosphate) in Polycarbonate/Acrylonitrile-Butadiene-Styrene Blends. Polym. Int. 2007, 56, 1404–1414. DOI: 10.1002/pi.2290.
  • Sut, A.; Greiser, S.; Jager, C.; Schartel, B. Interactions in Multicomponent Flame-Retardant Polymers: Solid-state NMR Identifying the Chemistry Behind it. Polym. Degrad. Stab. 2015, 121, 116–125. DOI: 10.1016/j.polymdegradstab.2015.08.018.
  • Sut, A.; Greiser, S.; Jager, C.; Schartel, B. Aluminium Diethylphosphinate Versus Ammonium Polyphosphate: A Comprehensive Comparison of the Chemical Interactions During Pyrolysis in Flame-Retarded Polyolefin/Poly(Phenylene oxide). Thermochim. Acta 2016, 640, 76–84. DOI: 10.1016/j.tca.2016.08.004.
  • Braun, U.; Balabanovich, A. I.; Schartel, A.; Knoll, U.; Artner, J.; Ciesielski, M.; Doring, M.; Perez, R.; Sandler, J. K. W.; Alstadt, V.; et al. Influence of Oxidation State of Phosphorus on the Decomposition and Fire Behavior of Flame-Retarded Epoxy Resin Composites. Polymer 2006, 47, 8495–8508. DOI: 10.1016/j.polymer.2006.10.022.
  • Levchik, S. V.; Weil, E. D. A Review of Recent Progress in Phosphorus-Based Flame Retardants. J. Fire Sci. 2006, 24, 345–364. DOI: 10.1177/0734904106068426.
  • Velencoso, M. M.; Battig, A.; Makrwart, J. C.; Schartel, B.; Wurm, F. R. Molecular Firefighting – How Modern Phosphorus Chemistry Can Help Solve the Flame Retardancy Task. Angw. Chem. Int. Ed. Engl. 2018. DOI: 10.1002/anie.201711735.
  • Wendels, S.; Chavez, T.; Bonnet, M.; Salmeia, K. A.; Gaan, S. Recent Developments in Organophosphorus Flame Retardants Containing P-C Bond and Their Applications. Materials 2017, 10, 784. DOI: 10.3390/ma10070784.
  • Bourbigot, S.; Le Bras, M.; Duquesne, S.; Rochery, M. Recent Advances for Intumescent Polymers. Macromol. Mater. Eng. 2004, 289, 499–511. DOI: 10.1002/mame.200400007.
  • Bourbigot, S.; Duquesne, S. Fire Retardant Polymers: Recent Developments and Opportunities. J. Mater. Chem. 2007, 17, 2283–2300. DOI: 10.1039/b702511d.
  • Duquesne, S.; Delobel, R.; Le Bras, M.; Camino, G. A Comparative Study of the Mechanism of Action of Ammonium Polyphosphate and Expandable Graphite in Polyurethane. Polym. Degrad. Stab. 2002, 77, 333–344. DOI: 10.1016/S0141-3910(02)00069-1.
  • Fontaine, G.; Bourbigot, S.; Duquesne, S. Neutralized Flame Retardant Phosphorus Agent: Facile Synthesis, Reaction to Fire in PP and Synergy with Zinc Borate. Polym. Degrad. Stab. 2008, 93, 68–76. DOI: 10.1016/j.polymdegradstab.2007.10.019.
  • Duquesne, S.; Le Bras, M.; Bourbigot, S.; Delobel, R.; Camino, G.; Eling, B.; Lindsay, C.; Roels, T.; Vezin, H. Mechanism of Fire Retardancy of Polyurethanes Using Ammonium Polyphosphate. J. App. Polym. Sci. 2001, 82, 3262–3274. DOI: 10.1002/app.2185.
  • Jimenez, M.; Duquesne, S.; Bourbigot, S. Kinetic Analysis of the Thermal Degradation of an Epoxy-Based Intumescent Coating. Polym. Degrad. Stab. 2009, 94, 404–409. DOI: 10.1016/j.polymdegradstab.2008.11.021.
  • Duquesne, S.; Magnet, S.; Jama, C.; Delobel, R. Thermoplastic Resins for Thin Film Intumescent Coatings – Towards a Better Understanding of Their Effect on Intumescence Efficiency. Polym. Degrad. Stab. 2005, 88, 63–69. DOI: 10.1016/j.polymdegradstab.2004.01.026.
  • Duquesne, S.; Le Bras, M.; Delobel, R. Visco-Elastic Behaviour of Intumescent Systems. Proceedings of the 13th Annual BCC Conference on Flame Retardancy, Stamford, CT, June 3–5, 2002.
  • Samyn, F.; Bourbigot, S.; Duquesne, S.; Delobel, R. Effect of Zinc Borate on the Thermal Degradation of Ammonium Polyphosphate. Thermochim. Acta 2007, 456, 134–144. DOI: 10.1016/j.tca.2007.02.006.
  • Muller, M.; Bourbigot, S.; Duquesne, S.; Klein, R. A.; Giannini, G.; Lindsay, C. I. Measurements and Investigation Of Intumescent Char Strength: Application to Polyurethanes. J. Fire Sci. 2013, 31, 293–308. DOI: 10.1177/0734904112472015.
  • Naik, A. D.; Duquesne, S.; Bourbigot, S. Hydrocarbon Time-Temperature Curve Under Airjet Petrubation: An In Situ Method To Probe Char Stability and Integrity in Reactive Fire Protective Coatings. J. Fire Sci. 2016, 34, 385–397. DOI: 10.1177/0734904116658049.
  • Morys, M.; Illerhaus, B.; Sturm, H.; Schartel, B. Revealing the Inner Secrets of Intumescence: Advanced Standard Time Temperature Oven (STT Mufu+)-µ-Computed Tomography Approach. Fire Mater. 2017, 41, 927–939. DOI: 10.1002/fam.2426.
  • Michael, M.; Bernhard, I.; Heinz, S.; Bernhard, S. Size is not All That Matters: Residue Thickness and Protection Performance of Intumescent Coatings Made from Different Binders. J. Fire Sci. 2017, 35, 284–302. DOI: 10.1177/0734904117709479.
  • Sauerwein, R. Chapter 3 – Mineral Filler Flame Retardants. In Non-Halogenated Flame Retardant Handbook; Morgan, A. B., Wilkie, C. A., Eds.; Scrivener Publishing LLC: Hoboken, NJ, 2014, 75–138. ISBN 978-1-118-68624-9.
  • Hornsby, P. Chapter 7 – Fire-Retardant Fillers. In Fire Retardancy of Polymeric Materials, 2nd ed.; Wilkie, C. A., Morgan, A. B., Eds.; Taylor and Francis: Boca Raton, FL, 2010. ISBN 978-1-4200-8399-6.
  • Laoutid, F.; Lorgouilloux, M.; Lesueur, D.; Bonnaud, L.; Dubois, P. Calcium-Based Hydrated Minerals: Promising Halogen-Free Flame Retardant and Fire Resistant Additives for Polyethylene and Ethylene Vinyl Acetate Copolymers. Polym. Degrad. Stab. 2013, 98, 1617–1625. DOI: 10.1016/j.polymdegradstab.2013.06.020.
  • Hollingbery, L. A.; Hull, T. R. The Fire Retardant Behavior of Huntite and Hydromagnesite – A Review. Polym. Degrad. Stab. 2010, 95, 2213–2225. DOI: 10.1016/j.2010.08.019.
  • Hull, T. R.; Witkowski, A.; Hollingbery, L. Fire Retardant Action of Mineral Fillers. Polym. Degrad. Stab. 2011, 96, 1462–1469. DOI: 10.1016/j.polymdegradstab.2011.05.006.
  • Aubert, M.; Nicolas, R. C.; Pawelec, W.; Wilen, C-E.; Roth, M.; Pfaendner, R. Azoalkanes – Novel Flame Retardants and Their Structure-Property Relationship. Polym. Adv. Technol. 2011, 22, 1529–1538. DOI: 10.1002/pat.1642.
  • Pawelec, W.; Aubert, M.; Pfaendner, R.; Hoppe, H.; Wilen, C-E. Triazene Compounds as a Novel and Effective Class of Flame Retardants for Polypropylene. Polym. Degrad. Stab. 2012, 97, 948–954. DOI: 10.1016/j.polymdegradstab.2012.03.019.
  • Huber's Safire Halogen-Free Fire Retardant Technology. https://www.hubermaterials.com/userfiles/files/PFDocs/Huber's%20Safire%20Halogen-Free%20Fire%20Retardant%20Technology.pdf (accessed Feb 16, 2018).
  • Wu, W. H.; Wu, H. J.; Liu, W. H.; Wang, Y. E.; Liu, N.; Yan, X. M.; Li, Y. M.; Qu, H. Q. Two Series of Inorganic Melamine Salts as Flame Retardants and Smoke Suppressants for Flexible PVC. Polym. Compos. 2018, 39, 529–536. DOI: 10.1002/pc.23965.
  • Benin, V.; Durganala, S.; Morgan, A. B. Synthesis and Flame Retardant Testing of New Boronated and Phosphonated Aromatic Compounds. J. Mater. Chem. 2012, 22, 1180–1190. DOI: 10.1039/C1JM14682C.
  • Morgan, A. B.; Tour, J. M. Synthesis, Flame-Retardancy Testing, and Preliminary Mechanism Studies of Nonhalogenated Aromatic Boronic Acids: A New Class of Condensed-Phase Polymer Flame-Retardant Additives for Acrylonitrile-Butadiene-Styrene and Polycarbonate. J. App. Polym. Sci. 2000, 76, 1257–1268. DOI: 10.1002/(SICI)1097-4628(20000523)76:8<1257::AID-APP6>3.0.CO;2-#.
  • Wang, S.; Jing, X.; Wang, Y.; Si, J. High Char Yield of Aryl Boron-Containing Phenolic Resins: The Effect Of Phenylboronic Acid on the Thermal Stability And Carbonization Of Phenolic Resins. Polym. Degrad. Stab. 2014, 99, 1–11. DOI:10.1016/j.polymdegradstab.2013.12.011.
  • Wiacek, M.; Wesolek, D.; Rojewski, S.; Bujnowicz, K.; Schab-Balcerzak, E. Boronated (co)polystyrene: Monomer Reactivity Ratios, Thermal Behavior, and Flammability. Polym. Adv. Technol. 2014, 26, 49–56. DOI: 10.1002/pat.3418.
  • Hamdani, S.; Longuet, C.; Perrin, D.; Lopez-cuesta, J-M.; Ganachaud, F. Flame Retardancy of Silicone-Based Materials. Polym. Degrad. Stab. 2009, 94, 465–495. DOI: 10.1016/j.polymdegradstab.2008.11.019.
  • Kashiwagi, T.; Gilman, J. W.; Butler, K. M.; Harris, R. H.; Shields, J. R.; Asano, A. Flame Retardant Mechanism of Silica Gel/Silica. Fire Mater. 2000, 24, 277–289. DOI: 10.1002/1099-1018(200011/12)24:6<277::AID-FAM746>3.0.CO;2-A.
  • Gallo, E.; Braun, U.; Schartel, B.; Russo, P.; Acierno, D. Halogen-Free Flame Retarded Poly(Butylenes Terephthalate) (PBT) Using Metal Oxides/PBT Nanocomposites in Combination with Aluminium Phosphinate. Polym. Degrad. Stab. 2009, 94, 1245–1253. DOI: 10.1016/j.polymdegradstab.2009.04.014.
  • Ishikawa, T.; Ueno, T.; Watanabe, Y.; Mizuno, K.; Takeda, K. Flame Retardancy of Polybutylene Terephthalate Blended with Various Oxides. J. App. Polym. Sci. 2008, 109, 910–917. DOI: 10.1002/app.27170.
  • Morgan, A. B. A Review of Transition Metal-Based Flame Retardants: Transition-Metal Oxide/Salts, and Complexes. In ACS Symposium Series 1013 – Fire and Polymers V: Materials and Concepts for Fire Retardancy; Wilkie, C. A., Morgan, A. B., Nelson, G. L., Eds.; Oxford University Press, 2009. pp 312–328.
  • Zhu, H.; Wang, W.; Liu, T. Effects of Copper-Containing Layered Double Hydroxide on Thermal and Smoke Behavior of poly(vinyl chloride). J. App. Polym. Sci. 2011, 122, 273–281. DOI: 10.1002/app.34027.
  • Rodolfo, A.; Innocentini Mei, L. H. Metallic oxides as fire retardants and smoke suppressants in flexible poly(vinyl chloride). J. App. Polym. Sci. 2010, 118, 2613–2623. DOI: 10.1002/app.32596.
  • Restriction of Hazardous Substances Directive. http://en.wikipedia.org/wiki/Restriction_of_Hazardous_Substances_Directive (accessed Feb 04, 2018).
  • http://eur-lex.europa.eu/legal-content/EN/TXT/?qid=1399998664957&uri=CELEX:02011L0065-20140129 (accessed Feb 04, 2018).
  • Waste Electrical and Electronic Equipment Directive. http://en.wikipedia.org/wiki/Waste_Electrical_and_Electronic_Equipment_Directive (accessed Feb 04, 2018).
  • http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A32012L0019 (accessed Feb 04, 2018).
  • Bartholmai, M.; Schartel, B. Layered Silicate Polymer Nanocomposites: New Approach or Illusion for Fire Retardancy? Investigations of the Potentials and The Tasks Using a Model System. Polym. Adv. Technol. 2004, 15, 355–364. DOI: 10.1002/pat.483.
  • Gilman, J. W.; Harris, R. H.; Shields, J. R.; Kashiwagi, T.; Morgan, A. B. A Study of the Flammability Reduction Mechanism of Polystyrene-Layered Silicate Nanocomposite: Layered Silicate Reinforced Carbonaceous Char. Polym. Adv. Technol. 2006, 17, 263–271. DOI: 10.1002/pat.682.
  • Zhang, J.; Bai, M.; Wang, Y.; Xiao, F. Featured Structures of Fire Reside of High-Impact Polystyrene/Organically Modified Montmorillonite Nanocomposites During Burning. Fire Mater. 2012, 36, 661–670. DOI: 10.1002/fam.1128.
  • Morgan, A. B.; Charles, A. W. Flame Retardant Polymer Nanocomposites; John Wiley & Sons: Hoboken, NJ, 2007.
  • Gilman, J. W.; Harris, R. H.; Shields, J. R.; Kashiwagi, T.; Morgan, A. B. A Study of the Flammability Reduction Mechanism of Polystyrene-Layered Silicate Nanocomposite: Layered Silicate Reinforced Carbonaceous Char. Polym. Adv. Technol. 2006, 17, 263–271. DOI: 10.1002/pat.682.
  • Morgan, A. B.; Harris, R. H.; Kashiwagi, T.; Chyall, L. J.; Gilman, J. W. Flammability of Polystyrene Layered Silicate (Clay) Nanocomposites: Carbonaceous Char Formation. Fire Mater. 2002, 26, 247–253. DOI: 10.1002/fam.803.
  • Pack, S.; Si, M.; Koo, J.; Sokolov, J. C.; Koga, T.; Kashiwagi, T.; Rafailovich, M. H. Mode-of-Action of Self-Extinguishing Polymer Blends Containing Organoclays. Polym. Degrad. Stab. 2009, 94, 306–326. DOI: 10.1016/j.polymdegradstab.2008.12.008.
  • Liu, M.; Zhang, X.; Zammarano, M.; Gilman, J. W.; Davis, R. D.; Kashiwagi, T. Effect of Montmorillonite Dispersion on Flammability Properties of Poly(Styrene-Co-Acrylonitrile) Nanocomposites. Polymer 2011, 52, 3092–3103. DOI: 10.1016/j.polymer.2011.05.001.
  • Kashiwagi, T.; Harris, R. H.; Zhang, X.; Briber, R. M.; Cipriano, B. H.; Raghavan, S. R.; Awad, W. H.; Shields, J. R. Flame Retardant Mechanism of Polyamide-6 Nanocomposites. Polymer 2004, 45, 881–891. DOI: 10.1016/j.polymer.2003.11.036.
  • Hussain, S. M.; Braydich-Stolle, L. K.; Schrand, A. M.; Murdock, R. C.; Yu, K. O.; Mattie, D. M.; Schlager, J. J.; Terrones, M. Toxicity Evaluation for Safer Use of Nanomaterials: Recent Achievements and Technical Challenges. Adv. Mater. 2009, 21, 1549–1559. DOI: 10.1002/adma.200801395.
  • Vecitis, C. D.; Zodrow, K. R.; Kang, S.; Elimelech, M. Electronic-Structure-Dependent Bacterial Cytotoxicity of Single-Walled Carbon Nanotubes. ACS Nano 2010, 4, 5471–5479 DOI: 10.1021/nn101558x.
  • Great Smog of London. https://en.wikipedia.org/wiki/Great_Smog_of_London (accessed Feb 04, 2018).
  • Rotman, M. Cuyahoga River Fire. http://clevelandhistorical.org/items/show/63 (accessed Feb 04, 2018).
  • Smog in Delhi. https://en.wikipedia.org/wiki/Smog_in_Delhi (accessed Feb 04, 2018).
  • Tribune Watchdog: Playing with Fire. http://media.apps.chicagotribune.com/flames/index.html (accessed Feb 04, 2018).
  • Polybrominated Diphenyl Ethers (PBDEs). https://www.epa.gov/assessing-and-managing-chemicals-under-tsca/polybrominated-diphenyl-ethers-pbdes (accessed Feb 04, 2018).
  • Risk Management for Hexabromocyclododecane (HBCD). https://www.epa.gov/assessing-and-managing-chemicals-under-tsca/risk-management-hexabromocyclododecane-hbcd (accessed Feb 04, 2018).
  • Proposed Risk Management Approach for Hexabromocyclododecane (HBCD). http://www.ec.gc.ca/ese-ees/default.asp?lang=En&n=5F5A32FB-1 (accessed Feb 04, 2018).
  • Simonson, M.; Blomqvist, P.; Boldizar, A.; Möller, K.; Rosell, L.; Tullin, C.; Stripple, H.; Sundqvist, J. O. Fire-LCA Model: TV Case Study. SP Report. 2000, 13 ISBN 91-7848-811-7.
  • Blomqvist, P.; Rosell, L.; Simonson, M. Emissions from Fires Part I: Fire Retarded and Non-Fire Retarded TV-Sets. Fire Tech. 2004, 40, 39–58. DOI: 10.1023/B:FIRE.0000003315.47815.cb.
  • Blomqvist, P.; Rosell, L.; Simonson, M. Emissions from Fires Part II: Fire Retarded and Non-Fire Retarded TV-Sets. Fire Tech. 2004, 40, 59–73. DOI: 10.1023/B:FIRE.0000003316.63475.16.
  • Simonson-McNamee, M.; Andersson, P. Application of a Cost-benefit Analysis Model to the Use of Flame Retardants. Fire Technol. 2015, 51, 67–83. DOI: 10.1007/s10694-014-0402-9.
  • Digges, K. H.; Gann, R. G.; Grayson, S. J.; Hirschler, M. M.; Lyon, R. E.; Purser, D. A.; Quintiere, J. G.; Stephenson, R. R.; Tewarson, A. Human survivability in motor vehicle fires. Fire Mater. 2008, 32, 249–258. DOI: 10.1002/fam.964.
  • Gough, I. The Changing Nature of Fire Risks in Car Parks. www.hemmingfire.com/news/get_file.php3/id/96/file (accessed Feb 04, 2018).
  • National Fire Prevention Associate. Guide on Methods for Evaluating Fire Hazard to Occupants of Passenger Road Vehicles. http://www.nfpa.org/codes-and-standards/all-codes-and-standards/list-of-codes-and-standards/detail?code=556 (accessed Feb 04, 2018).
  • Haynes, H. J. G. Fire loss in the United States. http://www.nfpa.org/News-and-Research/Fire-statistics-and-reports/Fire-statistics/Fires-in-the-US/Overall-fire-problem/Fire-loss-in-the-United-States (accessed Feb 04, 2018).
  • Lyon, R. E.; Walters, R. N. Thermal Hazards of Lithium Ion Batteries. Presented at the 26th Conference on Advances in Flame Retardancy of Polymeric Materials, BCC Communications Inc., Stamford, CT, May 18–20, 2015.
  • Chen, M.; DeZhou, C.; Wang, J.; He, Y.; Chen, M.; Yuen, R. Experimental Study on the Combustion Characteristics of Primary Lithium Batteries Fire. Fire Technol. 2016, 52, 365–385. DOI: 10.1007/s10694-014-0450-1.
  • Liu, X.; Wu, Z.; Stoliarov, S. I.; Denlinger, M.; Masias, A.; Snyder, K. Heat Release During Thermally-Induced Failure of a Lithium Ion Battery: Impact of Cathode Composition. Fire Saf. J. 2016, 85, 10–22. DOI: 10.1016/j.firesaf.2016.08.001.
  • Kandola, B. K.; Pornwannachai, W. Enhancement of Passive Fire Protection Ability of Inorganic Fire Retardants in Vinyl Ester Resin Using Glass Frit Synergists. J. Fire Sci. 2010, 28, 357–381. DOI: 10.1177/0734904109361015.
  • Kandare, E.; Chukwunonso, A. K.; Kandola, B. K. The Effect of Fire-Retardant Additives and a Surface Insulative Fabric on Fire Performance and Mechanical Property Retention of Polyester Composites. Fire Mater. 2011, 35, 143–155. DOI: 10.1002/fam.1039.
  • Kandare, E.; Chukwudole, C.; Kandola, B. K. The Use of Fire-Retardant Intumescent Mats for Fire and Heat Protection of Glass Fibre-Reinforced Polyester Composites: Thermal Barrier Properties. Fire Mater. 2010, 34, 21–38.
  • Schartel, B.; Beck, U.; Bahr, H.; Hertwig, A.; Knoll, U.; Weise, M. Sub-Micrometre Coatings as An Infrared Mirror: A New Route To Flame Retardancy. Fire Mater. 2012, 36, 671–677. DOI: 10.1002/fam.1122.
  • Weil, E. D.; Levchik, S. A Review of Current Flame Retardant Systems for Epoxy Resins. J. Fire. Sci. 2004, 22, 25–40. DOI: 10.1177/0734904104038107.
  • Levchik, S.; Piotrowski, A.; Weil, E.; Yao, Q. New Developments in Flame Retardancy of Epoxy Resins. Polym. Degrad. Stab. 2005, 88, 57–62. DOI: 10.1016/j.polymdegradstab.2004.02.019.
  • Levchik, S. V.; Weil, E. D. Thermal Decomposition, Combustion and Flame-Retardancy of Epoxy Resins – A Review Of The Recent Literature. Polym. Int. 2004, 53, 1901–1929. DOI: 10.1002/pi.1473.
  • Hirschler, M. M. Procedures for Development and Revision of Codes and Standards Associated with Fire Safety in the USA. Fire Mater. 2017, 41, 1058–1071. DOI: 10.1002/fam.2449.
  • The Marina Torch. https://en.wikipedia.org/wiki/The_Marina_Torch (accessed Feb 04, 2018).
  • CCTV Headquarters. https://en.wikipedia.org/wiki/CCTV_Headquarters (accessed Feb 04, 2018).
  • Kandare, E.; Chukwudole, C.; Kandola, B. K. The Use of Fire-Retardant Intumescent Mats for Fire and Heat Protection of Glass Fibre-Reinforced Polyester Composites: Thermal Barrier Properties. Fire Mater. 2010, 34, 21–38.
  • Kandare, E.; Chukwunonso, A. K.; Kandola, B. K. The Effect of Fire-Retardant Additives and a Surface Insulative Fabric on Fire Performance and Mechanical Property Retention of Polyester Composites. Fire Mater. 2011, 35, 143–155. DOI: 10.1002/fam.1039.
  • Stevens, P. Wooden Skyscrapers: A Roundup of Tall Timber Buildings. https://www.designboom.com/architecture/wooden-skyscrapers-timber-tower-construction-roundup-07-31-2016/ (accessed Feb 04, 2018).
  • Spula, I. Tall Timber Construction Code Is Still Thinking Small. http://www.architectmagazine.com/practice/tall-timber-construction-code-is-still-thinking-small_o (accessed Feb 04, 2018).
  • Gibson, A. G.; Browne, T. N. A.; Feih, S.; Mourtiz, A. P. Modeling Composite High Temperature Behavior and Fire Response Under Load. J. Compos. Mater. 2012, 46, 2005–2022. DOI: 10.1177/0021998311429383.
  • Mouritz, A. P.; Gibson, A. G. Fire Properties of Polymer Composite Materials; Springer-Verlag: The Netherlands, 2006. ISBN 978-1-4020-5355-9.
  • Feih, S.; Mathys, Z.; Mathys, G.; Gibson, A. G.; Robinson, M.; Mouritz, A. P. Influence of Water Content on Failure of Phenolic Composites in Fire. Polym. Degrad. Stab. 2008, 93, 376–382. DOI: 10.1016/j.polymdegradstab.2007.11.027.
  • Anjang, A.; Mouritz, A. P.; Feih, S. Influence of fibre orientation on the tensile properties of sandwich composites in fire. Composites Part A 2017, 100, 342–351. DOI: 10.1016/j.compositesa.2017.05.028.
  • Grigoriou, K.; Mouritz, A. P. Influence of Ply Stacking Pattern on the Structural Properties of Quasi-Isotropic Carbon-Epoxy Laminates in Fire. Composites Part A 2017, 99, 113–120. DOI: 10.1016/j.compositesa.2017.04.008.
  • Exolit® OP 550. https://www.clariant.com/en/Solutions/Products/2014/03/18/16/31/Exolit-OP-550 and https://www.clariant.com/en/Solutions/Products/2014/03/18/16/31/Exolit-OP-560 (accessed Feb 04, 2018).
  • Fyrol 6. http://icl-ip.com/products/fyrol-6/ (accessed Feb 04, 2018).
  • FR-1025M (Brominated Acrylate Monomer). http://icl-ip.com/wp-content/uploads/2012/03/f-1025m.pdf (accessed Feb 04, 2018).
  • Zhao, H.-B.; Chen, L.; Yang, J.-C.; Ge, X.-G.; Wang, Y.-Z. A Novel Flame-Retardant-Free Copolyester: Cross-Linking Towards Self-Extinguishing and Non-Dripping. J. Mater. Chem. 2012, 22, 19849–19857. DOI: 10.1039/c2jm34376b.
  • Zhao, H-B.; Wang, Y-Z. Design and Synthesis of PET-based Copolyesters with Flame-Retardant and Antidripping Performance. Macromol. Rapid Commun. 2017, 38, DOI: 10.1002/marc.201700451.
  • Benin, V.; Gardelle, B.; Morgan, A. B. Heat Release of Polyurethanes Containing Potential Flame Retardants Based on Boron And Phosphorus Chemistries. Polym. Degrad. Stab. 2014, 106, 108–121. DOI: 10.1016/j.polymdegradstab.2013.09.004.
  • Benin, V.; Cui, X.; Morgan, A. B.; Seiwert, K. Synthesis and Flammability Testing of Epoxy Functionalized Phosphorus-Based Flame Retardants. J. App. Polym. Sci. 2015, 132, DOI: 10.1002/APP.42296.
  • Wang, K.; Morgan, A. B.; Benin, V. Preparation and Studies of New Phosphorus-Containing Diols as Potential Flame Retardants. Fire Mater. 2017, 41, 973–982. DOI: 10.1002/fam.2432.
  • Yang, A-H.; Deng, C.; Chen, H.; Wei, Y-X.; Wang, Y-Z. A Novel Schiff-Base Polyphosphate Ester: Highly-Efficient Flame Retardant For Polyurethane Elastomer. Polym. Degrad. Stab. 2017, 144, 70–82. DOI: 10.1016/j.polymdegradstab.2017.08.007.
  • Hergenrother, P. M.; Thompson, C. M.; Smith, J. G.; Connell, J. W.; Hinkley, J. A.; Lyon, R. E.; Moulton, R. Flame Retardant Aircraft Epoxy Resins Containing Phosphorus. Polymer 2005, 46, 5012–5024. DOI: 10.1016/j.polymer.2005.04.025.
  • Wu, T.; Piotrowski, A. M.; Yao, Q.; Levchik, S. V. Curing of Epoxy Resin with Poly(m-phenylene methylphosphonate). J. App. Polym. Sci. 2006, 101, 4011–4022. DOI: 10.1002/app.22966.
  • Perez, R. M.; Sandler, J. K. W.; Alstadt, V.; Hoffmann, T.; Pospiech, D.; Artner, J.; Ciesielski, M.; Doring, M.; Balbanovich, A. I.; Knoll, U.; et al. Novel Phosphorus-Containing Hardeners with Tailored Chemical Structures for Epoxy Resins: Synthesis and Cured Resin Properties. J. App. Polym. Sci. 2007, 105, 2744–2759. DOI: 10.1002/app.26537.
  • Artner, J.; Ciesielski, M.; Walter, O.; Doring, M.; Perez, R. M.; Sandler, J. K. W.; Alstadt, V.; Schartel, B. A Novel DOPO-Based Diamine as Hardener and Flame Retardant for Epoxy Resin Systems. Macromol. Mater. Eng. 2008, 293, 503–514. DOI: 10.1002/mame.200700287.
  • Toldy, A.; Szolnoki, B.; Csontos, I.; Marosi, G. Green Synthesis and Characterization of Phosphorus Flame Retardant Crosslinking Agents for Epoxy Resins. J. App. Polym. Sci. 2014, 131. DOI: 10.1002/app.40105.
  • Tibiletti, L.; Ferry, L.; Longuet, C.; Mas, A.; Robin, J-J.; Lopez-Cuesta, J-M. Thermal Degradation And Fire Behavior Of Thermoset Resins Modified With Phosphorus Containing Styrene. Polym. Degrad. Stab. 2012, 97, 2602–2610. DOI: 10.1016/j.polymdegradstab.2012.01.032.
  • Hu, W.; Zhan, J.; Hong, N.; Hull, T. R.; Stec, A. A.; Song, L.; Wang, J.; Hu, Y. Flame Retardant Polystyrene Copolymers: Preparation, Thermal Properties, and Fire Toxicities. Polym. Adv. Technol. 2014, 25, 631–637. DOI: 10.1002/pat.3261.
  • Tretsiakova-McNally, S.; Joseph, P. Pyrolysis Combustion Flow Calorimetry Studies on Some Reactively Modified Polymers. Polymers 2015, 7, 453–467. DOI: 10.3390/polym7030453.
  • Moon, S.; Ku, B-C.; Emrick, T.; Coughlin, B. E.; Farris, R. J. Flame Resistant Electrospun Polymer Nanofibers from Deoxybenzoin-Based Polymers. J. App. Polym. Sci. 2009, 111, 301–307. DOI: 10.1002/app.29067.
  • Ranganathan, T.; Cossette, P.; Emrick, T. Halogen-Free, Low Flammability Polyurethanes Derived from Deoxybenzoin-Based Monomers. J. Mater. Chem. 2010, 20, 3681–3687. DOI:10.1039/b924034a.
  • Ranganathan, T.; Beaulieu, M.; Zilberman, J.; Smith, K. D.; Westmoreland, P. R.; Farris, R. J.; Coughlin, E. B.; Emrick, T. Thermal Degradation Of Deoxybenzoin Polymers Studied By Pyrolysis-Gas Chromatography/Mass Spectrometry. Polym. Degrad. Stab. 2008, 93, 1059–1066. DOI: 10.1016/j.polymdegradstab.2008.03.021.
  • Ellzey, K. A.; Ranganathan, T.; Zilberman, J.; Coughlin, E. B.; Farris, R. J.; Emrick, T. Deoxybenzoin-Based Polyarylates as Halogen-Free Fire-Resistant Polymers. Macromolecules 2006, 39, 3553–3558. DOI: 10.1021/ma052777o.
  • Ryu, B-Y.; Moon, S.; Kosif, I.; Ranganathan, T.; Farris, R. J.; Emrick, T. Deoxybenzoin-Based Epoxy Resins. Polymer 2009, 50, 767–774. DOI: 10.1016/j.polymer.2008.12.009.
  • Choudhary, U.; Mir, A. A.; Emrick, T. Soluble, Allyl-Functionalized Deoxybenzoin Polymers. Macromolecules 2017, 50, 3772–3778. DOI: 10.1021/acs.macromol.7b00460.
  • Bernardo, E.; Fiocco, L.; Parcianello, G.; Storti, E.; Colombo, P. Advanced Ceramics from Preceramic Polymers Modified at the Nano-Scale: A Review. Materials 2014, 7, 1927–1956. DOI: 10.3390/ma7031927.
  • Laine, R. M.; Babonneau, F. Preceramic Polymer Routes to Silicon Carbide. Chem. Mater. 1993, 5, 260–279. DOI: 10.1021/cm00027a007.
  • Duquesne, S.; Bachelet, P.; Bellayer, S.; Bourbigot, S.; Mertens, S. Influence of Inorganic Fillers On The Fire Protection Of Intumescent Coatings. J. Fire Sci. 2013, 31, 258–275. DOI: 10.1177/0734904112467291.
  • Bourbigot, S.; Duquesne, S.; Sebih, Z.; Segura, S.; Delobel, R. Synergistic Aspects of the Combination of Magnesium Hydroxide and Ammonium Polyphosphate in Flame Retardancy of Ethylene-Vinyl Acetate Copolymer. In Fire and Polymers IV: Materials and Concepts for Hazard Prevention ACS Symposium Series #922; Wilkie, C. A., Nelson, G. L., Eds.; American Chemical Society: Washington, DC, 2005; pp 200–212.
  • Hoffendahl, C.; Duquesne, S.; Fontaine, G.; Taschner, F.; Mezger, M.; Bourbigot, S. Decomposition Mechanism of Fire Retarded Ethylene Vinyl Acetate Elastomer (EVA) Containing Aluminum Trihydroxide and Melamine. Polym. Degrad. Stab. 2015, 113, 168–179. DOI: 10.1016/j.polymdegradstab.2014.09.016.
  • Hoffendahl, C.; Fontaine, G.; Duquesne, S.; Taschner, F.; Mezger, M.; Bourbigot, S. The Combination of Aluminum Trihydroxide (ATH) and Melamine Borate (MB) as Fire Retardant Additives for Elastomeric Ethylene Vinyl Acetate (EVA). Polym. Degrad. Stab. 2015, 115, 77–88. DOI: 10.1016/j.polymdegradstab.2015.03.001.
  • Pawlowski, K. H.; Schartel, B. Flame Retardancy Mechanisms of Aryl Phosphates in Combination with Boehmite in Bisphenol A Polycarbonate / Acrylonitrile-Butadiene-Styrene Blends. Polym. Degrad. Stab. 2008, 93, 657–667. DOI: 10.1016/j.polymdegradstab.2008.01.002.
  • Wawrzyn, E.; Schartel, B.; Karrasch, A.; Jager, C. Flame-Retarded Bisphenol A Polycarbonate/Silicon Rubber/Bisphenol A bis(diphenyl phosphate): Adding Inorganic Additives. Polym. Degrad. Stab. 2014, 106, 74–87. DOI: 10.1016/j.polymdegradstab.2013.08.006.
  • Sut, A.; Greiser, S.; Jager, C.; Schartel, B. Interactions in Multicomponent Flame-Retardant Polymers: Solid-State NMR Identifying the Chemistry Behind it. Polym. Degrad. Stab. 2015, 121, 116–125. DOI: 10.1016/j.polymdegradstab.2015.08.018.
  • Langfeld, K.; Wilke, A.; Sut, A.; Greiser, S.; Ulmer, B.; Andrievici, V.; Limbach, P.; Bastian, M.; Schartel, B. Halogen-Free Fire Retardant Styrene-Ethylen-Butylene-Styrene-Based Thermoplastic Elastomers Using Synergistic Aluminum Diethylphophinate-Based Combinations. J. Fire Sci. 2015, 33, 157–177. DOI: 10.1177/0734904114565581.
  • Wilke, A.; Langfeld, K.; Ulmer, B.; Andrievici, V.; Horold, A.; Limbach, P.; Bastian, M.; Schartel, B. Halogen-Free Multicomponent Flame Retardant Thermoplastic Styrene-Ethylene-Butylene-Styrene Elastomers Based on Ammonium Polyphosphate-Expandable Graphite Synergy. Ind Eng. Chem. Res. 2017, 56, 8251–8263. DOI: 10.1021/acs.iecr.7b01177.
  • Fox, D. M.; Lee, J.; Citro, C. J.; Novy, M. Flame Retarded Poly(Lactic Acid) Using Poss-Modified Cellulose. 1. Thermal and Combustion Properties Of Intumescing Composites. Polym. Degrad. Stab. 2013, 98, 590–596. DOI: 10.1016/j.polymdegradstab.2012.11.016.
  • Fox, D. M.; Novy, M.; Brown, K.; Zammarano, M.; Harris Jr., R. H.; Murariu, M.; McCarthy, E. D.; Seppala, J. E.; Gilman, J. W. Flame Retarded Poly(Lactic Acid) Using POSS-Modified Cellulose. 2. Effects of Intumescing Flame Retardant Formulations On Polymer Degradation And Composite Physical Properties. Polym. Degrad. Stab. 2014, 106, 54–62 DOI: 10.1016/j.polymdegradstab.2014.01.007.
  • Carosio, F.; Kochumalayil, J.; Cuttica, F.; Camino, G.; Berglund, L. Oriented Clay Nanopaper from Biobased Components – Mechanisms for Superior Fire Protection Properties. ACS Appl. Mater. Interfaces 2015, 7, 5847–5856. DOI: 10.1021/am509058h.
  • Alongi, J.; Carosio, F.; Malucelli, G. Current Emerging Techniques to Impart Flame Retardancy to Fabrics: An Overview. Polym. Degrad. Stab. 2014, 106, 138–149. DOI: 10.1016/j.polymdegradstab.2013.07.012.
  • Costes, L.; Laoutid, F.; Brohez, S.; Dubois, P. Bio-Based Flame Retardants: When Nature Meets Fire Protection. Materials Science and Engineering R 2017, 117, 1–25. DOI: 10.1016/j.mser.2017.04.001.
  • Holder, K. M.; Smith, R. J.; Grunlan, J. C. A Review of Flame Retardant Nanocoatings Prepared Using Layer-By-Layer Assembly of Polyelectrolytes. J. Mater. Sci. 2017, 52, 12923–12959. DOI: 10.1007/s10853-017-1390-1.
  • Qiu, X.; Li. Z.; Li, X.; Zhang, Z. Flame Retardant Coatings Prepared Using Layer by Layer Assembly: A Review. Chem. Eng. J. 2018, 334, 108–122. DOI: 10.1016/j.cej.2017.09.194.
  • Chen, H-B.; Shen, P.; Chen, M-J.; Zhao, H-B.; Schiraldi, D. A. Highly Efficient Flame Retardant Polyurethane Foam with Alginate/Clay Aerogel Coating. ACS Applied Materials & Interfaces 2016, 8, 32557–32564. DOI: 10.1021/acsami.6b11659.
  • Shang, K.; Liao, W.; Wang, J.; Wang, Y-T.; Wang, Y-Z.; Schiraldi, D. A. ACS Applied Materials and Interfaces. 2016, 8, 642–650.
  • Kashiwagi, T.; Gilman, J. W.; Butler, K. M.; Harris, R. H.; Shields, J. R.; Asano, A. Flame Retardant Mechanism of Silica Gel/Silica Nonflammable Alginate Nanocomposite Aerogels Prepared by a Simple Freeze-Drying and Post-Cross-Linking Method. Fire Mater. 2000, 24, 277–289. DOI: 10.1002/1099-1018(200011/12)24:6<277::AID-FAM746>3.0.CO;2-A.
  • Kashiwagi, T.; Shields, J. R.; Harris, R. H.; Davis, R. D. Flame-Retardant Mechanism of Silica: Effects of Resin Molecular Weight. J. App. Polym. Sci. 2003, 87, 1541–1553. DOI: 10.1002/app.11967.
  • Kashiwagi, T.; Gilman, J. W. Silicon Based Flame Retardants. In Flame Retardancy of Polymeric Materials; Grand, A. F., Wilkie, C. A., Eds.; Marcel Dekker, Inc.: New York, NY, 2000; pp 353–389.
  • Nishihara, H.; Suda, Y.; Sakuma, T. Halogen- and Phosphorus-free Flame Retardant PC Plastic with Excellent Moldability and Recyclability. J. Fire. Sci. 2003, 21, 451–464. DOI: 10.1177/0734904103035147.
  • Liu, Y-L.; Chang, G-P.; Wu, C-S. Halogen-Free Flame Retardant Epoxy Resins from Hybrids of Phosphorus- or Silicon-Containing Epoxies with an Amine Resin. J. App. Polym. Sci. 2006, 102, 1071–1077. DOI: 10.1002/app.24247.
  • Huang, H.; Tian, M.; Liu, L.; He, Z.; Chen, Z.; Zhang, L. Effects of Silicon Additive as Synergists of Mg(OH)2 on the Flammability of Ethylene Vinyl Acetate Copolymer. J. App. Polym. Sci. 2005, 99, 3203–3209. DOI: 10.1002/app.22494.
  • Hermansson, A.; Hjertberg, T.; Sultan, B-A. Linking the Flame-Retardant Mechanisms of an Ethylene-Acrylate Copolymer, Chalk and Silicone Elastomer System with its Intumescent Behavior. Fire Mater. 2005, 29, 407–423. DOI: 10.1002/fam.910.
  • Jimenez, M.; Gallou, H.; Duquesne, S.; Jama, C.; Bourbigot, S.; Couillens, X.; Speroni, F. New Routes to Flame Retard Polyamide 6,6 For Electrical Applications. J. Fire Sci. 2012, 30, 535–551. DOI: 10.1177/0734904112449992.
  • Warheit, D. B. Debunking Some Misconceptions about Nanotoxicology. Nano Lett. 2010, 10, 4777–4782. DOI: 10.1021/nl103432w.
  • Reijnders, L. Human Health Hazards of Persistent Inorganic and Carbon Nanoparticles. J. Mater. Sci. 2012, 47, 5061–5073. DOI: 10.1007/s10853-012-6288-3.
  • Pan, H.; Wang, W.; Pan, Y.; Song, L.; Hu, Y.; Liew, K. M. Formation of Layer-by-Layer Assembled Titanate Nanotubes Filled Coating on Flexible Polyurethane Foam with Improved Flame Retardant and Smoke Suppression Properties. ACS Applied Materials and Interfaces 2015, 7, 101–111. DOI: 10.1021/am507045g.
  • Tian, C. M.; Qu, H. Q.; Wu, W. H.; Guo, H. Z.; Xu, J. Z. Metal Chelates as Flame Retardants and Smoke Suppressants for Flexible Poly (Vinyl Chloride). J. Fire Sci. 2004, 22, 41–51. DOI: 10.1177/0734904104039246.
  • Nie, S.; Hu, Y.; Song, L.; He, S.; Yang, D. Study on a Novel and Efficient Flame Retardant Synergist-Nanoporous Nickel Phosphates VSB-1 with Intumescent Flame Retardants in Polypropylene. Polym. Adv. Technol. 2008, 19, 489–495. DOI: 10.1002/pat.1088.
  • Zhang, P.; Song, L.; Lu, H.; Hu, Y.; Xing, W.; Ni, J.; Wang, J. Synergistic Effect of Nanoflaky Manganese Phosphate on Thermal Degradation and Flame Retardant Properties of Intumescent Flame Retardant Polypropylene System. Polym. Degrad. Stab. 2009, 94, 201–207. DOI: 10.1016/j.polymdegradstab.2008.11.004.
  • Hou, Y.; Hu, W.; Gui, Z.; Hu, Y. A Novel Co(II)-Based Metal-Organic Framework with Phosphorus-Containing Structure: Build for Enhancing Fire Safety of Epoxy. Compos. Sci. Technol. 2017, 152, 231–242. DOI: 10.1016/j.compscitech.2017.08.032.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.