801
Views
6
CrossRef citations to date
0
Altmetric
Reviews

Hierarchically Porous Organic Materials Derived From Copolymers: Preparation and Electrochemical Applications

, , , , &
Pages 149-186 | Received 22 Oct 2017, Accepted 03 Jun 2018, Published online: 02 Nov 2018

References

  • Deng, Y.; Yu, T.; Wan, Y.; Shi, Y.; Meng, Y.; Gu, D.; Zhang, L.; Huang, Y.; Liu, C.; Wu, X.; Zhao, D. “Ordered mesoporous silicas and carbons with large accessible pores templated fromamphiphilic diblock copolymer poly(ethylene oxide)-b-polystyrene”, J. Am. Chem. Soc. 2007, 129, 1690–1697.
  • Sun, M.-H.; Huang, S.-Z.; Chen, L.-H.; Li, Y.; Yang, X.-Y.; Yuan, Z.-Y.; Su, B.-L. “Applications of hierarchically structured porous materials from energy storage and conversion, catalysis, photocatalysis, adsorption, separation, and sensing to biomedicine”, Chem. Soc. Rev. 2016, 45, 3479.
  • Deng, Y.; Wei, J.; Sun, Z.; Zhao, D. “Large-pore ordered mesoporous materials templated from non-pluronic amphiphilic block copolymers”, Chem. Soc. Rev. 2013, 42, 4054.
  • Gu, Y.; Wiesner, U. “Tailoring pore size of graded mesoporous block copolymer membranes: Moving from ultrafiltration toward nanofiltration”, Macromolecules 2015, 48, 6153–6159.
  • Yuan, Z.-Y.; Su, B.-L. “Insights into hierarchically meso-macroporous structured materials”, J. Mater. Chem. 2006, 16, 663–677.
  • Yang, X. Y.; Chen, L.-H.; Li, Y.; Rooke, J.-C.; Sanchez, C.; Su, B.-L. “Hierarchically porous materials: Synthesis strategies and structure design”, Chem. Soc. Rev. 2017, 46, 481.
  • Gomezromero, P.; Sanchez, C. Functional Hybrid Materials; Wiley-VCH: Weinheim, 2011.
  • Li, Y.; Fu, Z.-Y.; Su, B.-L. “Hierarchically structured porous materials for energy conversion and storage”, Adv. Funct. Mater. 2012, 22, 4634–4667.
  • Sun, Q.; Dai, Z.; Meng, X.; Xiao, F. S. “Porous polymer catalysts with hierarchical structures”, Chem. Soc. Rev. 2015, 44, 6018
  • Dutta, S.; Bhaumik, A.; Wu, K.-C. “Hierarchically porous carbon derived from polymers and biomass: Effect of interconnected pores on energy applications”, Energy Environ. Sci. 2014, 7, 3574–3592.
  • Wu, Z.; Li, C.; Liang, H.; Chen, J.; Yu, S. “Ultralight, flexible, and fire‐resistant carbon nanofiber aerogels from bacterial cellulose”, Angew. Chem. 2013, 125, 2997–3001.
  • Hu, H.; Zhao, Z.; Wan, W.; Gogotsi, Y.; Qiu, J. “Ultralight and highly compressible graphene aerogels”, Adv. Mater. 2013, 25, 2219–2223.
  • Chen, L.-H.; Li, X.; Tian, G.; Li, Y.; Tan, H.; Tendeloo, G.; Zhu, G.; Qiu, S.; Yang, X.-Y.; Su, B.-L. “Multimodal zeolite-beta-based catalysts with a hierarchical, three-level pore structure”, ChemSusChem 2011, 4, 1452–1456.
  • Li, S.-M.; Wang, Y.-S.; Yang, S.-Y.; Liu, C.-H.; Chang, K.-H.; Tien, H.-W.; Wen, N.-T.; Ma, C.-C.; Hu, C.-C. “Electrochemical deposition of nanostructured manganese oxide on hierarchically porous graphene-carbon nanotube structure for ultrahigh-performance electrochemical capacitors”, J. Power Sources 2013, 225, 347–355.
  • Zhao, D.; Qin, J.; Zheng, L.; Cao, M. “Amorphous vanadium oxide/molybdenum oxide hybrid with three-dimensional ordered hierarchically porous structure as a high-performance Li-ion battery anode”, Chem. Mater. 2016, 28, 4180–4190.
  • Xu, J.; Zhu, Z.; Xue, H. “Porous polystyrene-block-poly(acrylic acid)/hemoglobin membrane formed by dually driven self-assembly and electrochemical application”, ACS Appl. Mater. Interfaces 2015, 7, 8852–8858.
  • Valkama, S.; Nykänen, A.; Kosonen, H.; Ramani, R.; Tuomisto, F.; Engelhardt, P.; Ten Brinke, G.; Ikkala, O.; Ruokolainen, J. “Hierarchical porosity in self‐assembled polymers: post‐modification of block copolymer–phenolic resin complexes by pyrolysis allows the control of micro‐ and mesoporosity”, Adv. Funct. Mater. 2007, 17, 183–190.
  • Yang, J.; Bao, Y.; Pan, P. “Preparation of hierarchical porous carbons from amphiphilic poly(vinylidene chloride-co-methyl acrylate)-b-poly(acrylic acid) copolymers by self-templating and one-step carbonization method”, Microporous Mesoporous Mater. 2014, 196, 199–207.
  • Liu, Y.; Goebl, J.; Yin, Y. “Templated synthesis of nanostructured materials”, Chem. Soc. Rev. 2013, 42, 2610.
  • Sun, M.; Chen, C.; Chen, L.; Su, B. “Hierarchically porous materials: synthesis strategies and emerging applications”, Front. Chem. Sci. Eng. 2016, 10, 301–347.
  • Ruo-Wen, F.-U.; Zheng-Hui, L.-I.; Liang, Y.-R.; Feng, L.-I.; Fei, X.-U.; Ding-Cai, W.-U. “Hierarchical porous carbons: design, preparation, and performance in energy storage”, New Carbon Mater. 2011, 26, 171–179.
  • Deng, Y.; Liu, C.; Yu, T.; Liu, F.; Zhang, F.; Wan, Y.; Zhang, L.; Wang, C.; Tu, B.; Webley, P. A.; et al. “Facile synthesis of hierarchically porous carbons from dual colloidal crystal/block copolymer template approach”, Chem. Mater. 2007, 19, 3271–3277.
  • Górka, J.; Jaroniec, M. “Hierarchically porous phenolic resin-based carbons obtained by block copolymer-colloidal silica templating and post-synthesis activation with carbon dioxide and water vapor”, Carbon 2011, 49, 154–160.
  • Aitken, J. “The influence of icebergs on the temperature of the sea”, Nature 1915, 94, 515–561.
  • Zhang, A.; Bai, H.; Li, L. “Breath figure: A nature-inspired preparation method for ordered porous films”, Chem. Rev. 2015, 115, 9801.
  • Aitkek, J. “Breath figures”, Nature 1911, 86, 516–517.
  • Widawski, G.; Rawiso, M.; François, B. “Self-organized honeycomb morphology of star-polymer polystyrene films”, Nature 1994, 369, 387–389.
  • Takekoh, R.; Russell, T.-P. “Multi‐length scale porous polymers”, Adv. Funct. Mater. 2014, 24, 1483–1489.
  • Ji, E.; Pellerin, V.; Ehrenfeld, F.; Laffore, A.; Bousquet, A.; Billon, L. “Hierarchical honeycomb-structured films by directed self-assembly in ‘breath figure’ templating of ionizable ‘clicked’ ph3t-b-Pmma diblock copolymers: An ionic group/counter-ion effect on porous polymer film morphology”, Chem. Commun. 2017, 53, 1876–1879.
  • Zhu, L.-W.; Ou, Y.; Wan, L.-S.; Xu, Z.-K. “Polystyrenes with hydrophilic end groups: Synthesis, characterization, and effects on the self-assembly of breath figure arrays”, J. Phys. Chem. B 2014, 118, 845–854.
  • Wong, K.-H.; Davis, T.-P.; Barner-Kowollik, C.; Stenzel, M.-H. “Honeycomb structured porous films from amphiphilic block copolymers prepared via, raft polymerization”, Polymer 2007, 48, 4950–4965.
  • Wu, B.-H.; Zhu, L.-W.; Ou, Y.; Tang, W.; Wan, L.-S.; Xu, Z.-K. “Systematic investigation on the formation of honeycomb-patterned porous films from amphiphilic block copolymers”, J. Phys. Chem. C 2015, 119, 1971–1979.
  • Saba, S.-A.; Mousavi, P.-S.; Bühlmann, P.; Hillmyer, M.-A. “Hierarchically porous polymer monoliths by combining controlled macro- and microphase separation”, J. Am. Chem. Soc. 2015, 137, 8896.
  • Seo, M.; Hillmyer, M.-A. “Reticulated nanoporous polymers by controlled polymerization-induced microphase separation”, Science 2012, 336, 1422–1425.
  • Bari, S.-S.; Chatterjee, A.; Mishra, S. “Biodegradable polymer nanocomposites – An overview”, Polym. Rev. 2016, 56, 287–328.
  • Bertrand, A.; Bousquet, A.; Lartigau-Dagron, C.; Billon, L. “Hierarchically porous bio-inspired films prepared by combining "breath figure" templating and selectively degradable block copolymer directed self-assembly”, Chem. Commun. 2016, 52, 9562–9565.
  • Wan, L.-S.; Li, J.-W.; Ke, B.-B.; Xu, Z.-K. “Ordered microporous membranes templated by breath figures for size-selective separation”, J. Am. Chem. Soc. 2012, 134, 95–98.
  • Ou, Y.; Lv, C.-J.; Yu, W.; Mao, Z.-W.; Wan, L.-S.; Xu, Z.-K. “Fabrication of perforated isoporous membranes via a transfer-free strategy: enabling high-resolution separation of cells”, ACS Appl. Mater. Interfaces 2014, 6, 22400–22407.
  • Park, J.; Lee, S.; Han, T.; Kim, S. “Hierarchically ordered polymer films by templated organization of aqueous droplets”, Adv. Funct. Mater. 2007, 17, 2315–2320.
  • Wang, W.; Yao, Y.; Luo, T.; Chen, L.; Lin, J.; Li, L.; Lin, S. “Deterministic reshaping of breath figure arrays by directional photomanipulation”, ACS Appl. Mater. Interfaces 2017, 9, 4223–4230.
  • Kong, X.; Wang, X.; Luo, T.; Yao, Y.; Li, L.; Lin, S. “Photomanipulated architecture and patterning of azopolymer array”, ACS Appl. Mater. Interfaces 2017, 9, 19345–19353.
  • Wang, W.; Du, C.; Wang, X.; He, X.; Lin, J.; Li, L.; Lin, S. “Directional photomanipulation of breath figure arrays”, Angew. Chem. Int. Ed. Engl. 2014, 53, 12116–12119.
  • Li, Y.; He, Y.; Tong, X.; Wang, X. “Photoinduced deformation of amphiphilic azo polymer colloidal spheres”, J. Am. Chem. Soc. 2005, 127, 2402–2403.
  • Mühlmann, M.; Magerl, A.; Goedel, W.-A. “Preparation of composite membranes with bicontinuous structure”, Langmuir 2012, 28, 5632–8197.
  • Nakanishi, K.; Soga, N. “Phase separation in gelling silica–organic polymer solution: Systems containing poly(sodium styrenesulfonate)”, J. Am. Ceram. Soc. 1991, 74, 2518–2530.
  • Yoo, S.; Kim, J.-H.; Shin, M.; Park, H.; Kim, J.-H.; Lee, S.-Y.; Park, S. “Hierarchical multiscale hyperporous block copolymer membranes via tunable dual-phase separation”, Sci. Adv. 2015, 1, e1500101.
  • Lu, W.; Yuan, Z.; Zhao, Y.; Zhang, H.; Zhang, H.; Li, X. “Porous membranes in secondary battery technologies”, Chem. Soc. Rev. 2017, 5, 6193–6199.
  • Brami, M. V.; Oren, Y.; Linder, C.; Bernstein, R. “Nanofiltration properties of asymmetric membranes prepared by phase inversion of sulfonated nitro-polyphenylsulfone”, Polymer 2017, 111, 137–147.
  • Zhang, H.; Zhang, H.; Li, X.; Mai, Z.; Zhang, J. “Nanofiltration (Nf) membranes: The next generation separators for all vanadium redox flow batteries”, Energy Environ. Sci. 2011, 4, 1676–1679.
  • Guillen, G.-R.; Pan, Y.; Li, M.; Hoek, E.-M.-V. “Preparation and characterization of membranes formed by nonsolvent induced phase separation: A review”, Ind. Eng. Chem. Res. 2011, 50, 3798–3817.
  • Xu, W.; Li, X.; Cao, J.; Yuan, Z.; Zhang, H. “Morphology and performance of poly(ether sulfone)/sulfonated poly(ether ether ketone) blend porous membranes for vanadium flow battery application”, RSC Adv. 2014, 4, 40400–40406.
  • Wei, W.; Zhang, H.; Li, X.; Zhang, H.; Li, Y.; Vankelecom, I. “Hydrophobic asymmetric ultrafiltration pvdf membranes: An alternative separator for Vfb with excellent stability”, Phys. Chem. Chem. Phys. 2013, 15, 1766–1771.
  • Li, Y.; Zhang, H.; Li, X.; Zhang, H.; Wei, W. “Porous poly(ether sulfone) membranes with tunable morphology: fabrication and their application for vanadium flow battery”, J. Power Sources 2013, 233, 202–208.
  • Zhang, H.; Zhang, H.; Li, X.; Mai, Z.; Wei, W. “Silica modified nanofiltration membranes with improved selectivity for redox flow battery application”, Energy. Environ. Sci. 2012, 5, 6299–6303.
  • Cao, J.; Zhang, H.; Xu, W.; Li, X. “Poly(vinylidene fluoride) porous membranes precipitated in water/ethanol dual-coagulation bath: The relationship between morphology and performance in vanadium flow batterypoly”, J. Power Sources 2014, 249, 84–91.
  • Oh, N.-W.; Jegal, J.; Lee, K.-H. “Preparation and characterization of nanofiltration composite membranes using polyacrylonitrile (pan). II. Preparation and characterization of polyamide composite membranespoly”, J. Appl. Polym. Sci. 2001, 80, 2729–2736.
  • Nunes, S.-P. “Block copolymer membranes for aqueous solution applications”, Macromolecules 2016, 49, 2905–2916.
  • Yi, Z.; Zhang, P.-B.; Liu, C.-J.; Zhu, L.-P. “Symmetrical permeable membranes consisting of overlapped block copolymer cylindrical micelles for nanoparticle size fractionation”, Macromolecules 2016, 49, 3343–3351.
  • Robbins, S.-W.; Beaucage, P.-A.; Sai, H.; Tan, K.-W.; Werner, J.-G.; Sethna, J.-P.; Disalvo, F.-J.; Gruner, S.-M.; Dover, R.-B.-V.; Wiesner, U. “Block copolymer self-assembly–directed synthesis of mesoporous gyroidal superconductors”, Sci. Adv. 2016, 2, e1501119.
  • Sutisna, B.; Polymeropoulos, G.; Musteata, V.; Peinemann, K.-V.; Avgeropoulos, A.; Smilgies, D.-M.; Hadjichristidis, N.; Nunes, S. P. “Design of block copolymer membranes using segregation strength trend lines”, Mol. Syst. Des. Eng. 2016, 1, 278–289.
  • Schöttner, S.; Schaffrath, H.-J.; Gallei, M. “Poly(2-hydroxyethyl methacrylate)-based amphiphilic block copolymers for high water flux membranes and ceramic templates”, Macromolecules 2016, 49, 7286–7295.
  • Li, Y.-M.; Srinivasan, D.; Vaidya, P.; Gu, Y.; Wiesner, U. “Asymmetric membranes from two chemically distinct triblock terpolymers blended during standard membrane fabrication”, Macromolecules . Rapid Commun. 2016, 37, 1689–1693.
  • Hahn, J.; Filiz, V.; Rangou, S.; Clodt, J.; Jung, A.; Buhr, K.; Abetz, C.; Abetz, V. “Structure formation of integral‐asymmetric membranes of polystyrene‐block‐poly(ethylene oxide)”, J. Polym. Sci. Part B: Polym. Phys. 2013, 51, 281–290.
  • Dorin, R.-M.; Sai, H.; Wiesner, U. “Hierarchically porous materials from block copolymers”, Chem. Mater. 2014, 26, 339–347.
  • Jung, A.; Filiz, V.; Rangou, S.; Buhr, K.; Merten, P.; Hahn, J.; Clodt, J.; Abetz, C.; Abetz, V. “Formation of integral asymmetric membranes of Ab diblock and Abc triblock copolymers by phase inversion”, Macromolecules . Rapid Commun. 2013, 34, 610–615.
  • Friebe, A.; Ulbricht, M. “Cylindrical pores responding to two different stimuli via surface-initiated atom transfer radical polymerization for synthesis of grafted diblock copolymers”, Macromolecules 2009, 42, 1838–1848.
  • Yu, H.; Qiu, X.; Nunes, S.-P.; Peinemann, K.-V. “Self-assembled isoporous block copolymer membranes with tuned pore sizes”, Angew. Chem. Int. Ed. Engl. 2014, 53, 10072–10076.
  • Nunes, S.-P.; Behzad, A.-R.; Hooghan, B.; Sougrat, R.; Karunakaran, M.; Pradeep, N. “Switchable Ph-responsive polymeric membranes prepared via block copolymer micelle assembly”, ACS Nano 2011, 5, 3522–6771.
  • Yu, H.; Qiu, X.; Nunes, S.-P.; Peinemann, K.-V. “Biomimetic block copolymer particles with gated nanopores and ultrahigh protein sorption capacity”, Nat. Commun. 2014, 5, 4110.
  • Qiu, X.; Yu, H.; Karunakaran, M.; Pradeep, N.; Nunes, S.-P.; Peinemann, K.-V. “Selective separation of similarly sized proteins with tunable nanoporous block copolymer membranes”, ACS Nano 2012, 44, 461–463.
  • Mulvenna, R.-A.; Weidman, J.-L.; Jing, B.; Pople, J.-A.; Zhu, Y.; Boudouris, B.-W.; Phillip, W.-A. “Tunable nanoporous membranes with chemically-tailored pore walls from triblock polymer templates”, J. Membr. Sci. 2014, 470, 246–256.
  • Moad, G.; Rizzardo, E.; Thang, S.-H. “RAFT polymerization and some”, Aust. J. Chem. 2012, 65, 985–1076.
  • Seo, M.; Kim, S.; Oh, J.; Kim, S.-J.; Hillmyer, M.-A. “Hierarchically porous polymers from hyper-cross-linked block polymer precursors”, J. Am. Chem. Soc. 2015, 137, 600
  • Schulze, M.-W.; Mcintosh, L.-D.; Hillmyer, M.-A.; Lodge, T.-P. “High-modulus, high-conductivity nanostructured polymer electrolyte membranes via polymerization-induced phase separation”, Nano Lett. 2014, 14, 122.
  • Mcintosh, L.-D.; Schulze, M.-W.; Irwin, M.-T.; Hillmyer, M.-A.; Lodge, T.-P. “Evolution of morphology, modulus, and conductivity in polymer electrolytes prepared via polymerization-induced phase separation”, Macromolecules. 2015, 48, 1418–1428.
  • Oh, J.; Seo, M. “Photoinitiated polymerization-induced microphase separation for the preparation of nanoporous polymer films”, ACS Macro Lett. 2015, 4, 1244–1248.
  • Yoneda, S.; Han, W.; Hasegawa, U.; Uyama, H. “Facile fabrication of poly(methyl methacrylate) monolith via thermally induced phase separation by utilizing unique cosolvency”, Polymer 2014, 55, 3212–3216.
  • Radha, G.; Balakumar, S.; Venkatesan, B.; Vellaichamy, E. “A novel nano-hydroxyapatite — PMMA hybrid scaffolds adopted by conjugated thermal induced phase separation (Tips) and wet-chemical approach: Analysis of its mechanical and biological properties”, Mater. Sci. Eng. C Mater. Biol. Appl. 2017, 75, 164–172.
  • Kim, J. F.; Jung, J. T.; Wang, H. H.; Lee, S. Y.; Moore, T.; Sanguineti, A.; Drioli, E.; Lee, Y. M. “Microporous PVDF membranes via, thermally induced phase separation (Tips) and stretching methods”, J. Membr. Sci. 2016, 509, 94–104.
  • Liu, M.; Wei, Y.-M.; Xu, Z.-L.; Guo, R.-Q.; Zhao, L.-B. “Preparation and characterization of polyethersulfone microporous membrane via thermally induced phase separation with low critical solution temperature system”, J. Membr. Sci. 2013, 437, 169–178.
  • Wu, Q.-Y.; Wan, L.-S.; Xu, Z.-K. “Structure and performance of polyacrylonitrile membranes prepared via thermally induced phase separation”, J. Membr. Sci. 2012, 409–410, 355–364.
  • Cui, Z.-Y.; Xu, Y.-Y.; Zhu, L.-P.; Wang, J.-Y.; Xi, Z.-Y.; Zhu, B.-K. “Preparation of PVDF/PEO-PPO-PEO blend microporous membranes for lithium ion batteries via thermally induced phase separation process”, J. Membr. Sci. 2008, 325, 957–963.
  • Guo, J.; Liu, X.; Lee Miller, A.; Waletzki, B. E.; Yaszemski, M. J.; Lu, L. “Novel porous poly(propylene fumarate‐co‐caprolactone) scaffolds fabricated by thermally induced phase separation”, J. Biomed. Mater. Res. 2017, 105, 226–235.
  • Kang, G.-D.; Cao, Y.-M. “Application and modification of poly(vinylidene fluoride) (PVDF) membranes—A review”, J. Membr. Sci. 2014, 463, 145–165.
  • Karkhanechi, H.; Rajabzadeh, S.; Nicolò, E.-D.; Usuda, H.; Shaikh, A.-R.; Matsuyama, H. “Preparation and characterization of ectfe hollow fiber membranes via thermally induced phase separation (Tips)”, Polymer 2016, 97, 515–524.
  • Cui, Z.; Hassankiadeh, N.-T.; Lee, S.-Y.; Lee, J.-M.; Woo, K.-T.; Sanguineti, A.; Arcella, V.; Lee, Y.-M.; Drioli, E. “Poly(vinylidene fluoride) membrane preparation with an environmental diluent via thermally induced phase separation”, J. Membr. Sci. 2013, 444, 223–236.
  • Zhao, J.; Luo, G.; Wu, J.; Xia, H. “Preparation of microporous silicone rubber membrane with tunable pore size via solvent evaporation-induced phase separation”, ACS Appl. Mater. Interfaces 2013, 5, 2040–2046.
  • Kim, J.-K.; Kentaro, T.-A.; Ohshima, M. “Preparation of a unique microporous structure via two step phase separation in the course of drying a ternary polymer solution”, Langmuir 2007, 23, 12397–12405.
  • Jansen, J.-C.; Macchione, M.; Drioli, E. “High flux asymmetric gas separation membranes of modified poly(ether ether ketone) prepared by the dry phase inversion technique”, J. Membr. Sci. 2005, 255, 167–180.
  • Sai, H.; Tan, K. W.; Hur, K.; Asenath-Smith, E.; Hovden, R.; Jiang, Y.; Riccio, M.; Muller, D. A.; Elser, V.; Estroff, L. A.; Gruner, S. M.; Weisner, U. “Hierarchical porous polymer scaffolds from block copolymers”, Science 2013, 341, 530–534.
  • Matsuyama, H.; Teramoto, M.; Nakatani, R.; Maki, T. “Membrane formation via phase separation induced by penetration of nonsolvent from vapor phase. II. Membrane morphology. J. Appl. Polym. Sci. 1999, 74, 171–178.
  • Ke, Q.; Liao, Y.; Lin, M.; Lin, S.; Du, H.; Yao, S.; Xiong, X. “A superhydrophobic film with high water vapor transmission prepared from block copolymer micelle solution via VIPS method”, J. Polym. Res. 2015, 22, 213.
  • Yan, H.; Sano, R.; Shimomura, A.; Matsuyama, H.; Maruyama, T. “Reorganization of the surface geometry of hollow-fiber membranes using dip-coating and vapor-induced phase separation”, J. Membr. Sci. 2014, 460, 229–240.
  • Peng, Y.; Dong, Y.; Fan, H.; Chen, P.; Li, Z.; Jiang, Q. “Preparation of polysulfone membranes via vapor-induced phase separation and simulation of direct-contact membrane distillation by measuring hydrophobic layer thickness”, Desalination 2013, 316, 53–66.
  • Matsuyama, H.; Teramoto, M.; Nakatani, R.; Maki, T. “Membrane formation via phase separation induced by penetration of nonsolvent from vapor phase. I. Phase diagram and mass transfer process”, J. Appl. Polym. Sci. 1999, 74, 159–170.
  • Su, Y.-S.; Kuo, C.-Y.; Wang, D.-M.; Lai, J.-Y.; Deratani, A.; Pochat, C.; Bouyer, D. “Interplay of mass transfer, phase separation, and membrane morphology in vapor-induced phase separation”, J. Membr. Sci. 2009, 338, 17–28.
  • Long, Q.; Chen, W.; Xu, H.; Xiong, X.; Jiang, Y.; Zou, F.; Hu, X.-L.; Xin, Y.; Zhang, Z.-L.; Huang, Y.-H. “Synthesis of functionalized 3D hierarchical porous carbon for high-performance supercapacitors”, Energy Environ. Sci. 2013, 6, 2497–2504.
  • Lin, Z.; Tian, H.; Xu, F.; Yang, X.; Mai, Y.; Feng, X. “Facile synthesis of bowl-shaped nitrogen-dopedcarbon hollow particles templated by blockcopolymer “Kippah vesicles” for high performancesupercapacitors”, Polym. Chem. 2016, 7, 2092.
  • Liu, S.; Gordiichuk, P.; Wu, Z.-S.; Liu, Z.; Wei, W.; Wagner, M.; Mohamed-Noriega, N.; Wu, D.; Mai, Y.; Herrmann, A.; Müllen, K Müllen, K.; Feng, X Feng, X. “Patterning two-dimensional free-standing surfaces with mesoporous conducting polymers”, Nat. Commun. 2015, 6, 8817.
  • Tian, H.; Lin, Z.; Xu, F.; Zheng, J.; Zhuang, X.; Mai, Y.; Feng, X. “Quantitative control of pore size of mesoporous carbon nanospheres through the self-assembly of diblock copolymer micelles in solution”, Small. 2016, 12, 3155–3163.
  • Chen, L.; Feng, Y.; Liang, H.; Wu, Z.; Yu, S. “Macroscopic‐scale three‐dimensional carbon nanofiber architectures for electrochemical energy storage devices”, Adv. Energy Mater. 2017, 7, 1700826.
  • Li, W.; Liu, J.; Zhao, D. “Mesoporous materials for energy conversion and storage devices”, Nat. Rev. Mater. 2016, 1, 16023.
  • Xing, W.; Huang, C.-C.; Zhuo, S.-P.; Yuan, X.; Wang, G.-Q.; Hulicova-Jurcakova, D.; Yan, Z.-F.; Lu, G.-Q. “Hierarchical porous carbons with high performance for supercapacitor electrodes”, Carbon. 2009, 47, 1715–1722.
  • Li, Q.; Jiang, R.; Dou, Y.; Wu, Z.; Huang, T.; Feng, D.; Yang, J.; Yu, A.; Zhao, D. “Synthesis of mesoporous carbon spheres with a hierarchical pore structure for the electrochemical double-layer capacitor”, Carbon. 2011, 49, 1248–1257.
  • Ran, F.; Shen, K.; Tan, Y.; Peng, B.; Chen, S.; Zhang, W.; Niu, X.; Kong, L.; Kang, L. “Activated hierarchical porous carbon as electrode membrane accommodated with triblock copolymer for supercapacitors”, J. Membr. Sci. 2016, 514, 366–375.
  • Park, J.-H.; Park, O.-O. “Hybrid electrochemical capacitors based on polyaniline and activated carbon electrodes”, J. Power Sources 2002, 111, 185–190.
  • Miao, F.; Shao, C.; Li, X.; Wang, K.; Lu, N.; Liu, Y. “Freestanding hierarchically porous carbon framework decorated by polyaniline as binder-free electrodes for high performance supercapacitors”, J. Power Sources 2016, 329, 516–524.
  • Yu, C.; Chen, M.; Li, X.; Zhao, C.; He, L.; Qiu, J. “Hierarchically porous carbon architectures embedded with hollow nanocapsules for high-performance lithium storage”, J. Mater. Chem. A 2015, 3, 5054.
  • Choi, J.-W.; Aurbach, D. “Promise and reality of post-lithium-ion batteries with high energy densities”, Nat. Rev. Mater. 2016, 1, 16013.
  • Zhao, Y.; Li, X.; Yan, B.; Xiong, D.; Li, D.; Lawes, S.; Sun, X. “Recent developments and understanding of novel mixed transition‐metal oxides as anodes in lithium ion batteries”, Adv. Energy Mater. 2016, 6, 1502175.
  • Bai, N.; Xiang, K.; Zhou, W.; Lu, H.; Chen, H. “Hierarchical porous lifepo4/carbon composite electrodes for lithium-ion batteries”, Mater. Technol. 2017, 32, 203–209.
  • Zheng, X.; Wang, H.; Wang, C.; Deng, Z.; Chen, L.; Li, Y.; Hasan, T.; Su, B.-L. “3D interconnected macro-mesoporous electrode with self-assembled Nio nanodots for high-performance supercapacitor-like Li-ion battery”, Nano Energy 2016, 22, 269–277.
  • Cao, K.; Jiao, L.; Liu, H.; Liu, Y.; Wang, Y.; Guo, Z.; Yuan, H. “3D hierarchical porous α‐fe2o3 nanosheets for high‐performance lithium‐ion batteries”, Adv. Energy Mater. 2015, 5, 1401421.
  • Jin, L.; Zeng, G.-B.; Wu, H.; Niederberger, M.; Morbidelli, M. “Poly-(styrene-acrylonitrile) copolymer-derived hierarchical architecture in electrode materials for lithium ion batteries”, J. Mater. Chem. A 2016, 4, 11481.
  • Zhang, W.; Yin, J.; Lin, Z.; Lin, H.; Lu, H.; Wang, Y.; Huang, W. “Facile preparation of 3D hierarchical porous carbon from lignin for the anode material in lithium ion battery with high rate performance”, Electrochim. Acta 2015, 176, 1136–1142.
  • Brun, N.; Prabaharan, S.-R.-S.; Surcin, C.; Morcrette, M.; Deleuze, H.; Birot, M.; Babot, O.; Achard, M.-F.; Backov, R. “Design of hierarchical porous carbonaceous foams from a dual-template approach and their use as electrochemical capacitor and li ion battery negative electrodes”, J. Phys. Chem. C 2012, 116, 1408–1421.
  • Cao, C.; Li, Z.; Wang, X.-L.; Zhao, X.; Han, W.-Q. “Recent advances in inorganic solid electrolytes for lithium batteries”, Front. Energy Res. 2014, 2, 1–10.
  • Subramania, A.; Sundaram, N.-T.-K.; Kumar, G.-V. “Structural and electrochemical properties of micro-porous polymer blend electrolytes based on PVDF-co-HFP-PAN for Li-ion battery applications”, J. Power Sources 2006, 153, 177–182.
  • Carrette, L.; Friedrich, K.-A.; Stimming, U. “Fuel cells – Fundamentals and applications”, Fuel Cells 2001, 1, 5–39.
  • Chandan, A.; Hattenberger, M.; El-Kharouf, A.; Du, S.; Dhir, A.; Self, V.; Pollet, B.-G.; Ingram, A.; Bujalski, W. “High temperature (Ht) polymer electrolyte membrane fuel cells (PEMFC) – A review. J. Power Sources 2013, 231, 264–278.
  • Debe, M.-K. “Electrocatalyst approaches and challenges for automotive fuel cells”, Nature 2012, 486, 43–51.
  • Kraytsberg, A.; Ein-Eli, Y. “Review of advanced materials for proton exchange membrane fuel cells”, Energy Fuels 2014, 28, 7303–7330.
  • Lin, H.; Chu, L.; Wang, X.; Yao, Z.; Liu, F.; Ai, Y.; Zhuang, X.; Han, S. “Boron, nitrogen and phosphorous ternary doped graphene aerogel with hierarchically porous structures as highly efficient electrocatalysts for oxygen reduction reaction”, New J. Chem. 2016, 40, 6022–6029.
  • Korkut, S.; Kilic, M.-S.; Sanal, T.; Hazer, B. “The operation of enzymatic fuel cell fabricated with rationally designed poly(caprolactone-g-ethylene glycol) copolymers”, Mater. Sci. Eng. C Mater. Biol. Appl. 2017, 76, 787–793.
  • Bahadır, E.-B.; Sezgintürk, M.-K. “Electrochemical biosensors for hormone analyses”, Biosens. Bioelectron. 2015, 68, 62.
  • Hammond, J.-L.; Formisano, N.; Estrela, P.; Carrara, S.; Tkac, J. “Electrochemical biosensors and nanobiosensors”, Essays Biochem. 2016, 60, 69–80.
  • Xia, N.; Wang, X.; Yu, J.; Wu, Y.; Cheng, S.; Xing, Y.; Liu, L. “Design of electrochemical biosensors with peptide probes as the receptors of targets and the inducers of gold nanoparticles assembly on electrode surface”, Sens. Actuators B 2017, 239, 834–840.
  • Yang, M.; Jeong, J.-M.; Lee, K.-G.; Kim, D.-H.; Lee, S.-J.; Choi, B.-G. “Hierarchical porous microspheres of the co3o4@graphene with enhanced electrocatalytic performance for electrochemical biosensors”, Biosens. Bioelectron. 2017, 89, 612–619.
  • Zhou, M.; Dong, S. “Bioelectrochemical interface engineering: Toward the fabrication of electrochemical biosensors, biofuel cells, and self-powered logic biosensors”, Acc. Chem. Res. 2011, 44, 1232–1243.
  • Shan, D.; He, Y.; Wang, S.; Xue, H.; Zheng, H. “A porous poly(acrylonitrile-co-acrylic acid) film-based glucose biosensor constructed by electrochemical entrapment”, Anal. Biochem. 2006, 356, 215.
  • Kim, K.; Bae, J.; Lim, M.-Y.; Heo, P.; Choi, S.-W.; Kwon, H.-H. “Enhanced physical stability and chemical durability of sulfonated poly(arylene ether sulfone) composite membranes having antioxidant grafted graphene oxide for polymer electrolyte membrane fuel cell applications”, J. Membr. Sci. 2017, 536, 76–85.
  • Li, L.; Feng, J.; Fan, Y.; Tang, B. “Simultaneous imaging of Zn(2+) and Cu(2+) in living cells based on DNAzyme modified gold nanoparticle. Anal. Chem. 2015, 87, 4829.
  • Das, P.; Barbora, L.; Das, M.; Goswami, P. “Highly sensitive and stable laccase based amperometric biosensor developed on nano-composite matrix for detecting pyrocatechol in environmental samples”, Sens. Actuators B 2014, 192, 737–744.
  • Shan, D.; Cheng, G.; Zhu, D.; Xue, H.; Cosnier, S.; Ding, S. “Direct electrochemistry of hemoglobin in poly(acrylonitrile-co-acrylic acid) and its catalysis to h2o2”, Sens. Actuators B 2009, 137, 259–265.
  • Jia, N.; Lian, Q.; Wang, Z.; Shen, H. “A hydrogen peroxide biosensor based on direct electrochemistry of hemoglobin incorporated in Peo–Ppo–Peo triblock copolymer film”, Sens. Actuators B 2009, 137, 230–234.
  • Dai, L.; Xue, Y.; Qu, L.; Choi, H.-J.; Baek, J.-B. “Metal-free catalysts for oxygen reduction reaction”, Chem. Rev. 2015, 115, 4823.
  • Li, H.-H.; Fu, Q.-Q.; Xu, L.; Ma, S.-Y.; Zheng, Y.-R.; Liu, X.-J.; Yu, S. “Highly crystalline PTCU nanotubes with three dimensional molecular accessible and restructured surface for efficient catalysis”, Energy Environ. Sci. 2017, 10, 1751.
  • Liu, J.; Song, P.; Ning, Z.; Xu, W. “Recent advances in heteroatom-doped metal-free electrocatalysts for highly efficient oxygen reduction reaction”, Electrocatalysis 2015, 6, 132–147.
  • Nie, Y.; Li, L.; Wei, Z. “Recent advancements in Pt and Pt-free catalysts for oxygen reduction reaction”, Chem. Soc. Rev. 2015, 44, 2168.
  • Zhong, M.; Jiang, S.; Tang, Y.; Gottlieb, E.; Kim, E.-K.; Star, A.; Matyjaszewski, K.; Kowalewski, T. “Block copolymer-templated nitrogen-enriched nanocarbons with morphology-dependent electrocatalytic activity for oxygen reduction”, Chem. Sci. 2014, 5, 3315–3319.
  • Liang, H.-W.; Brüller, S.; Dong, R.; Zhang, J.; Feng, X.; Müllen, K. “Molecular metal-nxcentres in porous carbon for electrocatalytic hydrogen evolution”, Nat. Commun. 2014, 5, 4973.
  • Li, J.-S.; Li, S.-L.; Tang, Y.-J.; Li, K.; Zhou, L.; Kong, N.; Lan, Y.-Q.; Bao, J.-C.; Dai, Z.-H. “Heteroatoms ternary-doped porous carbons derived from MOFS as metal-free electrocatalysts for oxygen reduction reaction”, Sci. Rep. 2015, 4, 5130.
  • Su, B.-L.; Sanchez, C.; Yang, X.-Y. Hierarchically Structured Porous Materials: From Nanoscience to Catalysis, Separation, Optics, Energy, and Life Science. Wiley‐VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2012.
  • Tang, J.; Liu, J.; Li, C.; Li, Y.; Tade, M.-O.; Dai, S.; Yamauchi, Y. “Synthesis of nitrogen‐doped mesoporous carbon spheres with extra‐large pores through assembly of diblock copolymer micelles”, Angew. Chem. 2015, 54, 588.
  • Zhu, S.; Tian, H.; Wang, N.; Chen, B.; Mai, Y.-M.; Feng, X. “Patterning graphene surfaces with iron-oxide-embeddedmesoporous polypyrrole and derived n-doped carbon of tunable pore size”, Small 2018, 14, 1702755.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.