1,527
Views
34
CrossRef citations to date
0
Altmetric
Reviews

Recent Progress in the Biological Applications of Reactive Oxygen Species-Responsive Polymers

&
Pages 114-143 | Received 28 Mar 2019, Accepted 02 Jul 2019, Published online: 23 Jul 2019

References

  • Weidinger, A.; Kozlov, A. V. Biological Activities of Reactive Oxygen and Nitrogen Species: Oxidative Stress versus Signal Transduction. Biomolecules 2015, 5, 472–484. DOI: 10.3390/biom5020472.
  • Chonpathompikunlert, P.; Yoshitomi, T.; Vong, L. B.; Imaizumi, N.; Ozaki, Y.; Nagasaki, Y. Recovery of Cognitive Dysfunction via Orally Administered Redox-Polymer Nanotherapeutics in SAMP8 Mice. PLoS One 2015, 10, e0126013. DOI: 10.1371/journal.pone.0126013.
  • Wang, Y.; Li, L.; Zhao, W.; Dou, Y.; An, H.; Tao, H.; Xu, X.; Jia, Y.; Lu, S.; Zhang, J.; Hu, H. Targeted Therapy of Atherosclerosis by a Broad-Spectrum Reactive Oxygen Species Scavenging Nanoparticle with Intrinsic Anti-Inflammatory Activity. ACS Nano 2018, 12, 8943–8960. DOI: 10.1021/acsnano.8b02037.
  • Chen, H.; Gu, Z.; An, H.; Chen, C.; Chen, J.; Cui, R.; Chen, S.; Chen, W.; Chen, X.; Chen, X.; et al. Precise Nanomedicine for Intelligent Therapy of Cancer. Sci. China Chem. 2018, 61, 1503–1552. DOI: 10.1007/s11426-018-9397-5.
  • Huo, M.; Yuan, J.; Tao, L.; Wei, Y. Redox-Responsive Polymers for Drug Delivery: From Molecular Design to Applications. Polym. Chem. 2014, 5, 1519–1528. DOI: 10.1039/C3PY01192E.
  • Zhu, C.; Liu, L.; Yang, Q.; Lv, F.; Wang, S. Water-Soluble Conjugated Polymers for Imaging, Diagnosis, and Therapy. Chem. Rev. 2012, 112, 4687–4735. DOI: 10.1021/cr200263w.
  • Nagasaki, Y. Design and Application of Redox Polymers for Nanomedicine. Polym. J. 2018, 50, 821–836. DOI: 10.1038/s41428-018-0054-6.
  • Alarcón, C. d l H.; Pennadam, S.; Alexander, C. Stimuli Responsive Polymers for Biomedical Applications. Chem. Soc. Rev. 2005, 34, 276–285. DOI: 10.1039/B406727D.
  • Liu, F.; Urban, M. W. Recent Advances and Challenges in Designing Stimuli-Responsive Polymers. Prog. Polym. Sci. 2010, 35, 3–23. DOI: 10.1016/j.progpolymsci.2009.10.002.
  • Xu, Q.; He, C.; Xiao, C.; Chen, X. Reactive Oxygen Species (ROS) Responsive Polymers for Biomedical Applications. Macromol. Biosci. 2016, 16, 635–646. DOI: 10.1002/mabi.201500440.
  • Allen, T. M.; Cullis, P. R. Drug Delivery Systems: Entering the Mainstream. Science 2004, 303, 1818–1822. DOI: 10.1126/science.1095833.
  • Gracia, R.; Mecerreyes, D. Polymers with Redox Properties: Materials for Batteries, Biosensors and More. Polym. Chem. 2013, 4, 2206–2214. DOI: 10.1039/c3py21118e.
  • Hoffman, A. S. Stimuli-Responsive Polymers: Biomedical Applications and Challenges for Clinical Translation. Adv. Drug Delivery Rev. 2013, 65, 10–16. DOI: 10.1016/j.addr.2012.11.004.
  • Jain, R. K.; Stylianopoulos, T. Delivering Nanomedicine to Solid Tumors. Nat. Rev. Clin. Oncol. 2010, 7, 653–664. DOI: 10.1038/nrclinonc.2010.139.
  • Klaikherd, A.; Nagamani, C.; Thayumanavan, S. Multi-Stimuli Sensitive Amphiphilic Block Copolymer Assemblies. J. Am. Chem. Soc. 2009, 131, 4830–4838. DOI: 10.1021/ja809475a.
  • Knop, K.; Hoogenboom, R.; Fischer, D.; Schubert, U. S. Poly(Ethylene Glycol) in Drug Delivery: Pros and Cons as Well as Potential Alternatives. Angew. Chem. Int. Ed. 2010, 49, 6288–6308. DOI: 10.1002/anie.200902672.
  • Lallana, E.; Tirelli, N. Oxidation-Responsive Polymers: Which Groups to Use, How to Make Them, What to Expect from Them (Biomedical Applications). Macromol. Chem. Phys. 2013, 214, 143–158. DOI: 10.1002/macp.201200502.
  • Lee, S. H.; Gupta, M. K.; Bang, J. B.; Bae, H.; Sung, H.-J. Current Progress in Reactive Oxygen Species (ROS)-Responsive Materials for Biomedical Applications. Adv. Healthcare Mater. 2013, 2, 908–915. DOI: 10.1002/adhm.201200423.
  • Ma, N.; Li, Y.; Xu, H.; Wang, Z.; Zhang, X. Dual Redox Responsive Assemblies Formed from Diselenide Block Copolymers. J. Am. Chem. Soc. 2010, 132, 442–443. DOI: 10.1021/ja908124g.
  • Ma, Y.; Dong, W.-F.; Hempenius, M. A.; Mohwald, H.; Vancso, G. J., Redox-Controlled Molecular Permeability of Composite-Wall Microcapsules. Nature Mater. 2006, 5, 724–729. DOI: 10.1038/nmat1716.
  • Maeda, H.; Matsumura, Y. Tumoritropic and Lymphotropic Principles of Macromolecular Drugs. Crit. Rev. Ther. Drug. Carrier Syst. 1989, 6, 193–210.
  • Ma, N.; Li, Y.; Ren, H. F.; Xu, H. P.; Li, Z. B.; Zhang, X. Selenium-Containing Block Copolymers and Their Oxidation-Responsive Aggregates. Polym. Chem. 2010, 1, 1609–1614. DOI: 10.1039/c0py00144a.
  • Xu, H. P.; Cao, W.; Zhang, X. Selenium-Containing Polymers: Promising Biomaterials for Controlled Release and Enzyme Mimics. Acc. Chem. Res. 2013, 46, 1647–1658. DOI: 10.1021/ar4000339.
  • Han, P.; Ma, N.; Ren, H. F.; Xu, H. P.; Li, Z. B.; Wang, Z. Q.; Zhang, X. Oxidation-Responsive Micelles Based on a Selenium-Containing Polymeric Superamphiphile. Langmuir 2010, 26, 14414–14418. DOI: 10.1021/la102837a.
  • Ma, N.; Xu, H. P.; An, L. P.; Li, J.; Sun, Z. W.; Zhang, X. Radiation-Sensitive Diselenide Block Co-Polymer Micellar Aggregates: Toward the Combination of Radiotherapy and Chemotherapy. Langmuir 2011, 27, 5874–5878. DOI: 10.1021/la2009682.
  • Miao, X. M.; Cao, W.; Zheng, W. T.; Wang, J. Y.; Zhang, X. L.; Gao, J.; Yang, C. B.; Kong, D. L.; Xu, H. P.; Wang, L.; Yang, Z. M. Switchable Catalytic Activity: Selenium-Containing Peptides with Redox-Controllable Self-Assembly Properties. Angew. Chem. Int. Ed. 2013, 52, 7781–7785. DOI: 10.1002/anie.201303199.
  • Dariva, C. G.; Coelho, J. F. J.; Serra, A. C. Near Infrared Light-Triggered Nanoparticles Using Singlet Oxygen Photocleavage for Drug Delivery Systems. J. Control. Release 2019, 294, 337–354. DOI: 10.1016/j.jconrel.2018.12.042.
  • Kost, J.; Langer, R. Responsive Polymeric Delivery Systems. Adv. Drug Deliv. Rev. 2001, 46, 125–148.
  • Saravanakumar, G.; Kim, J.; Kim, W. J. Reactive-Oxygen-Species-Responsive Drug Delivery Systems: Promises and Challenges. Adv. Sci. 2017, 4, 1600124.
  • Wang, J.; Sun, X.; Mao, W.; Sun, W.; Tang, J.; Sui, M.; Shen, Y.; Gu, Z. Tumor Redox Heterogeneity-Responsive Prodrug Nanocapsules for Cancer Chemotherapy. Adv. Mater. 2013, 25, 3670–3676. DOI: 10.1002/adma.201300929.
  • Poole, K. M.; Nelson, C. E.; Joshi, R. V.; Martin, J. R.; Gupta, M. K.; Haws, S. C.; Kavanaugh, T. E.; Skala, M. C.; Duvall, C. L. ROS-Responsive Microspheres for on Demand Antioxidant Therapy in a Model of Diabetic Peripheral Arterial Disease. Biomaterials 2015, 41, 166–175. DOI: 10.1016/j.biomaterials.2014.11.016.
  • Ren, H.; Wu, Y.; Ma, N.; Xu, H.; Zhang, X. Side-Chain Selenium-Containing Amphiphilic Block Copolymers: Redox-Controlled Self-Assembly and Disassembly. Soft Matter 2012, 8, 1460–1466. DOI: 10.1039/C1SM06673K.
  • Sun, C.; Ji, S.; Li, F.; Xu, H. Diselenide-Containing Hyperbranched Polymer with Light-Induced Cytotoxicity. ACS Appl. Mater. Interface. 2017, 9, 12924–12929. DOI: 10.1021/acsami.7b02367.
  • Fang, R.; Xu, H.; Cao, W.; Yang, L.; Zhang, X. Reactive Oxygen Species (ROS)-Responsive Tellurium-Containing Hyperbranched Polymer. Polym. Chem. 2015, 6, 2817–2821. DOI: 10.1039/C5PY00050E.
  • Wang, L.; Fan, F.; Cao, W.; Xu, H. Ultrasensitive ROS-Responsive Coassemblies of Tellurium-Containing Molecules and Phospholipids. ACS Appl. Mater. Interface. 2015, 7, 16054–16060. DOI: 10.1021/acsami.5b04419.
  • Wilson, D. S.; Dalmasso, G.; Wang, L.; Sitaraman, S. V.; Merlin, D.; Murthy, N. Orally Delivered Thioketal Nanoparticles Loaded with Tnf-α–Sirna Target Inflammation and Inhibit Gene Expression in the Intestines. Nature Mater. 2010, 9, 923. DOI: 10.1038/nmat2859.
  • Kim, J. S.; Jo, S. D.; Seah, G. L.; Kim, I.; Nam, Y. S. ROS-Induced Biodegradable Polythioketal Nanoparticles for Intracellular Delivery of Anti-Cancer Therapeutics. J. Ind. Eng. Chem. 2015, 21, 1137–1142.
  • Martin, J. R.; Gupta, M. K.; Page, J. M.; Yu, F.; Davidson, J. M.; Guelcher, S. A.; Duvall, C. L. A Porous Tissue Engineering Scaffold Selectively Degraded by Cell-Generated Reactive Oxygen Species. Biomaterials 2014, 35, 3766–3776. DOI: 10.1016/j.biomaterials.2014.01.026.
  • Franks, A. T.; Franz, K. J. A Prochelator with a Modular Masking Group Featuring Hydrogen Peroxide Activation with Concurrent Fluorescent Reporting. Chem. Commun. 2014, 50, 11317–11320. DOI: 10.1039/C4CC05076B.
  • Broaders, K. E.; Grandhe, S.; Fréchet, J. M. J. A Biocompatible Oxidation-Triggered Carrier Polymer with Potential in Therapeutics. J. Am. Chem. Soc. 2011, 133, 756–758. DOI: 10.1021/ja110468v.
  • Ikeda, M.; Tanida, T.; Yoshii, T.; Kurotani, K.; Onogi, S.; Urayama, K.; Hamachi, I. Installing Logic-Gate Responses to a Variety of Biological Substances in Supramolecular Hydrogel–Enzyme Hybrids. Nature Chem. 2014, 6, 511. DOI: 10.1038/nchem.1937.
  • Rodriguez, A. R.; Kramer, J. R.; Deming, T. J. Enzyme-Triggered Cargo Release from Methionine Sulfoxide Containing Copolypeptide Vesicles. Biomacromolecules 2013, 14, 3610–3614. DOI: 10.1021/bm400971p.
  • Yu, S. S.; Koblin, R. L.; Zachman, A. L.; Perrien, D. S.; Hofmeister, L. H.; Giorgio, T. D.; Sung, H.-J. Physiologically Relevant Oxidative Degradation of Oligo(Proline) Cross-Linked Polymeric Scaffolds. Biomacromolecules 2011, 12, 4357–4366. DOI: 10.1021/bm201328k.
  • Lee, S. H.; Boire, T. C.; Lee, J. B.; Gupta, M. K.; Zachman, A. L.; Rath, R.; Sung, H.-J. ROS-Cleavable Proline Oligomer Crosslinking of Polycaprolactone for Pro-Angiogenic Host Response. J. Mater. Chem. B 2014, 2, 7109–7113. DOI: 10.1039/C4TB01094A.
  • Hoecherl, A.; Jaeger, E.; Jaeger, A.; Hruby, M.; Konefal, R.; Janouskova, O.; Spevacek, J.; Jiang, Y.; Schmidt, P. W.; Lodge, T. P.; Stepanek, P. One-Pot Synthesis of Reactive Oxygen Species (ROS)-Self-Immolative Polyoxalate Prodrug Nanoparticles for Hormone Dependent Cancer Therapy with Minimized Side Effects. Polym. Chem. 2017, 8, 1999–2004. DOI: 10.1039/C7PY00270J.
  • Wu, J.; Wang, L.; Yu, H.; Zain Ul, A.; Khan, R. U.; Haroon, M. Ferrocene-Based Redox-Responsive Polymer Gels: Synthesis, Structures and Applications. J. Organomet. Chem. 2017, 828, 38–51.
  • Fenton, H. J. H. Oxidation of Tartaric Acid in Presence of Iron. J. Chem. Soc. Trans. 1894, 65, 899–910. DOI: 10.1039/CT8946500899.
  • Koppenol, W. H. The Centennial of the Fenton Reaction. Free Radic. Biol. Med. 1993, 15, 645–651.
  • Koppenol, W. H. The Haber-Weiss Cycle-70 Years Later. Redox Rep. 2001, 6, 229–234. DOI: 10.1179/135100001101536373.
  • Semenov, N. N. Some Problems in Chemical Kinetics and Reactivity. Princeton University Press: Princeton, 1959.
  • Halliwell, B. Free-Radicals, Reactive Oxygen Species and Human-Disease - A Critical-Evaluation with Special Reference to Atherosclerosis. Br. J. Exp. Pathol. 1989, 70, 737–757.
  • Zhao, J.; Hopke, P. K. Concentration of Reactive Oxygen Species (ROS) in Mainstream and Sidestream Cigarette Smoke. Aerosol Sci. Technol. 2012, 46, 191–197. DOI: 10.1080/02786826.2011.617795.
  • See, S. W.; Wang, Y. H.; Balasubramanian, R. Contrasting Reactive Oxygen Species and Transition Metal Concentrations in Combustion Aerosols. Environ. Res 2007, 103, 317–324. DOI: 10.1016/j.envres.2006.08.012.
  • Pollycove, M.; Feinendegen, L. E. Radiation-Induced versus Endogenous DNA Damage: Possible Effect of Inducible Protective Responses in Mitigating Endogenous Damage. Hum. Exp. Toxicol. 2003, 22, 290–306. DOI: 10.1191/0960327103ht365oa.
  • Murphy, M. P. How Mitochondria Produce Reactive Oxygen Species. Biochem. J. 2009, 417, 1–13. DOI: 10.1042/BJ20081386.
  • Boonstra, J.; Post, J. A. Molecular Events Associated with Reactive Oxygen Species and Cell Cycle Progression in Mammalian Cells. Gene 2004, 337, 1–13. DOI: 10.1016/j.gene.2004.04.032.
  • Sies, H. Oxidative Stress: Oxidants and Antioxidants. Exp. Physiol. 1997, 82, 291–295.
  • Cui, Q.; Wang, J.-Q.; Assaraf, Y. G.; Ren, L.; Gupta, P.; Wei, L.; Ashby, C. R.; Jr.; Yang, D.-H.; Chen, Z.-S. Modulating ROS to Overcome Multidrug Resistance in Cancer. Drug Resist. Updates 2018, 41, 1–25. DOI: 10.1016/j.drup.2018.11.001.
  • Bashan, N.; Kovsan, J.; Kachko, I.; Ovadia, H.; Rudich, A. Positive and Negative Regulation of Insulin Signaling by Reactive Oxygen and Nitrogen Species. Physiol. Rev. 2009, 89, 27–71. DOI: 10.1152/physrev.00014.2008.
  • Cash, T. P.; Pan, Y.; Simon, M. C. Reactive Oxygen Species and Cellular Oxygen Sensing. Free Radic. Biol. Med. 2007, 43, 1219–1225. DOI: 10.1016/j.freeradbiomed.2007.07.001.
  • D'Autreaux, B.; Toledano, M. B. ROS as Signalling Molecules: Mechanisms That Generate Specificity in ROS Homeostasis. Nat. Rev. Mol. Cell Biol. 2007, 8, 813–824. DOI: 10.1038/nrm2256.
  • Strebhardt, K.; Ullrich, A. Paul Ehrlich's Magic Bullet Concept: 100 Years of Progress. Nat. Rev. Cancer 2008, 8, 473–480. DOI: 10.1038/nrc2394.
  • Oh, J. K.; Drumright, R.; Siegwart, D. J.; Matyjaszewski, K. The Development of Microgels/Nanogels for Drug Delivery Applications. Prog. Polym. Sci. 2008, 33, 448–477. DOI: 10.1016/j.progpolymsci.2008.01.002.
  • Senthil, K.; Aranganathan, S.; Nalini, N. Evidence of Oxidative Stress in the Circulation of Ovarian Cancer Patients. Clin. Chim. Acta. 2004, 339, 27–32.
  • Kumar, B.; Koul, S.; Khandrika, L.; Meacham, R. B.; Koul, H. K. Oxidative Stress Is Inherent in Prostate Cancer Cells and Is Required for Aggressive Phenotype. Cancer Res. 2008, 68, 1777–1785. DOI: 10.1158/0008-5472.CAN-07-5259.
  • Sobotta, F. H.; Hausig, F.; Harz, D. O.; Hoeppener, S.; Schubert, U. S.; Brendel, J. C. Oxidation-Responsive Micelles by a One-Pot Polymerization-Induced Self-Assembly Approach. Polym. Chem. 2018, 9, 1593–1602. DOI: 10.1039/C7PY01859B.
  • Sun, P.; Wang, G.; Hou, H.; Yuan, P.; Deng, W.; Wang, C.; Lu, X.; Fan, Q.; Huang, W. A Water-Soluble Phosphorescent Conjugated Polymer Brush for Tumor-Targeted Photodynamic Therapy. Polym. Chem. 2017, 8, 5836–5844. DOI: 10.1039/C7PY01248A.
  • Wallat, J. D.; Wek, K. S.; Chariou, P. L.; Carpenter, B. L.; Ghiladi, R. A.; Steinmetz, N. F.; Pokorski, J. K. Fluorinated Polymer-Photosensitizer Conjugates Enable Improved Generation of ROS for Anticancer Photodynamic Therapy. Polym. Chem. 2017, 8, 3195–3202. DOI: 10.1039/C7PY00522A.
  • Zhang, X.; Han, L.; Liu, M.; Wang, K.; Tao, L.; Wan, Q.; Wei, Y. Recent Progress and Advances in Redox-Responsive Polymers as Controlled Delivery Nanoplatforms. Mater. Chem. Front. 2017, 1, 807–822. DOI: 10.1039/C6QM00135A.
  • Zhang, J.; Yang, F.; Shen, H.; Wu, D. Controlled Formation of Microgels/Nanogels from a Disulfide-Linked Core/Shell Hyperbranched Polymer. ACS Macro Lett. 2012, 1, 1295–1299. DOI: 10.1021/mz300489n.
  • Yan, Y.; Wang, Y.; Heath, J. K.; Nice, E. C.; Caruso, F. Cellular Association and Cargo Release of Redox-Responsive Polymer Capsules Mediated by Exofacial Thiols. Adv. Mater. 2011, 23, 3916–3921. DOI: 10.1002/adma.201101609.
  • Yu, Z.-Q.; Sun, J.-T.; Pan, C.-Y.; Hong, C.-Y. Bioreducible Nanogels/Microgels Easily Prepared via Temperature Induced Self-Assembly and Self-Crosslinking. Chem. Commun. 2012, 48, 5623–5625. DOI: 10.1039/c2cc30908d.
  • Napoli, A.; Valentini, M.; Tirelli, N.; Müller, M.; Hubbell, J. A. Oxidation-Responsive Polymeric Vesicles. Nat. Mater. 2004, 3, 183–189. DOI: 10.1038/nmat1081.
  • Hu, P.; Tirelli, N. Scavenging ROS: Superoxide Dismutase/Catalase Mimetics by the Use of an Oxidation-Sensitive Nanocarrier/Enzyme Conjugate. Bioconjugate Chem. 2012, 23, 438–449. DOI: 10.1021/bc200449k.
  • Reddy, S. T.; Rehor, A.; Schmoekel, H. G.; Hubbell, J. A.; Swartz, M. A. In Vivo Targeting of Dendritic Cells in Lymph Nodes with Poly(Propylene Sulfide) Nanoparticles. J. Control. Release 2006, 112, 26–34. DOI: 10.1016/j.jconrel.2006.01.006.
  • Sun, C.; Liang, Y.; Hao, N.; Xu, L.; Cheng, F.; Su, T.; Cao, J.; Gao, W.; Pu, Y.; He, B. A ROS-Responsive Polymeric Micelle with a π-Conjugated Thioketal Moiety for Enhanced Drug Loading and Efficient Drug Delivery. Org. Biomol. Chem. 2017, 15, 9176–9185. DOI: 10.1039/C7OB01975K.
  • Shim, M. S.; Xia, Y. A Reactive Oxygen Species (ROS)-Responsive Polymer for Safe, Efficient, and Targeted Gene Delivery in Cancer Cells. Angew. Chem. Int. Ed. 2013, 52, 6926–6929. DOI: 10.1002/anie.201209633.
  • Xiao, C.; Ding, J.; Ma, L.; Yang, C.; Zhuang, X.; Chen, X. Synthesis of Thermal and Oxidation Dual Responsive Polymers for Reactive Oxygen Species (ROS)-Triggered Drug Release. Polym. Chem. 2015, 6, 738–747. DOI: 10.1039/C4PY01156B.
  • Boyd, R. Selenium Stories. Nat. Chem. 2011, 3, 570–570. DOI: 10.1038/nchem.1076.
  • Rotruck, J. T.; Pope, A. L.; Ganther, H. E.; Swanson, A. B.; Hafeman, D. G.; Hoekstra, W. G. Selenium - Biochemical Role as a Component of Glutathione Peroxidase. Science 1973, 179, 588–590. DOI: 10.1126/science.179.4073.588.
  • Cai, X.; Wang, C.; Yu, W.; Fan, W.; Wang, S.; Shen, N.; Wu, P.; Li, X.; Wang, F. Selenium Exposure and Cancer Risk: An Updated Meta-Analysis and Meta-Regression. Sci. Rep. 2016, 6, 19213DOI: 10.1038/srep19213.
  • Cao, W.; Wang, L.; Xu, H. Selenium/Tellurium Containing Polymer Materials in Nanobiotechnology. Nano Today 2015, 10, 717–736. DOI: 10.1016/j.nantod.2015.11.004.
  • Zeng, L.; Li, Y.; Li, T.; Cao, W.; Yi, Y.; Geng, W.; Sun, Z.; Xu, H. Selenium-Platinum Coordination Compounds as Novel Anticancer Drugs: Selectively Killing Cancer Cells via a Reactive Oxygen Species (ROS)-Mediated Apoptosis Route. Chem. Asian J. 2014, 9, 2295–2302. DOI: 10.1002/asia.201402256.
  • Sun, T.; Zhu, C.; Xu, J. Multiple Stimuli-Responsive Selenium-Functionalized Biodegradable Starch-Based Hydrogels. Soft Matter 2018, 14, 921–926. DOI: 10.1039/C7SM02137B.
  • Li, T.; Smet, M.; Dehaen, W.; Xu, H. Selenium–Platinum Coordination Dendrimers with Controlled anti-Cancer Activity. ACS Appl. Mater. Interface. 2016, 8, 3609–3614. DOI: 10.1021/acsami.5b07877.
  • Cao, W.; Zhang, X.; Miao, X.; Yang, Z.; Xu, H. Gamma-Ray-Responsive Supramolecular Hydrogel Based on a Diselenide-Containing Polymer and a Peptide. Angew. Chem. Int. Ed. 2013, 52, 6233–6237. DOI: 10.1002/anie.201300662.
  • Xia, J.; Li, F.; Ji, S.; Xu, H. Selenium-Functionalized Graphene Oxide That Can Modulate the Balance of Reactive Oxygen Species. ACS Appl. Mater. Interface. 2017, 9, 21413–21421. DOI: 10.1021/acsami.7b05951.
  • Wang, L.; Cao, W.; Yi, Y.; Xu, H. Dual Redox Responsive Coassemblies of Diselenide-Containing Block Copolymers and Polymer Lipids. Langmuir 2014, 30, 5628–5636. DOI: 10.1021/la501054z.
  • Zhou, W.; Wang, L.; Li, F.; Zhang, W.; Huang, W.; Huo, F.; Xu, H. Selenium-Containing Polymer@Metal-Organic Frameworks Nanocomposites as an Efficient Multiresponsive Drug Delivery System. Adv. Funct. Mater. 2017, 27, 1605465. DOI: 10.1002/adfm.201605465.
  • Tannock, I. F.; Rotin, D. Acid ph in Tumors and Its Potential for Therapeutic exploitation. Cancer Res. 1989, 49, 4373–4384.
  • Ren, H.; Wu, Y.; Li, Y.; Cao, W.; Sun, Z.; Xu, H.; Zhang, X. Visible-Light-Induced Disruption of Diselenide-Containing Layer-by-Layer Films: Toward Combination of Chemotherapy and Photodynamic Therapy. Small 2013, 9, 3981–3986. DOI: 10.1002/smll.201300628.
  • Yu, L.; Zhang, M.; Du, F.-S.; Li, Z.-C. ROS-Responsive Poly(ε-Caprolactone) with Pendent Thioether and Selenide Motifs. Polym. Chem. 2018, 9, 3762–3773. DOI: 10.1039/C8PY00620B.
  • Wang, L.; Zhu, K.; Cao, W.; Sun, C.; Lu, C.; Xu, H. ROS-Triggered Degradation of Selenide-Containing Polymers Based on Selenoxide Elimination. Polym. Chem. 2019, 10, 2039–2046. DOI: 10.1039/C9PY00171A.
  • Sharpless, K. B.; Lauer, R. F.; Teranishi, A. Y. Electrophilic and Nucleophilic Organoselenium Reagents-New Routes to Alpha, Beta-Unsaturated Carbonyl Compounds. J. Am. Chem. Soc. 1973, 95, 6137–6139. DOI: 10.1021/ja00799a062.
  • Trost, B. M.; Scudder, P. H. New Synthetic Reactions - Stereo-Reversed Cyclobutanone Formation Utilizing Selenoxide as a Leaving Group. J. Am. Chem. Soc. 1977, 99, 7601–7610. DOI: 10.1021/ja00465a031.
  • Detty, M. R. Oxidation of Selenides and Tellurides with Positive Halogenating Species. J. Org. Chem. 1980, 45, 274–279. DOI: 10.1021/jo01290a014.
  • Li, Y.; Li, Y.; Ji, W.; Lu, Z.; Liu, L.; Shi, Y.; Ma, G.; Zhang, X. Positively Charged Polyprodrug Amphiphiles with Enhanced Drug Loading and Reactive Oxygen Species-Responsive Release Ability for Traceable Synergistic Therapy. J. Am. Chem. Soc. 2018, 140, 4164–4171.
  • Kirby, E. D.; Kuwahara, A. A.; Messer, R. L.; Wyss-Coray, T. Adult Hippocampal Neural Stem and Progenitor Cells Regulate the Neurogenic Niche by Secreting VEGF. Proc. Natl. Acad. Sci. USA. 2015, 112, 4128–4133. DOI: 10.1073/pnas.1422448112.
  • Li, Y.; Cheng, Q.; Jiang, Q.; Huang, Y.; Liu, H.; Zhao, Y.; Cao, W.; Ma, G.; Dai, F.; Liang, X.; et al. Enhanced Endosomal/Lysosomal Escape by Distearoyl Phosphoethanolamine-Polycarboxybetaine Lipid for Systemic Delivery of siRNA. J. Control. Release 2014, 176, 104–114. DOI: 10.1016/j.jconrel.2013.12.007.
  • Zhao, C.; Sun, G.; Li, S.; Lang, M.-F.; Yang, S.; Li, W.; Shi, Y. Microrna Let-7b Regulates Neural Stem Cell Proliferation and Differentiation by Targeting Nuclear Receptor TLX Signaling. Proc. Natl. Acad. Sci. USA. 2010, 107, 1876–1881. DOI: 10.1073/pnas.0908750107.
  • Han, X.; Yang, N.; Xu, Y.; Zhu, J.; Chen, Z.; Liu, Z.; Dang, G.; Song, C. Simvastatin Treatment Improves Functional Recovery after Experimental Spinal Cord Injury by Upregulating the Expression of BNDF and GNDF. Neurosci. Lett. 2011, 487, 255–259. DOI: 10.1016/j.neulet.2010.09.007.
  • Ji, S.; Cao, W.; Yu, Y.; Xu, H. Dynamic Diselenide Bonds: Exchange Reaction Induced by Visible Light without Catalysis. Angew. Chem. Int. Ed. 2014, 53, 6781–6785. DOI: 10.1002/anie.201403442.
  • Ji, S.; Xia, J.; Xu, H. Dynamic Chemistry of Selenium: Se–N and Se–Se Dynamic Covalent Bonds in Polymeric Systems. ACS Macro Lett. 2016, 5, 78–82. DOI: 10.1021/acsmacrolett.5b00849.
  • Ramadan, S. E.; Razak, A. A.; Ragab, A. M.; el-Meleigy, M. Incorporation of Tellurium into Amino-Acids and Proteins in a Tellurium-Tolerant Fungi. Biol. Trace Elem. Res. 1989, 20, 225–232.
  • Ren, X. J.; Xue, Y.; Liu, J. Q.; Zhang, K.; Zheng, J.; Luo, G.; Guo, C. H.; Mu, Y.; Shen, J. C. A Novel Cyclodextrin-Derived Tellurium Compound with Glutathione Peroxidase Activity. ChemBioChem 2002, 3, 356–363. DOI: 10.1002/1439-7633(20020402)3:4<356::AID-CBIC356>3.0.CO;2-O.
  • Lin, T.; Ding, Z.; Li, N.; Xu, J.; Luo, G.; Liu, J.; Shen, J. 2-Tellurium-Bridged Beta-Cyclodextrin, a Thioredoxin Reductase Inhibitor, Sensitizes Human Breast Cancer Cells to TRAIL-Induced Apoptosis through DR5 Induction and NF-Kappa B Suppression. Carcinogenesis 2011, 32, 154–167. DOI: 10.1093/carcin/bgq234.
  • Xia, X.; Xiang, X.; Huang, F.; Zhang, Z.; Han, L. A Tellurylsulfide Bond-Containing Redox-Responsive Superparamagnetic Nanogel with Acid-Responsiveness for Efficient Anticancer Therapy. Chem. Commun. 2017, 53, 13141–13144. DOI: 10.1039/C7CC07615K.
  • Cao, W.; Gu, Y.; Meineck, M.; Li, T.; Xu, H. Tellurium-Containing Polymer Micelles: Competitive-Ligand-Regulated Coordination Responsive Systems. J. Am. Chem. Soc. 2014, 136, 5132–5137. DOI: 10.1021/ja500939m.
  • Cao, W.; Wang, L.; Xu, H. Coordination Responsive Tellurium-Containing Multilayer Film for Controlled Delivery. Chem. Commun. 2015, 51, 5520–5522. DOI: 10.1039/C4CC08588D.
  • Fan, F.; Gao, S.; Ji, S.; Fu, Y.; Zhang, P.; Xu, H. Gamma Radiation-Responsive Side-Chain Tellurium-Containing Polymer for Cancer Therapy. Mater. Chem. Front. 2018, 2, 2109–2115. DOI: 10.1039/C8QM00321A.
  • Cao, W.; Gu, Y.; Li, T.; Xu, H. Ultra-Sensitive ROS-Responsive Tellurium-Containing Polymers. Chem. Commun. 2015, 51, 7069–7071. DOI: 10.1039/C5CC01779C.
  • Riley, P. A. Free-Radicals in Biology - Oxidative Stress and the Effects of Ionizing-Radiation. Int. J. Radiat. Biol 1994, 65, 27–33. DOI: 10.1080/09553009414550041.
  • Kresl, J. J.; Schild, S. E.; Henning, G. T.; Gunderson, L. L.; Donohue, J.; Pitot, H.; Haddock, M. G.; Nagorney, D. Adjuvant External Beam Radiation Therapy with Concurrent Chemotherapy in the Management of Gallbladder Carcinoma. Int. J. Radiat. Oncol. Biol. Phys. 2002, 52, 167–175. DOI: 10.1016/S0360-3016(01)01764-3.
  • Li, F.; Li, T.; Cao, W.; Wang, L.; Xu, H. Near-Infrared Light Stimuli-Responsive Synergistic Therapy Nanoplatforms Based on the Coordination of Tellurium-Containing Block Polymer and Cisplatin for Cancer Treatment. Biomaterials 2017, 133, 208–218. DOI: 10.1016/j.biomaterials.2017.04.032.
  • Wang, L.; Wang, W.; Cao, W.; Xu, H. Multi-Hierarchical Responsive Polymers: Stepwise Oxidation of a Selenium- and Tellurium-Containing Block Copolymer with Sensitivity to Both Chemical and Electrochemical Stimuli. Polym. Chem. 2017, 8, 4520–4527. DOI: 10.1039/C7PY00971B.
  • Dickinson, B. C.; Chang, C. J. A Targetable Fluorescent Probe for Imaging Hydrogen Peroxide in the Mitochondria of Living Cells. J. Am. Chem. Soc. 2008, 130, 9638–9639. DOI: 10.1021/ja802355u.
  • Zhao, W. Lighting up H2O2: The Molecule That Is a “necessary evil” in the cell. Angew. Chem. Int. Ed. Engl. 2009, 48, 3022–3024. DOI: 10.1002/anie.200805651.
  • Ruan, C.; Liu, L.; Wang, Q.; Chen, X.; Chen, Q.; Lu, Y.; Zhang, Y.; He, X.; Zhang, Y.; Guo, Q.; et al. Reactive Oxygen Species-Biodegradable Gene Carrier for the Targeting Therapy of Breast Cancer. ACS Appl. Mater. Interface. 2018, 10, 10398–10408. DOI: 10.1021/acsami.8b01712.
  • Deng, Z.; Qian, Y.; Yu, Y.; Liu, G.; Hu, J.; Zhang, G.; Liu, S. Engineering Intracellular Delivery Nanocarriers and Nanoreactors from Oxidation-Responsive Polymersomes via Synchronized Bilayer Cross-Linking and Permeabilizing inside Live Cells. J. Am. Chem. Soc. 2016, 138, 10452–10466. DOI: 10.1021/jacs.6b04115.
  • Lux, C. d G.; Joshi-Barr, S.; Trung, N.; Mahmoud, E.; Schopf, E.; Fomina, N.; Almutairi, A. Biocompatible Polymeric Nanoparticles Degrade and Release Cargo in Response to Biologically Relevant Levels of Hydrogen Peroxide. J. Am. Chem. Soc. 2012, 134, 15758–15764. DOI: 10.1021/ja303372u.
  • Jaeger, E.; Hoecherl, A.; Janouskova, O.; Jaeger, A.; Hruby, M.; Konefal, R.; Netopilik, M.; Panek, J.; Slouf, M.; Ulbrich, K.; Stepanek, P. Fluorescent Boronate-Based Polymer Nanoparticles with Reactive Oxygen Species (ROS)-Triggered Cargo Release for Drug-Delivery Applications. Nanoscale 2016, 8, 6958–6963. DOI: 10.1039/C6NR00791K.
  • Cho, H.; Bae, J.; Garripelli, V. K.; Anderson, J. M.; Jun, H.-W.; Jo, S. Redox-Sensitive Polymeric Nanoparticles for Drug Delivery. Chem. Commun. 2012, 48, 6043–6045. DOI: 10.1039/c2cc31463k.
  • Wong, A. D.; Ye, M.; Ulmschneider, M. B.; Searson, P. C. Quantitative Analysis of the Enhanced Permeation and Retention (EPR) Effect. PLoS One. 2015, 10, e0123461. DOI: 10.1371/journal.pone.0123461.
  • Fang, J.; Nakamura, H.; Maeda, H. The EPR Effect: Unique Features of Tumor Blood Vessels for Drug Delivery, Factors Involved, and Limitations and Augmentation of the Effect. Adv. Drug Delivery Rev. 2011, 63, 136–151. DOI: 10.1016/j.addr.2010.04.009.
  • Liu, X.; Xiang, J.; Zhu, D.; Jiang, L.; Zhou, Z.; Tang, J.; Liu, X.; Huang, Y.; Shen, Y. Fusogenic Reactive Oxygen Species Triggered Charge-Reversal Vector for Effective Gene Delivery. Adv. Mater. 2016, 28, 1743–1752. DOI: 10.1002/adma.201670057.
  • Zabner, J.; Fasbender, A. J.; Moninger, T.; Poellinger, K. A.; Welsh, M. J. Cellular and Molecular Barriers to Gene Transfer by a Cationic Lipid. J. Biol. Chem. 1995, 270, 18997–19007. DOI: 10.1074/jbc.270.32.18997.
  • Pollard, H.; Remy, J.-S.; Loussouarn, G.; Demolombe, S.; Behr, J.-P.; Escande, D. Polyethylenimine but Not Cationic Lipids Promotes Transgene Delivery to the Nucleus in Mammalian Cells. J. Biol. Chem. 1998, 273, 7507–7511. DOI: 10.1074/jbc.273.13.7507.
  • Sugahara, K. N.; Teesalu, T.; Karmali, P. P.; Kotamraju, V. R.; Agemy, L.; Greenwald, D. R.; Ruoslahti, E. Coadministration of a Tumor-Penetrating Peptide Enhances the Efficacy of Cancer Drugs. Science 2010, 328, 1031–1035. DOI: 10.1126/science.1183057.
  • Godbey, W. T.; Barry, M. A.; Saggau, P.; Wu, K. K.; Mikos, A. G. Poly(Ethylenimine)-Mediated Transfection: A New Paradigm for Gene Delivery. J. Biomed. Mater. Res. 2000, 51, 321–328. DOI: 10.1002/1097-4636(20000905)51:3<321::AID-JBM5>3.3.CO;2-I.
  • Jeong, D.; Kang, C.; Jung, E.; Yoo, D.; Wu, D.; Lee, D. Porous Antioxidant Polymer Microparticles as Therapeutic Systems for the Airway Inflammatory Diseases. J. Control. Release 2016, 233, 72–80. DOI: 10.1016/j.jconrel.2016.04.039.
  • Kim, S.; Park, H.; Song, Y.; Hong, D.; Kim, O.; Jo, E.; Khang, G.; Lee, D. Reduction of Oxidative Stress by p-Hydroxybenzyl Alcohol-Containing Biodegradable Polyoxalate Nanoparticulate Antioxidant. Biomaterials 2011, 32, 3021–3029. DOI: 10.1016/j.biomaterials.2010.11.033.
  • Tian, J.; Chen, J.; Ge, C.; Liu, X.; He, J.; Ni, P.; Pan, Y. Synthesis of Pegylated Ferrocene Nanoconjugates as the Radiosensitizer of Cancer Cells. Bioconjugate Chem. 2016, 27, 1518–1524. DOI: 10.1021/acs.bioconjchem.6b00168.
  • Xu, H.; Yao, Q.; Cai, C.; Gou, J.; Zhang, Y.; Zhong, H.; Tang, X. Amphiphilic Poly(Amino Acid) Based Micelles Applied to Drug Delivery: The in Vitro and in Vivo Challenges and the Corresponding Potential Strategies. J. Control. Release 2015, 199, 84–97. DOI: 10.1016/j.jconrel.2014.12.012.
  • Welsher, K.; Sherlock, S. P.; Dai, H. Deep-Tissue Anatomical Imaging of Mice Using Carbon Nanotube Fluorophores in the Second near-Infrared Window. Proc. Natl. Acad. Sci. USA. 2011, 108, 8943–8948. DOI: 10.1073/pnas.1014501108.
  • Jiao, X.; Li, Y.; Niu, J.; Xie, X.; Wang, X.; Tang, B. Small-Molecule Fluorescent Probes for Imaging and Detection of Reactive Oxygen, Nitrogen, and Sulfur Species in Biological Systems. Anal. Chem. 2018, 90, 533–555. DOI: 10.1021/acs.analchem.7b04234.
  • Pu, K.; Shuhendler, A. J.; Jokerst, J. V.; Mei, J.; Gambhir, S. S.; Bao, Z.; Rao, J. Semiconducting Polymer Nanoparticles as Photoacoustic Molecular Imaging Probes in Living Mice. Nat. Nanotech. 2014, 9, 233–239. DOI: 10.1038/nnano.2013.302.
  • Pu, K.; Shuhendler, A. J.; Rao, J. Semiconducting Polymer Nanoprobe for in Vivo Imaging of Reactive Oxygen and Nitrogen Species. Angew. Chem. Int. Ed. 2013, 52, 10325–10329. DOI: 10.1002/anie.201303420.
  • Cai, L.; Deng, L.; Huang, X.; Ren, J. Catalytic Chemiluminescence Polymer Dots for Ultrasensitive in Vivo Imaging of Intrinsic Reactive Oxygen Species in Mice. Anal. Chem. 2018, 90, 6929–6935. DOI: 10.1021/acs.analchem.8b01188.
  • Kumar, S.; Kumar, A.; Kim, G.-H.; Rhim, W.-K.; Hartman, K. L.; Nam, J.-M. Myoglobin and Polydopamine-Engineered Raman Nanoprobes for Detecting, Imaging, and Monitoring Reactive Oxygen Species in Biological Samples and Living Cells. Small 2017, 13, 1701584. DOI: 10.1002/smll.201701584.
  • Zhen, X.; Zhang, C.; Xie, C.; Miao, Q.; Lim, K. L.; Pu, K. Intraparticle Energy Level Alignment of Semiconducting Polymer Nanoparticles to Amplify Chemiluminescence for Ultrasensitive in Vivo Imaging of Reactive Oxygen Species. ACS Nano 2016, 10, 6400–6409. DOI: 10.1021/acsnano.6b02908.
  • Augusto, F. A.; de Souza, G. A.; de Souza Junior, S. P.; Khalid, M.; Baader, W. J. Efficiency of Electron Transfer Initiated Chemiluminescence. Photochem. Photobiol. 2013, 89, 1299–1317. DOI: 10.1111/php.12102.
  • Wang, Y.; Yan, B.; Chen, L. Sers Tags: Novel Optical Nanoprobes for Bioanalysis. Chem. Rev. 2013, 113, 1391–1428. DOI: 10.1021/cr300120g.
  • Nam, J.-M.; Oh, J.-W.; Lee, H.; Suh, Y. D. Plasmonic Nanogap-Enhanced Raman Scattering with Nanoparticles. Acc. Chem. Res. 2016, 49, 2746–2755. DOI: 10.1021/acs.accounts.6b00409.
  • Wang, H.-S.; Bao, W.-J.; Ren, S.-B.; Chen, M.; Wang, K.; Xia, X.-H. Fluorescent Sulfur-Tagged Europium(III) Coordination Polymers for Monitoring Reactive Oxygen Species. Anal. Chem. 2015, 87, 6828–6833. DOI: 10.1021/acs.analchem.5b01104.
  • Hanna, R. D.; Naro, Y.; Deiters, A.; Floreancig, P. E. Alcohol, Aldehyde, and Ketone Liberation and Intracellular Cargo Release through Peroxide-Mediated Alpha-Boryl Ether Fragmentation. J. Am. Chem. Soc. 2016, 138, 13353–13360. DOI: 10.1021/jacs.6b07890.
  • Mohapatra, H.; Phillips, S. T. Using Smell to Triage Samples in Point-of-Care Assays. Angew. Chem. Int. Ed. Engl. 2012, 51, 11145–11148. DOI: 10.1002/anie.201207008.
  • Bjelakovic, G.; Nikolova, D.; Gluud, L. L.; Simonetti, R. G.; Gluud, C. Mortality in Randomized Trials of Antioxidant Supplements for Primary and Secondary Prevention - Systematic Review and Meta-Analysis. J. Am. Med. Assoc. 2007, 297, 842–857. DOI: 10.1001/jama.297.8.842.
  • Feliciano, C. P.; Tsuboi, K.; Suzuki, K.; Kimura, H.; Nagasaki, Y. Long-Term Bioavailability of Redox Nanoparticles Effectively Reduces Organ Dysfunctions and Death in Whole-Body Irradiated Mice. Biomaterials 2017, 129, 68–82. DOI: 10.1016/j.biomaterials.2017.03.011.
  • Bao, X.; Zhao, J.; Sun, J.; Hu, M.; Yang, X. Polydopamine Nanoparticles as Efficient Scavengers for Reactive Oxygen Species in Periodontal Disease. ACS Nano 2018, 12, 8882–8892. DOI: 10.1021/acsnano.8b04022.
  • Lv, W.; Xu, J.; Wang, X.; Li, X.; Xu, Q.; Xin, H. Bioengineered Boronic Ester Modified Dextran Polymer Nanoparticles as Reactive Oxygen Species Responsive Nanocarrier for Ischemic Stroke Treatment. ACS Nano 2018, 12, 5417–5426. DOI: 10.1021/acsnano.8b00477.
  • Hosoo, H.; Marushima, A.; Nagasaki, Y.; Hirayama, A.; Ito, H.; Puentes, S.; Mujagic, A.; Tsurushima, H.; Tsuruta, W.; Suzuki, K.; et al. Neurovascular Unit Protection from Cerebral Ischemia-Reperfusion Injury by Radical-Containing Nanoparticles in Mice. Stroke 2017, 48, 2238–2247. DOI: 10.1161/STROKEAHA.116.016356.
  • Kim, H.-O.; Yeom, M.; Kim, J.; Kukreja, A.; Na, W.; Choi, J.; Kang, A.; Yun, D.; Lim, J.-W.; Song, D.; Haam, S. Reactive Oxygen Species-Regulating Polymersome as an Antiviral Agent against Influenza Virus. Small 2017, 13, 1700818. DOI: 10.1002/smll.201700818.
  • Bertoni, S.; Liu, Z.; Correia, A.; Martins, J. P.; Rahikkala, A.; Fontana, F.; Kemell, M.; Liu, D.; Albertini, B.; Passerini, N.; et al. pH and Reactive Oxygen Species-Sequential Responsive Nano-in-Micro Composite for Targeted Therapy of Inflammatory Bowel Disease. Adv. Funct. Mater. 2018, 28, 1806175. DOI: 10.1002/adfm.201806175.
  • Stober, W.; Fink, A.; Bohn, E. Controlled Growth of Monodisperse Silica Spheres in Micron Size Range. J. Colloid Interface. Sci. 1968, 26, 62–69. DOI: 10.1016/0021-9797(68)90272-5.
  • Park, H. S.; Jung, H. Y.; Park, E. Y.; Kim, J.; Lee, W. J.; Bae, Y. S. Cutting Edge: Direct Interaction of TLR4 with NAD(P)H Oxidase 4 Isozyme Is Essential for Lipopolysaccharide-Induced Production of Reactive Oxygen Species and Activation of NF-Kappa B. J. Immunol. 2004, 173, 3589–3593. DOI: 10.4049/jimmunol.173.6.3589.
  • Viger, M. L.; Sankaranarayanan, J.; Lux, C. d G.; Chan, M.; Almutairi, A. Collective Activation of MRI Agents via Encapsulation and Disease-Triggered Release. J. Am. Chem. Soc. 2013, 135, 7847–7850. DOI: 10.1021/ja403167p.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.