2,725
Views
86
CrossRef citations to date
0
Altmetric
Reviews

Rheology of poly (lactic acid)-based systems

, &
Pages 465-509 | Received 20 May 2018, Accepted 08 Jan 2019, Published online: 30 Mar 2019

References

  • Sinclair, R. G. The Case for Polylactic Acid as a Commodity Packaging Plastic. J. Macromol. Sci. Part A: Pure. Appl. Chem. 1996, 33, 585–597. DOI: 10.1080/10601329608010880.
  • Grijpma, D. W.; Pennings, A. J. (Co)polymers of L-lactide, 2. Mechanical Properties, Macromol. Chem. Phys. 1994, 195, 1649–1663. DOI: 10.1002/macp.1994.021950516.
  • Auras, R.; Harte, B.; Selke, S. An Overview of Polylactides as Packaging Materials, Macromol. Biosci. 2004, 4, 835–864. DOI: 10.1002/mabi.200400043.
  • Gruber, P. R.; Hall, E. S.; Kolstad, J. H.; Iwen, M. L.; Benson, R. D.; Borchardt, R. L. “Continuous Process for Manufacture of Lactide Polymers with Controlled Optical Purity”, US Patent No. US5142023 A, 1992.
  • NatureWorks data base: http://www.natureworksllc.com/News-and-Events/Press-Releases/2013/10-31-13-new-high-performance-ingeo-grades-for-durable-good
  • Drumright, R. E.; Gruber, P. R.; Henton, D. E. Polylactic Acid Technology, Adv. Mater. 2000, 12, 1841–1846. DOI: 10.1002/1521-4095.
  • Garlotta, D. J. A Literature Review of Poly(Lactic Acid), J. Polym. Environ. 2001, 9, 63–84. DOI: 10.1023/A:1020200822435.
  • Nofar, M.; Park, C. B. Poly (Lactic Acid) Foaming, Prog. Polym. Sci. 2014, 39, 1721–1741. DOI: 10.1016/j.progpolymsci.2014.04.001.
  • Gupta, B.; Revagade, N.; Hilborn, J. Poly(lactic Acid) Fiber: An Overview, Prog. Polym. Sci. 2007, 32, 455–482. DOI: 10.1016/j.progpolymsci.2007.01.005.
  • Lunt, J. Large Scale Production, Properties and Commercial Applications of Polylactic Acid Polymers. Polym. Degrad. Stabil. 1998, 59, 145–152. DOI: 10.1016/S0141-3910(97)00148-1.
  • Nofar, M.; Park, C. B. Polylactide Foams: Fundamentals, Manufacturing, and Applications; Cambridge: Elsevier, William Andrew, ISBN: 9780128139912, 2017.
  • Saini, P.; Arora, M.; Kumar, M. N. Poly(Lactic Acid) Blends in Biomedical Applications, Adv. Drug Deliv. Rev. 2016, 107, 47–59. DOI: 10.1016/j.addr.2016.06.014.
  • Mikos, A. G.; Lyman, M. D.; Freed, L. E.; Langer, R. Wetting of Poly(L-lactic Acid) and Poly(DL-Lactic-Co-Glycolic Acid) Foams for Tissue Culture, Biomaterials 1994, 15, 55–58. DOI: 10.1016/0142-9612(94)90197-X.
  • Jung, Y.; Kim, S. S.; Kim, Y. H.; Kim, S. H.; Kim, B. S.; Kim, S.; Choi, C. Y.; Kim, S. H. A Poly(lactic Acid)/Calcium Metaphosphate Composite for Bone Tissue Engineering, Biomaterials 2005, 26, 6314–6322. DOI: 10.1016/j.biomaterials.2005.04.007.
  • Lim, L. T.; Auras, R.; Rubino, M. Processing Technologies for Poly (Lactic Acid), Prog. Polym. Sci. 2008, 33, 820–852. DOI: 10.1016/j.progpolymsci.2008.05.004.
  • Saeidlou, S.; Huneault, M.; Li, H.; Park, C. B. Poly(lactic Acid) Crystallization, Prog. Polym. Sci. 2012, 37, 1657–1677. DOI: 10.1016/j.progpolymsci.2012.07.005.
  • Rasal, R. M.; Janorkar, A. V.; Hirt, D. E. Poly(Lactic Acid) Modifications, Prog. Polym. Sci. 2010, 35, 338–356. DOI: 10.1016/j.progpolymsci.2009.12.003.
  • Dorgan, J.; Janzen, J.; Clayton, M.; Hait, S.; Knauss, D. Melt Rheology of Variable L-content Poly(Lactic Acid), J. Rheol. 2005, 45, 607–619. DOI: 10.1122/1.1896957.
  • Dorgan, J. R.; Williams, J. S.; Lewis, D. N. Melt Rheology of Poly(Lactic Acid): Entanglement and Chain Architecture Effects, J. Rheol. 1999, 43, 1141–1155. DOI: 10.1122/1.551041.
  • Osswald, T. A.; Natalie, R. Polymer Rheology: Fundamentals and Applications; Publisher: Hanser Publications: Cincinnati, Ohio, USA, 2015, ISBN: 978-1-56990-517-3.
  • Cooper-White, J. J.; Mackay, M. E. Rheological Properties of Poly(Lactides). Effect of Molecular Weight and Temperature on the Viscoelasticity of Poly(l-lactic Acid), J. Polym. Sci. B Polym. Phys. 1999, 37, 1803–1814. DOI: 10.1002/(SICI)1099-0488.
  • Witzke, D. R. Introduction to Properties, Engineering, and Prospects of Polylactide Polymers. PhD thesis, East Lansing, MI: Michigan State University, 1997.
  • Dorgan, J. R.; Lehermeier, H. Mang, M. Thermal and Rheological Properties of Commercial-Grade Poly(lactic Acid)s, J. Polym. Environ. 2000, 8, 1–9.
  • Lehermeier, H. J.; Dorgan, J. R. Poly(lactic acid) Properties and Prospect of an Environmentally Benign Plastic: Melt Rheology of Linear and Branched Blends. In: Fourteenth Symposium on Thermophysical Properties, 2000.
  • Lehermeier, H. J.; Dorgan, J. R. Melt rheology of Poly(Lactic Acid): Consequences of Blending Chain Architectures, Polym. Eng. Sci. 2001, 41, 2172–2184. DOI: 10.1002/pen.10912.
  • Palade, L. I.; Lehermeier, H. J.; Dorgan, J. R. Melt Rheology of High L-Content Poly(Lactic Acid), Macromolecules 2001, 34, 1384–1390. DOI: 10.1021/ma001173b.
  • Kasehagen, L. J.; Macosko, C. W. Nonlinear Shear and Extensional Rheology of Long-Chain Randomly Branched Polybutadiene, J. Rheol. 1998, 42, 1303–1327. DOI: 10.1122/1.550892.
  • Mallet, B.; Lamnawar, K.; Maazouz, A. Improvement of Blown Film Extrusion of Poly(Lactic Acid): Structure–Processing–Properties Relationships, Polym. Eng. Sci. 2014, 54, 840–857. DOI: 10.1002/pen.23610.
  • Othman, N.; Jazrawi, B.; Mehrkhodavandi, P.; Hatzikiriakos, S. G. Wall Slip and Melt Fracture of Poly(Lactides), Rheol. Acta 2012, 51, 357–369. DOI: 10.1007/s00397-011-0613-7.
  • Le Marec, P. E.; Quantin, J. C.; Ferry, L.; Bénézet, J. C.; Guilbert, S.; Bergeret, A. Modelling of PLA Melt Rheology and Batch Mixing Energy Balance, Eur. Polym. J. 2014, 60, 273–285. DOI: 10.1016/j.eurpolymj.2014.09.012.
  • Othman, N.; Acosta-Ramırez, A.; Mehrkhodavandi, P.; Dorgan, J. R.; Hatzikiriakos, S. G. Solution and Melt Viscoelastic Properties of Controlled Microstructure Poly(Lactide), J. Rheol. 2011, 55, 987–1004. DOI: 10.1122/1.3609853.
  • Meng, Q.; Heuzey, M. C.; Carreau, P. J. Control of Thermal Degradation Of Polylactide/Clay Nanocomposites During Melt Processing by Chain Extension Reaction, Polym. Degrad. Stabil. 2012, 97, 2010–2020. DOI: 10.1016/j.polymdegradstab.2012.01.030.
  • Najafi, N.; Heuzey, M. C.; Carreau, P. J.; Wood-Adams, P. M. Control of Thermal Degradation of Polylactide (PLA)-clay Nanocomposites Using Chain Extenders, Polym. Degrad. Stabil. 2012, 97, 554–565. DOI: 10.1016/j.polymdegradstab.2012.01.016.
  • Wang, J.; Zhu, W.; Zhang, H.; Park, C. B. Continuous Processing of Low-density, Microcellular Poly(lactic Acid) Foams with Controlled Cell Morphology and Crystallinity, Chem. Eng. Sci. 2012, 75, 390–399. DOI: 10.1016/j.ces.2012.02.051.
  • Al-Itry, R.; Lamnawar, K.; Maazouz, A. Reactive extrusion of PLA, PBAT with a Multi-functional Epoxide: Physico-Chemical and Rheological Properties, Eur. Polym. J. 2014, 58, 90–102. DOI: 10.1016/j.eurpolymj.2014.06.013.
  • Najafi, N.; Heauzey, M. C.; Carreau, P. J.; Therriault, D.; Park, C. B. Rheological and Foaming Behavior of Linear and Branched Polylactides, Rheol. Acta 2014, 53, 779–790. DOI: 10.1007/s00397-014-0801-3.
  • Najafi, N.; Heuzey, M.-C.; Carreau, P.; Therriault, D. Quiescent and Shear-induced Crystallization of Linear and Branched Polylactides, Rheol. Acta 2015, 54, 831–845. DOI: 10.1007/s00397-015-0874-7.
  • Gu, L.; Xu, Y.; Fahnhorst, G. W.; Macosko, C. W. Star vs Long Chain Branching of Poly(lactic acid) with Multifunctional Aziridine, J. Rheol. 2017, 61, 785–796. DOI: 10.1122/1.4985344.
  • Cailloux, J.; Santana, O. O.; Franco-Urquiza, E.; Bou, J. J.; Carrasco, F.; Gámez-Pérez, J.; Maspoch, M. L. Sheets of Branched Poly(lactic acid) Obtained by One Step Reactive Extrusion Calendering Process: Melt Rheology Analysis, Express Polym. Lett. 2013, 7, 304–318. DOI: 10.3144/expresspolymlett.2013.27.
  • Cailloux, J.; Santana, O. O.; Maspoch, M. L.; Bou, J. J.; Carrasco, F. Using Viscoelastic Properties to Quantitatively Estimate the Amount of Modified Poly(Lactic Acid) Chains Through Reactive Extrusion, J. Rheol. 2015, 59, 1191–1227. DOI: 10.1122/1.4928071.
  • Mihai, M.; Huneault, M. A.; Favis, B. D. Rheology and Extrusion Foaming of Chain-Branched Poly(lactic Acid), Polym. Eng. Sci. 2010, 50, 629–642. DOI: 10.1002/pen.21561.
  • Eslami, H.; Kamal, M. R. Effect of a Chain Extender on the Rheological and Mechanical Properties of Biodegradable Poly(Lactic Acid)/poly[(Butylene Succinate)-co-adipate] Bends, J. Appl. Polym. Sci. 2013, 129, 2418–2428. DOI: 10.1002/app.38449.
  • Nofar, M.; Zhu, W.; Park, C. B.; Randall, J. Crystallization Kinetics of Linear and Long-Chain-Branched Polylactide, Ind. Eng. Chem. Res. 2011, 50, 13789–13798. DOI: 10.1021/ie2011966.
  • Nofar, M.; Zhu, W.; Park, C. B. Effect of Dissolved CO2 on the Crystallization Behavior of Linear and Branched PLA. Polymer 2012, 53, 3341–3353. DOI: 10.1016/j.polymer.2012.04.054.
  • Wang, J.; Kean, K.; Randall, J.; Giles, D. The Effect of Crystallinity on the Rheological Behavior of Poly(lactide), Int. J. Polym. Anal. Charact. 1998, 4, 393–405. DOI: 10.1080/10236669808009725.
  • Fang, Q.; Hanna, M. A. Rheological Properties of Amorphous and Semicrystalline Polylactic acid Polymers, Ind. Crops Prod. 1999, 10, 47–53. DOI: 10.1016/S0926-6690(99)00009-6.
  • Bojda, J.; Piorkowska, E. Shear-induced Nonisothermal Crystallization of Two Grades of PLA, Polym. Test 2016, 50, 172–181. DOI: 10.1016/j.polymertesting.2016.01.006.
  • Ikada, Y.; Jamshidi, K.; Tsuji, H.; Hyon, S. H. Stereocomplex Formation Between Enantiomeric Poly (Lactides), Macromolecules 1987, 20, 904–906. DOI: 10.1021/ma00170a034.
  • Zhang, J.; Sato, H.; Tsuji, H.; Noda, I.; Ozaki, Y. Infrared Spectroscopic Study of CH3‚‚‚OdC Interaction During Poly(L-lactide)/Poly(D-lactide) Stereocomplex Formation, Macromolecules 2005, 38, 1822–1828. DOI: 10.1021/ma047872w.
  • Schmidt, S. C.; Hillmyer, M. A. Polylactide Stereocomplex Crystallites as Nucleating Agents for Isotactic Polylactide, J. Polym. Sci. B Polym. Phys. 2001, 39, 300–313. DOI: 10.1002/1099-0488.
  • Ahmed, J.; Varshney, S. K.; Janvier, F. Rheological and Thermal Properties of Stereocomplexed Polylactide Films, J. Therm. Anal. Calorim. 2014, 115, 2053–2061. DOI: 10.1007/s10973-013-3234-9.
  • Tsuji, H. Poly(lactide) Stereocomplexes: Formation, Structure, Properties, Degradation, and Applications, Macromol. Biosci. 2005, 5, 569–597. DOI: 10.1002/mabi.200500062.
  • Na, B.; Zhu, J.; Lv, R.; Ju, Y.; Tian, R.; Chen, B. Stereocomplex Formation in Enantiomeric Polylactides by Melting Recrystallization of Homocrystals: Crystallization Kinetics and Crystal Morphology, Macromolecules 2014, 47, 347–351. DOI: 10.1021/ma402405c.
  • Tsuji, H.; Horii, F.; Hyon, S. H.; Ikada, Y. Stereocomplex Formation Between Enantiomeric Poly(Lactic Acid)s. 2. Stereocomplex Formation in Concentrated Solutions, Macromolecules 1991, 24, 2719–2724. DOI: 10.1021/ma00010a013.
  • Yamane, H.; Sasai, K.; Takano, M.; Takahashi, M. Poly(D-lactic Acid) as a Rheological Modifier of Poly(L-lactic Acid): Shear and Biaxial Extensional Flow Behavior, J. Rheol. 2004, 48, 599–609. DOI: 10.1122/1.1687736.
  • Saeidlou, S.; Huneault, M. A.; Li, H.; Sammut, P.; Park, C. B. Evidence of a Dual Network/Spherulitic Crystalline Morphology in PLA Stereocomplexes, Polymer 2012, 53, 5816–5824. DOI: 10.1016/j.polymer.2012.10.030.
  • Saeidloua, S.; Huneault, M.; Li, H. Park, C. B. Poly(lactic Acid) stereocomplex formation: Application to PLA rheological property modification. J. Appl. Polym. Sci. 2014, 131., 41073–41081.
  • Wei, X. F.; Bao, R. Y.; Cao, Z. Q.; Yang, W.; Xie, B. H.; Yang, M. B. Stereocomplex Crystallite Network in Asymmetric PLLA/PDLA Blends: Formation, Structure, and Confining Effect on the Crystallization rate of Homocrystallites. Macromolecules 2014, 47, 1439–1448. DOI: 10.1021/ma402653a.
  • Jing, Z.; Shi, X.; Zhang, G. Behavior of Asymmetric PLLA/PDLA Blends Based on Linear PLLA and PDLA with Different Structure, Polym. Adv. Technol. 2016, 27, 1108–1120. DOI: 10.1002/pat.3841.
  • Liu, Z.; Luo, Y.; Bai, H.; Zhang, Q.; Fu, Q. Remarkably Enhanced Impact Toughness and Heat Resistance of Poly(L–lactide)/Thermoplastic Polyurethane Blends by Constructing Stereocomplex Crystallites in the Matrix. ACS Sustain. Chem. Eng. 2016, 4, 111–120. DOI: 10.1021/acssuschemeng.5b00816.
  • Ma, P.; Shen, T.; Xu, P.; Dong, W.; Lemstra, P. J.; Chen, M. Superior Performance of Fully Biobased Poly(Lactide) Via Stereocomplexation-Induced Phase Separation: Structure Versus Property, ACS Sustain. Chem. Eng. 2015, 3, 1470–1478. DOI: 10.1021/acssuschemeng.5b00208.
  • Liu, H.; Bai, D.; Bai, H.; Zhang, Q.; Fu, Q. Manipulating the Filler Network Structure and Properties of Polylactide/Carbon Black Nanocomposites with the Aid of Stereocomplex Crystallites, J. Phys. Chem. C 2018, 122, 4232–4240. DOI: 10.1021/acs.jpcc.8b00417.
  • Li, H.; Huneault, M. A. Effect of Nucleation and Plasticization on the Crystallization of Poly(lactic Acid), Polymer 2007, 48, 6855–6866. DOI: 10.1016/j.polymer.2007.09.020.
  • Sungsanit, K.; Kao, N.; Bhattacharya, S. N. Properties of Linear Poly(Lactic Acid)/Polyethylene Glycol Blends. Polym. Eng. Sci. 2012, 52, 108–116. DOI: 10.1002/pen.22052.
  • Xu, Y. Q.; Qu, J. P. Mechanical and Rheological Properties of Epoxidized Soybean Oil Plasticized Poly(Lactic Acid), J. Appl. Polym. Sci. 2009, 112, 3185–3191. DOI: 10.1002/app.29797.
  • Xu, Y. Q.; You, M.; Qu, J. P. Melt Rheology of Poly (Lactic Acid) Plasticized by Epoxidized Soybean Oil, Wuhan Univ. J. Nat. Sci. 2009, 14, 349–354. DOI: 10.1007/s11859-009-0413-4.
  • Cipriano, T. F.; Nazareth da Silva, A. L.; Monteiro da Fonseca, T.; da Silva, A. H.; Furtado de Sousa, A. M.; Monteiro da Silva, G.; Rocha, M. G. Thermal, Rheological and Morphological Properties of Poly (Lactic Acid) (PLA) and Talc Composites, Polímeros 2014, 24, 276–282. DOI: 10.4322/polimeros.2014.067.
  • Nofar, M. “Effects of Nano-/Micro-Sized Additives and the Corresponding Induced Crystallinity on the Extrusion Foaming Behavior of PLA Using Supercritical CO2, Mater. Design 2016, 101, 24–34. DOI: 10.1016/j.matdes.2016.03.147.
  • Ameli, A.; Jahani, D.; Nofar, M.; Jung, P. U.; Park, C. B. Processing and Characterization of Solid and Foamed Injection-Molded Polylactide with Talc, J. Cell. Plast. 2013, 49, 351–374. DOI: 10.1177/0021955X13481993.
  • Nofar, M.; Tabatabaei, A.; Park, C. B. Effects of Nano-/Micro-Sized Additives on the Crystallization Behaviors of PLA and PLA/CO2 Mixtures, Polymer 2013, 54, 2382–2391. DOI: 10.1016/j.polymer.2013.02.049.
  • Gu, S. Y.; Zou, C. Y.; Zhou, K.; Ren, J. Structure-Rheology Responses of Polylactide/Calcium Carbonate Composites, J. Appl. Polym. Sci. 2009, 114, 1648–1655. DOI: 10.1002/app.30768.
  • Yokohara, T.; Nobukawa, S.; Yamaguchi, M. Rheological Properties of Polymer Composites with Flexible Fine Fibers, J. Rheol. 2011, 55, 1205–1218. DOI: 10.1122/1.3626414.
  • Wang, Y.; Cheng, Y.; Chen, J.; Wu, D.; Qiu, Y.; Yao, X.; Zhou, Y.; Chen, C. Percolation Networks and Transient Rheology of Polylactide Composites Containing Graphite Nanosheets with Various Thicknesses, Polymer 2015, 67, 216–226. DOI: 10.1016/j.polymer.2015.04.076.
  • Tesfaye, M.; Patwa, R.; Gupta, A.; Kashyap, M. J.; Katiyar, V. “Recycling of Poly (Lactic Acid)/Silk Based Bionanocomposites Films and Its Influence on Thermal Stability, Crystallization Kinetics, Solution and Melt Rheology, Int. J. Biol. Macromol. 2017, 101, 580–594. DOI: 10.1016/j.ijbiomac.2017.03.085.
  • Ray, S. S.; Okamoto, M. New Polylactide/Layered Silicate Nanocomposites, 6 Melt Rheology, Macromol. Mater. Eng. 2003, 288, 936–944. DOI: 10.1002/mame.200300156.
  • Ray, S. S.; Yamada, K.; Okamoto, M.; Ueda, K. New Polylactide-Layered Silicate Nanocomposites. 2. Concurrent Improvements of Material Properties, Biodegradability and Melt Rheology. Polymer 2003, 44, 857–866. DOI: 10.1016/S0032-3861(02)00818-2.
  • Ray, S. S. Rheology of Polymer/Layered Silicate Nanocomposites, J. Ind. Eng. Chem. 2006, 12, 811–842.
  • Wu, D.; Wu, L.; Wu, L.; Zhang, M. Rheology and Thermal Stability of Polylactide/Clay Nanocomposites, Polym. Degrad. Stab. 2006, 91, 3149–3155. DOI: 10.1016/j.polymdegradstab.2006.07.021.
  • Gu, S. Y.; Ren, J.; Dong, B. Melt Rheology of Polylactide/Montmorillonite Nanocomposites, J. Polym. Sci. B Polym. Phys. 2007, 45, 3189–3196. DOI: 10.1002/polb.21317.
  • Pogodina, N. V.; Cerclé, C.; Avérous, L.; Thomann, R.; Bouquey, M.; Muller, R. Processing and Characterization of Biodegradable Polymer Nanocomposites: Detection of Dispersion State, Rheol. Acta 2008, 47, 543–553. DOI: 10.1007/s00397-007-0243-2.
  • Wang, B.; Wan, T.; Zeng, W. Dynamic Rheology and Morphology of Polylactide/Organic Montmorillonite Nanocomposites, J. Appl. Polym. Sci. 2011, 121, 1032–1039. DOI: 10.1002/app.33717.
  • Singh, S.; Ghosh, A. K.; Maiti, S. N.; Raha, S.; Gupta, R. K.; Bhattacharya, S. Morphology and Rheological Behavior of Polylactic Acid/Clay Nanocomposites, Polym. Eng. Sci. 2012, 52, 225–232. DOI: 10.1002/pen.22074.
  • Wang, B.; Wan, T.; Zeng, W. Rheological and Thermal Properties of Polylactide/Organic Montmorillonite Nanocomposites, J. Appl. Polym. Sci. 2012, 125, 364–371.
  • Keshtkar, M.; Nofar, M.; Park, C. B.; Carreau, P. J. Extruded PLA/Clay Nanocomposite Foams Blown with Supercritical CO2, Polymer 2014, 55, 4077–4090. DOI: 10.1016/j.polymer.2014.06.059.
  • Wu, T.; Tong, Y.; Qiu, F.; Yuan, D.; Zhang, G.; Qu, J. Morphology, Rheology Property, and Crystallization Behavior of PLLA/OMMT Nanocomposites Prepared by an Innovative Eccentric Rotor Extruder, Polym. Adv. Technol. 2018, 29, 41–51. DOI: 10.1002/pat.4087.
  • Basilissi, L. D.; Silvestro, G.; Farina, H.; Ortenzi, M. A. Synthesis and Characterization of PLA Nanocomposites Containing Nanosilica Modified with Different Organosilanes I. Effect of the Organosilanes on the Properties of Nanocomposites: Macromolecular, Morphological, and Rheologic Characterization, J. Appl. Polym. Sci. 2013, 125, 3057–3063.
  • Li, Y.; Han, C.; Bian, J.; Han, L.; Dong, L.; Gao, G. “Rheology and Biodegradation of Polylactide/Silica Nanocomposites, Polym. Compos. 2012, 33, 1719–1727. DOI: 10.1002/pc.22306.
  • Wu, F.; Lan, X.; Ji, D.; Liu, Z.; Yang, W.; Yang, M. Grafting Polymerization of Polylactic acid on the Surface of Nano-SiO2 and Properties of PLA/PLA-Grafted-SiO2 Nanocomposites, J. Appl. Polym. Sci. 2013, 129, 3019–3027. DOI: 10.1002/app.38585.
  • Zhang, Y.; Deng, B. Y.; Liu, Q. S. Rheology and Crystallization of PLA Containing PLA-Grafted Nanosilica, Plast. Rubber Compos. 2014, 43, 309–314. DOI: 10.1179/1743289814Y.0000000099.
  • Lai, S. M.; Hsieh, Y. T. Preparation and Properties of Polylactic acid (PLA)/Silica Nanocomposites, J. Macromol. Sci. Part B: Phys. 2016, 55, 211–228. DOI: 10.1080/00222348.2016.1138179.
  • Wu, D.; Wu, L.; Zhang, M.; Zhao, Y. “Viscoelasticity and Thermal Stability of Polylactide Composites with Various Functionalized Carbon Nanotubes, Polym. Degrad. Stab. 2008, 93, 1577–1584. DOI: 10.1016/j.polymdegradstab.2008.05.001.
  • Wu, D.; Wu, L.; Zhou, W.; Sun, Y.; Zhang, M. Relations Between the Aspect Ratio of Carbon Nanotubes and the Formation of Percolation Networks in Biodegradable Polylactide/Carbon Nanotube Composites, J. Polym. Sci. B Polym. Phys. 2010, 48, 479–489. DOI: 10.1002/polb.21909.
  • Xu, Z.; Niu, Y.; Yang, L.; Xie, W.; Li, H.; Gan, Z.; Wang, Z. Morphology, Rheology and Crystallization Behavior of Polylactide Composites Prepared Through Addition of Five-Armed Star Polylactide Grafted Multiwalled Carbon Nanotubes, Polymer 2010, 51, 730–737. DOI: 10.1016/j.polymer.2009.12.017.
  • Ding, W.; Kuboki, T.; Wong, A.; Park, C. B.; Sain, M. Rheology, Thermal Properties, and Foaming Behavior of High D-content Polylactic Acid/Cellulose Nanofiber Composites, RSC Adv. 2015, 5, 91544–91557. DOI: 10.1039/C5RA16901A.
  • Safdari, F.; Bagheriasl, D.; Carreau, P. J.; Heuzey, M. C.; Kamal, M. R. Rheological, Mechanical, and Thermal Properties of Polylactide/cellulose Nanofiber Biocomposites, Polym. Compos. 2016, 39, 1752–1762. doi.org/10.1002/pc.24127
  • Safdari, F.; Carreau, P. J.; Heuzey, M. C.; Kamal, M. R. Effects of Poly(ethylene glycol) on the Morphology and Properties of Biocomposites Based on Polylactide and Cellulose Nanofibers, Cellulose 2017, 24, 2877–2893. DOI: 10.1007/s10570-017-1327-5.
  • Kamal, M. R.; Khoshkava, V. “Effect of Cellulose Nanocrystals (CNC) on Rheological and Mechanical Properties and Crystallization Behavior of PLA/CNC Nanocomposites, Carbohydr. Polym. 2015, 123, 105–114. DOI: 10.1016/j.carbpol.2015.01.012.
  • Bagheriasl, D.; Carreau, P. J.; Riedl, B.; Dubois, C.; Hamad, W. Y. Shear Rheology of Polylactide (PLA)–Cellulose Nanocrystal (CNC) Nanocomposites, Cellulose 2016, 23, 1885–1897. DOI: 10.1007/s10570-016-0914-1.
  • Sabzi, M.; Jiang, L.; Liu, F.; Ghasemi, I.; Atai, M. Graphene Nanoplatelets as Poly(lactic acid) Modifier: Linear Rheological Behavior and Electrical Conductivity, J. Mater. Chem. A 2013, 1, 8253–8261. DOI: 10.1039/c3ta11021d.
  • Sabzi, M.; Jiang, L.; Nikfarjam, N. Graphene Nanoplatelets as Rheology Modifiers for Polylactic Acid: Graphene Aspect-Ratio-Dependent Nonlinear Rheological Behavior. Ind. Eng. Chem. Res. 2015, 54, 8175–8182. DOI: 10.1021/acs.iecr.5b01863.
  • Kwon, O. M.; Watanabe, H.; Ahn, K. H.; Lee, S. J. Interplay Between Structure and Property of Graphene Nanoplatelet Networks Formed by an Electric Field in a Poly(Lactic Acid) Matrix. J. Rheol. 2017, 61, 291–303. DOI: 10.1122/1.4975335.
  • Krikorian, V. Pochan, D.J. Poly (L-lactic Acid)-Layered Silicate Nanocomposite, Fabrication Characterization and Properties, Chem. Mater. 2003, 15, 4317–4324.
  • Guo, J.; Briggs, N.; Crossley, S.; Grady, B. P. A New Finding for Carbon Nanotubes in Polymer Blends: Reduction of Nanotube Breakage During Melt Mixing, J. Thermoplastic Compos. Mater. 2018, 31, 110–118. DOI: 10.1177/0892705716681835.
  • Macosko, C. W. Morphology Development and Control in Immiscible Polymer Blends, Macromol. Symp. 2000, 149, 171–184. DOI: 10.1002/1521-3900(200001)149:1<171::AID-MASY171>3.0.CO;2-8.
  • Favis, B. D. Polymer Alloys and Blends: Recent Advances, Can. J. Chem. Eng. 1991, 69, 619–625. DOI: 10.1002/cjce.5450690303.
  • Nofar, M.; Sacligil, D.; Carreau, P. J.; Kamal, M. R.; Heuzey, M. C. Poly (Lactic Acid) Blends: Processing, Properties and Applications, Int. J. Biol. Macromol. 2019, 125, 307–360. DOI: 10.1016/j.ijbiomac.2018.12.002.
  • Hao, X.; Kaschta, J.; Liu, X.; Pan, Y.; Schubert, D. W. Entanglement Network Formed in Miscible PLA/PMMA Blends and Its Role in Rheological and Thermo-Mechanical Properties of the Blends, Polymer 2015, 80, 38–45. DOI: 10.1016/j.polymer.2015.10.037.
  • Gu, S.; Zhang, K.; Ren, J.; Zhan, H. Melt Rheology of Polylactide/Poly(Butylene Adipate-co-Terephthalate) Blends, Carbohydr. Polym. 2008, 74, 79–85. DOI: 10.1016/j.carbpol.2008.01.017.
  • Li, K.; Peng, J.; Turng, I.; Huang, H. Dynamic Rheological Behavior and Morphology of Polylactide/Poly(Butylenes Adipate-Co-Terephthalate) Bends with Various Composition Ratios, Adv. Polym. Technol. 2011, 30, 150–157. DOI: 10.1002/adv.20212.
  • Al-Itry, R.; Lamnawar, K.; Maazouz, A. Biopolymer Blends Based on Poly (lactic acid): Shear and Elongation Rheology/Structure/Blowing Process Relationships, Polymers 2015, 7, 939–962. DOI: 10.3390/polym7050939.
  • Dil, E. J.; Carreau, P. J.; Favis, B. D. Morphology, Miscibility and Continuity Development in Poly(Lactic Acid)/Poly(Butylene Adipate-Co-Terephthalate) Blends, Polymer 2015, 68, 202–201. DOI: 10.1016/j.polymer.2015.05.012.
  • Gui, Z.; Wang, H.; Gao, Y.; Lu, C.; Chen, S. Morphology and Melt Rheology of Biodegradable Poly(Lactic Acid)/poly(Butylene Succinate Adipate) Blends: Effect of Blend Compositions, Iran. Polym. J. 2012, 21, 81–89. DOI: 10.1007/s13726-011-0009-7.
  • Wu, D.; Zhang, Y.; Yuan, L.; Zhang, M.; Zhou, W. Viscoelastic Interfacial Properties of Compatibilized Poly(ε-caprolactone)/Polylactide Blend, J. Polym. Sci. B Polym. Phys. 2010, 48, 756–765. DOI: 10.1002/polb.21952.
  • Derakhshandeh, M.; Noroozi, N.; Schafer, L. L.; Vlassopoulos, D.; Hatzikiriakos, S. G. Dynamics of Partially Miscible Polylactide-Poly(ε-caprolactone) Blends in the Presence of Cold Crystallization, Rheol. Acta 2016, 55, 657–671. DOI: 10.1007/s00397-016-0941-8.
  • Gerard, T.; Budtova, T. Morphology and Molten-state Rheology of Polylactide and Polyhydroxyalkanoate Blends, Eur. Polym. J. 2012, 48, 1110. DOI: 10.1016/j.eurpolymj.2012.03.015.
  • Modi, S.; Koelling, K.; Vodovotz, Y. Assessing the Mechanical, Phase Inversion, and Rheological Properties of Poly-[(R)-3-Hydroxybutyrate-co-(R)-3-Hydroxyvalerate] (PHBV) Blended with Poly-(L-Lactic Acid) (PLA), Eur. Polym. J. 2013, 49, 3681–3690. DOI: 10.1016/j.eurpolymj.2013.07.036.
  • Shin, B. Y.; Jo, G. S.; Kang, K. S.; Lee, T. J.; Kim, B. S.; Lee, S. I.; Song, J. S. Morphology and Rheology on the Blends of PLA/CMPS, Macromol. Res. 2007, 15, 291–301. DOI: 10.1007/BF03218790.
  • Wu, D.; Zhang, Y.; Zhang, M.; Zhou, W. Phase Behavior and its Viscoelastic Response of Polylactide/Poly(e-caprolactone) Blend, Eur. Polym. J. 2008, 44, 2171–2183. DOI: 10.1016/j.eurpolymj.2008.04.023.
  • Utracki, L. A. On the Viscosity Concentration Dependence of Immiscible Polymer Blends, J. Rheol. 1991, 35, 1615–1637. DOI: 10.1122/1.550248.
  • Jiang, G.; Huang, H.; Chen, Z. Rheological Responses and Morphology of Polylactide/Linear low Density Polyethylene Blends Produced by Different Mixing Type, Polym. Plast. Technol. Eng. 2011, 50, 1035–1039. DOI: 10.1080/03602559.2011.557822.
  • Nofar, M.; Tabatabaei, A.; Sojoudi, H.; Park, C. B.; Carreau, P. J.; Heuzey, M.-C.; Kamal, M. R. Mechanical and Bead Foaming Behavior of PLA-PBAT and PLA-PBSA Blends with Different Morphologies”, Eur. Polym. J. 2017, 90, 231–244. DOI: 10.1016/j.eurpolymj.2017.03.031.
  • Ess, J. W.; Hornsby, P. R. Characterization of Distributive Mixing in Thermoplastics Compositions, Polym. Test 1986, 6, 205–218. DOI: 10.1016/0142-9418(86)90063-2.
  • Puyvelde, P. V.; Velankar, S.; Moldenaers, P. Rheology and Morphology of Compatibilized Polymer Blends, Curr. Opin. Colloid Interface Sci. 2001, 6, 457–463. DOI: 10.1016/S1359-0294(01)00113-3.
  • Sundararaj, U.; Macosko, C. W. Drop Breakup and Coalescence in Polymer Blends: The Effects of Concentration and Compatibilization, Macromolecules 1995, 28, 2647–2657. DOI: 10.1021/ma00112a009.
  • Ding, Y.; Lu, B.; Wang, P.; Wang, G.; Ji, J. PLA-PBAT-PLA Tri-block Copolymers: Effective Compatibilizers for Promotion of the Mechanical and Rheological Properties of PLA/PBAT Blends, Polym. Degrad. Stabil. 2018, 147, 41–44. DOI: 10.1016/j.polymdegradstab.2017.11.012.
  • López-Barrón, C. R.; Macosko, C. W. Rheology of Compatibilized Immiscible Blends with Droplet-Matrix and Cocontinuous Morphologies During Coarsening, J. Rheol. 2014, 58, 1935–1953. DOI: 10.1122/1.4897409.
  • Riemann, R.-E.; Cantow, H.-J.; Friedrich, C. Rheological Investigation of Form Relaxation and Interface Relaxation Processes in Polymer Blends, Polym. Bull. 1996, 36, 637–643. DOI: 10.1007/BF00342457.
  • Dong, W.; Wang, H.; Ren, F.; Zhang, J.; He, M.; Wu, T.; Li, Y. Dramatic Improvement in Toughness of PLLA/PVDF Blends: The effect of compatibilizer architectures”, ACS Sustain. Chem. Eng. 2016, 4, 4480–4489. DOI: 10.1021/acssuschemeng.6b01420.
  • Palierne, J. F. Linear Rheology of Viscoelastic Emulsions with Interfacial Tension, Rheol. Acta 1990, 29, 204–214. DOI: 10.1007/BF01331356.
  • Rigolin, T. R.; Costa, L. C.; Chinelatto, M. A.; A.; P.; Muñoz, R.; Bettini, S. H. P. Chemical Modification of Poly(Lactic Acid) and its Use as Matrix in Poly(Lactic Acid) Poly(Butylene Adipate-co-Terephthalate) Blends”, Polym. Test 2017, 63, 542–549. DOI: 10.1016/j.polymertesting.2017.09.010.
  • Maani, A.; Blais, B.; Heuzey, M.-C.; Carreau, P. J. “Rheological and Morphological Properties of Reactively Compatibilized Thermoplastic Olefin (TPO) Blends, J. Rheol. 2012, 56, 625–647. DOI: 10.1122/1.3700966.
  • Tschoegl, N. W. The Phenomenological Theory of Linear Viscoelastic Behavior: An Introduction; Springer-Verlag: Berlin, New York, 1989.
  • Souza, A. M. C.; Demarquette, N. R. Influence of Coalescence and Interfacial Tension on the Morphology of PP/HDPE Compatibilized Blends, Polymer 2002, 43, 3959–3967. DOI: 10.1016/S0032-3861(02)00223-9.
  • Li, R.; Yu, W.; Zhou, C. Rheological Characterization of Droplet‐Matrix Versus Co‐Continuous Morphology, J. Macromol. Sci. Part B 2006, 45, 889–898. DOI: 10.1080/00222340600777496.
  • Macaúbas, P. H. P.; Demarquette, N. R. Morphologies and Interfacial Tensions of Immiscible Polypropylene/Polystyrene Blends Modified with Triblock Copolymers, Polymer 2001, 42, 2543–2554. DOI: 10.1016/S0032-3861(00)00655-8.
  • Nofar, M.; Maani, A.; Sojoudi, H.; Heuzey, M. C.; Carreau, P. J. Interfacial and Rheological Properties of PLA/PBAT and PLA/PBSA Blends and Their Morphological Stability Under Shear Flow, J. Rheol. 2015, 59, 317–333. DOI: 10.1122/1.4905714.
  • Nofar, M.; Heuzey, M. C.; Carreau, P. J.; Kamal, M. R.; Randall, J. Coalescence in PLA-PBAT Blends Under Shear Flow: Effects of Blend Preparation and PLA Molecular Weight, J. Rheol. 2016, 60, 637–648. DOI: 10.1122/1.4953446.
  • Hedegaard, A. T.; Gu, L.; Macosko, C. W. Effect of Extensional Viscosity on Cocontinuity of Immiscible Polymer Blends, J. Rheol. 2015, 59, 1397–1417. DOI: 10.1122/1.4933321.
  • Bhatia, A.; Gupta, R. K.; Bhattacharya, S. N.; Choi, H. J. An Investigation of Melt Rheology and Thermal Stability of Poly(lactic acid)/Poly(Butylene Succinate) Nanocomposites, J. Appl. Polym. Sci. 2009, 114, 2837–2847. DOI: 10.1002/app.30933.
  • Eslami, H.; Kamal, M. R. Elongational Rheology of Biodegradable Poly(Lactic Acid)/Poly [(Butylene Succinate)-Co-Adipate] Binary Blends and Poly(Lactic Acid)/Poly[(Butylene Succinate)-co-Adipate]/Clay Ternary Nanocomposites”, J. Appl. Polym. Sci. 2013, 127, 2290–2306. DOI: 10.1002/app.37928.
  • Wu, G.; Asai, S.; Sumita, M.; Hattori, T.; Higuchi, R.; Washiyama, J. Estimation of Flocculation Structure in Filled Polymer Composites by Dynamic Rheological Measurements, Colloid Polym. Sci. 2000, 278, 220–228. DOI: 10.1007/s003960050035.
  • Sumita, M.; Sakata, K.; Asai, S.; Miyasaka, K.; Nakagawa, H. Dispersion of Fillers and the Electrical Conductivity of Polymer Blends Filled with Carbon Black, Polym. Bull. 1991, 25, 265–271. DOI: 10.1007/BF00310802.
  • Fenouillot, F.; Cassagnau, P.; Majeste, J. –C. Uneven Distribution of Nanoparticles in Immiscible Fluids: Morphology Development in Polymer Blends”, Polymer 2009, 50, 1333–1350. DOI: 10.1016/j.polymer.2008.12.029.
  • Go¨Ldel, A.; Marmur, A.; Kasaliwal, G. R.; Po¨Tschke, P.; Heinrich, G. “Shape-Dependent Localization of Carbon Nanotubes and Carbon Black in an Immiscible Polymer Blend During Melt Mixing”, Macromolecules 2011, 44, 6094–6102. DOI: 10.1021/ma200793a.
  • Dil, J. E.; Carreau, P. J.; Favis, B. D. Localization of Micro- and Nano-Silica Particles in Heterophase Poly(Lactic Acid)/Poly(Butylene Adipate-Co-Terephthalate) Blends”, Polymer 2015, 76, 295–306. DOI: 10.1016/j.polymer.2015.08.046.
  • Christine, A.; C.; B.; Devaux, J. Interface Localization of Carbon Nanotubes in Blends of Two Copolymers, Polym. Degrad. Stabil. 2010, 95, 389–398. DOI: 10.1016/j.polymdegradstab.2009.11.007.
  • Baudouin, A.-C.; Devaux, J.; Bailly, C. Localization of Carbon Nanotubes at the Interface in Blends of Polyamide and Ethylene–Acrylate Copolymer”, Polymer 2010, 51, 1341–1354. DOI: 10.1016/j.polymer.2010.01.050.
  • Liebscher, M.; Blais, M.-O.; Pötschke, P.; Heinrich, G. A Morphological Study on the Dispersion and Selective Localization Behavior of Graphene Nanoplatelets in Immiscible Polymer Blends of PC and SAN, Polymer 2013, 54, 5875–5882. DOI: 10.1016/j.polymer.2013.08.009.
  • Chen, J.; Shen, Y.; Yang, J-h.; Zhang, N.; Huang, T.; Wang, Y.; Zhou, Z-W. Trapping Carbon Nanotubes at the Interface of a Polymer Blend Through Adding Graphene Oxide: A Facile Strategy to Reduce Electrical Resistivity. J. Mater. Chem. C 2013, 1, 7808–7811. DOI: 10.1039/c3tc31702a.
  • Wang, H.; Yang, X.; Fu, Z.; Zhao, X.; Li, Y.; Li, J. Rheology of Nanosilica-Compatibilized Immiscible Polymer Blends: Formation of a Heterogeneous Network Facilitated by Interfacially Anchored Hybrid Nanosilica, Macromolecules 2017, 50, 9494–9506. DOI: 10.1021/acs.macromol.7b02143.
  • Heshmati, V.; Kamal, M. R.; Favis, B. D. Tuning the Localization of Finely Dispersed Cellulose Nanocrystal in Poly (Lactic Acid)/bio-Polyamide11 Blends, J. Polym. Sci. Part B: Polym. Phys. 2018, 56, 576–587. DOI: 10.1002/polb.24563.
  • Salehiyan, R.; Hyun, K. Effect of Organoclay on Non-linear Rheological Properties of Poly(Lactic Acid)/Poly(Caprolactone) Blends, Korean J. Chem. Eng. 2013, 30, 1013–1022. DOI: 10.1007/s11814-013-0035-6.
  • Salehiyan, R.; Ray, S. S.; Bandyopadhyay, J.; Ojijo, V. The Distribution of Nanoclay Particles at the Interface and Their Influence on the Microstructure Development and Rheological Properties of Reactively Processed Biodegradable Polylactide/Poly(Butylene Succinate) Blend Nanocomposites, Polymers 2017, 9, 350. DOI: 10.3390/polym9080350.
  • Nofar, M.; Heuzey, M.-C.; Carreau, P. J.; Kamal, M. R. Effects of Nanoclay and its Localization on the Morphology Stabilization of PLA/PBAT Blends Under Shear Flow, Polymer 2016, 98, 353–364. DOI: 10.1016/j.polymer.2016.06.044.
  • Bai, L.; He, S.; Fruehwirth, J. W.; Stein, A.; Macosko, C. W.; Cheng, X. Localizing Graphene at the Interface of Cocontinuous Polymer Blends: Morphology, Rheology, and Conductivity of Cocontinuous Conductive Polymer Composites, J. Rheol. 2017, 61, 575–587. DOI: 10.1122/1.4982702.
  • Bai, L.; Sharma, R.; Cheng, X.; Macosko, C. W. Kinetic Control of Graphene Localization in Co-Continuous Polymer Blends Via Melt Compounding, Langmuir 2018, 34, 1073–1083. DOI: 10.1021/acs.langmuir.7b03085.
  • Aghjeh, M. R.; Asadi, V.; Mehdijabbar, P.; Khonakdar, H. A.; Jafari, S. H. Application of Linear Rheology in Determination of Nanoclay Localization in PLA/EVA/Clay Nanocomposites: Correlation with Microstructure and Thermal Properties, Compos. Part B 2016, 86, 273–284. DOI: 10.1016/j.compositesb.2015.09.064.
  • Nuzzo, A.; Bilotti, E.; Peijs, T.; Acierno, D.; Filippone, G. Nanoparticle-Induced Co-Continuity in Immiscible Polymer Blends a Comparative Study on Bio-based PLA-PA11 Blends Filled with Organoclay, Sepiolite, and Carbon Nanotubes, Polymer 2014, 55, 4908–4919. DOI: 10.1016/j.polymer.2014.07.036.
  • Salehiyan, R.; Ray, S. S. Influence of Nanoclay Localization on Structure–Property Relationships of Polylactide-based Biodegradable Blend Nanocomposites, Macromol. Mater. Eng. 2018, 303, 201800134. DOI: 10.1002/mame.201800134.
  • Zhao, X.; Wang, H.; Fu, Z.; Li, Y. Enhanced Interfacial Adhesion by Reactive Carbon Nanotubes: New Route to High-Performance Immiscible Polymer Blend Nanocomposites with Simultaneously Enhanced Toughness, Tensile Strength, and Electrical Conductivity, ACS Appl. Mater. Interfaces 2018, 10, 8411–8416. DOI: 10.1021/acsami.8b01704.
  • Dil, E. J.; Virgilio, N.; Favis, B. D. The Effect of the Interfacial Assembly of Nano-Silica in Poly(Lactic Acid)/Poly(Butylene Adipate-Co-Terephthalate) Blends on Morphology, Rheology and Mechanical Properties”, Eur. Polym. J. 2016, 85, 635–646. DOI: 10.1016/j.eurpolymj.2016.07.022.
  • Ray, S. S.; Bousmina, M.; Maazouz, A. Morphology and Properties of Organoclay Modified Polycarbonate/Poly(Methyl Methacrylate) Blend, Polym. Eng. Sci. 2006, 46, 1121–1129. DOI: 10.1002/pen.20598.
  • Zhu, Y.; Ma, H-y.; Tong, L-f.; Fang, Z-p. Cutting Effect of Organoclay Platelets in Compatibilizing Immiscible Polypropylene/Polystyrene Blends, J. Zhejiang Univ. Sci. A 2008, 9, 1614–1620. DOI: 10.1631/jzus.A0820104.
  • Kelnar, I.; Kratochvíl, J.; Kaprálková, L.; Zhigunov, A.; Nevoralová, M. Graphite Nanoplatelets-Modified PLA/PCL: Effect of Blend Ratio and Nanofiller Localization on Structure and Properties, J. Mech. Behavior Biomed. Mater. 2017, 71, 271–278. DOI: 10.1016/j.jmbbm.2017.03.028.
  • Kelnar, I.; Kratochvíl, J.; Kaprálková, L.; Špitálsky, Z.; Ujčič, M.; Zhigunov, A.; Nevoralová, M. “Effect of graphene oxide on structure and properties of impact modified polyamide 6, Polym-Plast. Technol. Eng. 2018, 57, 827–835. DOI: 10.1080/03602559.2017.1354223.
  • Nofar, M.; C.B. Chapter, P. 5-Heterogeneous Cell Nucleation Mechanisms in Polylactide Foaming, In Biofoams: Science and Applications of Bio-Based Cellular and Porous Materials, Iannace, S.; Park, C. B, Eds.; CRC Press: NW, USA, 2015; pp. 153–177. ISBN-13: 978-1-4665-6180-9.
  • Nofar, M.; Ameli, A.; Park, C. B. Development of Polylactide Bead Foam with Double Crystal Melting Peak Structure, Polymer 2015, 69, 83–94. DOI: 10.1016/j.polymer.2015.05.048.
  • Nofar, M.; Ameli, A.; Park, C. B. A Novel Technology to Manufacture Biodegradable Polylactide Bead Foam Products”, Mater. Design 2015, 83, 413–421. DOI: 10.1016/j.matdes.2015.06.052.
  • Park, C. B.; Nofar, M. A Method for the Preparation of PLA Bead Foams, WO Patent WO2014158014 A1 (2013).
  • Nofar, M. Rheological, Thermal, and Foaming Behaviors of Different Polylactide Grades, Int. J. Mater. Sci. Res. 2018, 1, 16–22. DOI: 10.18689/ijmsr-1000103.
  • Dopico-García, S.; Ares-Pernas, A.; Otero-Canabal, J.; Castro-López, M.; López-Vilariño, J. M.; González-Rodríguez, V.; Abad-López, M. J. Insight into Industrial PLA Aging Process by Complementary Use of Rheology, HPLC, and MALD. Polym. Adv. Technol. 2013, 24, 723–731. DOI: 10.1002/pat.3136.
  • Speranza, V.; De Meo, A.; Pantani, R. Thermal and Hydrolytic Degradation Kinetics of PLA in the Molten Tate, Polym. Degrad. Stabil. 2014, 100, 37–41. DOI: 10.1016/j.polymdegradstab.2013.12.031.
  • Franco, F.; Auras, R.; Ahmed, J.; Selke, S.; Rubino, M.; Dolan, K.; Soto-Valdez, H. Control of Hydrolytic Degradation of Poly(Lactic Acid) by Incorporation of Chain Extender: From Bulk to Surface Erosion. Polym. Test 2018, 67, 190–196. DOI: 10.1016/j.polymertesting.2018.02.028.
  • Tong, J.; Huang, H.-X.; Wu, M. Promoting Compatibilization Effect of Graphene Oxide on Immiscible PS/PVDF Blend Via Water-Assisted Mixing Extrusion, Compos. Sci. Technol. 2017, 149, 286–293. DOI: 10.1016/j.compscitech.2017.07.005.
  • Chalon, S.; Follain, N.; Dargent, E.; Soulestin, J.; Sclavons, M.; Marias, S. Improvement of Barrier Properties of Bio-based Polyester Nanocomposite Membranes by Water-Assisted Extrusion, J. Membr. Sci. 2015, 496, 185–198. DOI: 10.1016/j.memsci.2015.08.043.
  • Chalon, S.; Follain, N.; Dargent, E.; Soulestin, J.; Sclavons, M.; Marias, S. Poly[(Butylene Succinate)-Co-(Butylene Adipate)]-Montmorillonite Nanocomposites Prepared by Water-Assisted Extrusion: Role of the Dispersion Level and of the Structure–Microstructure on the Enhanced Barrier Properties, J. Phys. Chem. C 2016, 120, 13234–13248. DOI: 10.1021/acs.jpcc.6b00339.
  • Tai, H.; Upton, C. E.; White, L. J.; Pini, R.; Storti, G.; Mazzotti, M.; Shakesheff, K. M.; Howdle, S. M. Studies on the Interactions of CO2 with Biodegradable Poly(DL-lactic Acid) and Poly(lactic Acid-co-Glycolic Acid) Copolymers Using High Pressure ATR-IR and High Pressure Rheology, Polymer 2010, 51, 1425–1431. DOI: 10.1016/j.polymer.2010.01.065.
  • Marek, A. A.; Verney, V. Photochemical Reactivity of PLA at the Vicinity of Glass Transition Temperature. The Photo-Rheology Method, Eur. Polym. J. 2016, 81, 239–246. DOI: 10.1016/j.eurpolymj.2016.06.016.
  • Ock, H. G.; Ahn, K. H.; Lee, S. J.; Hyun, K. Characterization of Compatibilizing Effect of Organoclay in Poly(Lactic Acid) and Natural Rubber Blends by FT-Rheology, Macromolecules 2016, 49, 2832–2842. DOI: 10.1021/acs.macromol.5b02157.
  • Wang, Y.; Yang, L.; Niu, Y.; Wang, Z.; Zhang, J.; Yu, F.; Zhang, H. Rheological and Topological Characterizations of Electron Beam Irradiation Prepared Long-chain Branched Polylactic Acid, J. Appl. Polym. Sci. 2011, 122, 1857–1865. DOI: 10.1002/app.34276.
  • Wang, L.; Jing, X.; Cheng, H.; Hu, X.; Yang, L.; Huang, Y. Of Long-Chain Branched Poly(L-Lactide)s with Controlled Branch Length, Ind. Eng. Chem. Res. 2012, 51, 10731–10741. DOI: 10.1021/ie300524j.
  • Nouri, S.; Dubois, C.; Lafleur, P. G. Effect of Chemical and Physical Branching on Rheological Behavior of Polylactide, J. Rheol. 2015, 59, 1045–1063. DOI: 10.1122/1.4922486.
  • Mannion, A. M.; Bates, F. S.; Macosko, C. W. Synthesis and Rheology of Branched Multiblock Polymers Based on Polylactide, Macromolecules 2016, 49, 4587–4598. DOI: 10.1021/acs.macromol.6b00792.
  • Yamoum, C.; Maia, J.; Magaraphan, R. Rheological and Thermal Behavior of PLA Modified by Chemical Crosslinking in the Presence of Ethoxylated Bisphenol a Dimethacrylates, Polym. Adv. Technol. 2017, 28, 102–112. DOI: 10.1002/pat.3864.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.