3,829
Views
5
CrossRef citations to date
0
Altmetric
Reviews

Synthetic Approaches to Combine the Versatility of the Thiol Chemistry with the Degradability of Aliphatic Polyesters

ORCID Icon & ORCID Icon
Pages 86-113 | Received 18 Feb 2019, Accepted 02 May 2019, Published online: 05 Jun 2019

References

  • Shoichet, M. S. Polymer Scaffolds for Biomaterials Applications. Macromolecules 2010, 43, 581–591. DOI: 10.1021/ma901530r.
  • Tian, H.; Tang, Z.; Zhuang, X.; Chen, X.; Jing, X. Biodegradable Synthetic Polymers: Preparation, Functionalization and Biomedical Application. Prog. Polym. Sci. 2012, 37, 237–280. DOI: 10.1016/j.progpolymsci.2011.06.004.
  • Nair, L. S.; Laurencin, C. T. Biodegradable Polymers as Biomaterials. Prog. Polym. Sci. 2007, 32, 762–798. DOI: 10.1016/j.progpolymsci.2007.05.017.
  • Vert, M. Aliphatic Polyesters: Great Degradable Polymers that Cannot Do Everything. Biomacromolecules 2005, 6, 538–546. DOI: 10.1021/bm0494702.
  • Seyednejad, H.; Ghassemi, A. H.; van Nostrum, C. F.; Vermonden, T.; Hennink, W. E. Functional Aliphatic Polyesters for Biomedical and Pharmaceutical Applications. J. Control. Release 2011, 152, 168–176. DOI: 10.1016/j.jconrel.2010.12.016.
  • Williams, C. K. Synthesis of Functionalized Biodegradable Polyesters. Chem. Soc. Rev. 2007, 36, 1573–1580. DOI: 10.1039/b614342n.
  • Heiny, M.; Wurth, J. J.; V. P. Chapter, S. 9 - Progress in functionalized biodegradable polyesters A2. In Natural and Synthetic Biomedical Polymers, Kumbar, S., Laurencin, C., Deng, M., Eds; Elsevier: Oxford, 2014; pp 167–180.
  • Winnacker, M. Covalent Polyester–Biomolecule Conjugates: Advances in Their Synthesis and Applications in Biomedicine and Nanotechnology. Polym. Int. 2017, 66, 1747–1755. DOI: 10.1002/pi.5459.
  • Pounder, R. J.; Dove, A. P. Towards Poly(Ester) Nanoparticles: Recent Advances in the Synthesis of Functional Poly(Ester)s by Ring-Opening Polymerization. Polym. Chem. 2010, 1, 260–271. DOI: 10.1039/b9py00327d.
  • Yu, Y.; Zou, J.; Cheng, C. Synthesis and Biomedical Applications of Functional Poly([Small Alpha]-Hydroxyl Acid)s. Polym. Chem. 2014, 5, 5854–5872. DOI: 10.1039/C4PY00667D.
  • Tong, R. New Chemistry in Functional Aliphatic Polyesters. Ind. Eng. Chem. Res. 2017, 56, 4207–4219. DOI: 10.1021/acs.iecr.7b00524.
  • Dondoni, A. The Emergence of Thiol–Ene Coupling as a Click Process for Materials and Bioorganic Chemistry. Angew. Chem. Int. Ed. 2008, 47, 8995–8997. DOI: 10.1002/anie.200802516.
  • Hoyle, C. E.; Lowe, A. B.; Bowman, C. N. Thiol-Click Chemistry: A Multifaceted Toolbox for Small Molecule and Polymer Synthesis. Chem. Soc. Rev. 2010, 39, 1355–1387. DOI: 10.1039/b901979k.
  • Lowe, A. B. Thiol-Ene “Click” Reactions and Recent Applications in Polymer and Materials Synthesis. Polym. Chem. 2010, 1, 17–36. DOI: 10.1039/B9PY00216B.
  • Lowe, A. B. Thiol-Ene “Click” Reactions and Recent Applications in Polymer and Materials Synthesis: A First Update. Polym. Chem. 2014, 5, 4820–4870. DOI: 10.1039/C4PY00339J.
  • Lowe, A. B. Thiol-Yne ‘Click’/Coupling Chemistry and Recent Applications in Polymer and Materials Synthesis and Modification. Polymer 2014, 55, 5517–5549. DOI: 10.1016/j.polymer.2014.08.015.
  • Hvilsted, S. Facile Design of Biomaterials by ‘Click’ Chemistry. Polym. Int. 2012, 61, 485–494. DOI: 10.1002/pi.4135.
  • Zou, Y.; Zhang, L.; Yang, L.; Zhu, F.; Ding, M.; Lin, F.; Wang, Z.; Li, Y. Click” Chemistry in Polymeric Scaffolds: bioactive Materials for Tissue Engineering. J. Control. Release 2018, 273, 160–179. DOI: DOI: 10.1016/j.jconrel.2018.01.023.
  • Schäfer, O.; Barz, M. Of Thiols and Disulfides: Methods for Chemoselective Formation of Asymmetric Disulfides in Synthetic Peptides and Polymers. Chem. Eur. J. 2018, 24, 12131–12142. DOI: 10.1002/chem.201800681.
  • Trollsås, M.; Hawker, C. J.; Hedrick, J. L.; Carrot, G.; Hilborn, J. A Mild and Versatile Synthesis for the Preparation of Thiol-Functionalized Polymers. Macromolecules 1998, 31, 5960–5963. DOI: 10.1021/ma980775g.
  • Carrot, G.; Hilborn, J. G.; Trollsås, M.; Hedrick, J. L. Two General Methods for the Synthesis of Thiol-Functional Polycaprolactones. Macromolecules 1999, 32, 5264–5269. DOI: 10.1021/ma990198b.
  • Qiu, H.; Rieger, J.; Gilbert, B.; Jérôme, R.; Jérôme, C. PLA-Coated Gold Nanoparticles for the Labeling of PLA Biocarriers. Chem. Mater. 2004, 16, 850–856. DOI: 10.1021/cm034519g.
  • Javakhishvili, I.; Hvilsted, S. Gold Nanoparticles Protected with Thiol-Derivatized Amphiphilic Poly(ϵ-Caprolactone)-b-Poly(Acrylic Acid). Biomacromolecules 2009, 10, 74–81. DOI: 10.1021/bm800860t.
  • Hedfors, C.; Östmark, E.; Malmström, E.; Hult, K.; Martinelle, M. Thiol End-Functionalization of Poly(ε-Caprolactone), Catalyzed by Candida antarctica Lipase B. Macromolecules 2005, 38, 647–649. DOI: 10.1021/ma048056r.
  • Takwa, M.; Hult, K.; Martinelle, M. Single-Step, Solvent-Free Enzymatic Route to α,ω-Functionalized Polypentadecalactone Macromonomers. Macromolecules 2008, 41, 5230–5236. DOI: 10.1021/ma800074a.
  • Zhu, N.; Zhang, Z.-L.; He, W.; Geng, X.-C.; Fang, Z.; Li, X.; Li, Z.-J.; Guo, K. Highly Chemoselective Lipase from Candida sp. 99-125 Catalyzed Ring-Opening Polymerization for Direct Synthesis of Thiol-Terminated Poly(ɛ-Caprolactone). Chin. Chem. Lett. 2015, 26, 361–364. DOI: 10.1016/j.cclet.2014.11.016.
  • Zhu, N.; Ling, J.; Zhu, Y.; Sun, W.; Shen, Z. Novel Direct Synthetic Approach to Thiol-Functionalized Poly(ε-Caprolactone) by Highly Chemselective and Low Costly Rare Earth Phenolate Catalysts. J. Polym. Sci. A Polym. Chem. 2010, 48, 4366–4369. DOI: 10.1002/pola.24233.
  • Zhu, N.; Feng, W.; Zhang, Z.; Fang, Z.; Li, Z.; Guo, K. Thiol-Functionalized Branched and Linear Poly(ε-Caprolactone): Direct Synthesis, Characterization and Application in Stabilizing Silver Nanoparticles. Polymer 2015, 80, 88–94. DOI: 10.1016/j.polymer.2015.10.053.
  • Liu, Y.; Huang, W.; Zhu, N.; Guo, K. Direct Synthesis of Thiol-Terminated Poly(ε-Caprolactone): A Study on Polymerization Kinetics, Mechanism and Rare Earth Phenolates' Structure-Activity Relationship. RSC Adv. 2017, 7, 37412–37418. DOI: 10.1039/C7RA06781J.
  • Zhu, N.; Liu, Y.; Feng, W.; Huang, W.; Zhang, Z.; Hu, X.; Fang, Z.; Li, Z.; Guo, K. Continuous Flow Protecting-Group-Free Synthetic Approach to Thiol-Terminated Poly(ε-Caprolactone). Eur. Polym. J 2016, 80, 234–239. DOI: DOI: 10.1016/j.eurpolymj.2016.04.010.
  • Kryuchkov, M. A.; Qi, Y. H.; Perepichka, I. I.; Pelletier, C.; Regnaud, A.; Song, Z.; Varshney, S. K. Challenging Activated Monomer Ring-Opening Polymerization for Direct Synthesis of Thiol End-Functionalized Polyesters. React. Funct. Polym. 2015, 90, 1–6. DOI: DOI: 10.1016/j.reactfunctpolym.2015.03.005.
  • Lele, B. S.; Leroux, J. C. Synthesis and Micellar Characterization of Novel Amphiphilic a − B−a Triblock Copolymers of N-(2-Hydroxypropyl)Methacrylamide or N-Vinyl-2-Pyrrolidone with Poly(ε-Caprolactone). Macromolecules 2002, 35, 6714–6723. DOI: 10.1021/ma020433h.
  • Lele, B. S.; Leroux, J. C. Synthesis of Novel Amphiphilic Star-Shaped Poly(ε-Caprolactone)-Block-Poly(N-(2-Hydroxypropyl)Methacrylamide) by Combination of Ring-Opening and Chain Transfer Polymerization. Polymer 2002, 43, 5595–5606. DOI: 10.1016/S0032-3861(02)00435-4.
  • Takasu, A.; Tsuruta, H.; Narukawa, Y.; Shibata, Y.; Oshimura, M.; Hirabayashi, T. Dual Catalytic System for Combination of Chain and Step Polymerizations: ring-Opening Polymerization of ϵ-Caprolactone and Successive Dehydration Polycondensation with Dicarboxylic Acid Using the Same Catalyst. Macromolecules 2008, 41, 4688–4693. DOI: 10.1021/ma8005944.
  • Molla, M. R.; Ghosh, S. Exploring Versatile Sulfhydryl Chemistry in the Chain End of a Synthetic Polylactide. Macromolecules 2012, 45, 8561–8570. DOI: 10.1021/ma302130f.
  • Bednarek, M. Coupling Reaction with Thiols as the Efficient Method of Functionalization of ‘‘Clickable” Polylactide. React. Funct. Polym. 2013, 73, 1130–1136. DOI: DOI: 10.1016/j.reactfunctpolym.2013.04.001.
  • Hall, D. J.; Van Den Berghe, H. M.; Dove, A. P. Synthesis and Post-Polymerization Modification of Maleimide-Containing Polymers by ‘Thiol-Ene’ Click and Diels–Alder Chemistries. Polym. Int. 2011, 60, 1149–1157. DOI: 10.1002/pi.3121.
  • Pounder, R. J.; Stanford, M. J.; Brooks, P.; Richards, S. P.; Dove, A. P. Metal Free Thiol-Maleimide 'Click' Reaction as a Mild Functionalisation Strategy for Degradable Polymers. Chem. Commun. 2008, 5158–5160. DOI: 10.1039/b809167f.
  • Stanford, M. J.; Pflughaupt, R. L.; Dove, A. P. Synthesis of Stereoregular Cyclic Poly(Lactide)s via “Thiol − Ene” Click Chemistry. Macromolecules 2010, 43, 6538–6541. DOI: 10.1021/ma101291v.
  • El Habnouni, S.; Darcos, V.; Garric, X.; Lavigne, J.-P.; Nottelet, B.; Coudane, J. Mild Methodology for the Versatile Chemical Modification of Polylactide Surfaces: Original Combination of Anionic and Click Chemistry for Biomedical Applications. Adv. Funct. Mater. 2011, 21, 3321–3330. DOI: 10.1002/adfm.201100412.
  • Zhu, Y.; Mao, Z.; Gao, C. Aminolysis-Based Surface Modification of Polyesters for Biomedical Applications. RSC Adv. 2013, 3, 2509–2519. DOI: 10.1039/C2RA22358A.
  • Ponsart, S.; Coudane, J.; Vert, M. A Novel Route to Poly(ε-Caprolactone)-Based Copolymers via Anionic Derivatization. Biomacromolecules 2000, 1, 275–281. DOI: 10.1021/bm005521t.
  • Nottelet, B.; Tambutet, G.; Bakkour, Y.; Coudane, J. Redox and Thiol-Ene Cross-Linking of Mercapto Poly(ε-Caprolactone) for the Preparation of Reversible Degradable Elastomeric Materials. Polym. Chem. 2012, 3, 2956–2963. DOI: 10.1039/c2py20436c.
  • Leroy, A.; Al Samad, A.; Garric, X.; Hunger, S.; Noel, D.; Coudane, J.; Nottelet, B. Biodegradable Networks for Soft Tissue Engineering by Thiol-Yne Photo Cross-Linking of Multifunctional Polyesters. RSC Adv. 2014, 4, 32017–32023. DOI: 10.1039/C4RA03665D.
  • Babinot, J.; Renard, E.; Le Droumaguet, B.; Guigner, J.-M.; Mura, S.; Nicolas, J.; Couvreur, P.; Langlois, V. Facile Synthesis of Multicompartment Micelles Based on Biocompatible Poly(3-Hydroxyalkanoate). Macromol. Rapid Commun. 2013, 34, 362–368. DOI: 10.1002/marc.201200692.
  • Chanda, S.; Ramakrishnan, S. Poly(Alkylene Itaconate)s - An Interesting Class of Polyesters with Periodically Located Exo-Chain Double Bonds Susceptible to Michael Addition. Polym. Chem. 2015, 6, 2108–2114. DOI: 10.1039/C4PY01613K.
  • Yan, Y.; Siegwart, D. J. Scalable Synthesis and Derivation of Functional Polyesters Bearing Ene and Epoxide Side Chains. Polym. Chem. 2014, 5, 1362–1371. DOI: 10.1039/C3PY01474F.
  • Kalelkar, P. P.; Alas, G. R.; Collard, D. M. Synthesis of an Alkene-Containing Copolylactide and Its Facile Modification by the Addition of Thiols. Macromolecules 2016, 49, 2609–2617. DOI: 10.1021/acs.macromol.5b02431.
  • Chen, W.; Yang, H.; Wang, R.; Cheng, R.; Meng, F.; Wei, W.; Zhong, Z. Versatile Synthesis of Functional Biodegradable Polymers by Combining Ring-Opening Polymerization and Postpolymerization Modification via Michael-Type Addition Reaction. Macromolecules 2010, 43, 201–207. DOI: 10.1021/ma901897y.
  • Onbulak, S.; Tempelaar, S.; Pounder, R. J.; Gok, O.; Sanyal, R.; Dove, A. P.; Sanyal, A. Synthesis and Functionalization of Thiol-Reactive Biodegradable Polymers. Macromolecules 2012, 45, 1715–1722. DOI: 10.1021/ma2019528.
  • Zou, J.; Hew, C. C.; Themistou, E.; Li, Y.; Chen, C.-K.; Alexandridis, P.; Cheng, C. Clicking Well-Defined Biodegradable Nanoparticles and Nanocapsules by UV-Induced Thiol-Ene Cross-Linking in Transparent Miniemulsions. Adv. Mater. 2011, 23, 4274–4277. DOI: 10.1002/adma.201101646.
  • Silvers, A. L.; Chang, C.-C.; Emrick, T. Functional Aliphatic Polyesters and Nanoparticles Prepared by Organocatalysis and Orthogonal Grafting Chemistry. J. Polym. Sci. A Polym. Chem. 2012, 50, 3517–3529. DOI: 10.1002/pola.26114.
  • Darcos, V.; Antoniacomi, S.; Paniagua, C.; Coudane, J. Cationic Polyesters Bearing Pendent Amino Groups Prepared by Thiol–Ene Chemistry. Polym. Chem. 2012, 3, 362–368. DOI: 10.1039/C1PY00414J.
  • Baumgartner, R.; Song, Z.; Zhang, Y.; Cheng, J. Functional Polyesters Derived from Alternating Copolymerization of Norbornene Anhydride and Epoxides. Polym. Chem. 2015, 6, 3586–3590. DOI: 10.1039/C5PY00119F.
  • Strandman, S.; Gautrot, J. E.; Zhu, X. X. Recent Advances in Entropy-Driven Ring-Opening Polymerizations. Polym. Chem. 2011, 2, 791–799. DOI: 10.1039/C0PY00328J.
  • Ates, Z.; Thornton, P. D.; Heise, A. Side-Chain Functionalisation of Unsaturated Polyesters from Ring-Opening Polymerisation of Macrolactones by Thiol-Ene Click Chemistry. Polym. Chem. 2011, 2, 309–312. DOI: 10.1039/C0PY00294A.
  • Fuoco, T.; Meduri, A.; Lamberti, M.; Venditto, V.; Pellecchia, C.; Pappalardo, D. Ring-Opening Polymerization of ω-6-Hexadecenlactone by a Salicylaldiminato Aluminum Complex: A Route to Semicrystalline and Functional Poly(Ester)s. Polym. Chem. 2015, 6, 1727–1740. DOI: 10.1039/C4PY01445F.
  • Pepels, M. P. F.; Koeken, R. A. C.; van der Linden, S. J. J.; Heise, A.; Duchateau, R. Mimicking (Linear) Low-Density Polyethylenes Using Modified Polymacrolactones. Macromolecules 2015, 48, 4779–4792. DOI: 10.1039/C4PY01445F.
  • Ates, Z.; Heise, A. Functional Films from Unsaturated Poly(Macrolactones) by Thiol-Ene Cross-Linking and Functionalisation. Polym. Chem. 2014, 5, 2936–2941. DOI: 10.1039/c3py01679j.
  • Claudino, M.; van der Meulen, I.; Trey, S.; Jonsson, M.; Heise, A.; Johansson, M. Photoinduced Thiol–Ene Crosslinking of Globalide/ε-Caprolactone Copolymers: Curing Performance and Resulting Thermoset Properties. J. Polym. Sci. A Polym. Chem. 2012, 50, 16–24. DOI: 10.1002/pola.24940.
  • Guindani, C.; Dozoretz, P.; Araújo, P. H. H.; Ferreira, S. R. S.; de Oliveira, D. N-Acetylcysteine Side-Chain Functionalization of Poly(Globalide-co-ε-Caprolactone) through Thiol-Ene Reaction. Mater. Sci. Eng., C 2019, 94, 477–483. DOI: DOI: 10.1016/j.msec.2018.09.060.
  • de Oliveira, F. C. S.; Olvera, D.; Sawkins, M. J.; Cryan, S.-A.; Kimmins, S. D.; da Silva, T. E.; Kelly, D. J.; Duffy, G. P.; Kearney, C.; Heise, A. Direct UV-Triggered Thiol–Ene Cross-Linking of Electrospun Polyester Fibers from Unsaturated Poly(Macrolactone)s and Their Drug Loading by Solvent Swelling. Biomacromolecules 2017, 18, 4292–4298. DOI: 10.1021/acs.biomac.7b01335.
  • Gunay, U. S.; Cetin, M.; Daglar, O.; Hizal, G.; Tunca, U.; Durmaz, H. Ultrafast and Efficient Aza- and thiol-Michael Reactions on a Polyester Scaffold with Internal Electron Deficient Triple Bonds. Polym. Chem. 2018, 9, 3037–3054. DOI: 10.1039/C8PY00485D.
  • Seabra, A. B.; da Silva, R.; de Oliveira, M. G. Polynitrosated Polyesters: Preparation, Characterization, and Potential Use for Topical Nitric Oxide Release. Biomacromolecules 2005, 6, 2512–2520. DOI: 10.1021/bm050216z.
  • Kato, M.; Toshima, K.; Matsumura, S. Direct Enzymatic Synthesis of a Polyester with Free Pendant Mercapto Groups. Biomacromolecules 2009, 10, 366–373. DOI: 10.1021/bm801132d.
  • Tanaka, A.; Kohri, M.; Takiguchi, T.; Kato, M.; Matsumura, S. Enzymatic Synthesis of Reversibly Crosslinkable Polyesters with Pendant Mercapto Groups. Polym. Degrad. Stab. 2012, 97, 1415–1422. DOI: DOI: 10.1016/j.polymdegradstab.2012.05.016.
  • Yamamoto, K.; Takasu, A. Preparation of Gelatinous Reversible Addition − Fragmentation Chain Transfer Agents “RAFT Gel” via Chemoselective Polycondensations of a Dicarboxylic Acid Containing a Mercapto Group and Diols. Macromolecules 2010, 43, 8519–8523. DOI: 10.1021/ma101501r.
  • Yapor, J. P.; Neufeld, B. H.; Tapia, J. B.; Reynolds, M. M. Biodegradable Crosslinked Polyesters Derived from Thiomalic Acid and S-Nitrosothiol Analogues for Nitric Oxide Release. J. Mater. Chem. B 2018, 6, 4071–4081. DOI: 10.1039/C8TB00566D.
  • Pappalardo, D.; Målberg, S.; Finne-Winstrad, A.; Albertsson, A.-C. Synthetic Pathways Enables the Design of Functionalized Poly(Lactic Acid) with Pendant Mercapto Groups. J. Polym. Sci. A Polym. Chem. 2012, 50, 792–800. DOI: 10.1002/pola.25834.
  • Wang, N.; Dong, A.; Radosz, M.; Shen, Y. Thermoresponsive Degradable Poly(Ethylene Glycol) Analogues. J. Biomed. Mater. Res. Part 2008, 84A, 148–157. DOI: 10.1002/jbm.a.31466.
  • Jasinski, F.; Rannée, A.; Schweitzer, J.; Fischer, D.; Lobry, E.; Croutxé-Barghorn, C.; Schmutz, M.; Le Nouen, D.; Criqui, A.; Chemtob, A. Thiol–Ene Linear Step-Growth Photopolymerization in Miniemulsion: Fast Rates, Redox-Responsive Particles, and Semicrystalline Films. Macromolecules 2016, 49, 1143–1153. DOI: 10.1021/acs.macromol.5b02512.
  • Hong, S. H.; Patel, T.; Ip, S.; Garg, S.; Oh, J. K. Microfluidic Assembly to Synthesize Dual Enzyme/Oxidation-Responsive Polyester-Based Nanoparticulates with Controlled Sizes for Drug Delivery. Langmuir 2018, 34, 3316–3325. DOI: 10.1021/acs.langmuir.8b00338.
  • Beyazkilic, Z.; Lligadas, G.; Ronda, J. C.; Galià, M.; Cádiz, V. Vinylsulfide-Containing Polyesters and Copolyesters from Fatty Acids: Thiol-Yne Monomer Synthesis and Thiol-Ene Functionalization. Macromol. Chem. Phys. 2014, 215, 2248–2259. DOI: 10.1002/macp.201400191.
  • Albertsson, A.-C.; Varma, I. K. Recent Developments in Ring Opening Polymerization of Lactones for Biomedical Applications. Biomacromolecules 2003, 4, 1466–1486. DOI: 10.1021/bm034247a.
  • Dechy-Cabaret, O.; Martin-Vaca, B.; Bourissou, D. Controlled Ring-Opening Polymerization of Lactide and Glycolide. Chem. Rev. 2004, 104, 6147–6176. DOI: 10.1021/cr040002s.
  • Kim, H.; Olsson, J. V.; Hedrick, J. L.; Waymouth, R. M. Facile Synthesis of Functionalized Lactones and Organocatalytic Ring-Opening Polymerization. ACS Macro Lett. 2012, 1, 845–847. DOI: 10.1021/mz3001397.
  • Hao, J.; Kos, P.; Zhou, K.; Miller, J. B.; Xue, L.; Yan, Y.; Xiong, H.; Elkassih, S.; Siegwart, D. J. Rapid Synthesis of a Lipocationic Polyester Library via Ring-Opening Polymerization of Functional Valerolactones for Efficacious siRNA Delivery. J. Am. Chem. Soc. 2015, 137, 9206–9209. DOI: 10.1021/jacs.5b03429.
  • Stöhr, O.; Ritter, H. Hyperbranched Polyesters Based on Hydroxyalkyl-Lactones via Thiol-Ene Click Reaction. Polym. Int. 2015, 64, 37–41. DOI: 10.1002/pi.4825.
  • Li, X.; Li, H.; Zhao, Y.; Tang, X.; Ma, S.; Gong, B.; Li, M. Facile Synthesis of Well-Defined Hydrophilic Polyesters as Degradable Poly(Ethylene Glycol)-like Biomaterials. Polym. Chem. 2015, 6, 6452–6456. DOI: 10.1039/C5PY00762C.
  • Song, L.; Ding, A.-X.; Zhang, K.-X.; Gong, B.; Lu, Z.-L.; He, L. Degradable Polyesters via Ring-Opening Polymerization of Functional Valerolactones for Efficient Gene Delivery. Org. Biomol. Chem. 2017, 15, 6567–6574. DOI: 10.1039/C7OB00822H.
  • Middleton, J. C.; Tipton, A. J. Synthetic Biodegradable Polymers as Orthopedic Devices. Biomaterials 2000, 21, 2335–2346. DOI: 10.1016/S0142-9612(00)00101-0.
  • Yu, L.; Zhang, M.; Du, F.-S.; Li, Z.-C. ROS-Responsive Poly(ε-Caprolactone) with Pendent Thioether and Selenide Motifs. Polym. Chem. 2018, 9, 3762–3773. DOI: 10.1039/C8PY00620B.
  • Borchmann, D. E.; ten Brummelhuis, N.; Weck, M. GRGDS-Functionalized Poly(Lactide)-Graft-Poly(Ethylene Glycol) Copolymers: combining Thiol–Ene Chemistry with Staudinger Ligation. Macromolecules 2013, 46, 4426–4431. DOI: 10.1021/ma4005633.
  • Long, T. R.; Wongrakpanich, A.; Do, A.-V.; Salem, A. K.; Bowden, N. B. Long-Term Release of a Thiobenzamide from a Backbone Functionalized Poly(Lactic Acid). Polym. Chem. 2015, 6, 7188–7195. DOI: 10.1039/C5PY01059D.
  • Fuoco, T.; Finne-Wistrand, A.; Pappalardo, D. A Route to Aliphatic Poly(Ester)s with Thiol Pendant Groups: From Monomer Design to Editable Porous Scaffolds. Biomacromolecules 2016, 17, 1383–1394. DOI: 10.1021/acs.biomac.6b00005.
  • Leemhuis, M.; Akeroyd, N.; Kruijtzer, J. A. W.; van Nostrum, C. F.; Hennink, W. E. Synthesis and Characterization of Allyl Functionalized Poly(α-Hydroxy)Acids and Their Further Dihydroxylation and Epoxidation. Eur. Polym. J. 2008, 44, 308–317. DOI: DOI: 10.1016/j.eurpolymj.2007.12.004.
  • Kalelkar, P. P.; Collard, D. M. Thiol-Substituted Copolylactide: synthesis, Characterization and Post-Polymerization Modification Using Thiol–Ene Chemistry. Polym. Chem. 2018, 9, 1022–1031. DOI: 10.1039/C7PY01930K.
  • Jing, F.; Hillmyer, M. A. A Bifunctional Monomer Derived from Lactide for Toughening Polylactide. J. Am. Chem. Soc. 2008, 130, 13826–13827. DOI: 10.1021/ja804357u.
  • Fuoco, T.; Pappalardo, D.; Finne-Wistrand, A. Redox-Responsive Disulfide cross-Linked PLA–PEG Nanoparticles. Macromolecules 2017, 50, 7052–7061. DOI: 10.1021/acs.macromol.7b01318.
  • Yassin, M. A.; Fuoco, T.; Mohamed-Ahmed, S.; Mustafa, K.; Finne-Wistrand, A. 3D and Porous RGDC-Functionalized Polyester Based Scaffolds as a Niche to Induce Osteogenic Differentiation of Human Bone Marrow Stem Cells. Macromol. Biosci. 2019, 1900049 (1–12).
  • Fagerland, J.; Pappalardo, D.; Schmidt, B.; Syrén, P.-O.; Finne-Wistrand, A. Template-Assisted Enzymatic Synthesis of Oligopeptides from a Polylactide Chain. Biomacromolecules 2017, 18, 4271–4280. DOI: 10.1021/acs.biomac.7b01315.
  • Fukushima, K. Poly(Trimethylene Carbonate)-Based Polymers Engineered for Biodegradable Functional Biomaterials. Biomater. Sci. 2016, 4, 9–24. DOI: 10.1039/C5BM00123D.
  • Brannigan, R. P.; Dove, A. P. Synthesis, Properties and Biomedical Applications of Hydrolytically Degradable Materials Based on Aliphatic Polyesters and Polycarbonates. Biomater. Sci. 2017, 5, 9–21. DOI: 10.1039/C6BM00584E.
  • Chen, W.; Zou, Y.; Jia, J.; Meng, F.; Cheng, R.; Deng, C.; Feijen, J.; Zhong, Z. Functional Poly(ε-Caprolactone) via Copolymerization of ε-Caprolactone and Pyridiyl Disulfide-Containing Ccyclic Carbonate: Controlled Synthesis and Facile Access to Reduction-Sensitive Biodegradable Graft Copolymer Micelles. Macromolecules 2013, 46, 699–707. DOI: 10.102/ma302499a.
  • Chen, W.; Zou, Y.; Meng, F.; Cheng, R.; Deng, C.; Feijen, J.; Zhong, Z. Glyco-Nanoparticles with Sheddable Saccharide Shells: A Unique and Potent Platform for Hepatoma-Targeting Delivery of Anticancer Drugs. Biomacromolecules 2014, 15, 900–907. DOI: 10.102/bm401749t.
  • Wang, R.; Chen, W.; Meng, F.; Cheng, R.; Deng, C.; Feijen, J.; Zhong, Z. Unprecedented Access to Functional Biodegradable Polymers and Coating. Macromolecules 2011, 44, 6009–6016. DOI: 10.1021/ma200824k.