3,375
Views
134
CrossRef citations to date
0
Altmetric
Reviews

Recent Advances in Polymer and Polymer Composites for Electromagnetic Interference Shielding: Review and Future Prospects

, , , , &
Pages 687-738 | Received 26 Aug 2018, Accepted 17 May 2019, Published online: 17 Jun 2019

References

  • Blettner, M.; Schlehofer, B.; Breckenkamp, J.; Kowall, B.; Schmiedel, S.; Reis, U.; Potthoff, P.; Schüz, J.; Berg-Beckhoff, G. Mobile Phone Base Stations and Adverse Health Effects: Phase 1 of a Population-Based, Cross-Sectional Study in Germany. Occup. Environ. Med. 2008, 66, 118–123. DOI:10.1136/oem.2007.037721.
  • Röösli, M. Radiofrequency Electromagnetic Field Exposure and Non-Specific Symptoms of Ill Health: A Systematic Review. Environ. Res. 2008, 107, 277–287. DOI:10.1016/j.envres.2008.02.003.
  • Li, D.-K.; Chen, H.; Ferber, J. R.; Odouli, R.; Quesenberry, C. Exposure to Magnetic Field Non-Ionizing Radiation and the Risk of Miscarriage: A Prospective Cohort Study. Sci. Rep. 2017, 7, 17541.
  • Yang, Y.; Gupta, M. C.; Dudley, K. L. Studies on Electromagnetic Interference Shielding Characteristics of Metal Nanoparticle- and Carbon Nanostructure-Filled Polymer Composites in the Ku-Band Frequency, IET. Micro Nano Lett. 2007, 2, 85–89. DOI:10.1049/mnl:20070042.
  • Yu, Y.-H.; Ma, C.-C. M.; Teng, C.-C.; Huang, Y.-L.; Lee, S.-H.; Wang, I.; Wei, M.-H. Electrical, Morphological, and Electromagnetic Interference Shielding Properties of Silver Nanowires and Nanoparticles Conductive Composites. Mater. Chem. Phys. 2012, 136, 334–340. DOI:10.1016/j.matchemphys.2012.05.024.
  • Wenderoth, K.; Petermann, J.; Kruse, K. D.; ter Haseborg, J. L.; Krieger, W. Synergism on Electromagnetic Inductance (EMI)-Shielding in Metal- and Ferroelectric-Particle Filled Polymers. Polym. Compos. 1989, 10, 52–56. DOI:10.1002/pc.750100108.
  • Zhu, W.; Wang, L.; Zhao, R.; Ren, J.; Lu, G.; Wang, Y. Electromagnetic and Microwave-Absorbing Properties of Magnetic Nickel Ferrite Nanocrystals. Nanoscale 2011, 3, 2862–2864. DOI:10.1039/c1nr10274e.
  • Cao, J.; Chung, D. D. L. Coke Powder as an Admixture in Cement for Electromagnetic Interference Shielding. Carbon 2003, 41, 2433–2436. DOI:10.1016/S0008-6223(03)00289-6.
  • Chen, L.; Zhao, J.; Wang, L.; Peng, F.; Liu, H.; Zhang, J.; Gu, J.; Guo, Z. In-Situ Pyrolyzed Polymethylsilsesquioxane Multi-Walled Carbon Nanotubes Derived Ceramic Nanocomposites for Electromagnetic Wave Absorption. Ceram. Int. 2019,
  • Wang, Y.; Jing, X. Intrinsically Conducting Polymers for Electromagnetic Interference Shielding. Polym. Adv. Technol. 2005, 16, 344–351. DOI:10.1002/pat.589.
  • Shacklette, L. W.; Colaneri, N. F. EMI Shielding Measurements of Conductive Polymer Blends. Conference Record. IEEE Instrumentation and Measurement Technology Conference, 1991. pp. 72–78.
  • Shacklette, L. W.; Colaneri, N. F.; Kulkarni, V. G.; Wessling, B. EMI Shielding of Intinsically Conductive Polymers. J. Vinyl Addit. Technol. 1992, 14, 118–122. DOI:10.1002/vnl.730140214.
  • Mäkelä, T.; Pienimaa, S.; Taka, T.; Jussila, S.; Isotalo, H. Thin Polyaniline Films in EMI Shielding. Synth. Met. 1997, 85, 1335–1336. DOI:10.1016/S0379-6779(97)80259-7.
  • Courric, S.; Tran, V. H. The Electromagnetic Properties of Poly(p-Phenylene-Vinylene) Derivatives. Polymer 1998, 39, 2399–2408. DOI:10.1016/S0032-3861(97)00576-4.
  • Coltevieille, D.; Le Méhauté, A.; Challioui, C.; Mirebeau, P.; Demay, J. N. Industrial Applications of Polyaniline. Synth. Met. 1999, 101, 703–704. DOI:10.1016/S0379-6779(98)01093-5.
  • Pomposo, J. A.; Rodrı́guez, J.;.; Grande, H. Polypyrrole-Based Conducting Hot Melt Adhesives for EMI Shielding Applications. Synth. Met. 1999, 104, 107–111. DOI:10.1016/S0379-6779(99)00061-2.
  • Thomassin, J.-M.; Jérôme, C.; Pardoen, T.; Bailly, C.; Huynen, I.; Detrembleur, C. Polymer/Carbon Based Composites as Electromagnetic Interference (EMI) Shielding Materials. Mater. Sci. Eng.: R: Rep. 2013, 74, 211–232. DOI:10.1016/j.mser.2013.06.001.
  • Geetha, S.; Satheesh Kumar, K. K.; Rao, C. R. K.; Vijayan, M.; Trivedi, D. C. EMI Shielding: Methods and Materials—A Review. J. Appl. Polym. Sci. 2009, 112, 2073–2086. DOI:10.1002/app.29812.
  • Wang, L.; Qiu, H.; Liang, C.; Song, P.; Han, Y.; Han, Y.; Gu, J.; Kong, J.; Pan, D.; Guo, Z. Electromagnetic Interference Shielding MWCNT-Fe3O4@Ag/Epoxy Nanocomposites with Satisfactory Thermal Conductivity and High Thermal Stability. Carbon 2019, 141, 506–514. DOI:10.1016/j.carbon.2018.10.003.
  • Wang, Z.; Wei, R.; Gu, J.; Liu, H.; Liu, C.; Luo, C.; Kong, J.; Shao, Q.; Wang, N.; Guo, Z.; Liu, X. Ultralight, Highly Compressible and Fire-Retardant Graphene Aerogel with Self-Adjustable Electromagnetic Wave Absorption. Carbon 2018, 139, 1126–1135. DOI:10.1016/j.carbon.2018.08.014.
  • Wang, C.; Murugadoss, V.; Kong, J.; He, Z.; Mai, X.; Shao, Q.; Chen, Y.; Guo, L.; Liu, C.; Angaiah, S.; Guo, Z. Overview of Carbon Nanostructures and Nanocomposites for Electromagnetic Wave Shielding. Carbon 2018, 140, 696–733. DOI:10.1016/j.carbon.2018.09.006.
  • Guo, J.; Song, H.; Liu, H.; Luo, C.; Ren, Y.; Ding, T.; Khan, M. A.; Young, D. P.; Liu, X.; Zhang, X.; et al. Polypyrrole-Interface-Functionalized Nano-Magnetite Epoxy Nanocomposites as Electromagnetic Wave Absorbers with Enhanced Flame Retardancy. J. Mater. Chem. C 2017, 5, 5334–5344. DOI:10.1039/C7TC01502J.
  • Sun, K.; Xie, P.; Wang, Z.; Su, T.; Shao, Q.; Ryu, J.; Zhang, X.; Guo, J.; Shankar, A.; Li, J.; et al. Flexible Polydimethylsiloxane/Multi-Walled Carbon Nanotubes Membranous Metacomposites with Negative Permittivity. Polymer 2017, 125, 50–57. DOI:10.1016/j.polymer.2017.07.083.
  • Xie, P.; Li, H.; He, B.; Dang, F.; Lin, J.; Fan, R.; Hou, C.; Liu, H.; Zhang, J.; Ma, Y.; Guo, Z. Bio-Gel Derived Nickel/Carbon Nanocomposites with Enhanced Microwave Absorption. J. Mater. Chem. C 2018, 6, 8812–8822. DOI:10.1039/C8TC02127A.
  • Idrees, M.; Batool, S.; Kong, J.; Zhuang, Q.; Liu, H.; Shao, Q.; Lu, N.; Feng, Y.; Wujcik, E. K.; Gao, Q.; et al. Polyborosilazane Derived ceramics – Nitrogen Sulfur Dual Doped Graphene Nanocomposite Anode for Enhanced Lithium Ion Batteries. Electrochim. Acta 2019, 296, 925–937. DOI:10.1016/j.electacta.2018.11.088.
  • Kumar, P.; Shahzad, F.; Hong, S. M.; Koo, C. M. A Flexible Sandwich Graphene/Silver Nanowires/Graphene Thin Film for High-Performance Electromagnetic Interference Shielding. RSC Adv. 2016, 6, 101283–101287. DOI:10.1039/C6RA18652A.
  • Shahzad, F.; Yu, S.; Kumar, P.; Lee, J.-W.; Kim, Y.-H.; Hong, S. M.; Koo, C. M. Sulfur Doped Graphene/Polystyrene Nanocomposites for Electromagnetic Interference Shielding. Comp. Struct. 2015, 133, 1267–1275. DOI:10.1016/j.compstruct.2015.07.036.
  • Hou, Q.; Ren, J.; Chen, H.; Yang, P.; Shao, Q.; Zhao, M.; Zhao, X.; He, H.; Wang, N.; Luo, Q.; Guo, Z. Synergistic Hematite-Fullerene Electron-Extracting Layers for Improved Efficiency and Stability in Perovskite Solar Cells. ChemElectroChem 2018, 5, 726–731. DOI:10.1002/celc.201701054.
  • Luo, Q.; Ma, H.; Hou, Q.; Li, Y.; Ren, J.; Dai, X.; Yao, Z.; Zhou, Y.; Xiang, L.; Du, H.; et al. All-Carbon-Electrode-Based Endurable Flexible Perovskite Solar Cells. Adv. Funct. Mater. 2018, 28, 1706777. DOI:10.1002/adfm.201706777.
  • Ma, Y.; Ma, M.; Yin, X.; Shao, Q.; Lu, N.; Feng, Y.; Lu, Y.; Wujcik, E. K.; Mai, X.; Wang, C.; Guo, Z. Tuning Polyaniline Nanostructures via End Group Substitutions and Their Morphology Dependent Electrochemical Performances. Polymer 2018, 156, 128–135. DOI:10.1016/j.polymer.2018.09.051.
  • Lin, C.; Hu, L.; Cheng, C.; Sun, K.; Guo, X.; Shao, Q.; Li, J.; Wang, N.; Guo, Z. Nano-TiNb2O7/Carbon Nanotubes Composite Anode for Enhanced Lithium-Ion Storage. Electrochim. Acta 2018, 260, 65–72. DOI:10.1016/j.electacta.2017.11.051.
  • Lu, Y.; Biswas, M. C.; Guo, Z.; Jeon, J.-W.; Wujcik, E. K. Recent Developments in Bio-Monitoring via Advanced Polymer Nanocomposite-Based Wearable Strain Sensors. Biosens Bioelectron. 2019, 123, 167–177. DOI:10.1016/j.bios.2018.08.037.
  • Li, Y.; Zhou, B.; Zheng, G.; Liu, X.; Li, T.; Yan, C.; Cheng, C.; Dai, K.; Liu, C.; Shen, C.; Guo, Z. Continuously Prepared Highly Conductive and Stretchable SWNT/MWNT Synergistically Composited Electrospun Thermoplastic Polyurethane Yarns for Wearable Sensing. J. Mater. Chem. C 2018, 6, 2258–2269. DOI:10.1039/C7TC04959E.
  • Liu, H.; Li, Y.; Dai, K.; Zheng, G.; Liu, C.; Shen, C.; Yan, X.; Guo, J.; Guo, Z. Electrically Conductive Thermoplastic Elastomer Nanocomposites at Ultralow Graphene Loading Levels for Strain Sensor Applications. J. Mater. Chem. C 2016, 4, 157–166. DOI:10.1039/C5TC02751A.
  • Hu, C.; Li, Z.; Wang, Y.; Gao, J.; Dai, K.; Zheng, G.; Liu, C.; Shen, C.; Song, H.; Guo, Z. Comparative Assessment of the Strain-Sensing Behaviors of Polylactic Acid Nanocomposites: Reduced Graphene Oxide or Carbon Nanotubes. J. Mater. Chem. C 2017, 5, 2318–2328. DOI:10.1039/C6TC05261D.
  • Du, W.; Wang, X.; Zhan, J.; Sun, X.; Kang, L.; Jiang, F.; Zhang, X.; Shao, Q.; Dong, M.; Liu, H.; et al. Biological Cell Template Synthesis of Nitrogen-Doped Porous Hollow Carbon Spheres/MnO2 Composites for High-Performance Asymmetric Supercapacitors. Electrochim. Acta 2019, 296, 907–915. DOI:10.1016/j.electacta.2018.11.074.
  • Kumar, R.; Singh, R. K.; Savu, R.; Dubey, P. K.; Kumar, P.; Moshkalev, S. A. Microwave-Assisted Synthesis of Void-Induced Graphene-Wrapped Nickel Oxide Hybrids for Supercapacitor Applications. RSC Adv. 2016, 6, 26612–26620. DOI:10.1039/C6RA00426A.
  • Cho, K. Y.; Seo, H. Y.; Yeom, Y. S.; Kumar, P.; Lee, A. S.; Baek, K.-Y.; Yoon, H. G. Stable 2D-Structured Supports Incorporating Ionic Block Copolymer-Wrapped Carbon Nanotubes with Graphene Oxide toward Compact Decoration of Metal Nanoparticles and High-Performance Nano-Catalysis. Carbon 2016, 105, 340–352. DOI:10.1016/j.carbon.2016.04.049.
  • Cho, K. Y.; Yeom, Y. S.; Seo, H. Y.; Kumar, P.; Lee, A. S.; Baek, K.-Y.; Yoon, H. G. Molybdenum-Doped PdPt@Pt Core–Shell Octahedra Supported by Ionic Block Copolymer-Functionalized Graphene as a Highly Active and Durable Oxygen Reduction Electrocatalyst. ACS Appl. Mater. Interfaces 2017, 9, 1524–1535. DOI:10.1021/acsami.6b13299.
  • Cho, K. Y.; Yeom, Y. S.; Seo, H. Y.; Kumar, P.; Baek, K.-Y.; Yoon, H. G. A Facile Synthetic Route for Highly Durable Mesoporous Platinum Thin Film Electrocatalysts Based on Graphene: morphological and Support Effects on the Oxygen Reduction Reaction. J. Mater. Chem. A 2017, 5, 3129–3135. DOI:10.1039/C6TA09345K.
  • Cho, K. Y.; Yeom, Y. S.; Seo, H. Y.; Kumar, P.; Lee, A. S.; Baek, K.-Y.; Yoon, H. G. Ionic Block Copolymer Doped Reduced Graphene Oxide Supports with Ultra-Fine Pd Nanoparticles: strategic Realization of Ultra-Accelerated Nanocatalysis. J. Mater. Chem. A 2015, 3, 20471–20476. DOI:10.1039/C5TA06076A.
  • Wang, X.; Liu, X.; Yuan, H.; Liu, H.; Liu, C.; Li, T.; Yan, C.; Yan, X.; Shen, C.; Guo, Z. Non-Covalently Functionalized Graphene Strengthened Poly(Vinyl Alcohol). Mater. Des. 2018, 139, 372–379. DOI:10.1016/j.matdes.2017.11.023.
  • He, Y.; Yang, S.; Liu, H.; Shao, Q.; Chen, Q.; Lu, C.; Jiang, Y.; Liu, C.; Guo, Z. Reinforced Carbon Fiber Laminates with Oriented Carbon Nanotube Epoxy Nanocomposites: Magnetic Field Assisted Alignment and Cryogenic Temperature Mechanical Properties. J. Colloid Interface Sci. 2018, 517, 40–51. DOI:10.1016/j.jcis.2018.01.087.
  • Song, B.; Wang, T.; Sun, H.; Liu, H.; Mai, X.; Wang, X.; Wang, L.; Wang, N.; Huang, Y.; Guo, Z. Graphitic Carbon Nitride (g-C3N4) Interfacially Strengthened Carbon Fiber Epoxy Composites. Compos. Sci. Technol. 2018, 167, 515–521. DOI:10.1016/j.compscitech.2018.08.031.
  • Li, Z.; Wang, B.; Qin, X.; Wang, Y.; Liu, C.; Shao, Q.; Wang, N.; Zhang, J.; Wang, Z.; Shen, C.; Guo, Z. Superhydrophobic/Superoleophilic Polycarbonate/Carbon Nanotubes Porous Monolith for Selective Oil Adsorption from Water. ACS Sustain. Chem. Eng. 2018, 6, 13747–13755. DOI:10.1021/acssuschemeng.8b01637.
  • Qi, H.; Teng, M.; Liu, M.; Liu, S.; Li, J.; Yu, H.; Teng, C.; Huang, Z.; Liu, H.; Shao, Q.; et al. Biomass-Derived Nitrogen-Doped Carbon Quantum Dots: Highly Selective Fluorescent Probe for Detecting Fe3+ Ions and Tetracyclines. J. Colloid Interface Sci. 2019, 539, 332–341. DOI:10.1016/j.jcis.2018.12.047.
  • Qian, Y.; Yuan, Y.; Wang, H.; Liu, H.; Zhang, J.; Shi, S.; Guo, Z.; Wang, N. Highly Efficient Uranium Adsorption by Salicylaldoxime/Polydopamine Graphene Oxide Nanocomposites. J. Mater. Chem. A 2018, 6, 24676–24685. DOI:10.1039/C8TA09486A.
  • Gong, K.; Guo, S.; Zhao, Y.; Hu, Q.; Liu, H.; Sun, D.; Li, M.; Qiu, B.; Guo, Z. Bacteria Cell Templated Porous Polyaniline Facilitated Detoxification and Recovery of Hexavalent Chromium. J. Mater. Chem. A 2018, 6, 16824–16832. DOI:10.1039/C8TA06571C.
  • Zhou, B.; Li, Y.; Zheng, G.; Dai, K.; Liu, C.; Ma, Y.; Zhang, J.; Wang, N.; Shen, C.; Guo, Z. Continuously Fabricated Transparent Conductive Polycarbonate/Carbon Nanotube Nanocomposite Films for Switchable Thermochromic Applications. J. Mater. Chem. C 2018, 6, 8360–8371. DOI:10.1039/C8TC01779D.
  • Gong, K.; Hu, Q.; Yao, L.; Li, M.; Sun, D.; Shao, Q.; Qiu, B.; Guo, Z. Ultrasonic Pretreated Sludge Derived Stable Magnetic Active Carbon for Cr(VI) Removal from Wastewater. ACS Sustain Chem. Eng. 2018, 6, 7283–7291. DOI:10.1021/acssuschemeng.7b04421.
  • Kumar, P.; Meena, R.; Paulraj, R.; Chanchal, A.; Verma, A. K.; Bohidar, H. B. Fluorescence Behavior of Non-Functionalized Carbon Nanoparticles and Their in Vitro Applications in Imaging and Cytotoxic Analysis of Cancer Cells. Colloids Surf. B: Biointerfaces 2012, 91, 34–40. DOI:10.1016/j.colsurfb.2011.10.034.
  • Cui, X.; Zhu, G.; Pan, Y.; Shao, Q.; Zhao, C.; Dong, M.; Zhang, Y.; Guo, Z. Polydimethylsiloxane-Titania Nanocomposite Coating: Fabrication and Corrosion Resistance. Polymer 2018, 138, 203–210. DOI:10.1016/j.polymer.2018.01.063.
  • Du, H.-Y.; An, Y.-L.; Wei, Y.-H.; Hou, L.-F.; Liu, B.-S.; Liu, H.; Ma, Y.; Zhang, J.-X.; Wang, N.; Umar, A.; Guo, Z.-H. Nickel Powders Modified Nanocoating Strengthened Iron Plates by Surface Mechanical Attrition Alloy and Heat Treatment. Sci. Adv. Mater. 2018, 10, 1063–1072. DOI:10.1166/sam.2018.3324.
  • Zhang, Y.; Zhao, M.; Zhang, J.; Shao, Q.; Li, J.; Li, H.; Lin, B.; Yu, M.; Chen, S.; Guo, Z. Excellent Corrosion Protection Performance of Epoxy Composite Coatings Filled with Silane Functionalized Silicon Nitride. J. Polym. Res. 2018, 25, 130.
  • Huang, J.; Cao, Y.; Shao, Q.; Peng, X.; Guo, Z. Magnetic Nanocarbon Adsorbents with Enhanced Hexavalent Chromium Removal: Morphology Dependence of Fibrillar vs Particulate Structures. Ind. Eng. Chem. Res. 2017, 56, 10689–10701. DOI:10.1021/acs.iecr.7b02835.
  • Huang, J.; Li, Y.; Cao, Y.; Peng, F.; Cao, Y.; Shao, Q.; Liu, H.; Guo, Z. Hexavalent Chromium Removal over Magnetic Carbon Nanoadsorbents: synergistic Effect of Fluorine and Nitrogen co-Doping. J. Mater. Chem. A 2018, 6, 13062–13074. DOI:10.1039/C8TA02861C.
  • Cui, C.-H.; Yan, D.-X.; Pang, H.; Xu, X.; Jia, L.-C.; Li, Z.-M. Formation of a Segregated Electrically Conductive Network Structure in a Low-Melt-Viscosity Polymer for Highly Efficient Electromagnetic Interference Shielding. ACS Sustain. Chem. Eng. 2016, 4, 4137–4145. DOI:10.1021/acssuschemeng.6b00526.
  • Dasgupta, S.; Sekhar, K. R.; Ravishankar, B. N.; Kumar, M. N. J.; Sankaran, S. Sandwich Composite Approach for EMI Shielding Structures. 2008 10th International Conference on Electromagnetic Interference & Compatibility, 2008. pp. 451-456.
  • Dhakate, S. R.; Subhedar, K. M.; Singh, B. P. Polymer Nanocomposite Foam Filled with Carbon Nanomaterials as an Efficient Electromagnetic Interference Shielding Material. RSC Adv. 2015, 5, 43036–43057. DOI:10.1039/C5RA03409D.
  • Jia, L.-C.; Yan, D.-X.; Yang, Y.; Zhou, D.; Cui, C.-H.; Bianco, E.; Lou, J.; Vajtai, R.; Li, B.; Ajayan, P. M.; Li, Z.-M. High Strain Tolerant EMI Shielding Using Carbon Nanotube Network Stabilized Rubber Composite. Adv. Mater. Technol. 2017, 2, 1700078. DOI:10.1002/admt.201700078.
  • Jia, L.-C.; Yan, D.-X.; Jiang, X.; Pang, H.; Gao, J.-F.; Ren, P.-G.; Li, Z.-M. Synergistic Effect of Graphite and Carbon Nanotubes on Improved Electromagnetic Interference Shielding Performance in Segregated Composites. Ind. Eng. Chem. Res. 2018, 57, 11929–11938. DOI:10.1021/acs.iecr.8b03238.
  • Ren, F.; Song, D.; Li, Z.; Jia, L.; Zhao, Y.; Yan, D.; Ren, P. Synergistic Effect of Graphene Nanosheets and Carbonyl Iron–Nickel Alloy Hybrid Filler on Electromagnetic Interference Shielding and Thermal Conductivity of Cyanate Ester Composites. J. Mater. Chem. C 2018, 6, 1476–1486. DOI:10.1039/C7TC05213H.
  • Zhang, K.; Li, G.-H.; Feng, L.-M.; Wang, N.; Guo, J.; Sun, K.; Yu, K.-X.; Zeng, J.-B.; Li, T.; Guo, Z.; Wang, M. Ultralow Percolation Threshold and Enhanced Electromagnetic Interference Shielding in Poly(l-Lactide)/Multi-Walled Carbon Nanotube Nanocomposites with Electrically Conductive Segregated Networks. J. Mater. Chem. C 2017, 5, 9359–9369. DOI:10.1039/C7TC02948A.
  • Jiang, D.; Murugadoss, V.; Wang, Y.; Lin, J.; Ding, T.; Wang, Z.; Shao, Q.; Wang, C.; Liu, H.; Lu, N.; et al. Electromagnetic Interference Shielding Polymers and Nanocomposites – A Review. Polym. Rev. 2019, 1–58.
  • Colaneri, N. F.; Schacklette, L. W. EMI Shielding Measurements of Conductive Polymer Blends. IEEE Trans. Instrum. Meas. 1992, 41, 291–297. DOI:10.1109/19.137363.
  • Shahzad, F.; Kumar, P.; Kim, Y.-H.; Hong, S. M.; Koo, C. M. Biomass-Derived Thermally Annealed Interconnected Sulfur-Doped Graphene as a Shield against Electromagnetic Interference. ACS Appl. Mater. Interfaces 2016, 8, 9361–9369. DOI:10.1021/acsami.6b00418.
  • Shahzad, F.; Kumar, P.; Yu, S.; Lee, S.; Kim, Y.-H.; Hong, S. M.; Koo, C. M. Sulfur-Doped Graphene Laminates for EMI Shielding Applications. J. Mater. Chem. C 2015, 3, 9802–9810. DOI:10.1039/C5TC02166A.
  • Kumar, P.; Shahzad, F.; Yu, S.; Hong, S. M.; Kim, Y.-H.; Koo, C. M. Large-Area Reduced Graphene Oxide Thin Film with Excellent Thermal Conductivity and Electromagnetic Interference Shielding Effectiveness. Carbon 2015, 94, 494–500. DOI:10.1016/j.carbon.2015.07.032.
  • Hong, Y. K.; Lee, C. Y.; Jeong, C. K.; Lee, D. E.; Kim, K.; Joo, J. Method and Apparatus to Measure Electromagnetic Interference Shielding Efficiency and Its Shielding Characteristics in Broadband Frequency Ranges. Rev. Sci. Instr.. 2003, 74, 1098–1102. DOI:10.1063/1.1532540.
  • Chung, D. D. L. Materials for Electromagnetic Interference Shielding. J. Mater. Eng. Perform. 2000, 9, 350–354. DOI:10.1361/105994900770346042.
  • Huo, J.; Wang, L.; Yu, H. Polymeric Nanocomposites for Electromagnetic Wave Absorption. J. Mater. Sci. 2009, 44, 3917–3927. DOI:10.1007/s10853-009-3561-1.
  • Cheng, C.; Fan, R.; Ren, Y.; Ding, T.; Qian, L.; Guo, J.; Li, X.; An, L.; Lei, Y.; Yin, Y.; Guo, Z. Radio Frequency Negative Permittivity in Random Carbon Nanotubes/Alumina Nanocomposites. Nanoscale 2017, 9, 5779–5787. DOI:10.1039/C7NR01516J.
  • Xie, P.; Wang, Z.; Zhang, Z.; Fan, R.; Cheng, C.; Liu, H.; Liu, Y.; Li, T.; Yan, C.; Wang, N.; Guo, Z. Silica Microsphere Templated Self-Assembly of a Three-Dimensional Carbon Network with Stable Radio-Frequency Negative Permittivity and Low Dielectric Loss. J. Mater. Chem. C 2018, 6, 5239–5249. DOI:10.1039/C7TC05911F.
  • Sun, K.; Fan, R.; Zhang, X.; Zhang, Z.; Shi, Z.; Wang, N.; Xie, P.; Wang, Z.; Fan, G.; Liu, H.; et al. An Overview of Metamaterials and Their Achievements in Wireless Power Transfer. J. Mater. Chem. C 2018, 6, 2925–2943. DOI:10.1039/C7TC03384B.
  • Cheng, C.; Fan, R.; Wang, Z.; Shao, Q.; Guo, X.; Xie, P.; Yin, Y.; Zhang, Y.; An, L.; Lei, Y.; et al. Tunable and Weakly Negative Permittivity in Carbon/Silicon Nitride Composites with Different Carbonizing Temperatures. Carbon 2017, 125, 103–112. DOI:10.1016/j.carbon.2017.09.037.
  • Bingqing, Y.; Liming, Y.; Leimei, S.; Kang, A.; Xinluo, Z. Comparison of Electromagnetic Interference Shielding Properties between Single-Wall Carbon Nanotube and Graphene Sheet/Polyaniline Composites. J. Phys. D: Appl. Phys. 2012, 45, 235108. DOI:10.1088/0022-3727/45/23/235108.
  • Katsumi, Y.; Munehiro, T.; Keiichi, K.; Toshiyuki, O. Application and Characteristics of Conducting Polymer as Radiation Shielding Material. Jpn. J. Appl. Phys. 1985, 24, L693.
  • Liu, H.; Li, Q.; Zhang, S.; Yin, R.; Liu, X.; He, Y.; Dai, K.; Shan, C.; Guo, J.; Liu, C.; et al. Electrically Conductive Polymer Composites for Smart Flexible Strain Sensors: A Critical Review. J. Mater. Chem. C 2018, 6, 12121–12141. DOI:10.1039/C8TC04079F.
  • Chiang, C. K.; Fincher, C. R.; Park, Y. W.; Heeger, A. J.; Shirakawa, H.; Louis, E. J.; Gau, S. C.; MacDiarmid, A. G. Electrical Conductivity in Doped Polyacetylene. Phys. Rev. Lett. 1977, 39, 1098–1101. DOI:10.1103/PhysRevLett.39.1098.
  • Wu, F.; Xu, Z.; Wang, Y.; Wang, M. Electromagnetic Interference Shielding Properties of Solid-State Polymerization Conducting Polymer. RSC Adv. 2014, 4, 38797–38803. DOI:10.1039/C4RA05340K.
  • Dong, M.; Li, Q.; Liu, H.; Liu, C.; Wujcik, E. K.; Shao, Q.; Ding, T.; Mai, X.; Shen, C.; Guo, Z. Thermoplastic Polyurethane-Carbon Black Nanocomposite Coating: Fabrication and Solid Particle Erosion Resistance. Polymer 2018, 158, 381–390. DOI:10.1016/j.polymer.2018.11.003.
  • Li, X.-G.; Li, A.; Huang, M.-R. Facile High-Yield Synthesis of Polyaniline Nanosticks with Intrinsic Stability and Electrical Conductivity. Chem. Eur. J. 2008, 14, 10309–10317. DOI:10.1002/chem.200801025.
  • Koul, S.; Chandra, R.; Dhawan, S. K. Conducting Polyaniline Composite for ESD and EMI at 101GHz. Polymer 2000, 41, 9305–9310. DOI:10.1016/S0032-3861(00)00340-2.
  • Mäkelä, T.; Sten, J.; Hujanen, A.; Isotalo, H. High Frequency Polyaniline Shields. Synth. Met. 1999, 101, 707. DOI:10.1016/S0379-6779(98)01095-9.
  • Niu, Y. Electromagnetic Interference Shielding with Polyaniline Nanofibers Composite Coatings. Polym. Eng. Sci. 2008, 48, 355–359. DOI:10.1002/pen.20948.
  • Trivedi, D. C.; Dhawan, S. K. Shielding of Electromagnetic Interference Using Polyaniline. Synth. Met. 1993, 59, 267–272. DOI:10.1016/0379-6779(93)91036-2.
  • Joo, J.; Epstein, A. J. Electromagnetic Radiation Shielding by Intrinsically Conducting Polymers. Appl. Phys. Lett. 1994, 65, 2278–2280. DOI:10.1063/1.112717.
  • Satheesh Kumar, K. K.; Geetha, S.; Trivedi, D. C. Freestanding Conducting Polyaniline Film for the Control of Electromagnetic Radiations. Curr. Appl. Phys. 2005, 5, 603–608. DOI:10.1016/j.cap.2004.08.004.
  • Gairola, S. P.; Verma, V.; Kumar, L.; Dar, M. A.; Annapoorni, S.; Kotnala, R. K. Enhanced Microwave Absorption Properties in Polyaniline and Nano-Ferrite Composite in X-Band. Synth. Met. 2010, 160, 2315–2318. DOI:10.1016/j.synthmet.2010.08.025.
  • Dhawan, S. K.; Singh, N.; Rodrigues, D. Electromagnetic Shielding Behaviour of Conducting Polyaniline Composites. Sci. Technol. Adv. Mater. 2003, 4, 105. DOI:10.1016/S1468-6996(02)00053-0.
  • Fang, F.; Li, Y.-Q.; Xiao, H.-M.; Hu, N.; Fu, S.-Y. Layer-Structured Silver Nanowire/Polyaniline Composite Film as a High Performance X-Band EMI Shielding Material. J. Mater. Chem. C 2016, 4, 4193–4203. DOI:10.1039/C5TC04406E.
  • Hong, Y. K.; Lee, C. Y.; Jeong, C. K.; Sim, J. H.; Kim, K.; Joo, J.; Kim, M. S.; Lee, J. Y.; Jeong, S. H.; Byun, S. W. Electromagnetic Interference Shielding Characteristics of Fabric Complexes Coated with Conductive Polypyrrole and Thermally Evaporated Ag. Curr. Appl. Phys. 2001, 1, 439–442. DOI:10.1016/S1567-1739(01)00054-2.
  • Hoang, N. H.; Wojkiewicz, J. L.; Miane, J. L.; Biscarro, R. S. Lightweight Electromagnetic Shields Using Optimized Polyaniline Composites in the Microwave Band. Polym. Adv. Technol. 2007, 18, 257–262. DOI:10.1002/pat.829.
  • Mohan, R. R.; Varma, S. J.; Sankaran, J. Impressive Electromagnetic Shielding Effects Exhibited by Highly Ordered, Micrometer Thick Polyaniline Films. Appl. Phys. Lett. 2016, 108, 154101. DOI:10.1063/1.4945791.
  • Joseph, N.; Varghese, J.; Sebastian, M. T. Self Assembled Polyaniline Nanofibers with Enhanced Electromagnetic Shielding Properties. RSC Adv. 2015, 5, 20459–20466. DOI:10.1039/C5RA02113H.
  • Joseph, N.; Varghese, J.; Sebastian, M. T. A Facile Formulation and Excellent Electromagnetic Absorption of Room Temperature Curable Polyaniline Nanofiber Based Inks. J. Mater. Chem. C 2016, 4, 999–1008. DOI:10.1039/C5TC03080C.
  • Tantawy, H. R.; Aston, D. E.; Smith, J. R.; Young, J. L. Comparison of Electromagnetic Shielding with Polyaniline Nanopowders Produced in Solvent-Limited Conditions. ACS Appl. Mater. Interfaces 2013, 5, 4648–4658. DOI:10.1021/am401695p.
  • Wojkiewicz, J. L.; Fauveaux, S.; Miane, J. L. Electromagnetic Shielding Properties of Polyaniline Composites. Synth Metals 2003, 135, 127–128. DOI:10.1016/S0379-6779(02)00531-3.
  • Wessling, B. Dispersion as the Link between Basic Research and Commercial Applications of Conductive Polymers (Polyaniline). Synthetic Metals 1998, 93, 143–154. DOI:10.1016/S0379-6779(98)00017-4.
  • Gangopadhyay, R.; De, A.; Ghosh, G. Polyaniline–Poly(Vinyl Alcohol) Conducting Composite: material with Easy Processability and Novel Application Potential. Synth. Met. 2001, 123, 21–31. DOI:10.1016/S0379-6779(00)00573-7.
  • Jing, X.; Wang, Y.; Zhang, B. Electrical Conductivity and Electromagnetic Interference Shielding of Polyaniline/Polyacrylate Composite Coatings. J. Appl. Polym. Sci. 2005, 98, 2149–2156. DOI:10.1002/app.22387.
  • Machida, S.; Miyata, S.; Techagumpuch, A. Chemical Synthesis of Highly Electrically Conductive Polypyrrole. Synth. Met. 1989, 31, 311–318. DOI:10.1016/0379-6779(89)90798-4.
  • Kim, M. S.; Kim, H. K.; Byun, S. W.; Jeong, S. H.; Hong, Y. K.; Joo, J. S.; Song, K. T.; Kim, J. K.; Lee, C. J.; Lee, J. Y. PET Fabric/Polypyrrole Composite with High Electrical Conductivity for EMI Shielding. Synth. Met. 2002, 126, 233–239. DOI:10.1016/S0379-6779(01)00562-8.
  • Kaynak, A. Electromagnetic Shielding Effectiveness of Galvanostatically Synthesized Conducting Polypyrrole Films in the 300–2000 MHz Frequency Range. Mater. Res. Bull. 1996, 31, 845–860. DOI:10.1016/0025-5408(96)00038-4.
  • Kathirgamanathan, P. Novel Cable Shielding Materials Based on the Impregnation of Microporous Membranes with Inherently Conducting Polymers. Adv. Mater. 1993, 5, 281–283. DOI:10.1002/adma.19930050412.
  • Li, P.; Du, D.; Guo, L.; Guo, Y.; Ouyang, J. Stretchable and Conductive Polymer Films for High-Performance Electromagnetic Interference Shielding. J. Mater. Chem. C 2016, 4, 6525–6532. DOI:10.1039/C6TC01619G.
  • Chung, D. D. L. Electromagnetic Interference Shielding Effectiveness of Carbon Materials. Carbon 2001, 39, 279–285. DOI:10.1016/S0008-6223(00)00184-6.
  • Duan, Y.; Shunhua, L.; Hongtao, G. Investigation of Electrical Conductivity and Electromagnetic Shielding Effectiveness of Polyaniline Composite. Sci. Technol. Adv. Mater. 2005, 6, 513–518. DOI:10.1016/j.stam.2005.01.002.
  • Soto-Oviedo, M. A.; Araújo, O. A.; Faez, R.; Rezende, M. C.; De Paoli, M.-A. Antistatic Coating and Electromagnetic Shielding Properties of a Hybrid Material Based on Polyaniline/Organoclay Nanocomposite and EPDM Rubber. Synth. Met. 2006, 156, 1249–1255. DOI:10.1016/j.synthmet.2006.09.003.
  • Tang, X.; Yang, Y. Surface Modification of M-Ba-Ferrite Powders by Polyaniline: Towards Improving Microwave Electromagnetic Response. Appl. Surf. Sci. 2009, 255, 9381–9385. DOI:10.1016/j.apsusc.2009.07.040.
  • Arjmand, M.; Moud, A. A.; Li, Y.; Sundararaj, U. Outstanding Electromagnetic Interference Shielding of Silver Nanowires: Comparison With Carbon Nanotubes. RSC Adv. 2015, 5, 56590–56598. DOI:10.1039/C5RA08118A.
  • Li, J.; Qi, S.; Zhang, M.; Wang, Z. Thermal Conductivity and Electromagnetic Shielding Effectiveness of Composites Based on Ag-Plating Carbon Fiber and Epoxy. J. Appl. Polym. Sci. 2015, 132, n/a–n/a. DOI:10.1002/app.42306.
  • Hu, M.; Gao, J.; Dong, Y.; Li, K.; Shan, G.; Yang, S.; Li, R. K.-Y. Flexible Transparent PES/Silver Nanowires/PET Sandwich-Structured Film for High-Efficiency Electromagnetic Interference Shielding. Langmuir 2012, 28, 7101–7106. DOI:10.1021/la300720y.
  • Lee, T.-W.; Lee, S.-E.; Jeong, Y. G. Highly Effective Electromagnetic Interference Shielding Materials Based on Silver Nanowire/Cellulose Papers. ACS Appl. Mater. Interfaces 2016, 8, 13123–13132. DOI:10.1021/acsami.6b02218.
  • Ma, J.; Zhan, M.; Wang, K. Ultralightweight Silver Nanowires Hybrid Polyimide Composite Foams for High-Performance Electromagnetic Interference Shielding. ACS Appl. Mater. Interfaces 2015, 7, 563–576. DOI:10.1021/am5067095.
  • Ma, J.; Wang, K.; Zhan, M. A Comparative Study of Structure and Electromagnetic Interference Shielding Performance for Silver Nanostructure Hybrid Polyimide Foams. RSC Adv. 2015, 5, 65283–65296. DOI:10.1039/C5RA09507G.
  • Jia, L.-C.; Yan, D.-X.; Liu, X.; Ma, R.; Wu, H.-Y.; Li, Z.-M. Highly Efficient and Reliable Transparent Electromagnetic Interference Shielding Film. ACS Appl. Mater. Interfaces 2018, 10, 11941–11949. DOI:10.1021/acsami.8b00492.
  • Jung, J.; Lee, H.; Ha, I.; Cho, H.; Kim, K. K.; Kwon, J.; Won, P.; Hong, S.; Ko, S. H. Highly Stretchable and Transparent Electromagnetic Interference Shielding Film Based on Silver Nanowire Percolation Network for Wearable Electronics Applications. ACS Appl. Mater. Interfaces 2017, 9, 44609–44616. DOI:10.1021/acsami.7b14626.
  • Kim, E.; Lim, D. Y.; Kang, Y.; Yoo, E. Fabrication of a Stretchable Electromagnetic Interference Shielding Silver Nanoparticle/Elastomeric Polymer Composite. RSC Adv. 2016, 6, 52250–52254. DOI:10.1039/C6RA04765C.
  • Al-Ghamdi, A. A.; Al-Hartomy, O. A.; El-Tantawy, F.; Yakuphanoglu, F. Novel Polyvinyl Alcohol/Silver Hybrid Nanocomposites for High Performance Electromagnetic Wave Shielding Effectiveness. Microsyst. Technol. 2015, 21, 859–868. DOI:10.1007/s00542-014-2120-0.
  • Hu, Y-j.; Zhang, H-y.; Li, F.; Cheng, X-l.; Chen, T-l. Investigation into Electrical Conductivity and Electromagnetic Interference Shielding Effectiveness of Silicone Rubber Filled with Ag-Coated Cenosphere Particles. Polym. Test. 2010, 29, 609–612. DOI:10.1016/j.polymertesting.2010.03.009.
  • Kwon, S.; Ma, R.; Kim, U.; Choi, H. R.; Baik, S. Flexible Electromagnetic Interference Shields Made of Silver Flakes, Carbon Nanotubes and Nitrile Butadiene Rubber. Carbon 2014, 68, 118–124. DOI:10.1016/j.carbon.2013.10.070.
  • Kim, D.-H.; Kim, Y.; Kim, J.-W. Transparent and Flexible Film for Shielding Electromagnetic Interference. Mater. Des. 2016, 89, 703–707. DOI:10.1016/j.matdes.2015.09.142.
  • Gelves, G. A.; Al-Saleh, M. H.; Sundararaj, U. Highly Electrically Conductive and High Performance EMI Shielding Nanowire/Polymer Nanocomposites by Miscible Mixing and Precipitation. J. Mater. Chem. 2011, 21, 829–836. DOI:10.1039/C0JM02546A.
  • Al-Saleh, M. H.; Gelves, G. A.; Sundararaj, U. Copper Nanowire/Polystyrene Nanocomposites: Lower Percolation Threshold and Higher EMI Shielding. Compos. Part A: Appl. Sci. Manuf. 2011, 42, 92–97. DOI:10.1016/j.compositesa.2010.10.003.
  • Liu, C.; Huang, X.; Zhou, J.; Chen, Z.; Liao, X.; Wang, X.; Shi, B. Lightweight and High-Performance Electromagnetic Radiation Shielding Composites Based on a Surface Coating of Cu@Ag Nanoflakes on a Leather Matrix. J. Mater. Chem. C 2016, 4, 914–920. DOI:10.1039/C5TC02591E.
  • Gargama, H.; Thakur, A. K.; Chaturvedi, S. K. Polyvinylidene Fluoride/Nickel Composite Materials for Charge Storing, Electromagnetic Interference Absorption, and Shielding Applications. J. Appl. Phys. 2015, 117, 224903. DOI:10.1063/1.4922411.
  • Panda, M.; Srinivas, V.; Thakur, A. K. On the Question of Percolation Threshold in Polyvinylidene Fluoride/Nanocrystalline Nickel Composites. Appl. Phys. Lett. 2008, 92, 132905. DOI:10.1063/1.2900710.
  • Pawar, S. P.; Stephen, S.; Bose, S.; Mittal, V. Tailored Electrical Conductivity, Electromagnetic Shielding and Thermal Transport in Polymeric Blends with Graphene Sheets Decorated with Nickel Nanoparticles. Phys. Chem. Chem. Phys. 2015, 17, 14922–14930. DOI:10.1039/C5CP00899A.
  • Ameli, A.; Nofar, M.; Wang, S.; Park, C. B. Lightweight Polypropylene/Stainless-Steel Fiber Composite Foams with Low Percolation for Efficient Electromagnetic Interference Shielding. ACS Appl. Mater. Interfaces 2014, 6, 11091–11100. DOI:10.1021/am500445g.
  • Wu, N.; Liu, C.; Xu, D.; Liu, J.; Liu, W.; Shao, Q.; Guo, Z. Enhanced Electromagnetic Wave Absorption of Three-Dimensional Porous Fe3O4/C Composite Flowers. ACS Sustain. Chem. Eng. 2018, 6, 12471–12480. DOI:10.1021/acssuschemeng.8b03097.
  • Xu, P.; Han, X.; Wang, C.; Zhao, H.; Wang, J.; Wang, X.; Zhang, B. Synthesis of Electromagnetic Functionalized Barium Ferrite Nanoparticles Embedded in Polypyrrole. J. Phys. Chem. B 2008, 112, 2775–2781. DOI:10.1021/jp710259v.
  • Hosseini, S. H.; Mohseni, S. H.; Asadnia, A.; Kerdari, H. Synthesis and Microwave Absorbing Properties of Polyaniline/MnFe2O4 Nanocomposite. J. Alloys Comp. 2011, 509, 4682–4687. DOI:10.1016/j.jallcom.2010.11.198.
  • Li, Y.; Yi, R.; Yan, A.; Deng, L.; Zhou, K.; Liu, X. Facile Synthesis and Properties of ZnFe2O4 and ZnFe2O4/Polypyrrole Core-Shell Nanoparticles. Solid State Sci. 2009, 11, 1319–1324. DOI:10.1016/j.solidstatesciences.2009.04.014.
  • Lee, C.-C.; Chen, D.-H. Ag Nanoshell-Induced Dual-Frequency Electromagnetic Wave Absorption of Ni Nanoparticles. Appl. Phys. Lett. 2007, 90, 193102. DOI:10.1063/1.2731706.
  • Liu, X. G.; Geng, D. Y.; Meng, H.; Shang, P. J.; Zhang, Z. D. Microwave-Absorption Properties of ZnO-Coated Iron Nanocapsules. Appl. Phys. Lett. 2008, 92, 173117. DOI:10.1063/1.2919098.
  • Singh, K.; Ohlan, A.; Saini, P.; Dhawan, S. K. Poly (3,4-Ethylenedioxythiophene) γ-Fe2O3 Polymer Composite–Super Paramagnetic Behavior and Variable Range Hopping 1D Conduction Mechanism–Synthesis and Characterization. Polym. Adv. Technol. 2008, 19, 229–236. DOI:10.1002/pat.1003.
  • Singh, K.; Ohlan, A.; Kotnala, R. K.; Bakhshi, A. K.; Dhawan, S. K. Dielectric and Magnetic Properties of Conducting Ferromagnetic Composite of Polyaniline with γ-Fe2O3 Nanoparticles. Mater. Chem. Phys. 2008, 112, 651–658. DOI:10.1016/j.matchemphys.2008.06.026.
  • Dhawan, S. K.; Singh, K.; Bakhshi, A. K.; Ohlan, A. Conducting Polymer Embedded with Nanoferrite and Titanium Dioxide Nanoparticles for Microwave Absorption. Synth. Met. 2009, 159, 2259–2262. DOI:10.1016/j.synthmet.2009.08.031.
  • Leslie-Pelecky, D. L.; Rieke, R. D. Magnetic Properties of Nanostructured Materials. Chem. Mater. 1996, 8, 1770–1783. DOI:10.1021/cm960077f.
  • Xu, P.; Han, X.; Wang, C.; Zhou, D.; Lv, Z.; Wen, A.; Wang, X.; Zhang, B. Synthesis of Electromagnetic Functionalized Nickel/Polypyrrole Core/Shell Composites. J. Phys. Chem. B 2008, 112, 10443–10448. DOI:10.1021/jp804327k.
  • Xiao, H.-M.; Zhang, W.-D.; Fu, S.-Y. One-Step Synthesis, Electromagnetic and Microwave Absorbing Properties of α-FeOOH/Polypyrrole Nanocomposites. Compos. Sci. Technol. 2010, 70, 909–915. DOI:10.1016/j.compscitech.2010.02.002.
  • Ohlan, A.; Singh, K.; Chandra, A.; Dhawan, S. K. Microwave Absorption Behavior of Core − Shell Structured Poly (3,4-Ethylenedioxy Thiophene)−Barium Ferrite Nanocomposites. ACS Appl. Mater. Interfaces 2010, 2, 927–933. DOI:10.1021/am900893d.
  • Sui, M.; Lü, X.; Xie, A.; Xu, W.; Rong, X.; Wu, G. The Synthesis of Three-Dimensional (3D) Polydopamine-Functioned Carbonyl Iron Powder@Polypyrrole (CIP@PPy) Aerogel Composites for Excellent Microwave Absorption. Synth. Met. 2015, 210, 156–164. DOI:10.1016/j.synthmet.2015.09.025.
  • Saini, P.; Choudhary, V.; Vijayan, N.; Kotnala, R. K. Improved Electromagnetic Interference Shielding Response of Poly(Aniline)-Coated Fabrics Containing Dielectric and Magnetic Nanoparticles. J. Phys. Chem. C 2012, 116, 13403–13412. DOI:10.1021/jp302131w.
  • Gu, H.; Zhang, H.; Ma, C.; Xu, X.; Wang, Y.; Wang, Z.; Wei, R.; Liu, H.; Liu, C.; Shao, Q.; et al. Trace Electrosprayed Nanopolystyrene Facilitated Dispersion of Multiwalled Carbon Nanotubes: Simultaneously Strengthening and Toughening Epoxy. Carbon 2019, 142, 131–140. DOI:10.1016/j.carbon.2018.10.029.
  • Aal, N. A.; El-Tantawy, F.; Al-Hajry, A.; Bououdina, M. New Antistatic Charge and Electromagnetic Shielding Effectiveness from Conductive Epoxy Resin/Plasticized Carbon Black Composites. Polym. Compos. 2008, 29, 125–132. DOI:10.1002/pc.20334.
  • Al-Saleh, M. H.; Saadeh, W. H.; Sundararaj, U. EMI Shielding Effectiveness of Carbon Based Nanostructured Polymeric Materials: A Comparative Study. Carbon 2013, 60, 146–156. DOI:10.1016/j.carbon.2013.04.008.
  • Kuester, S.; Merlini, C.; Barra, G. M. O.; Ferreira, J. C.; Jr, Lucas, A.; de Souza, A. C.; Soares, B. G. Processing and Characterization of Conductive Composites Based on Poly(Styrene-b-Ethylene-Ran-Butylene-b-Styrene) (SEBS) and Carbon Additives: A Comparative Study of Expanded Graphite and Carbon Black. Compos. Part B: Eng. 2016, 84, 236–247. DOI:10.1016/j.compositesb.2015.09.001.
  • Mohanraj, G. T.; Chaki, T. K.; Chakraborty, A.; Khastgir, D. AC Impedance Analysis and EMI Shielding Effectiveness of Conductive SBR Composites. Polym. Eng. Sci. 2006, 46, 1342–1349. DOI:10.1002/pen.20593.
  • Rahaman, M.; Chaki, T. K.; Khastgir, D. Development of High Performance EMI Shielding Material from EVA, NBR, and Their Blends: effect of Carbon Black Structure. J. Mater. Sci. 2011, 46, 3989–3999. DOI:10.1007/s10853-011-5326-x.
  • Mohammed, H. A.-S.; Uttandaraman, S. X-Band EMI Shielding Mechanisms and Shielding Effectiveness of High Structure Carbon Black/Polypropylene Composites. J. Phys. D: Appl. Phys. 2013, 46, 035304.
  • Lee, B. O.; Woo, W. J.; Park, H. S.; Hahm, H. S.; Wu, J. P.; Kim, M. S. Influence of Aspect Ratio and Skin Effect on EMI Shielding of Coating Materials Fabricated with Carbon Nanofiber/PVDF. J. Mater. Sci. 2002, 37, 1839–1843.
  • Yang, Y.; Gupta, M. C.; Dudley, K. L.; Lawrence, R. W. Conductive Carbon Nanofiber–Polymer Foam Structures. Adv. Mater. 2005, 17, 1999–2003. DOI:10.1002/adma.200500615.
  • Fitzer, E. Pan-Based Carbon Fibers—Present State and Trend of the Technology from the Viewpoint of Possibilities and Limits to Influence and to Control the Fiber Properties by the Process Parameters. Carbon 1989, 27, 621–645. DOI:10.1016/0008-6223(89)90197-8.
  • Gu, S. Y.; Ren, J.; Wu, Q. L. Preparation and Structures of Electrospun PAN Nanofibers as a Precursor of Carbon Nanofibers. Synth. Met. 2005, 155, 157–161. DOI:10.1016/j.synthmet.2005.07.340.
  • Edie, D. D. The Effect of Processing on the Structure and Properties of Carbon Fibers. Carbon 1998, 36, 345–362. DOI:10.1016/S0008-6223(97)00185-1.
  • Li, L.; Chung, D. D. L. Electrical and Mechanical Properties of Electrically Conductive Polyethersulfone Composites. Composites 1994, 25, 215–224. DOI:10.1016/0010-4361(94)90019-1.
  • Ameli, A.; Jung, P. U.; Park, C. B. Electrical Properties and Electromagnetic Interference Shielding Effectiveness of Polypropylene/Carbon Fiber Composite Foams. Carbon 2013, 60, 379–391. DOI:10.1016/j.carbon.2013.04.050.
  • Tibbetts, G. G. Vapor-Grown Carbon Fibers: Status and Prospects. Carbon 1989, 27, 745–747. DOI:10.1016/0008-6223(89)90208-X.
  • Tibbetts, G. G.; Lake, M. L.; Strong, K. L.; Rice, B. P. A Review of the Fabrication and Properties of Vapor-Grown Carbon Nanofiber/Polymer Composites. Compos. Sci. Technol. 2007, 67, 1709–1718. DOI:10.1016/j.compscitech.2006.06.015.
  • Das, N. C.; Khastgir, D.; Chaki, T. K.; Chakraborty, A. Electromagnetic Interference Shielding Effectiveness of Carbon Black and Carbon Fibre Filled EVA and NR Based Composites. Compos. Part A: Appl. Sci. Manuf. 2000, 31, 1069–1081. DOI:10.1016/S1359-835X(00)00064-6.
  • Ling, Q.; Sun, J.; Zhao, Q.; Zhou, Q. Microwave Absorbing Properties of Linear Low Density Polyethylene/Ethylene–Octene Copolymer Composites Filled with Short Carbon Fiber. Mater. Sci. Eng. B 2009, 162, 162–166. DOI:10.1016/j.mseb.2009.03.023.
  • Luo, X.; Chung, D. D. L. Electromagnetic Interference Shielding Using Continuous Carbon-Fiber Carbon-Matrix and Polymer-Matrix Composites. Compos. Part B: Eng. 1999, 30, 227–231. DOI:10.1016/S1359-8368(98)00065-1.
  • Yang, S.; Lozano, K.; Lomeli, A.; Foltz, H. D.; Jones, R. Electromagnetic Interference Shielding Effectiveness of Carbon Nanofiber/LCP Composites. Compos. Part A: Appl. Sci. Manuf. 2005, 36, 691–697. DOI:10.1016/j.compositesa.2004.07.009.
  • Das, A.; Megaridis, C. M.; Liu, L.; Wang, T.; Biswas, A. Design and Synthesis of Superhydrophobic Carbon Nanofiber Composite Coatings for Terahertz Frequency Shielding and Attenuation. Appl. Phys. Lett. 2011, 98, 174101. DOI:10.1063/1.3583523.
  • Crespo, M.; Méndez, N.; González, M.; Baselga, J.; Pozuelo, J. Synergistic Effect of Magnetite Nanoparticles and Carbon Nanofibres in Electromagnetic Absorbing Composites. Carbon 2014, 74, 63–72. DOI:10.1016/j.carbon.2014.02.082.
  • Bayat, M.; Yang, H.; Ko, F. K.; Michelson, D.; Mei, A. Electromagnetic Interference Shielding Effectiveness of Hybrid Multifunctional Fe3O4/Carbon Nanofiber Composite. Polymer 2014, 55, 936–943. DOI:10.1016/j.polymer.2013.12.042.
  • Huang, Y.; Li, N.; Ma, Y.; Du, F.; Li, F.; He, X.; Lin, X.; Gao, H.; Chen, Y. The Influence of Single-Walled Carbon Nanotube Structure on the Electromagnetic Interference Shielding Efficiency of Its Epoxy Composites. Carbon 2007, 45, 1614–1621. DOI:10.1016/j.carbon.2007.04.016.
  • Das, N. C.; Liu, Y.; Yang, K.; Peng, W.; Maiti, S.; Wang, H. Single-Walled Carbon Nanotube/Poly(Methyl Methacrylate) Composites for Electromagnetic Interference Shielding. Polym. Eng. Sci. 2009, 49, 1627–1634. DOI:10.1002/pen.21384.
  • Park, S. H.; Thielemann, P.; Asbeck, P.; Bandaru, P. R. Enhanced Dielectric Constants and Shielding Effectiveness of, Uniformly Dispersed, Functionalized Carbon Nanotube Composites. Appl. Phys. Lett. 2009, 94, 243111. DOI:10.1063/1.3156032.
  • Jia, L.-C.; Li, M.-Z.; Yan, D.-X.; Cui, C.-H.; Wu, H.-Y.; Li, Z.-M. A Strong and Tough Polymer–Carbon Nanotube Film for Flexible and Efficient Electromagnetic Interference Shielding. J. Mater. Chem. C 2017, 5, 8944–8951. DOI:10.1039/C7TC02259J.
  • Li, N.; Huang, Y.; Du, F.; He, X.; Lin, X.; Gao, H.; Ma, Y.; Li, F.; Chen, Y.; Eklund, P. C. Electromagnetic Interference (EMI) Shielding of Single-Walled Carbon Nanotube Epoxy Composites. Nano Lett. 2006, 6, 1141–1145. DOI:10.1021/nl0602589.
  • Liu, Z.; Bai, G.; Huang, Y.; Ma, Y.; Du, F.; Li, F.; Guo, T.; Chen, Y. Reflection and Absorption Contributions to the Electromagnetic Interference Shielding of Single-Walled Carbon Nanotube/Polyurethane Composites. Carbon 2007, 45, 821–827. DOI:10.1016/j.carbon.2006.11.020.
  • Liu, Z.; Bai, G.; Huang, Y.; Li, F.; Ma, Y.; Guo, T.; He, X.; Lin, X.; Gao, H.; Chen, Y. Microwave Absorption of Single-Walled Carbon Nanotubes/Soluble Cross-Linked Polyurethane Composites. J. Phys. Chem. C 2007, 111, 13696–13700. DOI:10.1021/jp0731396.
  • Zeng, Z.; Chen, M.; Jin, H.; Li, W.; Xue, X.; Zhou, L.; Pei, Y.; Zhang, H.; Zhang, Z. Thin and Flexible Multi-Walled Carbon Nanotube/Waterborne Polyurethane Composites with High-Performance Electromagnetic Interference Shielding. Carbon 2016, 96, 768–777. DOI:10.1016/j.carbon.2015.10.004.
  • Zeng, Z.; Jin, H.; Chen, M.; Li, W.; Zhou, L.; Zhang, Z. Lightweight and Anisotropic Porous MWCNT/WPU Composites for Ultrahigh Performance Electromagnetic Interference Shielding. Adv. Funct. Mater. 2016, 26, 303–310. DOI:10.1002/adfm.201503579.
  • Chen, Y.; Zhang, H.-B.; Yang, Y.; Wang, M.; Cao, A.; Yu, Z.-Z. High-Performance Epoxy Nanocomposites Reinforced with Three-Dimensional Carbon Nanotube Sponge for Electromagnetic Interference Shielding. Adv. Funct. Mater. 2016, 26, 447–455. DOI:10.1002/adfm.201503782.
  • Farukh, M.; Singh, A. P.; Dhawan, S. K. Enhanced Electromagnetic Shielding Behavior of Multi-Walled Carbon Nanotube Entrenched Poly (3,4-Ethylenedioxythiophene) Nanocomposites. Compos. Sci. Technol. 2015, 114, 94–102. DOI:10.1016/j.compscitech.2015.04.004.
  • Gupta, A.; Choudhary, V. Electromagnetic Interference Shielding Behavior of Poly(Trimethylene Terephthalate)/Multi-Walled Carbon Nanotube Composites. Compos. Sci. Technol. 2011, 71, 1563–1568. DOI:10.1016/j.compscitech.2011.06.014.
  • Pande, S.; Chaudhary, A.; Patel, D.; Singh, B. P.; Mathur, R. B. Mechanical and Electrical Properties of Multiwall Carbon Nanotube/Polycarbonate Composites for Electrostatic Discharge and Electromagnetic Interference Shielding Applications. RSC Adv. 2014, 4, 13839–13849. DOI:10.1039/c3ra47387b.
  • Arjmand, M.; Apperley, T.; Okoniewski, M.; Sundararaj, U. Comparative Study of Electromagnetic Interference Shielding Properties of Injection Molded versus Compression Molded Multi-Walled Carbon Nanotube/Polystyrene Composites. Carbon 2012, 50, 5126–5134. DOI:10.1016/j.carbon.2012.06.053.
  • Saini, P.; Choudhary, V.; Singh, B. P.; Mathur, R. B.; Dhawan, S. K. Polyaniline–MWCNT Nanocomposites for Microwave Absorption and EMI Shielding. Mater. Chem. Phys. 2009, 113, 919–926. DOI:10.1016/j.matchemphys.2008.08.065.
  • Basuli, U.; Chattopadhyay, S.; Nah, C.; Chaki, T. K. Electrical Properties and Electromagnetic Interference Shielding Effectiveness of Multiwalled Carbon Nanotubes-Reinforced EMA Nanocomposites. Polym. Compos. 2012, 33, 897–903. DOI:10.1002/pc.22167.
  • Yuen, S.-M.; Ma, C.-C. M.; Chuang, C.-Y.; Yu, K.-C.; Wu, S.-Y.; Yang, C.-C.; Wei, M.-H. Effect of Processing Method on the Shielding Effectiveness of Electromagnetic Interference of MWCNT/PMMA Composites. Compos. Sci. Technol. 2008, 68, 963–968. DOI:10.1016/j.compscitech.2007.08.004.
  • Kim, H. M.; Kim, K.; Lee, C. Y.; Joo, J.; Cho, S. J.; Yoon, H. S.; Pejaković, D. A.; Yoo, J. W.; Epstein, A. J. Electrical Conductivity and Electromagnetic Interference Shielding of Multiwalled Carbon Nanotube Composites Containing Fe Catalyst. Appl. Phys. Lett. 2004, 84, 589–591. DOI:10.1063/1.1641167.
  • Jia, L.-C.; Yan, D.-X.; Cui, C.-H.; Jiang, X.; Ji, X.; Li, Z.-M. Electrically Conductive and Electromagnetic Interference Shielding of Polyethylene Composites with Devisable Carbon Nanotube Networks. J. Mater. Chem. C 2015, 3, 9369–9378. DOI:10.1039/C5TC01822F.
  • Jia, L.-C.; Li, Y.-K.; Yan, D.-X. Flexible and Efficient Electromagnetic Interference Shielding Materials from Ground Tire Rubber. Carbon 2017, 121, 267–273. DOI:10.1016/j.carbon.2017.05.100.
  • Jia, L.-C.; Yan, D.-X.; Cui, C.-H.; Ji, X.; Li, Z.-M. A Unique Double Percolated Polymer Composite for Highly Efficient Electromagnetic Interference Shielding. Macromol. Mater. Eng. 2016, 301, 1232–1241. DOI:10.1002/mame.201600145.
  • Wu, H.-Y.; Jia, L.-C.; Yan, D.-X.; Gao, J-f.; Zhang, X.-P.; Ren, P.-G.; Li, Z.-M. Simultaneously Improved Electromagnetic Interference Shielding and Mechanical Performance of Segregated Carbon Nanotube/Polypropylene Composite via Solid Phase Molding. Compos. Sci. Technol. 2018, 156, 87–94. DOI:10.1016/j.compscitech.2017.12.027.
  • Yang, Y.; Gupta, M. C.; Dudley, K. L.; Lawrence, R. W. Novel Carbon Nanotube − Polystyrene Foam Composites for Electromagnetic Interference Shielding. Nano Lett. 2005, 5, 2131–2134. DOI:10.1021/nl051375r.
  • Thomassin, J.-M.; Lou, X.; Pagnoulle, C.; Saib, A.; Bednarz, L.; Huynen, I.; Jérôme, R.; Detrembleur, C. Multiwalled Carbon Nanotube/Poly(ε-Caprolactone) Nanocomposites with Exceptional Electromagnetic Interference Shielding Properties. J. Phys. Chem. C 2007, 111, 11186–11192. DOI:10.1021/jp0701690.
  • Thomassin, J.-M.; Pagnoulle, C.; Bednarz, L.; Huynen, I.; Jerome, R.; Detrembleur, C. Foams of Polycaprolactone/MWNT Nanocomposites for Efficient EMI Reduction. J. Mater. Chem. 2008, 18, 792–796. DOI:10.1039/b709864b.
  • Gupta, T. K.; Singh, B. P.; Dhakate, S. R.; Singh, V. N.; Mathur, R. B. Improved Nanoindentation and Microwave Shielding Properties of Modified MWCNT Reinforced Polyurethane Composites. J. Mater. Chem. A 2013, 1, 9138–9149. DOI:10.1039/c3ta11611e.
  • Anh Son, H. Electrical Conductivity and Electromagnetic Interference Shielding Characteristics of Multiwalled Carbon Nanotube Filled Polyurethane Composite Films. Adv. Nat. Sci.: Nanosci. Nanotechnol. 2011, 2, 025007.
  • Huang, Y.-L.; Yuen, S.-M.; Ma, C.-C. M.; Chuang, C.-Y.; Yu, K.-C.; Teng, C.-C.; Tien, H.-W.; Chiu, Y.-C.; Wu, S.-Y.; Liao, S.-H.; Weng, F.-B. Morphological, Electrical, Electromagnetic Interference (EMI) Shielding, and Tribological Properties of Functionalized Multi-Walled Carbon Nanotube/Poly Methyl Methacrylate (PMMA) Composites. Compos. Sci. Technol. 2009, 69, 1991–1996. DOI:10.1016/j.compscitech.2009.05.006.
  • Saini, P.; Choudhary, V. Enhanced Electromagnetic Interference Shielding Effectiveness of Polyaniline Functionalized Carbon Nanotubes Filled Polystyrene Composites. J. Nanopart. Res. 2013, 15, 1415.
  • Arjmand, M.; Sundararaj, U. Electromagnetic Interference Shielding of Nitrogen-Doped and Undoped Carbon Nanotube/Polyvinylidene Fluoride Nanocomposites: A Comparative Study. Compos. Sci. Technol. 2015, 118, 257–263. DOI:10.1016/j.compscitech.2015.09.012.
  • Ding-Xiang, Y.; Huan, P.; Ling, X.; Yu, B.; Peng-Gang, R.; Jun, L.; Zhong-Ming, L. Electromagnetic Interference Shielding of Segregated Polymer Composite with an Ultralow Loading of in Situ Thermally Reduced Graphene Oxide. Nanotechnology 2014, 25, 145705. DOI:10.1088/0957-4484/25/14/145705.
  • Agnihotri, N.; Chakrabarti, K.; De, A. Highly Efficient Electromagnetic Interference Shielding Using Graphite Nanoplatelet/Poly(3,4-Ethylenedioxythiophene)-Poly(Styrenesulfonate) Composites with Enhanced Thermal Conductivity. RSC Adv. 2015, 5, 43765–43771. DOI:10.1039/C4RA15674A.
  • Zhang, H.-B.; Zheng, W.-G.; Yan, Q.; Jiang, Z.-G.; Yu, Z.-Z. The Effect of Surface Chemistry of Graphene on Rheological and Electrical Properties of Polymethylmethacrylate Composites. Carbon 2012, 50, 5117–5125. DOI:10.1016/j.carbon.2012.06.052.
  • Hsiao, S.-T.; Ma, C.-C. M.; Tien, H.-W.; Liao, W.-H.; Wang, Y.-S.; Li, S.-M.; Yang, C.-Y.; Lin, S.-C.; Yang, R.-B. Effect of Covalent Modification of Graphene Nanosheets on the Electrical Property and Electromagnetic Interference Shielding Performance of a Water-Borne Polyurethane Composite. ACS Appl. Mater. Interfaces 2015, 7, 2817–2826. DOI:10.1021/am508069v.
  • Jia, L.-C.; Sun, W.-J.; Zhou, C.-G.; Yan, D.-X.; Zhang, Q.-C.; Li, Z.-M. Integrated Strength and Toughness in Graphene/Calcium Alginate Films for Highly Efficient Electromagnetic Interference Shielding. J. Mater. Chem. C 2018, 6, 9166–9174. DOI:10.1039/C8TC03151G.
  • Liu, H.; Huang, W.; Yang, X.; Dai, K.; Zheng, G.; Liu, C.; Shen, C.; Yan, X.; Guo, J.; Guo, Z. Organic Vapor Sensing Behaviors of Conductive Thermoplastic Polyurethane–Graphene Nanocomposites. J. Mater. Chem. C 2016, 4, 4459–4469. DOI:10.1039/C6TC00987E.
  • Kirubasankar, B.; Murugadoss, V.; Lin, J.; Ding, T.; Dong, M.; Liu, H.; Zhang, J.; Li, T.; Wang, N.; Guo, Z.; Angaiah, S. In Situ Grown Nickel Selenide on Graphene Nanohybrid Electrodes for High Energy Density Asymmetric Supercapacitors. Nanoscale 2018, 10, 20414–20425. DOI:10.1039/C8NR06345A.
  • Li, Y.; Jing, T.; Xu, G.; Tian, J.; Dong, M.; Shao, Q.; Wang, B.; Wang, Z.; Zheng, Y.; Yang, C.; Guo, Z. 3-D Magnetic Graphene Oxide-Magnetite Poly(Vinyl Alcohol) Nanocomposite Substrates for Immobilizing Enzyme. Polymer 2018, 149, 13–22. DOI:10.1016/j.polymer.2018.06.046.
  • Du, H.; Zhao, C. X.; Lin, J.; Guo, J.; Wang, B.; Hu, Z.; Shao, Q.; Pan, D.; Wujcik, E. K.; Guo, Z. Carbon Nanomaterials in Direct Liquid Fuel Cells. Chem. Rec. 2018, 18, 1365–1372.
  • Liang, J.; Wang, Y.; Huang, Y.; Ma, Y.; Liu, Z.; Cai, J.; Zhang, C.; Gao, H.; Chen, Y. Electromagnetic Interference Shielding of Graphene/Epoxy Composites. Carbon 2009, 47, 922–925. DOI:10.1016/j.carbon.2008.12.038.
  • Yan, D.-X.; Pang, H.; Li, B.; Vajtai, R.; Xu, L.; Ren, P.-G.; Wang, J.-H.; Li, Z.-M. Structured Reduced Graphene Oxide/Polymer Composites for Ultra-Efficient Electromagnetic Interference Shielding. Adv. Funct. Mater. 2015, 25, 559–566. DOI:10.1002/adfm.201403809.
  • Bai, X.; Zhai, Y.; Zhang, Y. Green Approach to Prepare Graphene-Based Composites with High Microwave Absorption Capacity. J. Phys. Chem. C 2011, 115, 11673–11677. DOI:10.1021/jp202475m.
  • Song, W.-L.; Cao, M.-S.; Lu, M.-M.; Bi, S.; Wang, C.-Y.; Liu, J.; Yuan, J.; Fan, L.-Z. Flexible Graphene/Polymer Composite Films in Sandwich Structures for Effective Electromagnetic Interference Shielding. Carbon 2014, 66, 67–76. DOI:10.1016/j.carbon.2013.08.043.
  • Hsiao, S.-T.; Ma, C.-C. M.; Liao, W.-H.; Wang, Y.-S.; Li, S.-M.; Huang, Y.-C.; Yang, R.-B.; Liang, W.-F. Lightweight and Flexible Reduced Graphene Oxide/Water-Borne Polyurethane Composites with High Electrical Conductivity and Excellent Electromagnetic Interference Shielding Performance. ACS Appl. Mater. Interfaces 2014, 6, 10667–10678. DOI:10.1021/am502412q.
  • Yousefi, N.; Sun, X.; Lin, X.; Shen, X.; Jia, J.; Zhang, B.; Tang, B.; Chan, M.; Kim, J.-K. Highly Aligned Graphene/Polymer Nanocomposites with Excellent Dielectric Properties for High-Performance Electromagnetic Interference Shielding. Adv. Mater. 2014, 26, 5480–5487. DOI:10.1002/adma.201305293.
  • Anupama, J.; Anil, B.; Rajvinder, S.; Alegaonkar, P. S.; Balasubramanian, K.; Suwarna, D. Graphene nanoribbon-PVA composite as EMI shielding material in the X band. Nanotechnology 2013, 24, 455705
  • Sun, X.; He, J.; Li, G.; Tang, J.; Wang, T.; Guo, Y.; Xue, H. Laminated Magnetic Graphene with Enhanced Electromagnetic Wave Absorption Properties. J. Mater. Chem. C 2013, 1, 765–777. DOI:10.1039/C2TC00159D.
  • Yuan, B.; Bao, C.; Qian, X.; Song, L.; Tai, Q.; Liew, K. M.; Hu, Y. Design of Artificial Nacre-like Hybrid Films as Shielding to Mitigate Electromagnetic Pollution. Carbon 2014, 75, 178–189. DOI:10.1016/j.carbon.2014.03.051.
  • Bhaskara Rao, B. V.; Yadav, P.; Aepuru, R.; Panda, H. S.; Ogale, S.; Kale, S. N. Single-Layer Graphene-Assembled 3D Porous Carbon Composites with PVA and Fe3O4 Nano-Fillers: An Interface-Mediated Superior Dielectric and EMI Shielding Performance. Phys. Chem. Chem. Phys. 2015, 17, 18353–18363. DOI:10.1039/C5CP02476E.
  • Yao, K.; Gong, J.; Tian, N.; Lin, Y.; Wen, X.; Jiang, Z.; Na, H.; Tang, T. Flammability Properties and Electromagnetic Interference Shielding of PVC/Graphene Composites Containing Fe3O4 Nanoparticles. RSC Adv. 2015, 5, 31910–31919. DOI:10.1039/C5RA01046B.
  • Singh, K.; Ohlan, A.; Pham, V. H.; R, B.; Varshney, S.; Jang, J.; Hur, S. H.; Choi, W. M.; Kumar, M.; Dhawan, S. K.; et al. Nanostructured Graphene/Fe3O4 Incorporated Polyaniline as a High Performance Shield against Electromagnetic Pollution. Nanoscale 2013, 5, 2411–2420. DOI:10.1039/c3nr33962a.
  • Chen, Y.; Wang, Y.; Zhang, H.-B.; Li, X.; Gui, C.-X.; Yu, Z.-Z. Enhanced Electromagnetic Interference Shielding Efficiency of Polystyrene/Graphene Composites with Magnetic Fe3O4 Nanoparticles. Carbon 2015, 82, 67–76. DOI:10.1016/j.carbon.2014.10.031.
  • Singh, A. P.; Mishra, M.; Sambyal, P.; Gupta, B. K.; Singh, B. P.; Chandra, A.; Dhawan, S. K. Encapsulation of [Gamma]-Fe2O3 Decorated Reduced Graphene Oxide in Polyaniline Core-Shell Tubes as an Exceptional Tracker for Electromagnetic Environmental Pollution. J. Mater. Chem. A 2014, 2, 3581–3593. DOI:10.1039/C3TA14212D.
  • Liu, P.; Huang, Y.; Wang, L.; Zhang, W. Synthesis and Excellent Electromagnetic Absorption Properties of Polypyrrole-Reduced Graphene Oxide–Co3O4 Nanocomposites. J. Alloys Comp. 2013, 573, 151–156. DOI:10.1016/j.jallcom.2013.03.280.
  • Liu, P.-B.; Huang, Y.; Sun, X. Excellent Electromagnetic Absorption Properties of Poly(3,4-Ethylenedioxythiophene)-Reduced Graphene Oxide–Co3O4 Composites Prepared by a Hydrothermal Method. ACS Appl. Mater. Interfaces 2013, 5, 12355–12360. DOI:10.1021/am404561c.
  • Chen, Y.; Li, Y.; Yip, M.; Tai, N. Electromagnetic Interference Shielding Efficiency of Polyaniline Composites Filled with Graphene Decorated with Metallic Nanoparticles. Compos. Sci. Technol. 2013, 80, 80–86. DOI:10.1016/j.compscitech.2013.02.024.
  • Basavaraja, C.; Kim, W. J.; Kim, Y. D.; Huh, D. S. Synthesis of Polyaniline-Gold/Graphene Oxide Composite and Microwave Absorption Characteristics of the Composite Films. Mater. Lett. 2011, 65, 3120–3123. DOI:10.1016/j.matlet.2011.06.110.
  • Yan, D.-X.; Ren, P.-G.; Pang, H.; Fu, Q.; Yang, M.-B.; Li, Z.-M. Efficient Electromagnetic Interference Shielding of Lightweight Graphene/Polystyrene Composite. J. Mater. Chem. 2012, 22, 18772–18774. DOI:10.1039/c2jm32692b.
  • Li, Y.; Pei, X.; Shen, B.; Zhai, W.; Zhang, L.; Zheng, W. Polyimide/Graphene Composite Foam Sheets with Ultrahigh Thermostability for Electromagnetic Interference Shielding. RSC Adv. 2015, 5, 24342–24351. DOI:10.1039/C4RA16421K.
  • Shen, B.; Li, Y.; Zhai, W.; Zheng, W. Compressible Graphene-Coated Polymer Foams with Ultralow Density for Adjustable Electromagnetic Interference (EMI) Shielding. ACS Appl. Mater. Interfaces 2016, 8, 8050–8057. DOI:10.1021/acsami.5b11715.
  • Zhang, H.-B.; Yan, Q.; Zheng, W.-G.; He, Z.; Yu, Z.-Z. Tough Graphene − Polymer Microcellular Foams for Electromagnetic Interference Shielding. ACS Appl. Mater. Interfaces 2011, 3, 918–924. DOI:10.1021/am200021v.
  • Eswaraiah, V.; Sankaranarayanan, V.; Ramaprabhu, S. Functionalized Graphene–PVDF Foam Composites for EMI Shielding. Macromol. Mater. Eng. 2011, 296, 894–898. DOI:10.1002/mame.201100035.
  • Chen, Z.; Xu, C.; Ma, C.; Ren, W.; Cheng, H.-M. Lightweight and Flexible Graphene Foam Composites for High-Performance Electromagnetic Interference Shielding. Adv. Mater. 2013, 25, 1296–1300. DOI:10.1002/adma.201204196.
  • Ling, J.; Zhai, W.; Feng, W.; Shen, B.; Zhang, J.; Zheng, W. g. Facile Preparation of Lightweight Microcellular Polyetherimide/Graphene Composite Foams for Electromagnetic Interference Shielding. ACS Appl. Mater. Interfaces 2013, 5, 2677–2684. DOI:10.1021/am303289m.
  • Shen, B.; Zhai, W.; Tao, M.; Ling, J.; Zheng, W. Lightweight, Multifunctional Polyetherimide/Graphene@Fe3O4 Composite Foams for Shielding of Electromagnetic Pollution. ACS Appl. Mater. Interfaces 2013, 5, 11383–11391. DOI:10.1021/am4036527.
  • Naguib, M.; Mochalin, V. N.; Barsoum, M. W.; Gogotsi, Y. 25th Anniversary Article: MXenes: A New Family of Two-Dimensional Materials. Adv. Mater. 2014, 26, 992–1005. DOI:10.1002/adma.201304138.
  • Shahzad, F.; Alhabeb, M.; Hatter, C. B.; Anasori, B.; Man Hong, S.; Koo, C. M.; Gogotsi, Y. Electromagnetic Interference Shielding with 2D Transition Metal Carbides (MXenes). Science 2016, 353, 1137–1140. DOI:10.1126/science.aag2421.
  • Ning, M.-Q.; Lu, M.-M.; Li, J.-B.; Chen, Z.; Dou, Y.-K.; Wang, C.-Z.; Rehman, F.; Cao, M.-S.; Jin, H.-B. Two-Dimensional Nanosheets of MoS2: A Promising Material with High Dielectric Properties and Microwave Absorption Performance. Nanoscale 2015, 7, 15734–15740. DOI:10.1039/C5NR04670J.
  • Wen, Q.; Zhou, W.; Su, J.; Qing, Y.; Luo, F.; Zhu, D. High Performance Electromagnetic Interference Shielding of Lamellar MoSi2/Glass Composite Coatings by Plasma Spraying. J. Alloys Comp. 2016, 666, 359–365. DOI:10.1016/j.jallcom.2016.01.123.
  • Li, B.-W.; Shen, Y.; Yue, Z.-X.; Nan, C.-W. Enhanced Microwave Absorption in Nickel/Hexagonal-Ferrite/Polymer Composites. Appl. Phys. Lett. 2006, 89, 132504. DOI:10.1063/1.2357565.
  • Wu, N.; Xu, D.; Wang, Z.; Wang, F.; Liu, J.; Liu, W.; Shao, Q.; Liu, H.; Gao, Q.; Guo, Z. Achieving Superior Electromagnetic Wave Absorbers through the Novel Metal-Organic Frameworks Derived Magnetic Porous Carbon Nanorods. Carbon 2019, 145, 433–444. DOI:10.1016/j.carbon.2019.01.028.
  • Wu, N.; Liu, C.; Xu, D.; Liu, J.; Liu, W.; Liu, H.; Zhang, J.; Xie, W.; Guo, Z. Ultrathin High-Performance Electromagnetic Wave Absorbers with Facilely Fabricated Hierarchical Porous Co/C Crabapples. J. Mater. Chem. C 2019, 7, 1659–1669. DOI:10.1039/C8TC04984J.
  • Sachdev, H. Disclosing Boron's Thinnest Side. Mater. Sci. 2015, 350, 1468–1469.
  • Piazza, Z. A.; Hu, H.-S.; Li, W.-L.; Zhao, Y.-F.; Li, J.; Wang, L.-S. Planar Hexagonal B(36) as a Potential Basis for Extended Single-Atom Layer Boron Sheets . Nat. Commun. 2014, 5, 3113
  • Wang, Y.; Huang, P.; Ye, M.; Quhe, R.; Pan, Y.; Zhang, H.; Zhong, H.; Shi, J.; Lu, J. Many-Body Effect, Carrier Mobility, and Device Performance of Hexagonal Arsenene and Antimonene. Chem. Mater. 2017, 29, 2191–2201. DOI:10.1021/acs.chemmater.6b04909.
  • Gibaja, C.; Rodriguez-San-Miguel, D.; Ares, P.; Gómez-Herrero, J.; Varela, M.; Gillen, R.; Maultzsch, J.; Hauke, F.; Hirsch, A.; Abellán, G.; Zamora, F. Few-Layer Antimonene by Liquid-Phase Exfoliation. Angew. Chem. Int. Ed. 2016, 55, 14345–14349. DOI:10.1002/anie.201605298.
  • Tantawy, H. R.; Kengne, B.-A. F.; McIlroy, D. N.; Nguyen, T.; Heo, D.; Qiang, Y.; Aston, D. E. X-Ray Photoelectron Spectroscopy Analysis for the Chemical Impact of Solvent Addition Rate on Electromagnetic Shielding Effectiveness of HCl-Doped Polyaniline Nanopowders. J. Appl. Phys. 2015, 118, 175501. DOI:10.1063/1.4934851.
  • Lakshmi, K.; John, H.; Mathew, K. T.; Joseph, R.; George, K. E. Microwave Absorption, Reflection and EMI Shielding of PU–PANI Composite. Acta Mater. 2009, 57, 371–375. DOI:10.1016/j.actamat.2008.09.018.
  • Lan, M.; Cai, J.; Zhang, D.; Yuan, L.; Xu, Y. Electromagnetic Shielding Effectiveness and Mechanical Property of Polymer–Matrix Composites Containing Metallized Conductive Porous Flake-Shaped Diatomite. Compos. Part B: Eng. 2014, 67, 132–137. DOI:10.1016/j.compositesb.2014.06.029.
  • Al-Ghamdi, A. A.; El-Tantawy, F. New Electromagnetic Wave Shielding Effectiveness at Microwave Frequency of Polyvinyl Chloride Reinforced Graphite/Copper Nanoparticles. Compos. Part A: Appl. Sci. Manuf. 2010, 41, 1693–1701. DOI:10.1016/j.compositesa.2010.08.006.
  • Panwar, V.; Mehra, R. M. Analysis of Electrical, Dielectric, and Electromagnetic Interference Shielding Behavior of Graphite Filled High Density Polyethylene Composites. Polym. Eng. Sci. 2008, 48, 2178–2187. DOI:10.1002/pen.21163.
  • Jiang, X.; Yan, D.-X.; Bao, Y.; Pang, H.; Ji, X.; Li, Z.-M. Facile, Green and Affordable Strategy for Structuring Natural Graphite/Polymer Composite with Efficient Electromagnetic Interference Shielding. RSC Adv. 2015, 5, 22587–22592. DOI:10.1039/C4RA11332B.
  • De Bellis, G.; Tamburrano, A.; Dinescu, A.; Santarelli, M. L.; Sarto, M. S. Electromagnetic Properties of Composites Containing Graphite Nanoplatelets at Radio Frequency. Carbon 2011, 49, 4291–4300. DOI:10.1016/j.carbon.2011.06.008.
  • Sachdev, V. K.; Patel, K.; Bhattacharya, S.; Tandon, R. P. Electromagnetic Interference Shielding of Graphite/Acrylonitrile Butadiene Styrene Composites. J. Appl. Polym. Sci. 2011, 120, 1100–1105. DOI:10.1002/app.33248.
  • Wang, Y.; Chen, D.; Yin, X.; Xu, P.; Wu, F.; He, M. Hybrid of MoS2 and Reduced Graphene Oxide: A Lightweight and Broadband Electromagnetic Wave Absorber. ACS Appl. Mater. Interfaces 2015, 7, 26226–26234. DOI:10.1021/acsami.5b08410.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.