2,191
Views
89
CrossRef citations to date
0
Altmetric
Reviews

Development of Poly(Vinyl Alcohol)-Based Polymers as Proton Exchange Membranes and Challenges in Fuel Cell Application: A Review

, ORCID Icon, , , , ORCID Icon & show all
Pages 171-202 | Received 13 Mar 2019, Accepted 01 Jul 2019, Published online: 18 Jul 2019

References

  • Haffner, J.; Klett, T. C. i.; Lehman, J.-P. Japan's Open Future: An Agenda for Global Citizenship; Anthem Press: London, 2009.
  • “Toyota Mirai fuel cell electric vehicle relies on Gore technology”, Membrane Technology 2016. 2016, 4.
  • NafionTM Membran N117:http://www.nafionstore.com/store/products/61/Nafion-Membran-N117 (last accessed July, 1 1 July 2018).
  • Gohil, J. M.; Karamanev, D. G. Preparation and Characterization of Polyvinyl Alcohol Polyelectrolyte-Based Membrane-Anode Assembly for Hybrid Fe3+/H2 Redox Flow Microbial Fuel Cell. Chem. Eng. J. 2015, 259, 25–33. DOI: 10.1016/j.cej.2014.07.132.
  • Wong, C. Y.; Wong, W. Y.; Ramya, K.; Khalid, M.; Loh, K. S.; Daud, W. R. W.; Lim, K. L.; Walvekar, R.; Kadhum, A. A. H. Additives in Proton Exchange Membranes for Low- and High-Temperature Fuel Cell Applications: A Review. Int. J. Hydrogen Energy 2019, 44, 6116–6135. DOI: 10.1016/j.ijhydene.2019.01.084.
  • Chen, J.; Li, D.; Koshikawa, H.; Asano, M.; Maekawa, Y. Crosslinking and Grafting of Polyetheretherketone Film by Radiation Techniques for Application in Fuel Cells. J. Membrane Sci. 2010, 362, 488–494. DOI: 10.1016/j.memsci.2010.07.012.
  • Ye, Y.-S.; Rick, J.; Hwang, B.-J. Water Soluble Polymers as Proton Exchange Membranes for Fuel Cells. Polymers 2012, 4, 913–963. DOI: 10.3390/polym4020913.
  • Pivovar, B. S.; Wang, Y.; Cussler, E. L. Pervaporation Membranes in Direct Methanol Fuel Cells. J. Membrane Sci. 1999, 154, 155–162. DOI: 10.1016/S0376-7388(98)00264-6.
  • Filho, J. C. D.; Gomes, A. Hybrid Membranes of PVA for Direct Ethanol Fuel Cells (DEFCs) Applications. Int. J. Hydrogen Energy. 2011, 37, 6246–6252. DOI: 10.1016/j.ijhydene.2011.08.002.
  • Walker, B.; Stokes, L. D. “Polyvinyl acetate, alcohol and derivates, polystyrene, and acrylics”, In Patty's Toxicology, 6th ed.; Bingham, E. and Cohrssen, B. Eds.; Wiley: Hoboken, New Jersey, 2012; pp. 917–934.
  • Mokhtar, M.; Majlan, E. H.; Ahmad, A.; Tasirin, S. M.; Daud, W. R. W. Effect of ZnO Filler on PVA-Alkaline Solid Polymer Electrolyte for Aluminum-Air Battery Applications. J. Electrochem. Soc. 2018, 165, A2483–A2492. DOI: 10.1149/2.0381811jes.
  • Kaco, H.; Zakaria, S.; Chia, C. H.; Zhang, L. Transparent and Printable Regenerated Kenaf Cellulose/Pva Film. BioResources 2014, 9, 2167–2178. DOI: 10.15376/biores.9.2.2167-2178.
  • Wu, Y.; Wu, C.; Li, Y.; Xu, T.; Fu, Y. PVA–Silica Anion-Exchange Hybrid Membranes Prepared through a Copolymer Crosslinking Agent. J. Membrane Sci. 2010, 350, 322–332. DOI: 10.1016/j.memsci.2010.01.007.
  • Wu, C.; Wu, Y.; Luo, J.; Xu, T.; Fu, Y. Anion Exchange Hybrid Membranes from PVA and Multi-Alkoxy Silicon Copolymer Tailored for Diffusion Dialysis Process. J. Membrane Sci. 2010, 356, 96–104. DOI: 10.1016/j.memsci.2010.03.035.
  • Luo, J.; Wu, C.; Xu, T.; Wu, Y. Diffusion Dialysis-Concept, Principle and Applications. J. Membrane Sci. 2011, 366, 1–16. DOI: 10.1016/j.memsci.2010.10.028.
  • Zhang, Q. G.; Liu, Q. L.; Jiang, Z. Y.; Chen, Y. Anti-Trade-off in Dehydration of Ethanol by Novel PVA/APTEOS Hybrid Membranes. J. Membrane Sci. 2007, 287, 237–245. DOI: 10.1016/j.memsci.2006.10.041.
  • Binsu, V. V.; Nagarale, R. K.; Shahi, V. K. Phosphonic Acid Functionalized Aminopropyl Triethoxysilane–PVA Composite Material: Organic–Inorganic Hybrid Proton-Exchange Membranes in Aqueous Media. J. Mater. Chem. 2005, 15, 4823. DOI: 10.1039/b511274e.
  • Kadri, N. A.; Raha, M. G.; Pingguan-Murphy, B. Polyvinyl Alcohol as a Viable Membrane in Artificial Tissue Design and Development. Clinics 2011, 66, 1489–1493. DOI: 10.1590/S1807-59322011000800031.
  • Abd El-Kader, K. A. M.; Abdel Hamied, S. F. Preparation of Poly(Vinyl Alcohol) Films with Promising Physical Properties in Comparison with Commercial Polyethylene Film. J. Appl. Polym. Sci. 2002, 86, 1219–1226. DOI: 10.1002/app.11068.
  • Kusumaatmaja, A.; Sukandaru, B.; Chotimah, T. K. “Application of polyvinyl alcohol nanofiber membrane for smoke filtration”. In AIP Conference Proceedings 1758, 2016, 150006.
  • Mohrova, J.; Kalinova, K. Different Structures of PVA Nanofibrous Membrane for Sound Absorption Application. J. Nanomater. 2012, 2012, 1–4. DOI: 10.1155/2012/643043.
  • Hirankumar, G.; Selvasekarapandian, S.; Kuwata, N.; Kawamura, J.; Hattori, T. “Conductivity and vibrational studies of PVA-CH3COONH4 based polymer electrolytes”. In Proceeding of the 9th Asian Conference on Solid State Ionics: The Science and Technology of Ions in Motion; Chowdari, B. V. R. Ed.; World Scientific: Jeju Island, South Korea, 2004; pp. 1065–1072.
  • Moulay, S. Review: Poly(Vinyl Alcohol) Functionalizations and Applications. Polymer-Plastics Technol. Eng. 2015, 54, 1289–1319. DOI: 10.1080/03602559.2015.1021487.
  • Yang, T. Preliminary Study of SPEEK/PVA Blend Membranes for DMFC Applications. Int. J. Hydrogen Energy 2008, 33, 6772–6779. DOI: 10.1016/j.ijhydene.2008.08.022.
  • Zhang, H.; Li, X.; Zhao, C.; Fu, T.; Shi, Y.; Na, H. Composite Membranes Based on Highly Sulfonated PEEK and PBI: Morphology Characteristics and Performance. J. Membrane Sci. 2008, 308, 66–74. DOI: 10.1016/j.memsci.2007.09.045.
  • Lin, H.-L.; Wang, S.-H. Nafion/Poly(Vinyl Alcohol) Nano-Fiber Composite and Nafion/Poly(Vinyl Alcohol) Blend Membranes for Direct Methanol Fuel Cells. J. Membrane Sci. 2014, 452, 253–262. DOI: 10.1016/j.memsci.2013.09.039.
  • Üçtuğ, F. G.; Nijem, J. Effect of Polymer Sulfonation on the Proton Conductivity and Fuel Cell Performance of Polyvinylalcohol-Mordenite Direct Methanol Fuel Cell Membranes. Asia-Pac. J. Chem. Eng. 2017, 12, 682–693. DOI: 10.1002/apj.2105.
  • Yun, S.; Im, H.; Heo, Y.; Kim, J. Crosslinked Sulfonated Poly(Vinyl Alcohol)/Sulfonated Multi-Walled Carbon Nanotubes Nanocomposite Membranes for Direct Methanol Fuel Cells. J. Membrane Sci. 2011, 380, 208–215. DOI: 10.1016/j.memsci.2011.07.010.
  • Maiti, J.; Kakati, N.; Lee, S. H.; Jee, S. H.; Viswanathan, B.; Yoon, Y. S. Where Do Poly(Vinyl Alcohol) Based Membranes Stand in Relation to Nafion® for Direct Methanol Fuel Cell Applications? J. Power Sources 2012, 216, 48–66. DOI: 10.1016/j.jpowsour.2012.05.057.
  • Celli, A.; Sabaa, M. W.; Jyothi, A. N.; Kalia, S. Chitosan and Starch-Based Hydrogels via Graft Copolymerization. In Polymeric Hydrogels as Smart Biomaterials; Kalia, S. Ed.; Springer International Publishers, Cham; 2016.
  • Thakur, V. K.; Thakur, M. K.; Gupta, R. K. Graft Polymers of Natural Fibers for Green Composites. Carbohydrate Polym. 2014, 104, 87–93. DOI: 10.1016/j.carbpol.2014.01.016.
  • Krishnamoorthi, S.; Singh, R. P. Synthesis, Characterization, Flocculation, and Rheological Characteristics of Hydrolyzed and Unhydrolyzed Polyacrylamide-Grafted Poly(Vinyl Alcohol). J. Appl. Polym. Sci. 2006, 101, 2109–2122. DOI: 10.1002/app.21755.
  • Al-Ghezawi, N.; Şanli, O.; Işiklan, N. Permeation and Separation Characteristics of Acetic Acid-Water Mixtures by Pervaporation through Acrylonitrile and Hydroxy Ethyl Methacrylate Grafted Poly(Vinyl Alcohol) Membrane. Separation Science and Technology 2006, 41, 2913–2931.
  • Zheng, S.-Y.; Chen, Z.-C.; Lu, D.-S.; Wu, Q.; Lin, X.-F. Graft Copolymerization of Water-Soluble Monomers Containing Quaternary Ammonium Group on Poly(Vinyl Alcohol) Using Ceric Ions. J. Appl. Polym. Sci. 2005, 97, 2186–2191. DOI: 10.1002/app.21848.
  • Chen, K. Y.; Lin, Y. S.; Yao, C. H.; Li, M. H.; Lin, J. C. Synthesis and Characterization of Poly(Vinyl Alcohol) Membranes with Quaternary Ammonium Groups for Wound Dressing. J. Biomater. Sci. Polym. Ed. 2010, 21, 429–443. DOI: 10.1163/156856209X424378.
  • Koohmareh, G. A.; Hajian, M.; Fallahi, H. Graft Copolymerization of Styrene from Poly(Vinyl Alcohol) via RAFT Process. Int. J. Polym. Sci. 2011, 2011, 1–7. DOI: 10.1155/2011/190349.
  • Rohatgi, C. V.; Dutta, N. K.; Choudhury, N. R. Separator Membrane from Crosslinked Poly(Vinyl Alcohol) and Poly(Methyl Vinyl Ether-alt-Maleic Anhydride). Nanomaterials (Basel) 2015, 5, 398–414. DOI: 10.3390/nano5020398.
  • Aoshima, S.; Ikeda, M.; Nakayama, K.; Kobayashi, E.; Ohgi, H.; Sato, T. Synthesis of Poly(Vinyl Alcohol) Graft Copolymers by Living Cationic Polymerization in the Presence of Added Bases I. Design and Synthesis of Poly(Vinyl Alcohol) Graft Copolymers with Well-Controlled Poly(Vinyl Ether) Grafts. Polym. J. 2001, 33, 610–616. DOI: 10.1295/polymj.33.610.
  • Datta, S. Rubber-Plastic Blends: Structure-Property Relationship. In Encyclopedia of Polymer Blends, Volume 3: Structure; Isayev, A. I. Ed.; Wiley VCH: New Jersey, 2016; pp. 229–298.
  • Stauffer, S. R.; Peppast, N. A. Poly(Vinyl Alcohol) Hydrogels Prepared by Freezing-Thawing Cyclic Processing. Polymer 1992, 33, 3932–3936. DOI: 10.1016/0032-3861(92)90385-A.
  • Yokoyama, F.; Masada, I.; Shimamura, K.; Ikawa, T.; Monobe, K. Morphology and Structure of Highly Elastic Poly(Vinyl Alcohol) Hydrogel Prepared by Repeated Freezing-and-Melting. Colloid Polymer Sci. 1986, 264, 595–601. DOI: 10.1007/BF01412597.
  • Byron, P. R.; Dalby, R. N. Effects of Heat Treatment on the Permeability of Polyvinyl Alcohol Films to a Hydrophilic Solute. J. Pharm. Sci. 1987, 76, 65–67. DOI: 10.1002/jps.2600760118.
  • Petrova, N. V.; Evtushenko, A. M.; Chikhacheva, I. P.; Zubov, V. P.; Kubrakova, I. V. Effect of Microwave Irradiation on the Cross-Linking of Polyvinyl Alcohol. Russ. J. Appl. Chem. 2005, 78, 1158–1161. DOI: 10.1007/s11167-005-0470-1.
  • Ushakov, S. N. Polivinilovyi spirt i ego proizvodnye (Polyvinyl Alcohol and Its Derivatives); Akad Nauk SSSR: Moscow, 1960.
  • Cook, J. P.; Goodall, G. W.; Khutoryanskaya, O. V.; Khutoryanskiy, V. V. Microwave-Assisted Hydrogel Synthesis: A New Method for Crosslinking Polymers in Aqueous Solutions. Macromol. Rapid Commun. 2012, 33, 332–336. DOI: 10.1002/marc.201100742.
  • Wong, C. Y.; Wong, W. Y.; Loh, K. S.; Daud, W. R. W.; Lim, K. L.; Loh, K. S.; Walvekar, R.; Khalid, M. Comparative Study on Water Uptake and Ionic Transport Properties of Pre- And Post Sulfonated Chitosan/PVA Polymer Exchange Membrane. IOP Conf. Ser: Mater. Sci. Eng. 2018, 458, 012017. DOI: 10.1088/1757-899X/458/1/012017.
  • Han, B.; Li, J.; Chen, C.; Xu, C.; Wickramasinghe, S. R. Effects of Degree of Formaldehyde Acetal Treatment and Maleic Acid Crosslinking on Solubility and Diffusivity of Water in PVA Membranes. Chem. Eng. Res. Design 2003, 81, 1385–1392. DOI: 10.1205/026387603771339609.
  • Meng, P.; Chen, C.; Yu, L.; Li, J.; Jiang, W. Crosslinking of PVA Pervaporation Membrane by Maleic Acid. Tsinghua Sci. Technol. 2000, 5, 172–175.
  • Zhang, L.; Zhang, G.; Lu, J.; Liang, H. Preparation and Characterization of Carboxymethyl Cellulose/Polyvinyl Alcohol Blend Film as a Potential Coating Material. Polym.-Plast. Technol. Eng. 2013, 52, 163–167. DOI: 10.1080/03602559.2012.734361.
  • Figueiredo, K. C. S.; Alves, T. L. M.; Borges, C. P. Poly(Vinyl Alcohol) Films Crosslinked by Glutaraldehyde under Mild Conditions. J. Appl. Polym. Sci. 2009, 111, 3074–3080. DOI: 10.1002/app.29263.
  • Hou, Y.; Li, K.; Luo, H.; Liu, G.; Zhang, R.; Qin, B.; Chen, S. Using Crosslinked Polyvinyl Alcohol Polymer Membrane as a Separator in the Microbial Fuel Cell. Front. Environ. Sci. Eng. 2013, 8, 137–143. DOI: 10.1007/s11783-013-0534-z.
  • Seeponkai, N.; Wootthikanokkhan, J. Proton Conductivity and Methanol Permeability of Sulfonated Poly(Vinyl Alcohol) Membranes Modified by Using Sulfoacetic Acid and Poly(Acrylic Acid). J. Appl. Polym. Sci. 2007, 105, 838–845. DOI: 10.1002/app.26116.
  • Dai, C.-A.; Chang, C.-J.; Kao, A.-C.; Tsai, W.-B.; Chen, W.-S.; Liu, W.-M.; Shih, W.-P.; Ma, C.-C. Polymer Actuator Based on PVA/PAMPS Ionic Membrane: Optimization of Ionic Transport Properties. Sens. Actuators A: Phys. 2009, 155, 152–162. DOI: 10.1016/j.sna.2009.08.002.
  • Chang, C.; Lue, A.; Zhang, L. Effects of Crosslinking Methods on Structure and Properties of Cellulose/PVA Hydrogels. Macromol. Chem. Phys. 2008, 209, 1266–1273. DOI: 10.1002/macp.200800161.
  • El-Sawy, N. M.; El-Arnaouty, M. B.; Ghaffar, A. M. A. γ-Irradiation Effect on the Non-Cross-Linked and Cross-Linked Polyvinyl Alcohol Films. Polym.-Plast. Technol. Eng. 2010, 49, 169–177. DOI: 10.1080/03602550903284248.
  • Chanthad, C.; Wootthikanokkhan, J. Effects of Crosslinking Time and Amount of Sulfophthalic Acid on Properties of the Sulfonated Poly(Vinyl Alcohol) Membrane. J. Appl. Polym. Sci. 2006, 101, 1931–1936. DOI: 10.1002/app.23660.
  • Park, S. Y.; Jun, S. T.; Marsh, K. S. Physical Properties of PVOH/Chitosan-Blended Films Cast from Different Solvents. Food Hydrocolloids 2001, 15, 499–502. DOI: 10.1016/S0268-005X(01)00055-8.
  • Srinivasa, P. C.; Ramesh, M. N.; Kumar, K. R.; Tharanathan, R. N. Properties and Sorption Studies of Chitosan–Polyvinyl Alcohol Blend Films. Carbohydrate Polym. 2003, 4, 431–438. DOI: 10.1016/S0144-8617(03)00105-X.
  • Lewandowska, K. Miscibility and Thermal Stability of Poly(Vinyl Alcohol)/Chitosan Mixtures. Thermochim. Acta 2009, 493, 42–48. DOI: 10.1016/j.tca.2009.04.003.
  • Kim, D.; Jung, J.; Park, S-i.; Seo, J. Preparation and Characterization of LDPE/PVA Blend Films Filled with Glycerin-Plasticized Polyvinyl Alcohol. J. Appl. Polym. Sci. 2015, 132. DOI: 10.1002/app.41985.
  • Salleh, M. S. N.; Nor, N. N. M.; Mohd, N.; Draman, S. F. S. Water Resistance and Thermal Properties of Polyvinyl Alcohol-Starch Fiber Blend Film. In AIP Conference Proceedings 1809, 2017, 020045.
  • Liu, S.; Wang, L.; Zhang, B.; Liu, B.; Wang, J.; Song, Y. Novel Sulfonated Polyimide/Polyvinyl Alcohol Blend Membranes for Vanadium Redox Flow Battery Applications. J. Mater. Chem. A 2015, 3, 2072–2081. DOI: 10.1039/C4TA05504G.
  • Danwanichakul, P.; Sirikhajornnam, P. An Investigation of Chitosan-Grafted-Poly(Vinyl Alcohol) as an Electrolyte Membrane. J. Chem. 2013, 2013, 1–9. DOI: 10.1155/2013/642871.
  • Hari Gopi, K.; Dhavale, V. M.; Bhat, S. D. Development of Polyvinyl Alcohol/Chitosan Blend Anion Exchange Membrane with Mono and di Quaternizing Agents for Application in Alkaline Polymer Electrolyte Fuel Cells. Mater. Sci. Energy Technol. 2019, 2, 194–202. DOI: 10.1016/j.mset.2019.01.010.
  • Boroglu, M. S.; Cavus, S.; Boz, I.; Ata, A. Synthesis and Characterization of Poly(Vinyl Alcohol) Proton Exchange Membranes Modified with 4,4-Diaminodiphenylether-2,2-Disulfonic Acid. Exp. Polym. Lett. 2011, 5, 470–478. DOI: 10.3144/expresspolymlett.2011.45.
  • Frone, A. N.; Panaitescu, D. M.; Donescu, D.; Spataru, C. I.; Radovici, C.; Trusca, R.; Somoghi, R. Preparation and Characterization of PVA Composites with Cellulose Nanofibers Obtained by Ultrasonification. BioResources 2011, 6, 487–512.
  • Wang, X. H.; Mu, Y. H.; Li, C. Q.; Nie, M. Preparation of PANI–PVA Composite Film with Good Conductivity and Strong Mechanical Property. Plastics Rubber Compos. 2015, 44, 345–349. DOI: 10.1179/1743289815Y.0000000027.
  • Torvi, A. I.; Munavalli, B. B.; Naik, S. R.; Kariduraganavar, M. Y. Scalable Fabrication of a Flexible Interdigital Micro-Supercapacitor Device by In-Situ Polymerization of Pyrrole into Hybrid PVA-TEOS Membrane. Electrochim. Acta 2018, 282, 469–479. DOI: 10.1016/j.electacta.2018.06.034.
  • Zhou, T.; Wang, M.; He, X.; Qiao, J. Poly(Vinyl Alcohol)/Poly(Diallyldimethylammonium Chloride) Anion-Exchange Membrane Modified with Multiwalled Carbon Nanotubes for Alkaline Fuel Cells. J. Materiomics 2019, 5, 286–295. DOI: 10.1016/j.jmat.2019.01.012.
  • Divya, K.; Sri Abirami Saraswathi, M. S.; Alwarappan, S.; Nagendran, A.; Rana, D. Sulfonated Poly (Ether Sulfone)/Poly (Vinyl Alcohol) Blend Membranes Customized with Tungsten Disulfide Nanosheets for DMFC Applications. Polymer 2018, 155, 42–49. DOI: 10.1016/j.polymer.2018.09.010.
  • Chang, Y.-W.; Wang, E.; Shin, G.; Han, J.-E.; Mather, P. T. Poly(Vinyl Alcohol) (PVA)/Sulfonated Polyhedral Oligosilsesquioxane (sPOSS) Hybrid Membranes for Direct Methanol Fuel Cell Applications. Polym. Adv. Technol. 2007, 18, 535–543. DOI: 10.1002/pat.913.
  • Londoño, C. Síntesis y Caracterización del Compósito Poly(ethylene glycol) PEG/Va2O5. Departamento de Física y Química; Universidad Nacional de Colombia, 2010.
  • Realpe, A.; Pino, Y.; Acevedo, M. T. Development of Sulfonated Latex Membranes and Modified with Va2O5 for Application in PEM Fuel Cells. Int. J. ChemTech Res. 2016, 9, 157–163.
  • Alamaria, A. M.; Nawawi, M. G. M.; Zamrud, Z. Sago/PVA Blend Membranes for the Recovery of Ethyl Acetate from Water. Arab. J. Chem. 2015, DOI: 10.1016/j.arabjc.2014.12.019.
  • Chiellini, E.; Corti, A.; D'Antone, S.; Solaro, R. Biodegradation of Poly(Vinyl Alcohol) Based Materials. Progress Polym. Sci. 2003, 28, 963–1014. DOI: 10.1016/S0079-6700(02)00149-1.
  • You, P. Y.; Kamarudin, S. K.; Masdar, M. S. Improved Performance of Sulfonated Polyimide Composite Membranes with Rice Husk Ash as a Bio-Filler for Application in Direct Methanol Fuel Cells. Int. J. Hydrogen Energy 2019, 44, 1857–1866. DOI: 10.1016/j.ijhydene.2018.11.166.
  • Beydaghi, H.; Javanbakht, M.; Kowsari, E. Synthesis and Characterization of Poly(Vinyl Alcohol)/Sulfonated Graphene Oxide Nanocomposite Membranes for Use in Proton Exchange Membrane Fuel Cells (PEMFCs). Ind. Eng. Chem. Res. 2014, 53, 16621–16632. DOI: 10.1021/ie502491d.
  • Beydaghi, H.; Javanbakht, M.; Badiei, A. Cross-Linked Poly(Vinyl Alcohol)/Sulfonated Nanoporous Silica Hybrid Membranes for Proton Exchange Membrane Fuel Cell. J. Nanostruct. Chem. 2014, 4, 97. DOI: 10.1007/s40097-014-0097-y.
  • Hooshyari, K.; Javanbakht, M.; Enhessari, M.; Beydaghi, H. Novel PVA/La2Ce2O7 Hybrid Nanocomposite Membranes for Application in Proton Exchange Membrane Fuel Cells. Iran. J. Hydrogen Fuel Cell 2014, 2, 105–112.
  • Xu, Z. H.; He, L. M.; Mu, R. D.; He, S. M.; Huang, G. H.; Cao, X. Q. Double-Ceramic-Layer Thermal Barrier Coatings Based on La2(Zr0.7Ce0.3)2O7/La2Ce2O7 Deposited by Electron Beam-Physical Vapor Deposition. Appl. Surf. Sci. 2010, 256, 3661–3668. DOI: 10.1016/j.apsusc.2010.01.004.
  • Sahin, A. The Development of Speek/Pva/Teos Blend Membrane for Proton Exchange Membrane Fuel Cells. Electrochim. Acta 2018, 271, 127–136. DOI: 10.1016/j.electacta.2018.03.145.
  • Mollá, S.; Compañ, V.; Gimenez, E.; Blazquez, A.; Urdanpilleta, I. Novel Ultrathin Composite Membranes of Nafion/PVA for PEMFCs. Int. J. Hydrogen Energy 2011, 36, 9886–9895. DOI: 10.1016/j.ijhydene.2011.05.074.
  • Rosli, R. E.; Sulong, A. B.; Daud, W. R. W.; Zulkifley, M. A.; Husaini, T.; Rosli, M. I.; Majlan, E. H.; Haque, M. A. A Review of High-Temperature Proton Exchange Membrane Fuel Cell (HT-PEMFC) System. Int. J. Hydrogen Energy 2017, 42, 9293–9314. DOI: 10.1016/j.ijhydene.2016.06.211.
  • Erkartal, M.; Aslan, A.; Erkilic, U.; Dadi, S.; Yazaydin, O.; Usta, H.; Sen, U. Anhydrous Proton Conducting Poly(Vinyl Alcohol) (PVA)/Poly(2-Acrylamido-2-Methylpropane Sulfonic Acid) (PAMPS)/1,2,4-Triazole Composite Membrane. Int. J. Hydrogen Energy 2016, 41, 11321–11330. DOI: 10.1016/j.ijhydene.2016.04.152.
  • Anis, A.; Al-Zahrani, S. M. Sulfonated PVA/PBI Based Crosslinked Composites towards Anhydrous Proton Conductive Polymer Electrolyte Membranes for Fuel Cells. Int. J. Electrochem. Sci. 2012, 7, 9174–9185.
  • Suryani; Chang, Y.-N.; Lai, J.-Y.; Liu, Y.-L. Polybenzimidazole (PBI)-Functionalized Silica Nanoparticles Modified PBI Nanocomposite Membranes for Proton Exchange Membranes Fuel Cells. J. Membrane Sci. 2012, 403-404, 1–7.
  • Tang, Q.; Huang, K.; Qian, G.; Benicewicz, B. C. Phosphoric Acid-Imbibed Three-Dimensional Polyacrylamide/Poly(Vinyl Alcohol) Hydrogel as a New Class of High-Temperature Proton Exchange Membrane. J. Power Sources 2013, 229, 36–41. DOI: 10.1016/j.jpowsour.2012.11.134.
  • Ebenezer, D.; Haridoss, P. Effect of Crosslinked Poly(Vinyl Alcohol)/Sulfosuccinic Acid Ionomer Loading on PEMFC Electrode Performance. Int. J. Hydrogen Energy 2017, 42, 4302–4310. DOI: 10.1016/j.ijhydene.2017.01.124.
  • Ebenezer, D.; Deshpande, A. P.; Haridoss, P. Cross-Linked Poly (Vinyl Alcohol)/Sulfosuccinic Acid Polymer as an Electrolyte/Electrode Material for H 2 –O 2 Proton Exchange Membrane Fuel Cells. J. Power Sources 2016, 304, 282–292. DOI: 10.1016/j.jpowsour.2015.11.048.
  • Erkartal, M.; Usta, H.; Citir, M.; Sen, U. Proton Conducting Poly(Vinyl Alcohol) (PVA)/Poly(2-Acrylamido-2-Methylpropane Sulfonic Acid) (PAMPS)/Zeolitic Imidazolate Framework (ZIF) Ternary Composite Membrane. J. Membrane Sci. 2016, 499, 156–163. DOI: 10.1016/j.memsci.2015.10.032.
  • Stoševski, I.; Krstić, J.; Vokić, N.; Radosavljević, M.; Popović, Z. K.; Miljanić, Š. Improved Poly(Vinyl Alcohol) (PVA) Based Matrix as a Potential Solid Electrolyte for Electrochemical Energy Conversion Devices, Obtained by Gamma Irradiation. Energy 2015, 90, 595–604. DOI: 10.1016/j.energy.2015.07.096.
  • González-Guisasola, C.; Ribes-Greus, A. Dielectric Relaxations and Conductivity of Cross-Linked PVA/SSA/GO Composite Membranes for Fuel Cells. Polym. Test. 2018, 67, 55–67. DOI: 10.1016/j.polymertesting.2018.01.024.
  • Ali, Z. D. A.; Aliami, S. A.; Jalal, N. M.; Ali, M. R. Solfonating PVA Membrane for PEM Hydrogen Fuel Cell. In 2018 9th International Renewable Energy Congress (IREC); IEEE: Hammamet, Tunisia, 2018. pp. 1–6.
  • Sasajima, K.; Munakata, H.; Kanamura, K. Design of Filling Polymer Electrolytes for 3DOM Composite Membrane. ECS Trans. 2008, 16, 1443–1449.
  • Ismail, A. F.; Norddin, M. N. A. M.; Jaafar, J.; Matsuura, T. “Modification of Sulfonated Poly(ether ether ketone) for DMFC Application. In Membrane Modification: Technology and Applications; Hilal, N., Khayet, M. and Wright, C. J. Eds.; CRC Press: Boca Raton, 2012; pp. 409–448.
  • Lue, S. J.; Wang, W.-T.; Mahesh, K. P. O.; Yang, C.-C. Enhanced Performance of a Direct Methanol Alkaline Fuel Cell (DMAFC) Using a Polyvinyl Alcohol/Fumed Silica/KOH Electrolyte. J. Power Sources 2010, 195, 7991–7999. DOI: 10.1016/j.jpowsour.2010.06.049.
  • Palani, P. B.; Kannan, R.; Rajashabala, S.; Rajendran, S.; Velraj, G. Studies on PVA Based Nanocomposite Proton Exchange Membrane for Direct Methanol Fuel Cell (DMFC) Applications. IOP Conf. Ser: Mater. Sci. Eng. 2015, 73, 012128. DOI: 10.1088/1757-899X/73/1/012128.
  • Altaf, F.; Gill, R.; Batool, R.; Drexler, M.; Alamgir, F.; Abbas, G.; Jacob, K. Proton Conductivity and Methanol Permeability Study of Polymer Electrolyte Membranes with Range of Functionalized Clay Content for Fuel Cell Application. Eur. Polym. J. 2018, 110, 155–167. DOI: 10.1016/j.eurpolymj.2018.11.027.
  • Gaur, S. S.; Dhar, P.; Sonowal, A.; Sharma, A.; Kumar, A.; Katiyar, V. Thermo-Mechanically Stable Sustainable Polymer Based Solid Electrolyte Membranes for Direct Methanol Fuel Cell Applications. J. Membrane Sci. 2017, 526, 348–354. DOI: 10.1016/j.memsci.2016.12.030.
  • Yang, J. M.; Fan, C.-S.; Wang, N.-C.; Chang, Y.-H. Evaluation of Membrane Preparation Method on the Performance of Alkaline Polymer Electrolyte: Comparison between Poly(Vinyl Alcohol)/Chitosan Blended Membrane and Poly(Vinyl Alcohol)/Chitosan Electrospun Nanofiber Composite Membranes. Electrochim. Acta 2018, 266, 332–340. DOI: 10.1016/j.electacta.2018.02.043.
  • Xi, X.; Hao, X.; Xu, D.; Zhang, G.; Zhong, S.; Na, H.; Wang, D. Fabrication of Sulfonated Poly(Ether Ether Ketone Ketone) Membranes with High Proton Conductivity. J. Membrane Sci. 2006, 281, 1–6. DOI: 10.1016/j.memsci.2006.06.002.
  • Kim, H. K.; Zhang, G.; Nam, C.; Chung, T. C. Characterization of Polyethylene-Graft-Sulfonated Polyarylsulfone Proton Exchange Membranes for Direct Methanol Fuel Cell Applications. Membranes (Basel) 2015, 5, 875–887. DOI: 10.3390/membranes5040875.
  • Gupta, U. K.; Pramanik, H. Physically Crosslinked KOH Impregnated Polyvinyl Alcohol Based Alkaline Membrane for Direct Methanol Fuel Cell. Can. J. Chem. Eng. 2018, 96, 1888–1895. DOI: 10.1002/cjce.23233.
  • Gao, L.; Kong, T.; Guo, G.; Huo, Y. Proton Conductive and Low Methanol Permeable PVA-Based Zwitterionic Membranes. Int. J. Hydrogen Energy 2016, 41, 20373–20384. DOI: 10.1016/j.ijhydene.2016.08.048.
  • Li, Y.; Wang, H.; Wu, Q.; Xu, X.; Lu, S.; Xiang, Y. A Poly(Vinyl Alcohol)-Based Composite Membrane with Immobilized Phosphotungstic Acid Molecules for Direct Methanol Fuel Cells. Electrochim. Acta 2017, 224, 369–377. DOI: 10.1016/j.electacta.2016.12.076.
  • Solanki, J. N.; Mishra, P. S.; Murthy, Z. V. P. In Situ prepared TiO2 nanoparticles Cross-Linked Sulfonated PVA Membranes with High Proton Conductivity for DMFC. Química Nova 2016,
  • Mohanapriya, S.; Raj, V. Preparation and Characterization of Nano Titania Modified PVA-Pectin Polymer Electrolyte Membranes for DMFC. IJRS. 2018, 4, 6. DOI: 10.24178/ijrs.2018.4.2.06.
  • de Oliveira, A. H. P.; Nascimento, M. L. F.; de Oliveira, H. P. Preparation of KOH-Doped PVA/PSSA Solid Polymer Electrolyte for DMFC: The Influence of TiO2 and PVP on Performance of Membranes. Fuel Cells 2016, 16, 151–156. DOI: 10.1002/fuce.201500199.
  • Kamoun, E.; Youssef, M. E.; Abu-Saied, M. A. Ion Conducting Nanocomposite Membranes Based on PVA-HA-HAP for Fuel Cell Application: II. Effect of Modifier Agent of PVA on Membrane Properties. Int. J. Electrochem. Sci. 2015, 10, 6627–6644.
  • Kasai, Y.; Okayama, T.; Guan, G.; Abudula, A. DMFC Performance of Cross-Linked Sulfoethylcellulose-Poly(Vinyl Alcohol) Blend Electrolyte Membranes. ECS Trans. 2013, 50, 2039–2047. DOI: 10.1149/05002.2039ecst.
  • Pagidi, A.; Arthanareeswaran, G.; Seepana, M. M. Synthesis of Highly Stable PTFE-ZrP-PVA Composite Membrane for High-Temperature Direct Methanol Fuel Cell. Int. J. Hydrogen Energy 2019. DOI: 10.1016/j.ijhydene.2019.04.164.
  • Gohel, J. V.; Mishra, P. S.; Murthy, Z. V. P. TiO2 Nanoparticles Prepared by Mechanical Reduction Technique for Superior DMFC Nanocomposite PVA Membranes. Sep. Sci. Technol. 2019, 54, 233–246. DOI: 10.1080/01496395.2018.1501064.
  • Samimi, F.; Rahimpour, M. R. Direct Methanol Fuel Cell. In Methanol, 1 Edition; Basile, A. and Dalena, F. Eds.; Elsevier: Amsterdam, 2018. pp. 381–397.
  • Kawahara, M.; Rikukawa, M.; Sanui, K. Relationship between Absorbed Water and Proton Conductivity in Sulfopropylated Poly(Benzimidazole). Polym. Adv. Technol. 2000, 11, 544–547. DOI: 10.1002/1099-1581(200008/12)11:8/12<544::AID-PAT3>3.3.CO;2-E.
  • Wu, L.; Zhang, Z.; Ran, J.; Zhou, D.; Li, C.; Xu, T. Advances in Proton-Exchange Membranes for Fuel Cells: An Overview on Proton Conductive Channels (PCCs). Phys. Chem. Chem. Phys. 2013, 15, 4870–4887. DOI: 10.1039/c3cp50296a.
  • Zhang, H.; Huang, H.; Shen, P. K. Methanol-Blocking Nafion Composite Membranes Fabricated by Layer-by-Layer Self-Assembly for Direct Methanol Fuel Cells. Int. J. Hydrogen Energy 2012, 37, 6875–6879. DOI: 10.1016/j.ijhydene.2012.01.066.
  • Kim, D. Preparation and Characterization of Crosslinked PVA/SiO2 Hybrid Membranes Containing Sulfonic Acid Groups for Direct Methanol Fuel Cell Applications. J. Membrane Sci. 2004, 240, 37–48. DOI: 10.1016/j.memsci.2004.04.010.
  • Wu, W.; Li, Y.; Chen, P.; Liu, J.; Wang, J.; Zhang, H. Constructing Ionic Liquid-Filled Proton Transfer Channels within Nanocomposite Membrane by Using Functionalized Graphene Oxide. ACS Appl. Mater. Interfaces 2016, 8, 588–599. DOI: 10.1021/acsami.5b09642.
  • Guo, M.; Fang, J.; Xu, H.; Li, W.; Lu, X.; Lan, C.; Li, K. Synthesis and Characterization of Novel Anion Exchange Membranes Based on Imidazolium-Type Ionic Liquid for Alkaline Fuel Cells. J. Membrane Sci. 2010, 362, 97–104. DOI: 10.1016/j.memsci.2010.06.026.
  • Ji, M.; Wei, Z. A Review of Water Management in Polymer Electrolyte Membrane Fuel Cells. Energies 2009, 2, 1057–1106. DOI: 10.3390/en20401057.
  • Corti, H. R. Membranes for Direct Alcohol Fuel Cells. In Direct Alcohol Fuel Cells: Materials, Performance, Durability and Applications, 1st ed.; Corti, H. R. and Gonzalez, E. R. Eds.; Springer: Dordrecht, 2014. p. 121.
  • Yee, M. J.; Mubarak, N. M.; Khalid, M.; Abdullah, E. C.; Jagadish, P. Synthesis of Polyvinyl Alcohol (PVA) Infiltrated MWCNTs Buckypaper for Strain Sensing Application. Sci. Rep. 2018, 8, 16. DOI: 10.1038/s41598-018-35638-3.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.