645
Views
15
CrossRef citations to date
0
Altmetric
Review

Historical Review of Secondary Entry Flows in Polymer Melt Extrusion

& ORCID Icon
Pages 338-390 | Received 12 Jun 2017, Accepted 23 May 2018, Published online: 02 Nov 2018

References

  • Bingham, E. C. “Plastic flow”, J. Wash. Acad. Sci. 1916, 6, 177–179.
  • Bingham, E. C. Fluidity and Plasticity; McGraw-Hill Book Company, Inc.: New York, 1922.
  • Bingham, E. C. “Some fundamental definitions of rheology”, J. Rheol. 1930, 1, 507–516.
  • Tanner, R. I.; Walters, K. “Rheology: An Historical Perspective”, Elsevier: Amsterdam, 1998.
  • Staudinger, H. “Über polymerisation”, Ber. Dtsch. Chem. Ges. A/B. 1920, 53, 1073–1085.
  • Fawcett, W. H.; Gibson, R. O.; Perrin, M. W.; Patton, J. G.; Williams, E. G. “Improvements in or relating to the polymerisation of ethylene”, Br. Pat. 1937, 471, 590.
  • Nason, H. K. “A high temperature, high pressure rheometer for plastics”, J. Appl. Phys. 1945, 16, 338–343.
  • Bird, R. B.; Armstrong, R. C.; Hassager, O. “Dynamics of Polymeric Liquids, Volume 1, Fluid Mechanics”, John Wiley & Sons: New York, 1987.
  • Metzner, A. B. “Fracture of non-Newtonian fluids at high shear stresses”, Ind. Eng. Chem. 1958, 50, 1577–1579.
  • Dennison, M. T. “Flow instability in polymer melts: a review”, Trans. J. Plastics Inst. 1967, 35, 803–808.
  • Bialas, G. A.; White, J. L. “Extrusion of polymer melts and melt flow instabilities. I. Experimental study of capillary flow and extrudate distortion”, Rubber Chem. Technol. 1969, 42, 675–681.
  • Bialas, G. A.; White, J. L. “Extrusion of polymer melts and melt flow instabilities. II. Site of initiation and mechanism of melt flow instability”, Rubber Chem. Technol. 1969, 42, 682–690.
  • White, J. L. “Extrusion of polymer melts and melt flow instabilities. III. Theoretical analysis of extrusion through a slit die”, Rubber Chem. Technol. 1969, 42, 691–699.
  • Ballenger, T. F.; Chen, I.-J.; Crowder, J. W.; Hagler, G. E.; Bogue, D. C.; White, J. L. “Polymer melt flow instabilities in extrusion: investigation of the mechanism and material and geometrical variables”, J. Rheol. 1971, 15, 195–215.
  • White, J. L. “Critique on flow patterns in polymer fluids at the entrance of a die and instabilities leading to extrudate distorsion”, Appl. Polym. Symp. 1973, 20, 155–174.
  • Petrie, C. J. S.; Denn, M. M. “Instabilities in polymer processing”, AIChE J. 1976, 22, 209–236.
  • Boudreaux, E.; Cuculo, J. A. “Polymer flow instability: a review and analysis”, J. Macromol. Sci. - Rev. Macromol. Chem. 1976, 16, 39–77.
  • Denn, M. M. “Issues in viscoelastic fluid mechanics”, Annu. Rev. Fluid Mech. 1990, 22, 13–34.
  • Larson, R. G. “Instabilities in viscoelastic flows”, Rheol. Acta 1992, 31, 213–263.
  • Boger, D. V.; Walters, K. “Rheological Phenomena in Focus”, Elsevier: Amsterdam, 1993.
  • Leonov, A. I.; Prokunin, A. N. “Nonlinear Phenomena in Flows of Viscoelastic Polymer Fluids”, Chapman & Hall, London, 1994.
  • Macosco, C. W. “Rheology: Principles, Measurements, and Applications”, John Wiley & Sons: New York, 1994.
  • Wang, S.-Q. “Molecular transitions and dynamics at polymer/wall interfaces: origins of flow instabilities and wall slip”, Adv. Polym. Sci. 1999, 138, 229–275.
  • Graham, M. D. “The sharkskin instability of polymer melt flows”, Chaos 1999, 9, 154–163.
  • Denn, M. M. “Extrusion instabilities and wall slip”, Annu. Rev. Fluid Mech. 2001, 33, 265–287.
  • Denn, M. M. “Fifty years of non-Newtonian fluid dynamics”, AIChE J. 2004, 50, 2335–2345.
  • Hatzikiriakos, S. V.; Migler, K. B. “Polymer Processing Instabilities: Control and Understanding”, Marcel Dekker: New York, 2005.
  • Agassant, J.-F.; Arda, D. R.; Combeaud, C.; Merten, A.; Münstedt, H.; Mackley, M. R.; Robert, L.; Vergnes, B. “Polymer processing extrusion instabilities and methods for their elimination or minimisation”, IPP. 2006, 21, 239–255.
  • Noreiga, M.; Rauwendaal, C. “Troubleshooting the Extrusion Process: A Systematic Approach Solving Plastic Extrusion Problems”, Hanser: Munich, 2010.
  • Hatzikiriakos, S. G. “Wall slip of molten polymers”, Prog. Polym. Sci. 2012, 37, 624–643.
  • Musil, J.; Zatloukal, M. “Historical review of die drool phenomenon in plastics extrusion”, Polym. Rev. 2014, 54, 139–184.
  • Demay, Y.; Agassant, J.-F. “An overview of molten polymer drawing instabilities”, IPP. 2014, 29, 128–139.
  • Michaeli, W. “Extrusion Dies for Plastics and Rubber—Design and Engineering Computations”, 3rd Edition; Hanser Verlag: München, 2003.
  • Bird, R. B.; Wiest, J. M. “Constitutive equations for polymeric liquids”, Annu. Rev. Fluid Mech. 1995, 27, 169–193.
  • Owens, R. G.; Phillips, T. N. “Computational Rheology”, Imperial College Press: London, 2005.
  • Willets, W. R. “Contract chasing and rheology”, Phys. Today 1967, 20, 11.
  • Hagen, G. H. L. “Ueber die Bewegung des Wassers in engen cylindrischen Röhren”, Ann. Phys. Chem. 1839, 122, 423–442.
  • Poiseuille, J. L. M. “Recherches expérimentales sur le mouvement des liquides dans les tubes de très petits diamètres”, Crit. Rev. Acad. Sci. Paris 1840, 11, 961–967.
  • Stokes, G. G. “On the theory of the internal friction of fluids in motion, and of the equilibrium and motion of elastic solids”, Trans. Cambridge Phil. Soc. 1845, 8, 287–341.
  • Navier, C. L. M. H. “Mémoire sur les lois du mouvement des fluides”, Mém. de ľ Acad. R. Sci. Paris 1823, 6, 389–416.
  • Sutera, S. P.; Skalak, R. “The history of Poiseuille’s law”, Annu. Rev. Fluid Mech. 1993, 25, 1–19.
  • Hagenbach, E. “Ueber die Bestimmung der Zähigkeit einer Flüssigkeit durch den Ausfluss aus Röhren”, Ann. Phys. Chem. 1860, 185, 385–426.
  • Couette, M. M. “Etudes sur le frottement des liquides”, Annales de Chimie et de Physique serie VI 1890, 21, 433–510.
  • Bagley, E. B. “End corrections in the capillary flow of polyethylene”, J. App. Phys. 1957, 28, 624–627.
  • Hertel, D.; Münstedt, H. “Dependence of the secondary flow of a low-density polyethylene on processing parameters as investigated by laser-Doppler velocimetry”, J. Non-Newtonian Fluid Mech. 2008, 153, 73–81.
  • den Otter, J. L. “Mechanisms of melt fracture”, Plast. Polym. 1970, 38, 155–168.
  • Pérez-Gonzalez, J.; Pérez-Trejo, L.; de Vargas, L.; Manero, O. “Inlet instabilities in the capillary flow of polyethylene melts”, Rheol. Acta 1997, 36, 677–685.
  • Combeaud, C.; Vergnes, B.; Merten, A.; Hertel, D.; Münstedt, H. “Volume defects during extrusion of polystyrene investigated by flow induced birefringence and laser-Doppler velocimetry”, J. Non-Newtonian Fluid Mech. 2007, 145, 69–77.
  • Cogswell, F. N. “Converging flow of polymer melts in extrusion dies”, Polym. Eng. Sci. 1972, 12, 64–73.
  • Binding, D. M. “An approximate analysis for contraction and converging flows”, J. Non-Newtonian Fluid Mech. 1988, 27, 173–189.
  • Gibson, A. G. “Die entry flow of reinforced polymers”, Composites 1989, 20, 57–64.
  • Euler, L. “Principes généraux du movement des fluides”, Mémoires de l’académie des sciences de Berlin 1757, 11, 274–315.
  • Stokes, G. “On the effect of the internal friction of fluids on the motion of pendulums”, Trans. Cambr. Phil. Soc. 1851, 9, 8–160.
  • Sommerfeld, A. “Ein Beitrag zur hydrodynamischen Erklärung der turbulenten Flüssigkeitsbewegung”, Int. Cong. Math., 4th, Rome 1908, 3, 116–124.
  • Rott, N. “Note on the history of the Reynolds number”, Annu. Rev. Fluid Mech. 1990, 22, 1–11.
  • Strutt, J. W., Baron Reyleigh. “Steady motion in a corner of a viscous fluid”, Philos. Mag. 1911, 21, 177–195.
  • Dean, W. R.; Montagnon, P. E. “On the steady motion of viscous liquid in a corner”, Math. Proc. Camb. Phil. Soc. 1949, 45, 389–394.
  • Moffatt, H. K. “Viscous and resistive eddies near a sharp corner”, J. Fluid Mech. 1964, 18, 1–18.
  • Vrentas, J. S.; Duda, J. L. “Flow of a Newtonian fluid through a sudden contraction”, Appl. Sci. Res. 1973, 28, 241–260.
  • Mitsoulis, E. “Influence of inertia and viscoelasticity in entry flows through an abrupt annular contraction”, J. Appl. Polym. Sci. 1989, 37, 627–643.
  • Duda, J. L.; Vrentas, J. S. “Entrance flows of non-Newtonian fluids”, Trans. Soc. Rheol. 1973, 17, 89–108.
  • Kim-E, M. E.; Brown, R. A.; Armstrong, R. C. “The roles of inertia and shear-thinning in flow of an inelastic liquid through an axisymmetric sudden contraction”, J. Non-Newtonian Fluid Mech. 1983, 13, 341–363.
  • Philippoff, W. “Recoverable shear in rheology”, Rheol. Acta 1973, 12, 425–429.
  • Herzog, R. O.; Weissenberg, K. “Ueber die termische, mechanische und röntgenoptische Analyse der Quellung”, Kolloid-Zeitschrift 1928, 46, 277–289.
  • Garner, F. H.; Nissan, A. H. “Rheological properties of high-viscosity solutions of long molecules”, Nature 1946, 158, 634–635.
  • Reiner, M. “Elasticity beyond the elastic limit”, Am. J. Math. 1948, 70, 433–446.
  • Weissenberg, K. The Principles of Rheological Measurement, Proceedings of the General Conference of the British Rheologist’s Club, 1946, London, 36–65.
  • Weissenberg, K. “A continuum theory of rheological phenomena”, Nature 1947, 159, 310–311.
  • Freeman, S. M.; Weissenberg, K. “Some new anisotropic time effects in rheology”, Nature 1948, 161, 324–325.
  • Freeman, S. M.; Weissenberg, K. “Some new rheological phenomena and their significance for the constitution of materials”, Nature 1948, 162, 320–323.
  • Weissenberg, K. Abnormal Substances and Abnormal Phenomena of Flow, Proceedings of the First International Rheological Congress, Vol. I., 1948, North-Holland, Amsterdam, 29–46.
  • Philippoff, W.; Gaskins, F. H. “The capillary experiment in rheology”, Trans. Soc. Rheol. 1958, 2, 263–284.
  • White, J. L. “Dynamics of viscoelastic fluids, melt fracture, and the rheology of fiber spinning”, J. Appl. Polym. Sci. 1964, 8, 2339–2357.
  • White, J. L.; Kondo, A. “Flow patterns in polyethylene and polystyrene melts during extrusion through a die entry region: measurements and interpretation”, J. Non-Newtonian Fluid Mech. 1977, 3, 41–64.
  • Reiner, M. “The Deborah number”, Phys. Today 1964, 17, 62.
  • Metzner, A. B.; White, J. L.; Denn, M. M. “Constitutive equations for viscoelastic fluids for short deformation periods and for rapidly changing flows: significance of the Deborah number”, AIChE J. 1966, 12, 863–866.
  • Dealy, J. M. “Weissenberg and Deborah numbers—their definition and use”, Rheol. Bull. 2010, 79, 14–18.
  • Nguyen, H.; Boger, D. V. “The kinematics and stability of die entry flows”, J. Non-Newtonian Fluid Mech. 1979, 5, 353–368.
  • Mitsoulis, E.; Vlachopoulos, J.; Mirza, F. A. “Simulation of vortex growth in planar entry flow of a viscoelastic fluid”, J. Appl. Polym. Sci. 1985, 30, 1379–1391.
  • Münstedt, H.; Schwetz, M.; Heindl, M.; Schmidt, M. “Influence of molecular structure on secondary flow of polyolefin melts as investigated by laser-Doppler velocimetry”, Rheol. Acta 2001, 40, 384–394.
  • Luo, X.-L.; Mitsoulis, E. “A numerical study of the effect of elongational viscosity on vortex growth in contraction flows of polyethylene melts”, J. Rheol. 1990, 34, 309–342.
  • Pérez-Camacho, M.; López-Aguilar, J. E.; Calderas, F.; Manero, O.; Webster, M. F. “Pressure-drop and kinematics of viscoelastic flow through an axisymmetric contraction-expansion geometry with various contraction-ratios”, J. Non-Newtonian Fluid Mech. 2015, 222, 260–271.
  • Walters, K.; Webster, M. F. “On dominating elastico-viscous response in some complex flows”, Phil. Trans. R. Soc. London. A 1982, 308, 199–218.
  • White, S. A.; Baird, D. G. “Flow visualization and birefringence studies on planar entry flow behavior of polymer melts”, J. Non-Newtonian Fluid Mech. 1988, 29, 245–267.
  • Evans, R. E.; Walters, K. “Flow characteristics associated with abrupt changes in geometry in the case of highly elastic liquids”, J. Non-Newtonian Fluid Mech. 1986, 20, 11–29.
  • Evans, R. E.; Walters, K. “Further remarks on the lip-vortex mechanism of vortex enhancement in planar-contraction flows”, J. Non-Newtonian Fluid Mech. 1989, 32, 95–105.
  • McKinley, G. H.; Raiford, W. P.; Brown, R. A.; Armstrong, R. C. “Nonlinear dynamics of viscoelastic flow in axisymmetric abrupt contractions”, J. Fluid Mech. 1991, 223, 411–456.
  • Quinzani, L. M.; Armstrong, R. C.; Brown, R. A. “Birefringence and laser-Doppler velocimetry (LDV) studies of viscoelastic flow through a planar contraction”, J. Non-Newtonian Fluid Mech. 1994, 52, 1–36.
  • Sridhar, T. “An overview of the project M1”, J. Non-Newtonian Fluid Mech. 1990, 35, 85–92.
  • Boger, D. V.; Binnington, R. J. “Experimental removal of the re-entrant corner singularity in tubular entry flows”, J. Rheol. 1994, 38, 333–349.
  • Sankaran, A. K.; Dros, D. A.; Merman, H. J.; Picken, S. J.; Kreutzer, M. T. “Increasing the stability of high contraction ratio flow of Boger fluids by pre-deformation”, J. Non-Newtonian Fluid Mech. 2013, 196, 27–35.
  • White, S. A.; Gotsis, A. D.; Baird, D. G. “Review of the entry flow problem: experimental and numerical”, J. Non-Newtonian Fluid Mech. 1987, 24, 121–160.
  • Wagner, M. H.; Bastian, H.; Hachmann, P.; Meissner, J.; Kurzbeck, S.; Münstedt, H.; Langouche, F. “The strain-hardening behaviour of linear and long-chain-branched polyolefin melts in extensional flows”, Rheol. Acta 2000, 39, 97–109.
  • Zatloukal, M. “Measurements and modeling of temperature-strain rate dependent uniaxial and planar extensional viscosities for branched LDPE polymer melt”, Polymer 2016, 104, 258–267.
  • Meissner, J. “Rheometry of polymer melts”, Annu. Rev. Fluid Mech. 1985, 17, 45–64.
  • Trouton, F. T. “On the coefficient of viscous traction and its relation to that of viscosity”, Proc. Roy. Soc. A 1906, 77, 426–440.
  • Debbaut, B.; Crochet, M. J. “Extensional effects in complex flows”, J. Non-Newtonian Fluid Mech. 1988, 30, 169–184.
  • White, S. A.; Baird, D. G. “Numerical simulation studies of the planar entry flow of polymer melts”, J. Non-Newtonian Fluid Mech. 1988, 30, 47–71.
  • Green, A. P. “The use of plasticine models to simulate the plastic flow of metals”, Phil. Mag. 1951, 42, 365.
  • Tordella, J. P. “Capillary flow of molten polyethylene—a photographic study of melt fracture”, Trans. Soc. Rheol. 1957, 1, 203–212.
  • Clegg, P. L. “The flow properties of polyethylene and their effect on fabrication”, Plast. Inst. Trans. 1958, 26, 151–171.
  • Clegg, P. L. “Elastic Effects in the Extrusion of Polyethylene in Rheology of Elastomers”, Mason, P.; Wookey, N., Eds.; Pergamon: London, 1958.
  • Schott, H.; Kaghan, W. S. “Flow irregularities in the extrusion of polyethylene melts”, Ind. Eng. Chem. 1959, 51, 844–846.
  • Bagley, E. B.; Birks, A. M. “Flow of polyethylene into a capillary”, J. App. Phys. 1960, 31, 556–561.
  • Ballenger, T. F.; White, J. L. “An experimental study of flow patterns in polymer fluids in the reservoir of a capillary rheometer”, Chem. Eng. Sci. 1970, 25, 1191–1195.
  • Ballenger, T. F.; White, J. L. “The development of the velocity field in polymer melts in a reservoir approaching a capillary die”, J. Appl. Polym. Sci. 1971, 15, 1949–1962.
  • Ide, Y.; White, J. L. “Investigation of failure during elongational flow of polymer melts”, J. Non-Newtonian Fluid Mech. 1977, 2, 281–298.
  • Giesekus, H. Nicht-lineare Effekte beim Strömen viscoelastischer Flüssigkeiten durch Schlitz- und Lochdüsen. Rheol. Acta 1968, 7, 127–138.
  • Metzner, A. B.; Uebler, E. A.; Chan Man Fong, C. F. “Converging flows of viscoelastic materials”, AIChE J. 1969, 15, 750–758.
  • White, S. A.; Baird, D. G. “The importance of extensional flow properties on planar entry flow patterns of polymer melts”, J. Non-Newtonian Fluid Mech. 1986, 20, 93–101.
  • Münstedt, H. “Dependence of the elongational behavior of polystyrene melts on molecular weight and molecular weight distribution”, J. Rheol. 1980, 24, 847–867.
  • Coates, P. D.; Matsuoka, M.; Kamala, M.; Martyn, M. Observation of 3-D Effects in Flow Visualization of Polymer Melts, 57th Annual Technical Conference (ANTEC), 1, 1999, New York, 1167–1171.
  • Coates, P. D.; Matsuoka, M.; Kamala, M.; Martyn, M. Observation and Quantification of 3D Effects in Polymer Melt Entry Flows, 15th Annual Meeting of Polymer Processing Society, 1999, Hertogenbosch, The Netherlands.
  • Kramer, H.; Meissner, J. Application of the Laser Doppler Velocimetry to Polymer Melt Flow Studies, Plastics in Medicine and Surgery (International Conference), 1980, 2, 463–468.
  • Knobel, B. Untersuchung der Einlaufströmung einer Polyäthylen-Schmelze in eine Düse von kreisförmigem Querschnitt mit der Laser-Doppler Anemometrie, Ph.D. Thesis, 1991, ETH Zurich.
  • Kramer, H. Geschwindigkeitsfelder und Deformation bei der Strömung einer Polyethylen-Schmelze durch eine Schlitzdüse—eine experimentelle Untersuchung mit Hilfe des Laser-Doppler-Verfahrens, Ph.D. Thesis, 1993, ETH Zurich.
  • Feigl, K.; Öttinger, H. C. “The flow of a LDPE melt through an axisymmetric contraction: a numerical study and comparison to experimental results”, J. Rheol. 1994, 38, 847–874.
  • Feigl, K.; Öttinger, H. C. “A numerical study of the flow of a low-density-polyethylene melt in a planar contraction and comparison to experiments”, J. Rheol. 1996, 40, 21–35.
  • Schmidt, M.; Wassner, E.; Münstedt, H. “Setup and test of a laser Doppler velocimeter for investigations of flow behaviour of polymer melts”, Mech. Time-Depend. Mat. 1999, 3, 371–393.
  • Wassner, E.; Schmidt, M.; Münstedt, H. “Entry flow of a low-density-polyethylene melt into a die: an experimental study by laser-Doppler velocimetry”, J. Rheol. 1999, 43, 1339–1353.
  • Schwetz, M.; Münstedt, H.; Heindl, M.; Merten, A. “Investigations on the temperature dependence of the die entrance flow of various long-chain branched polyethylenes using laser-doppler velocimetry”, J. Rheol. 2002, 46, 797–815.
  • Hertel, D.; Valette, R.; Münstedt, H. “Three-dimensional entrance flow of a low-density polyethylene (LDPE) and a linear low-density polyethylene (LLDPE) into a slit die”, J. Non-Newtonian Fluid Mech. 2008, 153, 82–94.
  • Sirakov, I.; Ainser, A.; Guillet, J. Three Dimensional Numerical Simulation of Viscoelastic Planar Contraction Flow, Proceedings of the Fourth International ESAFORM Conference, 1, 2001, University of Liège, 27–30.
  • Sirakov, I.; Ainser, A.; Haouche, M.; Guillet, J. “Three-dimensional numerical simulation of viscoelastic contraction flows using the Pom-Pom model differential constitutive model”, J. Non-Newtonian Fluid Mech. 2005, 126, 163–173.
  • Martyn, M. T.; Nakason, C.; Coates, P. D. “Stress measurements for contraction flows of viscoelastic polymer melts”, J. Non-Newtonian Fluid Mech. 2000, 91, 123–142.
  • Boukellal, G.; Hertel, D.; Valette, R.; Münstedt, H.; Agassant, J.-F. “Investigation of LDPE converging flows using fieldwise measurements techniques, Symposium MS11: processing of polymers”, Int. J. Mater. Form. 2008, 1, 687–690.
  • Musil, J.; Zatloukal, M.; Gough, T.; Martyn, M. “Investigation of vortex development during polymer melt flows by flow birefringence”, AIP Conf. Proc. 2011, 1375, 14–25.
  • Tordella, J. P. “An instability in the flow of molten polymers”, Rheol. Acta 1958, 1, 216–221.
  • Clegg, P. L. “Flow in various extrusion processes”, Br. Plast. 1966, 39, 96–103.
  • Bagley, E. B.; Schreiber, H. P. “Effect of die entry geometry on polymer melt fracture and extrudate distortion”, Trans. Soc. Rheol. 1961, 5, 341–353.
  • Cook, N. P.; Furno, F. J.; Eirich, F. R. “Polymer melt flow behavior in the barrel of a capillary rheometer”, Trans. Soc. Rheol. 1965, 9, 405–420.
  • Shroff, R. N.; Cancio, L. V.; Shida, M. “Extensional flow of polymer melts”, Trans. Soc. Rheol. 1977, 21, 429–446.
  • Meissner, J. “Polymer melt flow measurements by laser Doppler velocimetry”, Polym. Test. 1983, 3, 291–301.
  • Ma, C.-Y.; White, J. L.; Weissert, F. C.; Min, K. “Flow patterns in carbon black filled polyethylene at the entrance to a die”, J. Non-Newtonian Fluid Mech. 1985, 17, 275–287.
  • Ma, C.-Y.; White, J. L.; Weissert, F. C.; Min, K. “Flow patterns in calcium carbonate and titanium dioxide filled polyethylene in the entrance region of a capillary die”, Polym. Compos. 1985, 6, 215–221.
  • Tremblay, B. “Visualization of the flow of linear low density polyethylene/low density polyethylene blends through sudden contractions”, J. Non-Newtonian Fluid Mech. 1992, 43, 1–29.
  • Tremblay, B. “Visualization of the flow of low density polyethylene/polystyrene blends through a planar step contraction”, J. Non-Newtonian Fluid Mech. 1994, 52, 323–331.
  • Martyn, M. T.; Nakason, C.; Coates, P. D. “Flow visualization of polymer melts in abrupt contraction extrusion dies: quantification of melt recirculation and flow patterns”, J. Non-Newtonian Fluid Mech. 2000, 91, 109–122.
  • Gough, T.; Spares, R.; Kelly, A. L.; Brook, S. M.; Coates, P. D. “Three-dimensional characterisation of full field stress and velocity fields for polyethylene melt through abrupt contraction”, Plast. Rubber Composites 2008, 37, 158–165.
  • Langlois, W. E. Steady Flow of Sligtly Viscoelastic Fluids, Ph.D. Thesis, 1957, Division of Applied Mathematics, Brown University.
  • Langlois, W. E.; Rivlin, R. S. Steady Flow of Slightly Viscoelastic Fluids, 1959, Report No. DA-4725(3), Division of Applied Mathematics, Brown University.
  • Schümmer, P. “Zum Flieszverhalten Nicht-Newtonscher Flüssigkeiten in konischen Düsen”, Rheol. Acta 1967, 6, 192–200.
  • Schümmer, P. “Die Strömung viskoelastischer Flüssigkeiten in einem konvergenten Kanal”, Rheol. Acta 1968, 7, 271–277.
  • Strauss, K.; Kinast, R. “Sekundärströmungseffekte beim Strömen viskoelatischer Flüssinkeiten durch Keilspaltdüsen”, Colloid Polym. Sci. 1974, 252, 753–758.
  • Strauss, K. “Die Strömung einer einfachen viskoelastischen Flüssigkeit in einem konvergenten Kanal, Teil I: Die stationäre Strömung”, Acta Mech. 1974, 20, 233–246.
  • Strauss, K. “Die Strömung einer einfachen viskoelastischen Flüssigkeit in einem konvergenten Kanal, Teil II: Die Stabilität der Strömung”, Acta Mech. 1975, 21, 141–152.
  • Datta, A. B.; Strauss, K. “Slow flow of a viscoelastic fluid through a contraction”, Rheol. Acta 1976, 15, 403–410.
  • Yang, J.; Zhu, L.; Qin, G.; Li, J. “Comparison of different approaches for analyzing converging flows for polymer fluids”, Macromol. Mater. Eng. 2015, 300, 721–729.
  • Wong, A. C.-Y.; Jiang, L. “Study on the melt entry flow characteristics in axisymmetric dies with abrupt contraction by a visualization technique”, Polym. Test. 2001, 20, 861–867.
  • Lubansky, A. S.; Matthews, M. T. “On using planar microcontractions for extensional rheometry”, J. Rheol. 2015, 59, 835–864.
  • Keunings, R. “On the high Weissenberg number problem”, J. Non-Newtonian Fluid Mech. 1986, 20, 209–226.
  • Mitsoulis, E.; Vlachopoulos, J.; Mirza, F. A. “Numerical simulation of entry and exit flows in slit dies”, Polym. Eng. Sci. 1984, 24, 707–715.
  • Mitsoulis, E.; Vlachopoulos, J.; Mirza, F. A. “A numerical study of the effect of normal stresses and elongational viscosity on entry vortex growth and extrudate swell”, Polym. Eng. Sci. 1985, 25, 677–689.
  • Ahmed, R.; Liang, R. F.; Mackley, M. R. “The experimental observation and numerical prediction of planar entry flow and die swell for molten polyethylenes”, J. Non-Newtonian Fluid Mech. 1995, 59, 129–153.
  • Caswell, B. “Report on the IXth International Workshop on numerical methods in non-Newtonian flows”, J. Non-Newtonian Mech. 1996, 62, 99–110.
  • Xue, S.-C.; Phan-Thien, N.; Tanner, R. I. “Three dimensional numerical simulations of viscoelastic flows through planar contractions”, J. Non-Newtonian Fluid Mech. 1998, 74, 195–245.
  • Den Otter, J. L. Dynamic Properties of Some Polymeric Systems, Ph.D. Thesis, 1967, University of Leiden.
  • Keunings, R.; Crochet, M. J. “Numerical simulation of the flow of a viscoelastic fluid through an abrupt contraction”, J. Non-Newtonian Fluid Mech. 1984, 14, 279–299.
  • López-Aguilar, J. E.; Webster, M. F.; Tamaddon-Jahromi, H. R.; Pérez-Camacho, M.; Manero, O. “Contraction-ratio variation and prediction of large experimental pressure-drops in sharp-corner circular contraction-expansions-Boger fluids”, J. Non-Newtonian Fluid Mech. 2016, 237, 39–53.
  • Tamaddon-Jahromi, H. R.; López-Aguilar, J. E.; Webster, M. F. “On modelling viscoelastic flow through abrupt circular 8:1 contractions—matching experimental pressure-drops and vortex structures”, J. Non-Newtonian Fluid Mech. 2018, 251, 28–42.
  • Hulsen, M. A.; van der Zanden, J. “Numerical simulation of contraction flows using a multi-mode Giesekus model”, J. Non-Newtonian Fluid Mech. 1991, 38, 183–221.
  • Oliveira, P. J.; Pinho, F. T. “Plane contraction flows of upper convected Maxwell and Phan-Thien-Tanner fluids as predicted by a finite-volume method. J. Non-Newtonian Fluid Mech. 1999, 88, 63–88.
  • Alves, M. A.; Oliveira, P. J.; Pinho, F. T. “On the effect of contraction ratio in viscoelastic flow through abrupt contractions”, J. Non-Newtonian Fluid Mech. 2004, 122, 117–130.
  • Kwon, Y. “Numerical description of elastic flow instability and its dependence on liquid viscoelasticity in planar contraction”, J. Rheol. 2012, 56, 1335–1362.
  • Ferrás, L. L.; Afonso, A. M.; Alves, M. A.; Nóbrega, J. M.; Carneiro, O. S.; Pinho, F. T. “Slip flows of Newtonian and viscoelastic fluids in a 4:1 contraction”, J. Non-Newtonian Fluid Mech. 2014, 214, 28–37.
  • Dupont, S.; Crochet, M. J. “The vortex growth of a K.B.K.Z. fluid in an abrupt contraction”, J. Non-Newtonian Fluid Mech. 1988, 29, 81–91.
  • Mitsoulis, E. “Numerical simulation of entry flow of the IUPAC-LDPE melt”, J. Non-Newtonian Fluid Mech. 2001, 97, 13–30.
  • Meissner, J. “Basic parameters, melt rheology, processing and end-use properties of three similar low density polyethylene samples”, Pure Appl. Chem. 1975, 42, 551–612.
  • Auhl, D.; Hoyle, D. M.; Hassell, D.; Lord, T. D.; Harlen, O. G.; Mackley, M. R.; McLeish, T. C. B. “Cross-slot extensional rheometry and the steady-state extensional response of long chain branched polymer melts”, J. Rheol. 2011, 55, 875–900.
  • Olley, P. “An adaptation of the separable KBKZ equation for comparable response in planar and axisymmetric flow”, J. Non-Newtonian Fluid Mech. 2000, 95, 35–53.
  • McLeish, T. C. B.; Larson, R. G. “Molecular constitutive equations for a class of branched polymers: the Pom-Pom polymer”, J. Rheol. 1998, 42, 81–110.
  • Bishko, G.; McLeish, T. C. B.; Harlen, O. G.; Larson, R. G. “Theoretical molecular rheology of branched polymers in simple and complex flows: the Pom-Pom model”, Phys. Rev. Lett. 1997, 79, 2352–2355.
  • Bishko, G. B.; Harlen, O. G.; McLeish, T. C. B.; Nicholson, T. M. “Numerical simulation of the transient flow of branched polymer melts through a planar contraction using the ‘Pom-Pom’ model. J. Non-Newtonian Fluid Mech. 1999, 82, 255–273.
  • Clemeur, N.; Rutgers, R. P. G.; Debbaut, B. “Numerical evaluation of three dimensional effects in planar flow birefringence”, J. Non-Newtonian Fluid Mech. 2004, 123, 105–120.
  • Sousa, P. C.; Coelho, P. M.; Oliveira, M. S. N.; Alves, M. A. “Effect of the contraction ratio upon viscoelastic fluid flow in three-dimensional square-square contractions”, Chem. Eng. Sci. 2011, 66, 998–1009.
  • Griebel, M.; Rüttgers, A. “Multiscale simulations of three-dimensional viscoelastic flows in a square-square contraction”, J. Non-Newtonian Fluid Mech. 2014, 205, 41–63.
  • Wang, X.; Chen, R.; Wang, M.; Jin, G. “Validation of double convected Pom-Pom model with particle image velocimetry technique”, Polym. Eng. Sci. 2015, 55, 1897–1905.
  • Clemeur, N.; Rutgers, R. P. G.; Debbaut, B. “On the evaluation of some differential formulations for the Pom-Pom constitutive model”, Rheol. Acta 2003, 42, 217–231.
  • Koshelev, K. B.; Pyshnograi, G. V.; Tolstykh, M. Y. “Modeling of the three-dimensional flow of polymer melt in a convergent channel of rectangular cross-section”, Fluid Dyn. 2015, 50, 315–321.
  • Koshelev, K. B.; Kuznetcov, A.; Merzlikina, D.; Pyshnograi, G.; Pyshnograi, I.; Tolstykh, Y. “Mesoscopic rheological model for polymeric media flows”, J. Phys. Conf. Ser. 2017, 790, 012014.
  • Barakos, G.; Mitsoulis, E. “Numerical simulation of extrusion through orifice dies and prediction of bagley correction for an IUPAC-LDPE melt”, J. Rheol. 1995, 39, 193–209.
  • Mitsoulis, E.; Schwetz, M.; Münstedt, H. “Entry flow of LDPE melts in a planar contraction”, J. Non-Newtonian Fluid Mech. 2003, 111, 41–61.
  • Clemeur, N.; Rutgers, R. P. G.; Debbaut, B. “Numerical simulation of abrupt contraction flows using the double convected Pom-Pom model”, J. Non-Newtonian Fluid Mech. 2004, 117, 193–209.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.