1,316
Views
50
CrossRef citations to date
0
Altmetric
Reviews

Polymer Hydrogels and Their Applications Toward Sorptive Removal of Potential Aqueous Pollutants

, &
Pages 418-464 | Received 25 Jun 2018, Accepted 10 Nov 2018, Published online: 11 Apr 2019

References

  • Ghobril, C.; Grinstaff, M. W. “The chemistry and engineering of polymeric hydrogel adhesives for wound closure: a tutorial” Chem. Soc. Rev. 2015, 44, 1820–1835. doi:10.1039/C4CS00332B.
  • Doring, A.; Birnbaum, W.; Kuckling, D. “Responsive hydrogels – structurally and dimensionally optimized smart frameworks for applications in catalysis, micro-system technology and material science”, Chem. Soc. Rev. 2013, 42, 7391–7420. doi:10.1039/c3cs60031a.
  • Hauser, A. K.; Wydra, R. J.; Stocke, N. A.; Anderson, K. W.; Hilt, J. Z. “Magnetic nanoparticles and nanocomposites for remote controlled therapies”, J. Control. Release 2015, 219, 76–94. doi:10.1016/j.jconrel.2015.09.039.
  • Tamesue, S.; Takashima, Y.; Yamaguchi, H.; Shinkai, S.; Harada, A. “Photoswitchable supramolecular hydrogels formed by cyclodextrins and azobenzene polymers,” Angew. Chem. Int. Ed. 2010, 49, 7461–7464. doi:10.1002/anie.201003567.
  • Li, T.; Kumru, B.; Al Nakeeb, N.; Willersinn, J.; Schmidt, B. “Thermoadaptive supramolecular α-cyclodextrin crystallization-based hydrogels via double hydrophilic block copolymer templating”, Polymers 2018, 10, 576. doi:10.3390/polym10060576.
  • Appel, E. A.; Loh, X. J.; Jones, S. T.; Biedermann, F.; Dreiss, C. A.; Scherman, O. A. “Ultrahigh-water-content supramolecular hydrogels exhibiting multistimuli responsiveness”, J. Am. Chem. Soc. 2012, 134, 11767–11773. doi:10.1021/ja3044568.
  • Liang, W.; Hu, H.; Zhong, W.; Zhang, M.; Ma, Y.; Guo, P.; Xin, M.; Yu, M.; Lin, H. “Functionalization of molecularly imprinted polymer microspheres for the highly selective removal of contaminants from aqueous solutions and the analysis of food-grade fish samples”, Polymers 2018, 10, 1130. doi:10.3390/polym10101130.
  • Riga, E.; Saar, J.; Erath, R.; Hechenbichler, M.; Lienkamp, K. “On the limits of benzophenone as cross-linker for surface-attached polymer hydrogels”, Polymers 2017, 9, 686. doi:10.3390/polym9120686.
  • Dai, H.; Huang, H. “Modified pineapple peel cellulose hydrogels embedded with sepia ink for effective removal of methylene blue”, Carbohydr. Polym. 2016, 148, 1–10. doi:10.1016/j.carbpol.2016.04.040.
  • Sarkar, K.; Ansari, Z.; Sen, K. “Detoxification of Hg(II) from aqueous and enzyme media: pristine vs. tailored calcium alginate hydrogels”, Int. J. Biol. Macromol. 2016, 91, 165–173. doi:10.1016/j.ijbiomac.2016.05.049.
  • Shahrooie, B.; Rajabi, L.; Derakhshan, A. A.; Keyhani, M. “Fabrication, characterization and statistical investigation of a new starch-based hydrogel nanocomposite for ammonium adsorption”, J. Taiwan Inst. Chem. Eng. 2015, 51, 201–215. doi:10.1016/j.jtice.2015.01.010.
  • Hua, R.; Li, Z. “Sulfhydryl functionalized hydrogel with magnetism: synthesis, characterization, and adsorption behavior study for heavy metal removal”, Chem. Eng. J. 2014, 249, 189–200. doi:10.1016/j.cej.2014.03.097.
  • Bai, Y.; Bartkiewicz, B. “Removal of cadmium from wastewater using ion exchange resin Amberjet 1200H columns”, Polish J. Environ. Stud. 2009, 18, 1191–1195.
  • Zhang, Q.; Zhang, L.; Sang, W.; Li, M.; Cheng, W. “Chemical speciation of heavy metals in excess sludge treatment by thermal hydrolysis and anaerobic digestion process”, Desalin. Water Treat. 2016, 57, 12770–12776. doi:10.1080/19443994.2015.1055518.
  • Blocher, C.; Dorda, J.; Mavrov, V.; Chmiel, H.; Lazaridis, N. K.; Matis, K. A. “Hybrid flotation-membrane filtration process for the removal of heavy metal ions from wastewater”, Water Res. 2003, 37, 4018–4026. doi:10.1016/S0043-1354(03)00314-2.
  • Peng, W.; Li, H.; Liu, Y.; Song, S. “A review on heavy metal ions adsorption from water by graphene oxide and its composites”, J. Mol. Liq. 2017, 230, 496–504. doi:10.1016/j.molliq.2017.01.064.
  • Aziz, H. A.; Adlan, M. N.; Ariffin, K. S. “Heavy metals (Cd, Pb, Zn, Ni, Cu and Cr(III)) removal from water in malaysia: post treatment by high quality limestone”, Bioresour. Technol. 2008, 99, 1578–1583. doi:10.1016/j.biortech.2007.04.007.
  • Omondi, B. A.; Nguele, R.; Okabe, H.; Hidaka, Y.; Hara, K. “Multicomponent adsorption of benzene and selected borderline heavy metals by poly(butadiene-co-acrylic acid) hydrogel”, J. Environ. Chem. Eng. 2016, 4, 3385–3392. doi:10.1016/j.jece.2016.07.013.
  • Panic, V. V.; Velickovic, S. J. “Removal of model cationic dye by adsorption onto poly(methacrylic acid)/zeolite hydrogel composites: kinetics, equilibrium study and image analysis”, Sep. Purif. Technol. 2014, 122, 384–394. doi:10.1016/j.seppur.2013.11.025.
  • Hui, B.; Zhang, Y.; Ye, L. “Structure of PVA/gelatin hydrogel beads and adsorption mechanism for advanced Pb(II) removal”, J. Ind. Eng. Chem. 2015, 21, 868–876. doi:10.1016/j.jiec.2014.04.025.
  • Anitha, T.; Kumar, P. S.; Kumar, K. S. “Synthesis of nano-sized chitosan blended polyvinyl alcohol for the removal of eosin yellow dye from aqueous solution”, J. Water Process Eng. 2016, 13, 127–136. doi:10.1016/j.jwpe.2016.08.003.
  • Gao, Y.; Zhang, S.; Zhao, K.; Wang, Z.; Xu, S.; Liang, Z.; Wu, K. “Adsorption of La3+ and Ce3+ by poly-γ-glutamic acid crosslinked with polyvinyl alcohol. J. Rare Earths 2015, 33, 884–891. doi:10.1016/S1002-0721(14)60500-7.
  • Bhattacharyya, R.; Ray, S. K. “Removal of Congo red and methyl violet from water using nano clay filled composite hydrogels of poly acrylic acid and polyethylene glycol”, Chem. Eng. J. 2015, 260, 269–283. doi:10.1016/j.cej.2014.08.030.
  • Jamnongkan, T.; Singcharoen, K. “Towards novel adsorbents: the ratio of PVA/chitosan blended hydrogels on the copper (II) ion adsorption”, Energy Procedia 2016, 89, 299–306. doi:10.1016/j.egypro.2016.05.038.
  • Zheng, Y.; Zhu, Y.; Wang, A. “Highly efficient and selective adsorption of malachite green onto granular composite hydrogel”, Chem. Eng. J. 2014, 257, 66–73. doi:10.1016/j.cej.2014.07.032.
  • Zhou, G.; Liu, C.; Chu, L.; Tang, Y.; Luo, S. “Rapid and efficient treatment of wastewater with high-concentration heavy metals using a new type of hydrogel-based adsorption process”, Bioresour. Technol. 2016, 219, 451–457. doi:10.1016/j.biortech.2016.07.038.
  • Maity, J.; Ray, S. K. “Enhanced adsorption of Cr(VI) from water by guar gum based composite hydrogels. Int. J. Biol. Macromol. 2016, 89, 246–255. doi:10.1016/j.ijbiomac.2016.04.036.
  • Kono, H.; Ogasawara, K.; Kusumoto, R.; Oshima, K.; Hashimoto, H.; Shimizu, Y. “Cationic cellulose hydrogels cross-linked by poly(ethylene glycol): preparation, molecular dynamics, and adsorption of anionic dyes”, Carbohydr. Polym. 2016, 152, 170–180. doi:10.1016/j.carbpol.2016.07.011.
  • Seow, W. Y.; Hauser, C. A. E. “Freeze–dried agarose gels: a cheap, simple and recyclable adsorbent for the purification of methylene blue from industrial wastewater. J. Environ. Chem. Eng. 2016, 4, 1714–1721. doi:10.1016/j.jece.2016.02.013.
  • Oladipo, A. A.; Gazi, M.; Yilmaz, E. “Single and binary adsorption of azo and anthraquinone dyes by chitosan-based hydrogel: selectivity factor and Box-Behnken process design”, Chem. Eng. Res. Design 2015, 104, 264–279. doi:10.1016/j.cherd.2015.08.018.
  • Zhou, C.; Wu, Q.; Lei, T.; Negulescu, I. I. “Adsorption kinetic and equilibrium studies for methylene blue dye by partially hydrolyzed polyacrylamide/cellulose nanocrystal nanocomposite hydrogels”, Chem. Eng. J. 2014, 251, 17–24. doi:10.1016/j.cej.2014.04.034.
  • Sharma, K.; Kaith, B. S.; Kumar, V.; Kalia, S.; Kumar, V.; Swart, H. C. “Water retention and dye adsorption behavior of Gg-cl-poly(acrylic acid-aniline) based conductive hydrogels”, Geoderma 2014, 232234, 45–55. doi:10.1016/j.geoderma.2014.04.035.
  • Yan, B.; Chen, Z.; Cai, L.; Chen, Z.; Fu, J.; Xu, Q. “Fabrication of polyaniline hydrogel: synthesis, characterization and adsorption of methylene blue”, Appl. Surf. Sci. 2015, 356, 39–47. doi:10.1016/j.apsusc.2015.08.024.
  • Wang, X.; Hou, H.; Li, Y.; Wang, Y.; Hao, C.; Ge, C. “A novel semi-IPN hydrogel: preparation, swelling properties and adsorption studies of Co (II)”, J. Ind. Eng. Chem. 2016, 41, 82–90. doi:10.1016/j.jiec.2016.07.012.
  • Kumar, R.; Jain, S. K.; Verma, S.; Malodia, P. “Mercapto functionalized silica entrapped polyacrylamide hydrogel: arsenic adsorption behaviour from aqueous solution”, J. Colloid Interface Sci. 2015, 456, 241–245. doi:10.1016/j.jcis.2015.06.026.
  • Li, Y.; Cui, W.; Liu, L.; Zong, R.; Yao, W.; Liang, Y.; Zhu, Y. “Removal of Cr(VI) by 3D TiO2-graphene hydrogel via adsorption enriched with photocatalytic reduction”, Appl. Catal. B: Environ. 2016, 199, 412–423. doi:10.1016/j.apcatb.2016.06.053.
  • Gan, L.; Shang, S.; Hu, E.; Yuen, C. W. M.; Jiang, S.-X. “Konjac glucomannan/graphene oxide hydrogel with enhanced dyes adsorption capability for methyl blue and methyl orange”, Appl. Surf. Sci. 2015, 357, 866–872. doi:10.1016/j.apsusc.2015.09.106.
  • Jang, J.; Lee, D. S. “Enhanced adsorption of cesium on PVA-alginate encapsulated prussian blue-graphene oxide hydrogel beads in a fixed-bed column system. Bioresour. Technol. 2016, 218, 294–300. doi:10.1016/j.biortech.2016.06.100.
  • Wang, J.; Song, D.; Jia, S.; Shao, Z. “Poly(N,N-dimethylaminoethyl methacrylate)/graphene oxide hybrid hydrogels: pH and temperature sensitivities and Cr(VI) adsorption”, React. Funct. Polym. 2014, 81, 8–13. doi:10.1016/j.reactfunctpolym.2014.03.013.
  • Zheng, X.; Wu, D.; Su, T.; Bao, S.; Liao, C.; Wang, Q. “Magnetic nanocomposite hydrogel prepared by ZnO-initiated photopolymerization for La (III) adsorption”, ACS Appl. Mater. Interfaces 2014, 6, 19840–19849. doi:10.1021/am505177c.
  • Thakur, S.; Pandey, S.; Arotiba, O. A. “Development of a sodium alginate-based organic/inorganic superabsorbent composite hydrogel for adsorption of methylene blue”, Carbohydr. Polym. 2016, 153, 34–46. doi:10.1016/j.carbpol.2016.06.104.
  • Thayyath S, A.; Peethambaran L, D.; Jayachandran, N. “Utilization of polypyrrole coated iron-doped titania based hydrogel for the removal of tetracycline hydrochloride from aqueous solutions: adsorption and photocatalytic degradation studies”, Environ. Nanotechnol. Monit. Manag. 2015, 4, 106–117. doi:10.1016/j.enmm.2015.10.001.
  • Mittal, H.; Kumar, V.; Saruchi.; Ray, S. S. “Adsorption of methyl violet from aqueous solution using gum xanthan/Fe3O4 based nanocomposite hydrogel”, Int. J. Biol. Macromol. 2016, 89, 1–11.
  • Mittal, H.; Ray, S. S. “A study on the adsorption of methylene blue onto gum ghatti/TiO2 nanoparticles-based hydrogel nanocomposite. Int. J. Biol. Macromol. 2016, 88, 66–80. doi:10.1016/j.ijbiomac.2016.03.032.
  • Weber, L. M.; He, J.; Bradley, B.; Haskins, K.; Anseth, K. S. “PEG-based hydrogels as an in vitro encapsulation platform for testing controlled β-cell microenvironments”, Acta Biomater. 2006, 2, 1–8. doi:10.1016/j.actbio.2005.10.005.
  • Truong, V.; Blakey, I.; Whittaker, A. K. “Hydrophilic and amphiphilic polyethylene glycol-based hydrogels with tunable degradability prepared by “Click” chemistry”, Biomacromolecules 2012, 13, 4012–4021. doi:10.1021/bm3012924.
  • Lee, K. Y.; Mooney, D. J. “Hydrogels for tissue engineering”, Chem. Rev. 2001, 101, 1869–1880.
  • Kopeček, J.; Yang, J. “Hydrogels as smart biomaterials”, Polym. Int. 2007, 56, 1078–1098. doi:10.1002/pi.2253.
  • Lin, C.-C.; Metters, A. T. “Hydrogels in controlled release formulations: network design and mathematical modeling”, Adv. Drug Deliv. Rev. 2006, 58, 1379–1408. doi:10.1016/j.addr.2006.09.004.
  • Mason, M. N.; Metters, A. T.; Bowman, C. N.; Anseth, K. S. “Predicting controlled-release behavior of degradable PLA-b-PEG-b-PLA hydrogels”, Macromolecules 2001, 34, 4630–4635. doi:10.1021/ma010025y.
  • Marcelo, G.; López-González, M.; Trabado, I.; Rodrigo, M. M.; Valiente, M.; Mendicuti, F. “Lignin inspired PEG hydrogels for drug delivery”, Mater. Today Commun. 2016, 7, 73–80. doi:10.1016/j.mtcomm.2016.04.004.
  • Baker, M. I.; Walsh, S. P.; Schwartz, Z.; Boyan, B. D. “A review of polyvinyl alcohol and its uses in cartilage and orthopedic applications”, J. Biomed. Mater. Res. 2012, 100B, 1451–1457. doi:10.1002/jbm.b.32694.
  • Li, P.; Jiang, S.; Yu, Y.; Yang, J.; Yang, Z. “Biomaterial characteristics and application of silicone rubber and PVA hydrogels mimicked in organ groups for prostate brachytherapy”, J. Mech. Behav. Biomed. Mater. 2015, 49, 220–234. doi:10.1016/j.jmbbm.2015.05.012.
  • Tønnesen, H. H.; Karlsen, J. “Alginate in drug delivery systems”, Drug Dev. Ind. Pharm. 2002, 28, 621–630.
  • Lee, K. Y.; Mooney, D. J. “Alginate: properties and biomedical applications”, Prog. Polym. Sci. 2012, 37, 106–126. doi:10.1016/j.progpolymsci.2011.06.003.
  • Ma, J.; Zhou, G.; Chu, L.; Liu, Y.; Liu, C.; Luo, S.; Wei, Y. “Efficient removal of heavy metal ions with an EDTA functionalized chitosan/polyacrylamide double network hydrogel”, ACS Sustain. Chem. Eng. 2017, 5, 843–851. doi:10.1021/acssuschemeng.6b02181.
  • Liu, H.; Dong, Y.; Liu, Y.; Wang, H. “Screening of novel low-cost adsorbents from agricultural residues to remove ammonia nitrogen from aqueous solution”, J. Hazard. Mater. 2010, 178, 1132–1136. doi:10.1016/j.jhazmat.2010.01.117.
  • Gao, G.; Schilling, A. F.; Yonezawa, T.; Wang, J.; Dai, G.; Cui, X. “Bioactive nanoparticles stimulate bone tissue formation in bioprinted three-dimensional scaffold and human mesenchymal stem cells”, Biotechnol. J. 2014, 9, 1304–1311. doi:10.1002/biot.201400305.
  • Jiang, Y.; Li, B.; Wu, Y.; Zhu, M. “Preparation and property of poly(N-isopropylacrylamide) (PNIPAAm)/clay/linear polyacrylamide (PAAm) nanocomposite hydrogels”, J. Macromol. Sci. Part B 2010, 49, 843–853. doi:10.1080/00222341003598497.
  • Shen, J.; Yan, B.; Li, T.; Long, Y.; Li, N.; Ye, M. “Study on graphene-oxide-based polyacrylamide composite hydrogels”, Compos. Part A: Appl. Sci. Manuf. 2012, 43, 1476–1481. doi:10.1016/j.compositesa.2012.04.006.
  • Hu, H.; Xin, J. H.; Hu, H. “PAM/graphene/Ag ternary hydrogel: synthesis, characterization and catalytic application”, J. Mater. Chem. A 2014, 2, 11319–11333. doi:10.1039/C4TA01620C.
  • Jing, S.; Jiang, D.; Wen, S.; Wang, J.; Yang, C. “Preparation and characterization of collagen/silica composite scaffolds for peripheral nerve regeneration”, J. Porous Mater. 2014, 21, 699–708. doi:10.1007/s10934-014-9817-4.
  • Li, D.; Li, Q.; Bai, N.; Dong, H.; Mao, D. “One-step synthesis of cationic hydrogel for efficient dye adsorption and its second use for emulsified oil separation”, ACS Sustain. Chem. Eng. 2017, 5, 5598–5607. doi:10.1021/acssuschemeng.7b01083.
  • Mittal, H.; Maity, A.; Sinha Ray, S. “The adsorption of Pb2+ and Cu2+ onto gum ghatti-grafted poly(acrylamide-co-acrylonitrile) biodegradable hydrogel: isotherms and kinetic models”, J. Phys. Chem. B 2015, 119, 2026–2039. doi:10.1021/jp5090857.
  • Stejskal, J.; Sapurina, I.; Trchová, M. “Polyaniline nanostructures and the role of aniline oligomers in their formation”, Prog. Polym. Sci. 2010, 35, 1420–1481. doi:10.1016/j.progpolymsci.2010.07.006.
  • Huang, H.; Zeng, X.; Li, W.; Wang, H.; Wang, Q.; Yang, Y. “Reinforced conducting hydrogels prepared from the in situ polymerization of aniline in an aqueous solution of sodium alginate”, J. Mater. Chem. A 2014, 2, 16516–16522. doi:10.1039/C4TA03332A.
  • Hu, H.; Quan, H.; Zhong, B.; Li, Z.; Huang, Y.; Wang, X.; Zhang, M.; Chen, D. “A reduced graphene oxide quantum dot-based adsorbent for efficiently binding with organic pollutants”, ACS Appl. Nano Mater 2018, 1 (11), 6502–6513. doi:10.1021/acsanm.8b01799
  • Kuilla, T.; Bhadra, S.; Yao, D.; Kim, N. H.; Bose, S.; Lee, J. H. “Recent advances in graphene based polymer composites”, Prog. Polym. Sci. 2010, 35, 1350–1375. doi:10.1016/j.progpolymsci.2010.07.005.
  • Kim, H.; Abdala, A. A.; Macosko, C. W. “Graphene/polymer nanocomposites”, Macromolecules 2010, 43, 6515–6530. doi:10.1021/ma100572e.
  • Huawen Hu, M. C.; Zhang, M.; Wang, X.; Chen, D. “A new insight into PAM/graphene-based adsorption of water-soluble aromatic pollutants”, J. Mater. Sci. 2017, 52, 8650–8664. doi:10.1007/s10853-017-1090-x.
  • Fan, J.; Shi, Z.; Lian, M.; Li, H.; Yin, J. “Mechanically strong graphene oxide/sodium alginate/polyacrylamide nanocomposite hydrogel with improved dye adsorption capacity”, J. Mater. Chem. A 2013, 1, 7433–7443. doi:10.1039/c3ta10639j.
  • Tai, Z.; Yang, J.; Qi, Y.; Yan, X.; Xue, Q. “Synthesis of a graphene oxide-polyacrylic acid nanocomposite hydrogel and its swelling and electroresponsive properties”, RSC Adv. 2013, 3, 12751–12757. doi:10.1039/c3ra22335c.
  • Ma, X.; Li, Y.; Wang, W.; Ji, Q.; Xia, Y. “Temperature-sensitive poly(N-isopropylacrylamide)/graphene oxide nanocomposite hydrogels by in situ polymerization with improved swelling capability and mechanical behavior”, Eur. Polym. J. 2013, 49, 389–396. doi:10.1016/j.eurpolymj.2012.10.034.
  • Chen, Y.; Chen, L.; Bai, H.; Li, L. “Graphene oxide-chitosan composite hydrogels as broad-spectrum adsorbents for water purification”, J. Mater. Chem. A 2013, 1, 1992–2001. doi:10.1039/C2TA00406B.
  • Wang, Y.; Zhang, P.; Liu, C. F.; Huang, C. Z. “A facile and green method to fabricate graphene-based multifunctional hydrogels for miniature-scale water purification”, RSC Adv. 2013, 3, 9240–9246. doi:10.1039/c3ra22687e.
  • Bai, H.; Sheng, K.; Zhang, P.; Li, C.; Shi, G. “Graphene oxide/conducting polymer composite hydrogels”, J. Mater. Chem. 2011, 21, 18653–18658. doi:10.1039/c1jm13918e.
  • Wang, X.; Sun, R.; Wang, C. “pH dependence and thermodynamics of Hg(II) adsorption onto chitosan-poly(vinyl alcohol) hydrogel adsorbent”, Colloids Surf. A: Physicochem. Eng. Asp. 2014, 441, 51–58. doi:10.1016/j.colsurfa.2013.08.068.
  • Im, K.; Nguyen, D. N.; Kim, S.; Kong, H. J.; Kim, Y.; Park, C. S.; Kwon, O. S.; Yoon, H. “Graphene-embedded hydrogel nanofibers for detection and removal of aqueous-phase dyes”, ACS Appl. Mater. Interfaces 2017, 9, 10768–10776. doi:10.1021/acsami.7b01163.
  • Sen Gupta, S.; Bhattacharyya, K. G. “Adsorption of metal ions by clays and inorganic solids”, RSC Adv. 2014, 4, 28537–28586. doi:10.1039/C4RA03673E.
  • Guo, H.; Jiao, T.; Zhang, Q.; Guo, W.; Peng, Q.; Yan, X. “Preparation of graphene oxide-based hydrogels as efficient dye adsorbents for wastewater treatment”, Nanoscale Res. Lett. 2015, 10, 272.
  • Yang, Y.; Song, S.; Zhao, Z. “Graphene oxide (GO)/polyacrylamide (PAM) composite hydrogels as efficient cationic dye adsorbents”, Colloids Surf. A: Physicochem. Eng. Asp. 2017, 513, 315–324. doi:10.1016/j.colsurfa.2016.10.060.
  • Tadjarodi, A.; Moazen Ferdowsi, S.; Zare-Dorabei, R.; Barzin, A. “Highly efficient ultrasonic-assisted removal of Hg(II) ions on graphene oxide modified with 2-pyridinecarboxaldehyde thiosemicarbazone: adsorption isotherms and kinetics studies”, Ultrason. Sonochem. 2016, 33, 118–128. doi:10.1016/j.ultsonch.2016.04.030.
  • Thoniyot, P.; Tan, M. J.; Karim, A. A.; Young, D. J.; Loh, X. J. “Nanoparticle–hydrogel composites: concept, design, and applications of these promising, multi-functional materials”, Adv. Sci. 2015, 2, 1400010. doi:10.1002/advs.201400010.
  • Sarkar, K.; Sen, K. “On the design of Ag-morin nanocomposite to modify calcium alginate gel: framing out a novel sodium ion trap”, RSC Adv. 2015, 5, 57223–57230. doi:10.1039/C5RA10938H.
  • Sun, X.-F.; Liu, B.; Jing, Z.; Wang, H. “Preparation and adsorption property of xylan/poly(acrylic acid) magnetic nanocomposite hydrogel adsorbent”, Carbohydr. Polym. 2015, 118, 16–23. doi:10.1016/j.carbpol.2014.11.013.
  • Mittal, H.; Mishra, S. B. “Gum ghatti and Fe3O4 magnetic nanoparticles based nanocomposites for the effective adsorption of rhodamine B”, Carbohydr. Polym. 2014, 101, 1255–1264. doi:10.1016/j.carbpol.2013.09.045.
  • Haraguchi, K.; Takehisa, T. “Nanocomposite hydrogels: a unique organic–inorganic network structure with extraordinary mechanical, optical, and swelling/de-swelling properties”, Adv. Mater. 2002, 14, 1120–1124. doi:10.1002/1521-4095(20020816)14:16<1120::AID-ADMA1120>3.0.CO;2-9.
  • Xia, L.-W.; Xie, R.; Ju, X.-J.; Wang, W.; Chen, Q.; Chu, L.-Y. “Nano-structured smart hydrogels with rapid response and high elasticity”, Nature Commun. 2013, 4, 2226.
  • Zhu, Y.; Zheng, Y.; Wang, A. “Preparation of granular hydrogel composite by the redox couple for efficient and fast adsorption of La(III) and Ce(III)”, J. Environ. Chem. Eng. 2015, 3, 1416–1425. doi:10.1016/j.jece.2014.11.028.
  • Schwarzenbach, R. P.; Escher, B. I.; Fenner, K.; Hofstetter, T. B.; Johnson, C. A.; von Gunten, U.; Wehrli, B. “The challenge of micropollutants in aquatic systems”, Science 2006, 313, 1072–1077.
  • Petering, D. H.; Fowler, B. A. “Roles of metallothionein and related proteins in metal metabolism and toxicity: problems and perspectives”, Environ. Health Perspect. 1986, 65, 217–224. doi:10.1289/ehp.8665217.
  • Coyle, P.; Philcox, J. C.; Carey, L. C.; Rofe, A. M. “Metallothionein: the multipurpose protein”, Cell. Mol. Life Sci. 2002, 59, 627–647. doi:10.1007/s00018-002-8454-2.
  • Esser-Kahn, A. P.; Iavarone, A. T.; Francis, M. B. “Metallothionein-cross-linked hydrogels for the selective removal of heavy metals from water”, J. Am. Chem. Soc. 2008, 130, 15820–15822. doi:10.1021/ja807095r.
  • Gao, H.; Sun, Y.; Zhou, J.; Xu, R.; Duan, H. “Mussel-inspired synthesis of polydopamine-functionalized graphene hydrogel as reusable adsorbents for water purification”, ACS Appl. Mater. Interfaces 2013, 5, 425–432. doi:10.1021/am302500v.
  • Das, S.; Chakraborty, P.; Ghosh, R.; Paul, S.; Mondal, S.; Panja, A.; Nandi, A. K. “Folic acid-polyaniline hybrid hydrogel for adsorption/reduction of chromium(VI) and selective adsorption of anionic dye from water”, ACS Sustain. Chem. Eng. 2017, 5, 9325–9337. doi:10.1021/acssuschemeng.7b02342.
  • Kumru, B.; Molinari, V.; Shalom, M.; Antonietti, M.; Schmidt, B. V. K. J. “Tough high modulus hydrogels derived from carbon-nitride via an ethylene glycol co-solvent route”, Soft Matter 2018, 14, 2655–2664. doi:10.1039/C8SM00232K.
  • Liu, J.; An, T.; Chen, Z.; Wang, Z.; Zhou, H.; Fan, T.; Zhang, D.; Antonietti, M. “Carbon nitride nanosheets as visible light photocatalytic initiators and crosslinkers for hydrogels with thermoresponsive turbidity”, J. Mater. Chem. A 2017, 5, 8933–8938. doi:10.1039/C7TA02923C.
  • Li, M.; Liao, H.; Deng, Q.; Wu, Y.; Xiao, F.; Wei, X.; Tu, D. “Preparation of an intelligent hydrogel sensor based on g-C3N4 nanosheets for selective detection of Ag+”, J. Macromol. Sci. Part A 2018, 55, 408–413. doi:10.1080/10601325.2018.1453260.
  • Lin, L.; Ou, H.; Zhang, Y.; Wang, X. “Tri-s-triazine-based crystalline graphitic carbon nitrides for highly efficient hydrogen evolution photocatalysis”, ACS Catal. 2016, 6, 3921–3931. doi:10.1021/acscatal.6b00922.
  • Zhang, Y.; Zhou, Z.; Shen, Y.; Zhou, Q.; Wang, J.; Liu, A.; Liu, S.; Zhang, Y. “Reversible assembly of graphitic carbon nitride 3D network for highly selective dyes absorption and regeneration”, ACS Nano 2016, 10, 9036–9043.
  • Sun, J.; Schmidt, B. V. K. J.; Wang, X.; Shalom, M. “Self-standing carbon nitride-based hydrogels with high photocatalytic activity”, ACS Appl. Mater. Interfaces 2017, 9, 2029–2034. doi:10.1021/acsami.6b14879.
  • Rassu, G.; Salis, A.; Porcu, E. P.; Giunchedi, P.; Roldo, M.; Gavini, E. “Composite chitosan/alginate hydrogel for controlled release of deferoxamine: a system to potentially treat iron dysregulation diseases”, Carbohydr. Polym. 2016, 136, 1338–1347. doi:10.1016/j.carbpol.2015.10.048.
  • Collins, M. N.; Birkinshaw, C. “Physical properties of crosslinked hyaluronic acid hydrogels”, J. Mater. Sci: Mater. Med. 2008, 19, 3335–3343. doi:10.1007/s10856-008-3476-4.
  • Priya, V. S.; Iyappan, K.; Gayathri, V. S.; William, S.; Suguna, L. “Influence of pullulan hydrogel on sutureless wound healing in rats”, Wound Med. 2016, 14, 1–5. doi:10.1016/j.wndm.2016.05.003.
  • Kamoun, E. A.; Kenawy, E.-R. S.; Tamer, T. M.; El-Meligy, M. A.; Mohy Eldin, M. S. “Poly(vinyl alcohol)-alginate physically crosslinked hydrogel membranes for wound dressing applications: characterization and bio-evaluation”, Arab. J. Chem. 2015, 8, 38–47. doi:10.1016/j.arabjc.2013.12.003.
  • Samaddar, P.; Sen, K. “Anion induced gelation in polyvinyl alcohol: a probe for metal ion speciation studies”, J. Sol-Gel Sci. Technol. 2015, 73, 389–395. doi:10.1007/s10971-014-3545-8.
  • Jin, Y.; Zhang, H.; Yin, Y.; Nishinari, K. “Conformation of curdlan as observed by tapping mode atomic force microscopy”, Colloid Polym. Sci. 2006, 284, 1371. doi:10.1007/s00396-006-1503-x.
  • Xiao, C.; Gao, Y. “Preparation and properties of physically crosslinked sodium carboxymethylcellulose/poly(vinyl alcohol) complex hydrogels”, J. Appl. Polym. Sci. 2008, 107, 1568–1572. doi:10.1002/app.27203.
  • I. Lozinsky, V. “Cryogels on the basis of natural and synthetic polymers: preparation, properties and application”, Russ. Chem. Rev. 2002, 71, 489–511. doi:10.1070/RC2002v071n06ABEH000720.
  • Cascone, M. G.; Maltinti, S.; Barbani, N.; Laus, M. “Effect of chitosan and dextran on the properties of poly(vinyl alcohol) hydrogels”, J. Mater. Sci. Mater. Med. 1999, 10, 431–435.
  • Niu, H.; Wang, F.; Weiss, R. A. “Hydrophobic/hydrophilic triblock copolymers: synthesis and properties of physically cross-linked hydrogels”, Macromolecules 2015, 48, 645–654. doi:10.1021/ma502133f.
  • Song, G.; Zhang, L.; He, C.; Fang, D.-C.; Whitten, P. G.; Wang, H. “Facile fabrication of tough hydrogels physically cross-linked by strong cooperative hydrogen bonding”, Macromolecules 2013, 46, 7423–7435. doi:10.1021/ma401053c.
  • Ma, R.-Y.; Xiong, D.-S. “Synthesis and properties of physically crosslinked poly (vinyl alcohol) hydrogels”, J. China Univ. Mining Technol. 2008, 18, 271–274. doi:10.1016/S1006-1266(08)60057-7.
  • Liu, Z.; Zhang, F.; Liu, T.; Peng, N.; Gai, C. “Removal of azo dye by a highly graphitized and heteroatom doped carbon derived from fish waste: adsorption equilibrium and kinetics”, J. Environ. Manag. 2016, 182, 446–454. doi:10.1016/j.jenvman.2016.08.008.
  • Argin, S.; Kofinas, P.; Lo, Y. M. “The cell release kinetics and the swelling behavior of physically crosslinked xanthan–chitosan hydrogels in simulated gastrointestinal conditions”, Food Hydrocolloids 2014, 40, 138–144. doi:10.1016/j.foodhyd.2014.02.018.
  • Sasaki, S.; Murakami, T.; Suzuki, A. “Frictional properties of physically cross-linked PVA hydrogels as artificial cartilage”, Biosurf. Biotribol. 2016, 2, 11–17. doi:10.1016/j.bsbt.2016.02.002.
  • Hoffman, A. S. “Hydrogels for biomedical applications”, Adv. Drug Deliv. Rev. 2012, 64, 18–23. doi:10.1016/j.addr.2012.09.010.
  • Nokhodchi, A.; Tailor, A. “In situ cross-linking of sodium alginate with calcium and aluminum ions to sustain the release of theophylline from polymeric matrices”, Farmaco 2004, 59, 999–1004.
  • Zhang, H.; Zhang, F.; Wu, J. “Physically crosslinked hydrogels from polysaccharides prepared by freeze–thaw technique”, React. Funct. Polym. 2013, 73, 923–928. doi:10.1016/j.reactfunctpolym.2012.12.014.
  • Nam, K. W.; Watanabe, J.; Ishihara, K. “Characterization of the spontaneously forming hydrogels composed of water-soluble phospholipid polymers”, Biomacromolecules 2002, 3, 100–105. doi:10.1021/bm015589o.
  • Yuk, H.; Zhang, T.; Lin, S.; Parada, G. A.; Zhao, X. “Tough bonding of hydrogels to diverse non-porous surfaces”, Nat. Mater. 2016, 15, 190. doi:10.1038/nmat4463.
  • Akhtar, M. F.; Hanif, M.; Ranjha, N. M. “Methods of synthesis of hydrogels – a review”, Saudi Pharm. J. 2016, 24, 554–559.
  • Minhas, M. U.; Ahmad, M.; Ali, L.; Sohail, M. “Synthesis of chemically cross-linked polyvinyl alcohol-co-poly (methacrylic acid) hydrogels by copolymerization; a potential graft-polymeric carrier for oral delivery of 5-fluorouracil”, DARU J. 2013, 21, 44. doi:10.1186/2008-2231-21-44.
  • Gunduz, O. “Size and shape control in the bioinspired forming of polymeric nanocarrier composites”, Int. J. Polym. Mater. Polym. Biomater. 2014, 63, 398–404. doi:10.1080/00914037.2013.853669.
  • Nakabayashi, K.; Mori, H. “Recent progress in controlled radical polymerization of N-vinyl monomers”, Eur. Polym. J. 2013, 49, 2808–2838. doi:10.1016/j.eurpolymj.2013.07.006.
  • Maitra, J.; Shukla, V. K. “Cross-linking in hydrogels – a review”, Am. J. Polym. Sci. 2014, 4, 25–31.
  • Xu, J.; Yang, P.; Zhang, L.; Huo, G. “Radical/addition polymerization silicone hydrogels with simultaneous interpenetrating hydrophilic/hydrophobic networks”, J. Appl. Polym. Sci. 2015, 132, 1–8. doi:10.1002/app.41399.
  • Ray, D.; Gils, P. S.; Mohanta, G. P.; Manavalan, R.; Sahoo, P. K. “Comparative delivery of diltiazem hydrochloride through synthesized polymer: hydrogel and hydrogel microspheres”, J. Appl. Polym. Sci. 2010, 116, 959–968.
  • Kuijpers, A. J.; van Wachem, P. B.; van Luyn, M. J. A.; Engbers, G. H. M.; Krijgsveld, J.; Zaat, S. A. J.; Dankert, J.; Feijen, J. “In vivo and in vitro release of lysozyme from cross-linked gelatin hydrogels: a model system for the delivery of antibacterial proteins from prosthetic heart valves”, J. Control. Release 2000, 67, 323–336. doi:10.1016/S0168-3659(00)00221-2.
  • Lam, Y. L.; Muniyandy, S.; Kamaruddin, H.; Mansor, A.; Janarthanan, P. “Radiation cross-linked carboxymethyl sago pulp hydrogels loaded with ciprofloxacin: influence of irradiation on gel fraction, entrapped drug and in vitro release”, Radiat. Phys. Chem. 2015, 106, 213–222. doi:10.1016/j.radphyschem.2014.07.018.
  • Zhai, M.; Yoshii, F.; Kume, T.; Hashim, K. “Syntheses of PVA/starch grafted hydrogels by irradiation”, Carbohydr. Polym. 2002, 50, 295–303. doi:10.1016/S0144-8617(02)00031-0.
  • Kofinas, P.; Athanassiou, V.; Merrill, E. W. “Hydrogels prepared by electron irradiation of poly(ethylene oxide) in water solution: unexpected dependence of cross-link density and protein diffusion coefficients on initial PEO molecular weight”, Biomaterials 1996, 17, 1547–1550. doi:10.1016/0142-9612(96)89781-X.
  • Jabbari, E.; Nozari, S. “Swelling behavior of acrylic acid hydrogels prepared by γ-radiation crosslinking of polyacrylic acid in aqueous solution”, Eur. Polym. J. 2000, 36, 2685–2692. doi:10.1016/S0014-3057(00)00044-6.
  • Hayrabolulu, H.; Şen, M.; Çelik, G.; Kavaklı, P. A. “Synthesis of carboxylated locust bean gum hydrogels by ionizing radiation”, Radiat. Phys. Chem. 2014, 94, 240–244. doi:10.1016/j.radphyschem.2013.05.048.
  • Tavakol, M.; Dehshiri, S.; Vasheghani-Farahani, E. “Electron beam irradiation crosslinked hydrogels based on tyramine conjugated gum tragacanth”, Carbohydr. Polym. 2016, 152, 504–509. doi:10.1016/j.carbpol.2016.07.044.
  • Hui, B.; Zhang, Y.; Ye, L. “Preparation of PVA hydrogel beads and adsorption mechanism for advanced phosphate removal”, Chem. Eng. J. 2014, 235, 207–214. doi:10.1016/j.cej.2013.09.045.
  • Dorkoosh, F. A.; Brussee, J.; Verhoef, J. C.; Borchard, G.; Rafiee-Tehrani, M.; Junginger, H. E. “Preparation and NMR characterization of superporous hydrogels (SPH) and SPH composites”, Polymer 2000, 41, 8213–8220. doi:10.1016/S0032-3861(00)00200-7.
  • Paulino, A. T.; Guilherme, M. R.; Reis, A. V.; Campese, G. M.; Muniz, E. C.; Nozaki, J. “Removal of methylene blue dye from an aqueous media using superabsorbent hydrogel supported on modified polysaccharide”, J. Colloid Interface Sci. 2006, 301, 55–62. doi:10.1016/j.jcis.2006.04.036.
  • Phillips, G. O.; Du Plesis, T. A.; Al-Assaf, S.; Williams, P. A. “Biopolymers obtained by solid state irradiation in an unsaturated gaseous atmosphere”, 2003.
  • Ricci, G.; Leone, G. “Recent advances in the polymerization of butadiene over the last decade”, Polyolefins J. 1999, 1, 43–60.
  • Li, G.; Zhao, Y.; Zhang, L.; Gao, M.; Kong, Y.; Yang, Y. “Preparation of graphene oxide/polyacrylamide composite hydrogel and its effect on schwann cells attachment and proliferation”, Colloids Surf. B Biointerfaces 2016, 143, 547–556. doi:10.1016/j.colsurfb.2016.03.079.
  • Ashrafi, H.; Azadi, A. “Chitosan-based hydrogel nanoparticle amazing behaviors during transmission electron microscopy”, Int. J. Biol. Macromol. 2016, 84, 31–34. doi:10.1016/j.ijbiomac.2015.11.089.
  • Kempe, S.; Metz, H.; Bastrop, M.; Hvilsom, A.; Contri, R. V.; Mäder, K. “Characterization of thermosensitive chitosan-based hydrogels by rheology and electron paramagnetic resonance spectroscopy”, Eur. J. Pharm. Biopharm. 2008, 68, 26–33. doi:10.1016/j.ejpb.2007.05.020.
  • Sahiner, N.; Singh, M.; De Kee, D.; John, V. T.; McPherson, G. L. “Rheological characterization of a charged cationic hydrogel network across the gelation boundary”, Polymer 2006, 47, 1124–1131. doi:10.1016/j.polymer.2005.10.129.
  • Taki, A.; John, B.; Arakawa, S.; Okamoto, M. “Structure and rheology of nanocomposite hydrogels composed of DNA and clay”, Eur. Polym. J. 2013, 49, 923–931. doi:10.1016/j.eurpolymj.2012.10.013.
  • Yuan, N.; Xu, L.; Zhang, L.; Ye, H.; Zhao, J.; Liu, Z.; Rong, J. “Superior hybrid hydrogels of polyacrylamide enhanced by bacterial cellulose nanofiber clusters”, Mater. Sci. Eng. C 2016, 67, 221–230. doi:10.1016/j.msec.2016.04.074.
  • Janik, I.; Kasprzak, E.; Al-Zier, A.; Rosiak, J. M. “Radiation crosslinking and scission parameters for poly(vinyl methyl ether) in aqueous solution”, Nuclear Instrum. Methods Phys. Res. Sect. B: Beam Interact. Mater. Atoms 2003, 208, 374–379. doi:10.1016/S0168-583X(03)00897-8.
  • Ricciardi, R.; Auriemma, F.; De Rosa, C.; Lauprêtre, F. “X-ray diffraction analysis of poly(vinyl alcohol) hydrogels, obtained by freezing and thawing techniques”, Macromolecules 2004, 37, 1921–1927. doi:10.1021/ma035663q.
  • Kwak, S.; Lafleur, M. “Raman spectroscopy as a tool for measuring mutual-diffusion coefficients in hydrogels”, Appl. Spectrosc. 2003, 57, 768–773. doi:10.1366/000370203322102843.
  • Rusu, A. G.; Popa, M. I.; Lisa, G.; Vereştiuc, L. “Thermal behavior of hydrophobically modified hydrogels using TGA/FTIR/MS analysis technique”, Thermochim. Acta 2015, 613, 28–40. doi:10.1016/j.tca.2015.05.018.
  • Rosiak, J. M.; Ulański, P. “Synthesis of hydrogels by irradiation of polymers in aqueous solution”, Radiat. Phys. Chem. 1999, 55, 139–151. doi:10.1016/S0969-806X(98)00319-3.
  • Demianenko, P.; Minisini, B.; Lamrani, M.; Poncin-Epaillard, F. “How the structural and physicochemical properties of polyacrylamide/alginate hydrogel influence its oxygen permeability”, Polym. Test. 2016, 53, 299–304. doi:10.1016/j.polymertesting.2016.06.015.
  • Karada, E.; Üzüm, Ö. B.; Saraydin, D. “Swelling equilibria and dye adsorption studies of chemically crosslinked superabsorbent acrylamide/maleic acid hydrogels”, Eur. Polym. J. 2002, 38, 2133–2141. doi:10.1016/S0014-3057(02)00117-9.
  • Holmes-Farley, S. R.; Reamey, R. H.; McCarthy, T. J.; Deutch, J.; Whitesides, G. M. “Acid–base behavior of carboxylic acid groups covalently attached at the surface of polyethylene: the usefulness of contact angle in following the ionization of surface functionality”, Langmuir 1985, 1, 725–740. doi:10.1021/la00066a016.
  • Zheng, Y.; Wang, A. “Preparation and ammonium adsorption properties of biotite-based hydrogel composites”, Ind. Eng. Chem. Res. 2010, 49, 6034–6041. doi:10.1021/ie9016336.
  • Dada, A. O.; Olalekan, A. P.; Olatunya, A. M.; Dada, O. “Langmuir, Freundlich, Temkin and Dubinin-Radushkevich isotherms studies of equilibrium sorption of Zn2+ unto phosphoric acid modified rice husk”, IOSR J. Appl. Chem. 2012, 3, 38–45.
  • Foo, K. Y.; Hameed, B. H. “Insights into the modeling of adsorption isotherm systems”, Chem. Eng. J. 2010, 156, 2–10. doi:10.1016/j.cej.2009.09.013.
  • Ahmed, M. J. “Application of agricultural based activated carbons by microwave and conventional activations for basic dye adsorption: review”, J. Environ. Chem. Eng. 2016, 4, 89–99. doi:10.1016/j.jece.2015.10.027.
  • Dong, S.; Wang, Y. “Characterization and adsorption properties of a lanthanum-loaded magnetic cationic hydrogel composite for fluoride removal”, Water Res. 2016, 88, 852–860. doi:10.1016/j.watres.2015.11.013.
  • Febrianto, J.; Kosasih, A. N.; Sunarso, J.; Ju, Y.-H.; Indraswati, N.; Ismadji, S. “Equilibrium and kinetic studies in adsorption of heavy metals using biosorbent: a summary of recent studies”, J. Hazard. Mater. 2009, 162, 616–645. doi:10.1016/j.jhazmat.2008.06.042.
  • Ho, Y.-S.; Chiang, T.-H.; Hsueh, Y.-M. “Removal of basic dye from aqueous solution using tree fern as a biosorbent”, Process Biochem. 2005, 40, 119–124. doi:10.1016/j.procbio.2003.11.035.
  • Bhattacharyya, R.; Ray, S. K. “Adsorption of industrial dyes by semi-IPN hydrogels of acrylic copolymers and sodium alginate”, J. Ind. Eng. Chem. 2015, 22, 92–102. doi:10.1016/j.jiec.2014.06.029.
  • Bai, H.; Zhang, Q.; He, T.; Zheng, G.; Zhang, G.; Zheng, L.; Ma, S. “Adsorption dynamics, diffusion and isotherm models of poly(NIPAm/LMSH) nanocomposite hydrogels for the removal of anionic dye amaranth from an aqueous solution”, Appl. Clay Sci. 2016, 124125, 157–166. doi:10.1016/j.clay.2016.02.007.
  • Bansal, M.; Singh, D.; Garg, V. K. “A comparative study for the removal of hexavalent chromium from aqueous solution by agriculture wastes’ carbons”, J. Hazard. Mater. 2009, 171, 83–92. doi:10.1016/j.jhazmat.2009.05.124.
  • Erdem, E.; Karapinar, N.; Donat, R. “The removal of heavy metal cations by natural zeolites”, J. Colloid Interface Sci. 2004, 280, 309–314. doi:10.1016/j.jcis.2004.08.028.
  • Saha, P.; Datta, S.; Sanyal, S. K. “Application of natural clayey soil as adsorbent for the removal of copper from wastewater”, J. Environ. Eng. 2010, 136, 1409–1417. doi:10.1061/(ASCE)EE.1943-7870.0000289.
  • Alinnor, I. J. “Adsorption of heavy metal ions from aqueous solution by fly ash”, Fuel 2007, 86, 853–857. doi:10.1016/j.fuel.2006.08.019.
  • Ajmal, M.; Rao, R. A. K.; Ahmad, R.; Ahmad, J. “Adsorption studies on Citrus reticulata (fruit peel of orange): removal and recovery of Ni(II) from electroplating wastewater”, J. Hazard. Mater. 2000, 79, 117–131. doi:10.1016/S0304-3894(00)00234-X.
  • Babel, S.; Kurniawan, T. A. “Cr(VI) removal from synthetic wastewater using coconut shell charcoal and commercial activated carbon modified with oxidizing agents and/or chitosan”, Chemosphere 2004, 54, 951–967.
  • Aman, T.; Kazi, A. A.; Sabri, M. U.; Bano, Q. “Potato peels as solid waste for the removal of heavy metal copper(II) from waste water/industrial effluent”, Colloids Surf. B: Biointerfaces 2008, 63, 116–121. doi:10.1016/j.colsurfb.2007.11.013.
  • Bansode, R. R.; Losso, J. N.; Marshall, W. E.; Rao, R. M.; Portier, R. J. “Adsorption of metal ions by pecan shell-based granular activated carbons”, Bioresour. Technol. 2003, 89, 115–119. doi:10.1016/S0960-8524(03)00064-6.
  • Bishnoi, N. R.; Bajaj, M.; Sharma, N.; Gupta, A. “Adsorption of Cr(VI) on activated rice husk carbon and activated alumina”, Bioresour. Technol. 2004, 91, 305–307. doi:10.1016/S0960-8524(03)00204-9.
  • Kadirvelu, K.; Thamaraiselvi, K.; Namasivayam, C. “Removal of heavy metals from industrial wastewaters by adsorption onto activated carbon prepared from an agricultural solid waste”, Bioresour. Technol. 2001, 76, 63–65. doi:10.1016/S0960-8524(00)00072-9.
  • Liu, Y.; Zheng, Y.; Wang, A. “Enhanced adsorption of methylene blue from aqueous solution by chitosan-g-poly (acrylic acid)/vermiculite hydrogel composites”, J. Environ. Sci. 2010, 22, 486–493. doi:10.1016/S1001-0742(09)60134-0.
  • Wang, L.; Zhang, J.; Wang, A. “Removal of methylene blue from aqueous solution using chitosan-g-poly(acrylic acid)/montmorillonite superadsorbent nanocomposite”, Colloids Surf. A: Physicochem. Eng. Asp. 2008, 322, 47–53. doi:10.1016/j.colsurfa.2008.02.019.
  • Cengiz, S.; Cavas, L. “Removal of methylene blue by invasive marine seaweed: Caulerpa Racemosa Var. cylindracea”, Bioresour Technol. 2008, 99, 2357–2363. doi:10.1016/j.biortech.2007.05.011.
  • Ghobarkar, H.; Schäf, O.; Guth, U. “Zeolites – from kitchen to space. Prog. Solid State Chem. 1999, 27, 29–73. doi:10.1016/S0079-6786(00)00002-9.
  • Ellis, J.; Korth, W. “Removal of geosmin and methylisoborneol from drinking water by adsorption on ultrastable zeolite-Y”, Water Res. 1993, 27, 535–539. doi:10.1016/0043-1354(93)90162-B.
  • Okolo, B.; Park, C.; Keane, M. A. “Interaction of phenol and chlorophenols with activated carbon and synthetic zeolites in aqueous media”, J. Colloid Interface Sci. 2000, 226, 308–317. doi:10.1006/jcis.2000.6796.
  • Armağan, B.; Turan, M.; Ęlik, M. S. “Equilibrium studies on the adsorption of reactive azo dyes into zeolite”, Desalination 2004, 170, 33–39. doi:10.1016/j.desal.2004.02.091.
  • Barakat, M. A. “New trends in removing heavy metals from industrial wastewater”, Arab. J. Chem. 2011, 4, 361–377. doi:10.1016/j.arabjc.2010.07.019.
  • Crini, G. “Non-conventional low-cost adsorbents for dye removal: a review”, Bioresour. Technol. 2006, 97, 1061–1085.
  • Krysztafkiewicz, A.; Binkowski, S.; Jesionowski, T. “Adsorption of dyes on a silica surface”, Appl. Surf. Sci. 2002, 199, 31–39. doi:10.1016/S0169-4332(02)00248-9.
  • Özacar, M.; Şengil, İA. “Adsorption of reactive dyes on calcined alunite from aqueous solutions”, J. Hazard. Mater. 2003, 98, 211–224. doi:10.1016/S0304-3894(02)00358-8.
  • Igwe, J. C. Ogunewe, D. N.; Abia, A. A. “Competitive adsorption of Zn (II), Cd (II) and Pb (II) ions from aqueous and non- aqueous solution by maize cob and husk”, Afr. J. Biotechnol. 2005, 4, 1113–1116.
  • Gupta, V. K.; Rastogi, A. “Biosorption of lead(II) from aqueous solutions by non-living algal biomass Oedogonium sp. and Nostoc sp. – A comparative study”, Colloids Surf. B: Biointerfaces 2008, 64, 170–178. doi:10.1016/j.colsurfb.2008.01.019.
  • Tang, P. L.; Lee, C. K.; Low, K. S.; Zainal, Z. “Sorption of Cr(VI) and Cu(II) in aqueous solution by ethylenediamine modified RCE hull”, Environ. Technol. 2003, 24, 1243–1251. doi:10.1080/09593330309385666.
  • Nithya, R.; Gomathi, T.; Sudha, P. N.; Venkatesan, J.; Anil, S.; Kim, S.-K. “Removal of Cr(VI) from aqueous solution using chitosan-g-poly(butyl acrylate)/silica gel nanocomposite”, Int. J. Biol. Macromol. 2016, 87, 545–554. doi:10.1016/j.ijbiomac.2016.02.076.
  • Şölener, M.; Tunali, S.; Özcan, A. S.; Özcan, A.; Gedikbey, T. “Adsorption characteristics of lead(II) ions onto the clay/poly(methoxyethyl)acrylamide (PMEA) composite from aqueous solutions”, Desalination 2008, 223, 308–322. doi:10.1016/j.desal.2007.01.221.
  • Annadurai, G.; Juang, R.-S.; Lee, D.-J. “Use of cellulose-based wastes for adsorption of dyes from aqueous solutions”, J. Hazard. Mater. 2002, 92, 263–274. doi:10.1016/S0304-3894(02)00017-1.
  • Ho, Y.-S.; Chiang, C.-C.; Hsu, Y.-C. “Sorption kinetics for dye removal from aqueous solution using activated clay”, Sep. Sci. Technol. 2001, 36, 2473–2488. doi:10.1081/SS-100106104.
  • Han, H.; Wei, W.; Jiang, Z.; Lu, J.; Zhu, J.; Xie, J. “Removal of cationic dyes from aqueous solution by adsorption onto hydrophobic/hydrophilic silica aerogel”, Colloids Surf. A: Physicochem. Eng. Asp. 2016, 509, 539–549. doi:10.1016/j.colsurfa.2016.09.056.
  • Khattri, S. D.; Singh, M. K. “Colour removal from synthetic dye wastewater using a bioadsorbent”, Water Air Soil Pollut. 2000, 120, 283–294. doi:10.1023/A:1005207803041.
  • Malik, P. K. “Use of activated carbons prepared from sawdust and rice-husk for adsorption of acid dyes: a case study of acid Yellow 36”, Dyes Pigm. 2003, 56, 239–249. doi:10.1016/S0143-7208(02)00159-6.
  • Khan, M.; Lo, I. M. C. “A holistic review of hydrogel applications in the adsorptive removal of aqueous pollutants: recent progress, challenges, and perspectives”, Water Res. 2016, 106, 259–271. doi:10.1016/j.watres.2016.10.008.
  • Ali, I. “New generation adsorbents for water treatment”, Chem. Rev. 2012, 112, 5073–5091.
  • Hua, M.; Zhang, S.; Pan, B.; Zhang, W.; Lv, L.; Zhang, Q. “Heavy metal removal from water/wastewater by nanosized metal oxides: a review”, J. Hazard. Mater. 2012, 211212, 317–331.
  • Gómez-Pastora, J.; Bringas, E.; Ortiz, I. “Recent progress and future challenges on the use of high performance magnetic nano-adsorbents in environmental applications”, Chem. Eng. J. 2014, 256, 187–204. doi:10.1016/j.cej.2014.06.119.
  • Sanyang, M. L.; Ghani, W. A. W. A. K.; Idris, A.; Ahmad, M. B. “Hydrogel biochar composite for arsenic removal from wastewater”, Desalin. Water Treat. 2016, 57, 3674–3688. doi:10.1080/19443994.2014.989412.
  • Sari, M. M. “Removal of acidic indigo carmine textile dye from aqueous solutions using radiation induced cationic hydrogels”, Water Sci. Technol. 2010, 61, 2097–2104. doi:10.2166/wst.2010.158.
  • Wu, N.; Li, Z. “Synthesis and characterization of poly(HEA/MALA) hydrogel and its application in removal of heavy metal ions from water”, Chem. Eng. J. 2013, 215216, 894–902. doi:10.1016/j.cej.2012.11.084.
  • Tang, S. C. N.; Wang, P.; Yin, K.; Lo, I. M. C. “Synthesis and application of magnetic hydrogel for Cr(VI) removal from contaminated water”, Environ. Eng. Sci. 2010, 27, 947–954. doi:10.1089/ees.2010.0112.
  • Hosseinzadeh, H.; Khoshnood, N. “Removal of cationic dyes by poly(AA-co-AMPS)/montmorillonite nanocomposite hydrogel”, Desalin. Water Treat. 2016, 57, 6372–6383. doi:10.1080/19443994.2015.1008052.
  • Hosseinzadeh, H. “Synthesis of carrageenan/multi-walled carbon nanotube hybrid hydrogel nanocomposite for adsorption of crystal violet from aqueous solution”, Polish J. of Chemical Technology 2015, 17, 70. doi:10.1515/pjct-2015-0032.
  • Aguedach, A.; Brosillon, S.; Morvan, J.; Lhadi, E. K. “Influence of ionic strength in the adsorption and during photocatalysis of reactive black 5 azo dye on TiO2 coated on non woven paper with SiO2 as a binder”, J. Hazard. Mater. 2008, 150, 250–256. doi:10.1016/j.jhazmat.2007.04.086.
  • Jing, G.; Wang, L.; Yu, H.; Amer, W. A.; Zhang, L. “Recent progress on study of hybrid hydrogels for water treatment”, Colloids Surf. A: Physicochem. Eng. Asp. 2013, 416, 86–94. doi:10.1016/j.colsurfa.2012.09.043.
  • Cruz, H.; Luckman, P.; Seviour, T.; Verstraete, W.; Laycock, B.; Pikaar, I. “Rapid removal of ammonium from domestic wastewater using polymer hydrogels”, Sci. Rep. 2018, 8, 2912.
  • Okesola, B. O.; Smith, D. K. “Versatile supramolecular pH-tolerant hydrogels which demonstrate pH-dependent selective adsorption of dyes from aqueous solution”, Chem. Commun. 2013, 49, 11164–11166. doi:10.1039/c3cc45969a.
  • Wu, B.; Yan Dickson, Y. S.; Khan, M.; Zhang, Z.; Lo Irene, M. C. “Application of magnetic hydrogel for anionic pollutants removal from wastewater with adsorbent regeneration and reuse”, J. Hazard. Toxic. Radioact. Waste 2017, 21, 04016008. doi:10.1061/(ASCE)HZ.2153-5515.0000325.
  • Baruah, U.; Konwar, A.; Chowdhury, D. “A sulphonated carbon dot–chitosan hybrid hydrogel nanocomposite as an efficient ion-exchange film for Ca2+ and Mg2+ removal”, Nanoscale 2016, 8, 8542–8546. doi:10.1039/C6NR01129B.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.