1,849
Views
56
CrossRef citations to date
0
Altmetric
Reviews

Carboxyl-functionalized derivatives of carboxymethyl cellulose: towards advanced biomedical applications

, &
Pages 510-560 | Received 28 Aug 2018, Accepted 24 Jan 2019, Published online: 15 May 2019

References

  • Heinze, T.; Liebert, T. “Unconventional methods in cellulose functionalization”, Prog. Polym. Sci. 2001, 26, 1689–1762. DOI:10.1016/S0079-6700(01)00022-3.
  • Ott, E.; Spurlin, H. M.; Grafflin, M. W.; Bikales, N. M.; Segal, L. Cellulose and Cellulose Derivatives, Vol. 5; Interscience Publishers: New York, 1954.
  • Yang, X. H.; Zhu, W. L. “Viscosity properties of sodium carboxymethylcellulose solutions”, Cellulose 2007, 14, 409–417. DOI:10.1007/s10570-007-9137-9.
  • Mishra, S.; Sen, G.; Dey, K. P.; Rani, G. U. “Synthesis and applications of grafted carboxymethyl cellulose: A review”, In Cellulose-Based Graft Copolymers: Structure and Chemistry; CRC Press: Boca Raton, 2015; pp 475–496.
  • Taubner, T.; Synytsya, A.; Čopíková, J. “Preparation of amidated derivatives of carboxymethylcellulose”, Int. J. Biol. Macromol. 2015, 72, 11–18. DOI:10.1016/j.ijbiomac.2014.07.049.
  • Tizzotti, M.; Charlot, A.; Fleury, E.; Stenzel, M.; Bernard, J. “Modification of polysaccharides through controlled/living radical polymerization grafting—towards the generation of high performance hybrids”, Macromol. Rapid Commun. 2010, 31, 1751–1772. DOI:10.1002/marc.201000072.
  • Heinze, T.; Koschella, A. “Carboxymethyl ethers of cellulose and starch - A review”, Macromol. Symp. 2005, 223, 13–39. DOI:10.1002/masy.200550502.
  • Ambjörnsson, H. A.; Schenzel, K.; Germgård, U. “Carboxymethyl cellulose produced at different mercerization conditions and characterized by Nir FT Raman Spectroscopy in combination with multivariate analytical methods”, BioResources 2013, 8, 1918–1932.
  • Heinze, T.; Pfeiffer, K.; Jena, D. “Studies on the synthesis and characterization of carboxymethylcellulose”, Angew. Makromol. Chem. 1999, 266, 37–45. DOI:10.1002/(SICI)1522-9505(19990501)266:1<37::AID-APMC37>3.0.CO;2-Z.
  • Clasen, C.; Kulicke, W. M. “Determination of viscoelastic and rheo-optical material functions of water-soluble cellulose derivatives”, Prog. Polym. Sci. 2001, 26, 1839–1919. DOI:10.1016/S0079-6700(01)00024-7.
  • Kulicke, W. M.; Kull, A. H.; Kull, W.; Thielking, H.; Engelhardt, J.; Pannek, J. B. “Characterization of aqueous carboxymethylcellulose solutions in terms of their molecular structure and its influence on rheological behavior”, Polymer 1996, 37, 2723–2731. DOI:10.1016/0032-3861(96)87634-8.
  • Qiu, Y.; Chen, Y.; Zhang, G. G.; Yu, L.; Mantri, R. V. Developing solid oral dosage forms: pharmaceutical theory and practice (2nd ed.). Academic press: New York, 2016.
  • Wüstenberg, T. Cellulose and Cellulose Derivatives in the Food Industry: Fundamentals and Applications; John Wiley & Sons: New Jersey, 2014.
  • Vink, H. “Degradation of cellulose and cellulose derivatives by acid hydrolysis”, Makromol. Chem. 1966, 94, 1–14. DOI:10.1002/macp.1966.020940101.
  • de Britto, D.; Assis, O. B. G. “Thermal degradation of carboxymethylcellulose in different salty forms”, Thermochim. Acta 2009, 494, 115–122. DOI:10.1016/j.tca.2009.04.028.
  • Bemiller, J. N.; Whistler, R. L. Industrial Gums, Polysaccharides and Their Derivatives; Academic Press : New York, 1975.
  • Leone, G.; Fini, M.; Torricelli, P.; Giardino, R.; Barbucci, R. “An amidated carboxymethylcellulose hydrogel for cartilage regeneration”, J. Mater. Sci.: Mater. Med. 2008, 19, 2873–2880. DOI:10.1007/s10856-008-3412-7.
  • Thakur, V. K. Cellulose-Based Graft Copolymers: Structure and Chemistry; CRC Press: Boca Raton, 2015.
  • Nussinovitch, A. Hydrocolloid Applications: Gum Technology in the Food and Other Industries; Blackie Academic & Professional: London, 1997.
  • Kulikowska, A.; Wasiak, I.; Ciach, T. “Carboxymethyl cellulose oxidation to form aldehyde groups”, Challenges Mod. Technol. 2013, 4, 11–18.
  • Kumbar, S.; Laurencin, C.; Deng, M. Natural and Synthetic Biomedical Polymers; Elsevier Science: Burlington, MA, 2014.
  • Cui, S. W. Food Carbohydrates: Chemistry, Physical Properties, and Applications; CRC Press: Boca Raton, 2005.
  • Arca, H. C.; Mosquera-Giraldo, L. I.; Bi, V.; Xu, D.; Taylor, L. S.; Edgar, K. J. “Pharmaceutical applications of cellulose ethers and cellulose ether esters”, Biomacromolecules 2018, 19, 2351–2376. DOI:10.1021/acs.biomac.8b00517.
  • Montalbetti, C. A. G. N.; Falque, V. “Amide bond formation and peptide coupling”, Tetrahedron 2005, 61, 10827–10852. DOI:10.1016/j.tet.2005.08.031.
  • Charville, H.; Jackson, D. A.; Hodges, G.; Whiting, A.; Wilson, M. R. “The uncatalyzed direct amide formation reaction - Mechanism studies and the key role of carboxylic acid H-bonding. Eur. J. Org. Chem. 2011, 2011, 5981–5990. DOI:10.1002/ejoc.201100714.
  • Allen, C. L.; Chhatwal, A. R.; Williams, J. M. J. “Direct amide formation from unactivated carboxylic acids and amines”, Chem. Commun. 2012, 48, 666–668. DOI:10.1039/C1CC15210F.
  • Charville, H.; Jackson, D.; Hodges, G.; Whiting, A. “The thermal and boron-catalysed direct amide formation reactions: Mechanistically understudied yet important processes”, Chem. Commun. 2010, 46, 1813–1823. DOI:10.1039/b923093a.
  • Cossy, J.; Pale-Grosdemange, C. “A convenient synthesis of amides from carboxylic acids and primary amines”, Tetrahedron Lett. 1989, 30, 2771–2774. DOI:10.1016/S0040-4039(00)99121-4.
  • Lundberg, H.; Tinnis, F.; Selander, N.; Adolfsson, H. “Catalytic amide formation from non-activated carboxylic acids and amines”, Chem. Soc. Rev. 2014, 43, 2714–2742. DOI:10.1039/C3CS60345H.
  • Batelaan, J. G.; Van Der Horst, P. M. “Method of making amide modified carboxyl-containing polysaccharide and fatty amide modified polysaccharide so obtainable”, U.S. Patent No. 6,103,885, 2000.
  • Charpentier, D.; Mocanu, G.; Carpov, A.; Chapelle, S.; Merle, L.; Muller, G. “New hydrophobically modified carboxymethylcellulose derivatives”, Carbohydr. Polym. 1997, 33, 177–186. DOI:10.1016/S0144-8617(97)00031-3.
  • Zabivalova, N. M.; Bochek, A. M.; Kalyuzhnaya, L. M.; Vlasova, E. N.; Volchek, B. Z. “Carboxymethyl cellulose amides and their properties”, Russ. J. Appl. Chem. 2003, 76, 1998–2002. DOI:10.1023/B:RJAC.0000022456.23088.b6.
  • Sibikina, O. V.; Iozep, A. A.; Passet, B. V. “Reactions of carboxymethyl polysaccharides and their ethyl esters with amines”, Russ. J. Appl. Chem. 2004, 77, 263–266. DOI:10.1023/B:RJAC.0000030363.44546.42.
  • Schotten, C. “Ueber Die Oxydation Des Piperidins”, Ber. Dtsch. Chem. Ges. 1884, 17, 2544–2547. DOI:10.1002/cber.188401702178.
  • Baumann, E. “Ueber Eine Einfache Methode Der Darstellung Von Benzoësäureäthern”, Ber. Dtsch. Chem. Ges. 1886, 19, 3218–3222. DOI:10.1002/cber.188601902348.
  • Uglea, C. V.; Pârv, A.; Corjan, M.; Dumitriu, A. D.; Ottenbrite, R. M. “Biodistribution and antitumor activity induced by carboxymethylcellulose conjugates”, J. Bioact. Compat. Polym. 2005, 20, 571–583. DOI:10.1177/0883911505059251.
  • Arsenis, C.; McCormick, D. B. “Purification of liver flavokinase by column chromatography on flavin-cellulose compounds”, J. Biol. Chem. 164AD, 239, 3093–3097.
  • Leggio, A.; Belsito, E. L.; De Luca, G.; Di Gioia, M. L.; Leotta, V.; Romio, E.; Siciliano, C.; Liguori, A. “One-pot synthesis of amides from carboxylic acids activated using thionyl chloride”, RSC Adv. 2016, 6, 34468–34475. DOI:10.1039/C5RA24527C.
  • Human, J. P. E.; Mills, J. A. “Action of thionyl chloride on carboxylic acids in presence of pyridine”, Nature 1946, 158, 877. DOI:10.1038/158877a0.
  • Rogovin, Z. A.; Derevitskaya, V. A.; Tun, S.; Weǐ‐Gan, C.; Gal’Braikh, L. S. “Synthesis of new derivatives of cellulose and other polysaccharides”, J. Polym. Sci. Part. 1961, 53, 117–123. DOI:10.1002/pol.12005315817.
  • Ernsting, M. J.; Tang, W. L.; Maccallum, N.; Li, S. D. “Synthetic modification of carboxymethylcellulose and use thereof to prepare a nanoparticle forming Cconjugate of docetaxel for enhanced cytotoxicity against cancer cells”, Bioconjugate Chem. 2011, 22, 2474–2486. DOI:10.1021/bc200284b.
  • Čopíková, J.; Taubner, T.; Tůma, J.; Synytsya, A.; Dušková, D.; Marounek, M. “Cholesterol and fat lowering with hydrophobic polysaccharide derivatives”, Carbohydr. Polym. 2015, 116, 207–214. DOI:10.1016/j.carbpol.2014.05.009.
  • El-Faham, A.; Albericio, F. “Peptide coupling reagents, more than a letter soup”, Chem. Rev. 2011, 111, 6557–6602. DOI:10.1021/cr100048w.
  • Valeur, E.; Bradley, M. “Amide bond formation: Beyond the myth of coupling reagents”, Chem. Soc. Rev. 2009, 38, 606–631. DOI:10.1039/B701677H.
  • Karakasyan, C.; Lack, S.; Brunel, F.; Maingault, P.; Hourdet, D. “Synthesis and rheological properties of responsive thickeners based on polysaccharide architectures”, Biomacromolecules 2008, 9, 2419–2429. DOI:10.1021/bm800393s.
  • Sheehan, J. C.; Hess, G. P. “A new method of forming peptide bonds”, J. Am. Chem. Soc. 1955, 77, 1067–1068. DOI:10.1021/ja01609a099.
  • Billon, L.; Borisov, O. Macromolecular self-assembly; John Wiley & Sons: New Jersey, 2016.
  • Nakajima, N.; Ikada, Y. “Mechanism of amide formation by carbodiimide for bioconjugation in aqueous media”, Bioconjugate Chem. 1995, 6, 123–130. DOI:10.1021/bc00031a015.
  • Lee, S.; Park, Y. H.; Ki, C. S. “Fabrication of PEG-carboxymethylcellulose hydrogel by thiol-norbornene photo-click Cchemistry”, Int. J. Biol. Macromol. 2016, 83, 1–8. DOI:10.1016/j.ijbiomac.2015.11.050.
  • Ogushi, Y.; Sakai, S.; Kawakami, K. “Synthesis of enzymatically-gellable carboxymethylcellulose for biomedical applications”, J. Biosci. Bioeng. 2007, 104, 30–33. DOI:10.1263/jbb.104.30.
  • Ke, Y.; Liu, G.; Guo, T.; Zhang, Y.; Li, C.; Xue, W.; Wu, G.; Wang, J.; Du, C. “Size controlling of monodisperse carboxymethyl cellulose microparticles via a microfluidic process”, J. Appl. Polym. Sci. 2014, 131, 40663.
  • Fan, L.; Peng, M.; Zhou, X.; Wu, H.; Hu, J.; Xie, W.; Liu, S. “Modification of carboxymethyl cellulose grafted with collagen peptide and its antioxidant activity”, Carbohydr. Polym. 2014, 112, 32–38. DOI:10.1016/j.carbpol.2014.05.056.
  • Yang, L.; Li, L.; Tu, Q.; Ren, L.; Zhang, Y.; Wang, X.; Zhang, Z.; Liu, W.; Xin, L.; Wang, J. “Photocatalyzed surface modification of poly(dimethylsiloxane) with polysaccharides and assay of their protein adsorption and cytocompatibility”, Anal. Chem. 2010, 82, 6430–6439. DOI:10.1021/ac100544x.
  • Olszewska, A.; Junka, K.; Nordgren, N.; Laine, J.; Rutland, M. W.; Österberg, M. “Non-ionic assembly of nanofibrillated cellulose and polyethylene glycol grafted carboxymethyl cellulose and the effect of aqueous lubrication in nanocomposite formation”, Soft Matter 2013, 9, 7448–7457. DOI:10.1039/c3sm50578b.
  • Filpponen, I.; Kontturi, E.; Nummelin, S.; Rosilo, H.; Kolehmainen, E.; Ikkala, O.; Laine, J. “Generic method for modular surface modification of cellulosic materials in aqueous medium by sequential “click” reaction and adsorption”, Biomacromolecules 2012, 13, 736–742. DOI:10.1021/bm201661k.
  • Chiumiento, A.; Dominguez, A.; Lamponi, S.; Villalonga, R.; Barbucci, R. “Anti-inflammatory properties of superoxide dismutase modified with carboxymetil-cellulose polymer and hydrogel”, J. Mater. Sci.: Mater. Med. 2006, 17, 427–435. DOI:10.1007/s10856-006-8470-0.
  • Dadoo, N.; Landry, S. B.; Bomar, J. D.; Gramlich, W. M. “Synthesis and spatiotemporal modification of biocompatible and stimuli-responsive carboxymethyl cellulose hydrogels using thiol-norbornene chemistry”, Macromol. Biosci. 2017, 17, 589–599.
  • Rao, Z.; Ge, H.; Liu, L.; Zhu, C.; Min, L.; Liu, M.; Fan, L.; Li, D. “Carboxymethyl cellulose modified graphene oxide as PH-sensitive drug delivery system”, Int. J. Biol. Macromol. 2018, 107, 1184–1192. DOI:10.1016/j.ijbiomac.2017.09.096.
  • Barbucci, R.; Arturoni, E.; Panariello, G.; Di Canio, C. “A new amido phosphonate derivative of carboxymethylcellulose with an osteogenic activity and which is capable of interacting with any Ti surface”, J. Biomed. Mater. Res. 2010, 95, 58–67. DOI:10.1002/jbm.a.32757.
  • Hatanaka, D.; Takemoto, Y.; Yamamoto, K.; Kadokawa, J. I. “Hierarchically self-assembled nanofiber films from amylose-grafted carboxymethyl cellulose”, Fibers 2014, 2, 34–44. DOI:10.3390/fib2010034.
  • Kadokawa, J. I.; Arimura, T.; Takemoto, Y.; Yamamoto, K. “Self-assembly of amylose-grafted carboxymethyl cellulose”, Carbohydr. Polym. 2012, 90, 1371–1377. DOI:10.1016/j.carbpol.2012.07.006.
  • Zhang, R. “Synthesis, characterization and reversible transport of thermo-sensitive carboxyl methyl dextran/poly(N-isopropylacrylamide) hydrogel”, Polymer 2005, 46, 2443–2451. DOI:10.1016/j.polymer.2005.02.006.
  • Jiang, W.; Wang, J.; Yang, L.; Jiang, X.; Bai, Z.; Wang, Z.; He, Y.; Wang, D. “Nanostructured lipid carriers modified with PEGylated carboxymethylcellulose polymers for effective delivery of docetaxel”, RSC Adv. 2015, 5, 90386–90395. DOI:10.1039/C5RA13642C.
  • Jiang, W.; Yang, L.; Qiu, L.; Xu, J.; Yang, X.; Wang, J.; Zhou, H.; Wang, D. Multifunctional hybrid nanoparticles based on sodium carboxymethylcellulose-graft-histidine and TPGS for enhanced effect of docetaxel”, RSC Adv. 2015, 5, 53835–53845. DOI:10.1039/C5RA05586E.
  • Merle, L.; Charpentier, D.; Mocanu, G.; Chapelle, S. “Comparison of the distribution pattern of associative carboxymethylcellulose derivatives”, Eur. Polym. J 1999, 35, 1–7. DOI:10.1016/S0014-3057(98)00109-8.
  • Rosilio, V.; Albrecht, G.; Baszkin, A.; Merle, L. “Surface properties of hydrophobically modified carboxymethylcellulose derivatives. Effect of salt and proteins”, Colloids Surf. B Biointerf. 2000, 19, 163–172. DOI:10.1016/S0927-7765(00)00151-X.
  • Movagharnezhad, N.; Moghadam, P. N. “Folate-decorated carboxymethyl cellulose for controlled doxorubicin delivery”, Colloid Polym. Sci. 2016, 294, 199–206. DOI:10.1007/s00396-015-3768-4.
  • Saigo, K.; Usui, M.; Kikuchi, K.; Shimada, E.; Mukaiyama, T. “New method for the preparation of carboxylic esters”, BCSJ. 1977, 50, 1863–1866. DOI:10.1246/bcsj.50.1863.
  • Leone, G.; Delfini, M.; Di Cocco, M. E.; Borioni, A.; Barbucci, R. “The applicability of an amidated polysaccharide hydrogel as a cartilage substitute: Structural and rheological characterization”, Carbohydr. Res. 2008, 343, 317–327. DOI:10.1016/j.carres.2007.10.017.
  • Zhang, C.; Price, L. M.; Daly, W. H. “Synthesis and characterization of a trifunctional aminoamide cellulose derivative”, Biomacromolecules 2006, 7, 139–145. DOI:10.1021/bm050465n.
  • Barbucci, R.; Leone, G.; Monici, M.; Pantalone, D.; Fini, M.; Giardino, R. “The effect of amidic moieties on polysaccharides: Evaluation of the physicochemical and biological properties of amidic carboxymethylcellulose (CMCA) in the form of linear polymer and hydrogel”, J. Mater. Chem. 2005, 15, 2234–2241. DOI:10.1039/b503399c.
  • Magnani, A.; Rappuoli, R.; Lamponi, S.; Barbucci, R. “Novel polysaccharide hydrogels: Characterization and properties”, Polym. Adv. Technol. 2000, 11, 488–495. DOI:10.1002/1099-1581(200008/12)11:8/12<488::AID-PAT995>3.0.CO;2-5.
  • Pasqui, D.; De Cagna, M.; Barbucci, R. “Polysaccharide-based hydrogels: The key role of water in affecting mechanical properties”, Polymers 2012, 4, 1517–1534. DOI:10.3390/polym4031517.
  • Barbucci, R.; Magnani, A.; Consumi, M. “Swelling behavior of carboxymethylcellulose hydrogels in relation to cross-linking, PH, and charge density”, Macromolecules 2000, 33, 7475–7480. DOI:10.1021/ma0007029.
  • Barbucci, R.; Leone, G.; Vecchiullo, A. “Novel carboxymethylcellulose-based microporous hydrogels suitable for drug delivery”, J. Biomater. Sci. Polym. Ed. 2004, 15, 607–619. DOI:10.1163/156856204323046870.
  • Starkey, L. S. Introduction to Strategies for Organic Synthesis; John Wiley & Sons: New York, 2012.
  • Yang, L.; Kuang, J.; Li, Z.; Zhang, B.; Cai, X.; Zhang, L. M. “Amphiphilic cholesteryl-bearing carboxymethylcellulose derivatives: Self-assembly and rheological behaviour in aqueous solution”, Cellulose 2008, 15, 659–669. DOI:10.1007/s10570-008-9218-4.
  • Yang, L.; Kuang, J.; Wang, J.; Li, Z.; Zhang, L. M. “Loading and in vitro controlled release of indomethacin using amphiphilic cholesteryl-bearing carboxymethylcellulose derivatives”, Macromol. Biosci. 2008, 8, 279–286. DOI:10.1002/mabi.200700186.
  • Liu, Y. X.; Liu, K. F.; Li, C. X.; Wang, L. Y.; Liu, J.; He, J.; Lei, J.; Liu, X. “Self-assembled nanoparticles based on a carboxymethylcellulose-ursolic acid conjugate for anticancer combination therapy”, RSC Adv. 2017, 7, 36256–36268. DOI:10.1039/C7RA05913B.
  • Ernsting, M. J.; Tang, W. L.; MacCallum, N. W.; Li, S. D. “Preclinical pharmacokinetic, biodistribution, and anti-cancer efficacy studies of a docetaxel-carboxymethylcellulose nanoparticle in mouse models”, Biomaterials 2012, 33, 1445–1454. DOI:10.1016/j.biomaterials.2011.10.061.
  • Yang, Y.; Roy, A.; Zhao, Y.; Undzys, E.; Li, S. D. “Comparison of tumor penetration of podophyllotoxin-carboxymethylcellulose conjugates with various chemical compositions in tumor spheroid culture and in vivo solid tumor”, Bioconjugate Chem. 2017, 28, 1505–1518. DOI:10.1021/acs.bioconjchem.7b00165.
  • Sannino, A.; Pappadà, S.; Madaghiele, M.; Maffezzoli, A.; Ambrosio, L.; Nicolais, L. “Crosslinking of cellulose derivatives and hyaluronic acid with water-soluble carbodiimide”, Polymer 2005, 46, 11206–11212. DOI:10.1016/j.polymer.2005.10.048.
  • Sannino, A.; Madaghiele, M.; Lionetto, M. G.; Schettino, T.; Maffezzoli, A. A. “Cellulose-based hydrogel as a potential bulking agent for hypocaloric diets: An in vitro biocompatibility study on rat intestine”, J. Appl. Polym. Sci. 2006, 102, 1524–1530. DOI:10.1002/app.24468.
  • Cioc, R. C.; Ruijter, E.; Orru, R. V. A. Multicomponent reactions: Advanced tools for sustainable organic synthesis. Green Chem. 2014, 16, 2958–2975. DOI:10.1039/C4GC00013G.
  • Ganem, B. “Strategies for innovation in multicomponent reaction design”, Acc. Chem. Res. 2009, 42, 463–472. DOI:10.1021/ar800214s.
  • Strecke, A. “Ueber die künstliche Bildung der Milchsäure und einen neuen, dem Glycocoll homologen Körper”, Justus Liebigs, Ann. Chem. 1850, 75(1), 27–45. DOI:10.1002/jlac.18500750103.
  • Van Der Heijden, G.; Ruijter, E.; Orru, R. V. A. “Efficiency, diversity, and complexity with multicomponent reactions”, Synlett 2013, 24, 666–685. DOI:10.1055/s-0032-1318222.
  • Eckert, H. “Diversity oriented syntheses of conventional heterocycles by smart multi component reactions (MCRs) of the last decade”, Molecules 2012, 17, 1074–1102. DOI:10.3390/molecules17011074.
  • Akritopoulou-Zanze, I. “Isocyanide-based multicomponent reactions in drug discovery”, Curr. Opin. Chem. Biol. 2008, 12, 324–331. DOI:10.1016/j.cbpa.2008.02.004.
  • Passerini, M.; Simone, L.; Sopra Gli Isonitrili, (I. ). Composto del p-isonitril-azobenzolo con acetone ed acido acetico. Gazz. Chim. Ital. 1921, 51, 126–129.
  • Banfi, L.; Riva, R. “The Passerini reaction”, In Organic Reactions; John Wiley & Sons: New Jersey, 2005.
  • Llevot, A.; Boukis, A. C.; Oelmann, S.; Wetzel, K.; Meier, M. A. R. “An update on isocyanide-based multicomponent reactions in polymer science”, Top. Curr. Chem. 2017, 375, 1–29.
  • Ugi, I.; Steinbrückner, C. “Über Ein Neues Kondensations‐Prinzip”, Angew. Chem. 1960, 72, 267–268. DOI:10.1002/ange.19600720709.
  • Mumm, O. “Umsetzung Von Säureimidchloriden Mit Salzen Organischer Säuren Und Mit Cyankalium”, Eur. J. Ber. Dtsch. Chem. Ges. 1910, 43, 886–893. DOI:10.1002/cber.191004301151.
  • Kakuchi, R. “Multicomponent reactions in polymer synthesis”, Angew. Chem. Int. Ed. Engl. 2014, 53, 46–48. DOI:10.1002/anie.201305538.
  • Sehlinger, A.; Meier, M. A. R. “Passerini and Ugi multicomponent reactions in polymer science”, In Multi-Component and Sequential Reactions in Polymer Synthesis. Advances in Polymer Science, Vol. 269; Springer: Cham, 2015.
  • De Nooy, A. E. J.; Masci, G.; Crescenzi, V. “Versatile synthesis of polysaccharide hydrogels using the Passerini and Ugi multicomponent condensations”, Macromolecules 1999, 32, 1318–1320. DOI:10.1021/ma9815455.
  • De Nooy, A. E. J.; Capitani, D.; Masci, G.; Crescenzi, V. “Ionic polysaccharide hydrogels via the Passerini and Ugi multicomponent condensations: Synthesis, behavior and solid-state NMR characterization”, Biomacromolecules 2000, 1, 259–267. DOI:10.1021/bm005517h.
  • Shulepov, I. D.; Kozhikhova, K. V.; Panfilova, Y. S.; Ivantsova, M. N.; Mironov, M. A. “One-pot synthesis of cross-linked sub-micron microgels from pure cellulose via the Ugi reaction and their application as emulsifiers”, Cellulose 2016, 23, 2549–2559. DOI:10.1007/s10570-016-0957-3.
  • Yang, L.; Zhou, D.; Qu, C.; Cui, Y. “Carboxymethylcellulose supported cinchonine as a recyclable catalyst for asymmetric Michael reaction”, Catal. Lett. 2012, 142, 1405–1410. DOI:10.1007/s10562-012-0915-0.
  • Demitri, C.; Scalera, F.; Madaghiele, M.; Sannino, A.; Maffezzoli, A. “Potential of cellulose-based superabsorbent hydrogels as water reservoir in agriculture”, Int. J. Polym. Sci. 2013, 2013, 1. DOI:10.1155/2013/435073.
  • Dragojevic, S.; Ryu, J. S.; Raucher, D.; Rades, T.; Grohganz, H.; Löbmann, K. “Polymer-based prodrugs: Improving tumor targeting and the solubility of small molecule drugs in cancer therapy”, Molecules 2015, 20, 21750–21769. DOI:10.3390/molecules201219804.
  • Kharkwal, H.; Janaswamy, S. Natural Polymers for Drug Delivery; CABI: UK, 2016.
  • Allen, T. M.; Cullis, P. R. “Drug delivery systems: Entering the mainstream”, Science 2001, 303, 1818–1822. DOI:10.1126/science.1095833.
  • Li, Y.; Lin, J.; Yang, X.; Li, Y.; Wu, S.; Huang, Y.; Ye, S.; Xie, L.; Dai, L.; Hou, Z. “Self-assembled nanoparticles based on amphiphilic anticancer drug − phospholipid complex for targeted drug delivery and intracellular dual-controlled release”, ACS Appl. Mater. Interf. 2015, 7, 17573–17581. DOI:10.1021/acsami.5b05038.
  • Bernkop-Schnürch, A. “The use of inhibitory agents to overcome the enzymatic barrier to perorally administered therapeutic peptides and proteins”, J. Control. Release 1998, 52, 1–16. DOI:10.1016/S0168-3659(97)00204-6.
  • Bernkop-Schnürch, A.; Dundalek, K. “Novel bioadhesive drug delivery system protecting (poly)peptides from gastric enzymatic degradation”, Int. J. Pharm. 1996, 138, 75–83. DOI:10.1016/0378-5173(96)04532-2.
  • Bernkop-Schnurch, A.; Kirchmayer, R.; Kratzel, M. “Synthesis, development and in vitro evaluation of drug delivery systems with protective effect against degradation by pepsin”, J. Drug Target 1999, 7, 55–63. DOI:10.3109/10611869909085492.
  • Bernkop-Schnürch, A.; Schwarz, G. H.; Kratzel, M. “Modified mucoadhesive polymers for the peroral administration of mainly elastase degradable therapeutic (poly)peptides. J. Control. Release 1997, 47, 113–121. DOI:10.1016/S0168-3659(97)01627-1.
  • Marschütz, M. K.; Bernkop-Schnürch, A. “Oral peptide drug delivery: Polymer-inhibitor conjugates protecting insulin from enzymatic degradation in vitro”, Biomaterials 2000, 21, 1499–1507. DOI:10.1016/S0142-9612(00)00039-9.
  • Marschütz, M. K.; Caliceti, P.; Bernkop-Schnürch, A. “Design and in vivo evaluation of an oral delivery system for insulin”, Pharm. Res. 2000, 17, 1468–1474. DOI:10.1023/A:1007696723125.
  • Bernkop-Schnürch, A.; Scholler, S.; Biebel, R. G. “Development of controlled drug release systems based on thiolated polymers”, J. Control. Release 2000, 66, 39–48. DOI:10.1016/S0168-3659(99)00256-4.
  • Bernkop-Schnürch, A.; Steininger, S. “Synthesis and characterisation of mucoadhesive thiolated polymers”, Int. J. Pharm. 2000, 194, 239–247. DOI:10.1016/S0378-5173(99)00387-7.
  • Laffleur, F.; Netsomboon, K.; Bernkop-Schnürch, A.; Westmeier, D.; Stauber, R. H.; Docter, D. “Comprehensive mucoadhesive study of anionic polymers and their derivate”, Eur. Polym. J. 2017, 93, 314–322. DOI:10.1016/j.eurpolymj.2017.06.012.
  • Clausen, A. E.; Bernkop-Schnürch, A. “Thiolated carboxymethylcellulose: In vitro evaluation of its permeation enhancing effect on peptide drugs”, Eur. J. Pharm. Biopharm. 2001, 51, 25–32. DOI:10.1016/S0939-6411(00)00130-2.
  • Kast, C. E.; Bernkop-Schnürch, A. “Polymer-cysteamine conjugates: New mucoadhesive excipients for drug delivery?” Int. J. Pharm. 2002, 234, 91–99. DOI:10.1016/S0378-5173(01)00955-3.
  • Bernkop-Schnürch, A.; Clausen, A. E.; Hnatyszyn, M. “Thiolated polymers: Synthesis and in vitro evaluation of polymer-cysteamine conjugates”, Int. J. Pharm. 2001, 226, 185–194. DOI:10.1016/S0378-5173(01)00807-9.
  • Bokias, G.; Mylonas, Y.; Staikos, G.; Bumbu, G. G.; Vasile, C. “Synthesis and aqueous solution properties of novel thermoresponsive graft copolymers based on a carboxymethylcellulose backbone”, Macromolecules 2001, 34, 4958–4964. DOI:10.1021/ma010154e.
  • Vasile, C.; Marinescu, C.; Vornicu, R.; Staikos, G. “Enzymatic degradation of thermoresponsive poly(N-isopropylacrylamide) grafted to carboxymethylcellulose copolymers”, J. Appl. Polym. Sci. 2003, 87, 1383–1386. DOI:10.1002/app.11395.
  • Aubry, T.; Bossard, F.; Staikos, G.; Bokias, G. “Rheological study of semidilute aqueous solutions of a thermoassociative copolymer”, J. Rheol. 2003, 47, 577–587. DOI:10.1122/1.1545077.
  • do Nascimento Marques, N.; de Lima, B. L. B.; de Carvalho Balaban, R. “Carboxymethylcellulose grafted to amino‐terminated poly (N‐isopropylacrylamide): Preparation, characterization and evaluation of the thermoassociative behaviour at low concentrations”, Macromol. Symp. 2016, 367, 126–135. DOI:10.1002/masy.201600004.
  • Vasile, C.; Bumbu, G. G.; Dumitriu, R. P.; Staikos, G. “Comparative study of the behavior of carboxymethyl cellulose-g-poly(N-isopropylacrylamide) copolymers and their equivalent physical blends”, Eur. Polym. J. 2004, 40, 1209–1215. DOI:10.1016/j.eurpolymj.2003.12.023.
  • Lü, S.; Liu, M.; Ni, B. “Degradable, injectable poly (N-isopropylacrylamide)-based hydrogels with low gelation concentrations for protein delivery application”, Chem. Eng. J. 2011, 173, 241–250. DOI:10.1016/j.cej.2011.07.052.
  • Li, G.; Meng, Y.; Guo, L.; Zhang, T.; Liu, J. “Formation of thermo-sensitive polyelectrolyte complex micelles from two biocompatible graft copolymers for drug delivery”, J. Biomed. Mater. Res. 2014, 102, 2163–2172. DOI:10.1002/jbm.a.34894.
  • Hoang, B.; Ernsting, M. J.; Murakami, M.; Undzys, E.; Li, S. D. “Docetaxel-carboxymethylcellulose nanoparticles display enhanced anti-tumor activity in murine models of castration-resistant prostate cancer”, Int. J. Pharm. 2014, 471, 224–233. DOI:10.1016/j.ijpharm.2014.05.021.
  • Hoang, B.; Ernsting, M. J.; Roy, A.; Murakami, M.; Undzys, E.; Li, S. D. “Docetaxel-carboxymethylcellulose nanoparticles target cells via a SPARC and albumin dependent mechanism”, Biomaterials 2015, 59, 66–76. DOI:10.1016/j.biomaterials.2015.04.032.
  • Ernsting, M. J.; Foltz, W. D.; Undzys, E.; Tagami, T.; Li, S. D. “Tumor-targeted drug delivery using MR-contrasted Ddocetaxel - Carboxymethylcellulose nanoparticles”, Biomaterials 2012, 33, 3931–3941. DOI:10.1016/j.biomaterials.2012.02.019.
  • Murakami, M.; Ernsting, M. J.; Undzys, E.; Holwell, N.; Foltz, W. D.; Li, S. D. “Docetaxel conjugate nanoparticles that target α-smooth muscle actin-expressing stromal cells suppress breast cancer metastasis” Cancer. Res. 2013, 73, 4862–4871. DOI:10.1158/0008-5472.CAN-13-0062.
  • Roy, A.; Murakami, M.; Ernsting, M. J.; Hoang, B.; Undzys, E.; Li, S. D. “Carboxymethylcellulose-based and docetaxel-loaded nanoparticles circumvent p-glycoprotein-mediated multidrug resistance”, Mol. Pharmaceut. 2014, 11, 2592–2599. DOI:10.1021/mp400643p.
  • Ernsting, M. J.; Murakami, M.; Undzys, E.; Aman, A.; Press, B.; Li, S. D. “A docetaxel-carboxymethylcellulose nanoparticle outperforms the approved taxane nanoformulation, abraxane, in mouse tumor models with significant control of metastases”, J. Control. Release 2012, 162, 575–581. DOI:10.1016/j.jconrel.2012.07.043.
  • Ernsting, M. J.; Hoang, B.; Lohse, I.; Undzys, E.; Cao, P.; Do, T.; Gill, B.; Pintilie, M.; Hedley, D.; Li, S. D. “Targeting of metastasis-promoting tumor-associated fibroblasts and modulation of pancreatic tumor-associated stroma with a carboxymethylcellulose-docetaxel nanoparticle”, J. Control. Release 2015, 206, 122–130. DOI:10.1016/j.jconrel.2015.03.023.
  • Bteich, J.; McManus, S. A.; Ernsting, M. J.; Mohammed, M. Z.; Prud’Homme, R. K.; Sokoll, K. K. “Using flash nanoprecipitation to produce highly potent and stable cellax nanoparticles from amphiphilic polymers derived from carboxymethyl cellulose, polyethylene glycol, and cabazitaxel”, Mol. Pharmaceut. 2017, 14, 3998–4007. DOI:10.1021/acs.molpharmaceut.7b00670.
  • Dai, L.; Liu, K.; Si, C.; He, J.; Lei, J.; Guo, L. “A novel self-assembled targeted nanoparticle platform based on carboxymethylcellulose co-delivery of anticancer drugs”, J. Mater. Chem. B 2015, 3, 6605–6617. DOI:10.1039/C5TB00900F.
  • Dai, L.; Liu, R.; Hu, L. Q.; Wang, J. H.; Si, C. L. “Self-assembled PEG-carboxymethylcellulose nanoparticles/α-cyclodextrin hydrogels for injectable and thermosensitive drug delivery”, RSC Adv. 2017, 7, 2905–2912. DOI:10.1039/C6RA25793C.
  • Suk, J. S.; Xu, Q.; Kim, N.; Hanes, J.; Ensign, L. M. “PEGylation as a strategy for improving nanoparticle-based drug and gene delivery”, Adv. Drug Deliv. Rev. 2016, 99, 28–51. DOI:10.1016/j.addr.2015.09.012.
  • Yang, Y.; Bteich, J.; Li, S.-D. “Current update of a carboxymethylcellulose-PEG conjugate platform for delivery of insoluble cytotoxic agents to tumors. AAPS J. 2017, 19, 386–396. DOI:10.1208/s12248-016-0014-z.
  • Vedadghavami, A.; Minooei, F.; Mohammadi, M. H.; Khetani, S.; Rezaei Kolahchi, A.; Mashayekhan, S.; Sanati-Nezhad, A. “Manufacturing of hydrogel biomaterials with controlled mechanical properties for tissue engineering applications”, Acta Biomater. 2017, 62, 42–63. DOI:10.1016/j.actbio.2017.07.028.
  • Barbucci, R.; Leone, G. “Formation of defined microporous 3D structures starting from cross-linked hydrogels”, J. Biomed. Mater. Res. 2004, 68, 117–126. DOI:10.1002/jbm.b.20005.
  • Barbucci, R.; Consumi, M.; Lamponi, S.; Leone, G. “Polysaccharides based hydrogels for biological applications”, Macromol. Symp. 2003, 204, 37–58. DOI:10.1002/masy.200351405.
  • Leone, G.; Torricelli, P.; Giardino, R.; Barbucci, R. “New phosphorylated derivatives of carboxymethylcellulose with osteogenic activity”, Polym. Adv. Technol. 2008, 19, 824–830. DOI:10.1002/pat.1041.
  • Lopa, S.; Mercuri, D.; Colombini, A.; De Conti, G.; Segatti, F.; Zagra, L.; Moretti, M. “Orthopedic bioactive implants: Hydrogel enrichment of macroporous titanium for the delivery of mesenchymal stem cells and strontium. J. Biomed. Mater. Res. 2013, 101, 3396–3403. DOI:10.1002/jbm.a.34649.
  • Sakai, S.; Ogushi, Y.; Kawakami, K. “Enzymatically crosslinked carboxymethylcellulose-tyramine conjugate hydrogel: Cellular adhesiveness and feasibility for cell sheet technology”, Acta Biomater. 2009, 5, 554–559. DOI:10.1016/j.actbio.2008.10.010.
  • Ogushi, Y.; Sakai, S.; Kawakami, K. “Adipose tissue engineering using adipose-derived stem cells enclosed within an injectable carboxymethylcellulose-based hydrogel”, J. Tissue Eng. Regen. Med. 2013, 7, 884–892. DOI:10.1002/term.1480.
  • Ogushi, Y.; Sakai, S.; Kawakami, K. “Hepatocytes exhibit constant metabolic activity on carboxymethylcellulose-based hydrogel with high phenolic hydroxy group content”, Biochem. Eng. J. 2010, 51, 147–152. DOI:10.1016/j.bej.2010.06.008.
  • Ke, Y.; Liu, G. S.; Wang, J. H.; Xue, W.; Du, C.; Wu, G. “Preparation of carboxymethyl cellulose based microgels for cell encapsulation”, Express Polym. Lett. 2014, 8, 841–849.
  • Benghanem, S.; Chetouani, A.; Elkolli, M.; Bounekhel, M.; Benachour, D. “Effects of physical and chemical modification on biological activities of chitosan/carboxymethylcelluse based hydrogels”, J. Chil. Chem. Soc. 2017, 62, 3376–3380. DOI:10.4067/S0717-97072017000100014.
  • Sannino, A.; Madaghiele, M.; Demitri, C.; Scalera, F.; Esposito, A.; Esposito, V.; Maffezzoli, A. “Development and characterization of cellulose-based hydrogels for use as dietary bulking agents”. J. Appl. Polym. Sci. 2010, 115, 1438–1444. DOI:10.1002/app.30956.
  • Liu, L.; Liu, D.; Wang, M.; Du, G.; Chen, J. “Preparation and characterization of sponge-like composites by cross-linking hyaluronic acid and carboxymethylcellulose sodium with adipic dihydrazide”, Eur. Polym. J 2007, 43, 2672–2681. DOI:10.1016/j.eurpolymj.2007.02.045.
  • Liu, B.; Ma, X.; Zhu, C.; Mi, Y.; Fan, D.; Li, X.; Chen, L. “Study of a novel injectable hydrogel of human-like collagen and carboxymethylcellulose for soft tissue augmentation”, e-Polymers 2013, 13, 380–390.
  • Dahlan, N. A.; Pushpamalar, J.; Veeramachineni, A. K.; Muniyandy, S. “Smart hydrogel of carboxymethyl cellulose grafted carboxymethyl polyvinyl alcohol and properties studied for future material applications”, J. Polym. Environ. 2018, 26, 2061–2071. DOI:10.1007/s10924-017-1105-3.
  • Reeves, R.; Ribeiro, A.; Lombardo, L.; Boyer, R.; Leach, J. B. “Synthesis and characterization of carboxymethylcellulose-methacrylate hydrogel cell scaffolds”, Polymers 2010, 2, 252–264. DOI:10.3390/polym2030252.
  • Ogushi, Y.; Sakai, S.; Kawakami, K. “Phenolic hydroxy groups incorporated for the peroxidase-catalyzed gelation of a carboxymethylcehulose support: Cellular adhesion and proliferation. Macromol. Biosci. 2009, 9, 262–267. DOI:10.1002/mabi.200800263.
  • Arora, A.; Mahajan, A.; Katti, D. S. “TGF-Β1 presenting enzymatically cross-linked injectable hydrogels for improved chondrogenesis”, Colloids Surfaces B Biointerf. 2017, 159, 838–848. DOI:10.1016/j.colsurfb.2017.08.035.
  • Sakai, S.; Ito, S.; Ogushi, Y.; Hashimoto, I.; Kawakami, K. “Feasibility of carboxymethylcellulose with phenol moieties as a material for mammalian cell-enclosing subsieve-size capsules”, Cellulose 2008, 15, 723–729. DOI:10.1007/s10570-008-9221-9.
  • Sakai, S.; Ito, S.; Ogushi, Y.; Hashimoto, I.; Hosoda, N.; Sawae, Y.; Kawakami, K. “Enzymatically fabricated and gegradable microcapsules for production of multicellular spheroids with well-defined diameters of less than 150 Μm. Biomaterials 2009, 30, 5937–5942. DOI:10.1016/j.biomaterials.2009.07.031.
  • Movagharnezhad, N.; Moghadam, P. N. “Hexamethylene diamine/carboxymethyl cellulose grafted on magnetic nanoparticles for controlled drug delivery”, Polym. Bull. 2017, 74, 4645–4658. DOI:10.1007/s00289-017-1980-8.
  • Ko, I. K.; Kato, K.; Iwata, H. “A thin carboxymethyl cellulose culture substrate for the cellulase-induced harvesting of an endothelial cell sheet”, J. Biomater. Sci. Polym. Ed. 2005, 16, 1277–1291. DOI:10.1163/156856205774269511.
  • Lu, J.; Owen, S. C.; Shoichet, M. S. “Stability of self-assembled polymeric micelles in serum”, Macromolecules 2011, 44, 6002–6008. DOI:10.1021/ma200675w.
  • Meng, X.; Edgar, K. J. “Progress in polymer science “click” reactions in polysaccharide modification”, Prog. Polym. Sci. 2016, 53, 52–85. DOI:10.1016/j.progpolymsci.2015.07.006.
  • Gabriel, L.; Heinze, T. “Diversity of polysaccharide structures designed by aqueous Ugi-multi-compound reaction”, Cellulose 2018, 25, 2849–2859. DOI:10.1007/s10570-018-1754-y.
  • Söyler, Z.; Onwukamike, K. N.; Grelier, S.; Grau, E.; Cramail, H.; Meier, M. A. R. “Sustainable succinylation of cellulose in a CO2-based switchable solvent and subsequent Passerini 3-CR and Ugi 4-CR modification”, Green Chem. 2018, 20, 214–224. DOI:10.1039/C7GC02577G.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.