20,769
Views
148
CrossRef citations to date
0
Altmetric
Reviews

Multifunctionality in Epoxy Resins

ORCID Icon, ORCID Icon & ORCID Icon
Pages 1-41 | Received 21 Jan 2019, Accepted 25 Jul 2019, Published online: 13 Aug 2019

References

  • Schmidt, S.; Mahrholz, T.; Kühn, A.; Wierach, P. “Powder binders used for the manufacturing of wind turbine rotor blades. Part 1. Characterization of resin-binder interaction and preform properties”, Polym. Compos. 2018, 39, 708–717. DOI:10.1002/pc.23988.
  • Abu-Hamdeh, N. H.; Almitani, K. H. “Construction and numerical analysis of a collapsible vertical axis wind turbine”, Energy Convers. Manag. 2017, 151, 400–413. DOI:10.1016/j.enconman.2017.09.015.
  • Park, H. “Design and manufacturing of composite tower structure for wind turbine equipment”, IOP Conf. Ser: Mater. Sci. Eng. 2018, 307, 012065. DOI:10.1088/1757-899X/307/1/012065.
  • Rocha, I. B. C. M.; Raijmaekers, S.; Nijssen, R. P. L.; van der Meer, F. P.; Sluys, L. J. “Hygrothermal ageing behaviour of a glass/epoxy composite used in wind turbine blades”, Compos. Struct. 2017, 174, 110–122. DOI:10.1016/j.compstruct.2017.04.028.
  • Zhu, R.-S.; Zhao, H.-L.; Peng, J.-Y.; Li, J.-P.; Wang, S.-Q.; Zhao, H. “A numerical investigation of fluid-structure coupling of 3 MW wind turbine blades”, Int. J. Green Energy 2016, 13, 241–247. DOI:10.1080/15435075.2014.917418.
  • Nag-Chowdhury, S.; Bellegou, H.; Pillin, I.; Castro, M.; Longrais, P.; Feller, J. F. “Non-intrusive health monitoring of infused composites with embedded carbon quantum piezo-resistive sensors”, Compos. Sci. Technol. 2016, 123, 286–294. DOI:10.1016/j.compscitech.2016.01.004.
  • Yang, S.; Qu, J. “Computing thermomechanical properties of crosslinked epoxy by molecular dynamic simulations”, Polymer (United Kingdom) 2012, 53, 4806–4817. DOI:10.1016/j.polymer.2012.08.045.
  • Shenogina, N. B.; Tsige, M.; Patnaik, S. S.; Mukhopadhyay, S. M. “Molecular modeling approach to prediction of thermo-mechanical behavior of thermoset polymer networks”, Macromolecules 2012, 45, 5307–5315. DOI:10.1021/ma3007587.
  • Iijima, T.; Yoshioka, N.; Tomoi, M. “Effect of cross-link density on modification of epoxy resins with reactive acrylic elastomers”, Eur. Polym. J. 1992, 28, 573–581. DOI:10.1016/0014-3057(92)90025-W.
  • Gaw, K.; Kikei, M.; Kakimoto, M.-A.; Imai, Y. “Preparation of polyimide-epoxy composites”, React. Funct. Polym. 1996, 30, 85–91. DOI:10.1016/1381-5148(95)00132-8.
  • Tapeinos, I. G.; Miaris, A.; Mitschang, P.; Alexopoulos, N. D. “Carbon nanotube-based polymer composites: a trade-off between manufacturing cost and mechanical performance”, Compos. Sci. Technol. 2012, 72, 774–787. DOI:10.1016/j.compscitech.2012.02.004.
  • Dell’Anno, G.; Partridge, I.; Cartié, D.; Hamlyn, A.; Chehura, E.; James, S.; Tatam, R. “Automated manufacture of 3D reinforced aerospace composite structures”, Int. Jnl. Of Struct. Integrity 2012, 3, 22–40. DOI:10.1108/17579861211209975.
  • Reichwein, H.; Langemeier, P.; Hasson, T.; Schendzielorz, M. Light, “Strong and economical – epoxy fiber-reinforced structures for automotive mass production”, In Society of Plastics Engineers – 10th Annual Automotive Composites Conference and Exhibition (ACCE); New York, United States 2010; pp 1–20.
  • Kang, I.; Schulz, M. J.; Kim, J. H.; Shanov, V.; Shi, D. “A carbon nanotube strain sensor for structural health monitoring”, Smart Mater. Struct. 2006, 15, 737–748. DOI:10.1088/0964-1726/15/3/009.
  • Vertuccio, L.; Guadagno, L.; Spinelli, G.; Lamberti, P.; Tucci, V.; Russo, S. “Piezoresistive properties of resin reinforced with carbon nanotubes for health-monitoring of aircraft primary structures”, Compos. Part B Eng. 2016, 107, 192–202. DOI:10.1016/j.compositesb.2016.09.061.
  • Cremer, D.; Kraka, E. “Theoretical determination of molecular structure and conformation. 15. Three-membered rings: Bent bonds, ring strain, and surface delocalization”, J. Am. Chem. Soc. 1985, 107, 3800–3810. DOI:10.1021/ja00299a009.
  • Johannsen, I.; Jaksik, K.; Wirch, N.; Pötschke, P.; Fiedler, B.; Schulte, K. “Electrical conductivity of melt-spun thermoplastic poly(hydroxy ether of bisphenol A) fibres containing multi-wall carbon nanotubes”, Polym. (United Kingdom) 2016, 97, 80–94. DOI:10.1016/j.polymer.2016.05.005.
  • Zhang, H.; Bharti, A.; Li, Z.; Du, S.; Bilotti, E.; Peijs, T. “Localized toughening of carbon/epoxy laminates using dissolvable thermoplastic interleaves and electrospun fibres”, Compos. Part A Appl. Sci. Manuf. 2015, 79, 116–126. DOI:10.1016/j.compositesa.2015.09.024.
  • Shukla, R.; Kumar, P. “Self-curable epoxide resins based on cardanol for use in surface coatings”, Pigment Resin Technol. 2011, 40, 311–333. DOI:10.1108/03699421111176225.
  • Tang, X.; Zhou, Y.; Peng, M. “Green preparation of epoxy/graphene oxide nanocomposites using a glycidylamine epoxy resin as the surface modifier and phase transfer agent of graphene oxide”, ACS Appl. Mater. Interfaces 2016, 8, 1854–1866. DOI:10.1021/acsami.5b09830.
  • Wei, C.; Pan, W.; Sun, S.; Liu, H. “Irradiation effects on a glycidylamine epoxy resin system for insulation in fusion reactor”, J. Nucl. Mater. 2012, 429, 113–117. DOI:10.1016/j.jnucmat.2012.05.040.
  • Wang, X. H.; Zhang, H. X.; Wang, Z. G.; Jiang, B. Z. “Toughening of poly(butylene terephthalate) with epoxidized ethylene propylene diene rubber”, Polymer (Guildf) 1997, 38, 1569–1572. DOI:10.1016/S0032-3861(96)00674-X.
  • Khot, S. N.; Lascala, J. J.; Can, E.; Morye, S. S.; Williams, G. I.; Palmese, G. R.; Kusefoglu, S. H.; Wool, R. P. “Development and application of triglyceride-based polymers and composites”, J. Appl. Polym. Sci. 2001, 82, 703–723. DOI:10.1002/app.1897.
  • Lapienis, G. “Star-shaped polymers having PEO arms”, Prog. Polym. Sci. 2009, 34, 852–892. DOI:10.1016/j.progpolymsci.2009.04.006.
  • Hizal, G.; Yaḡci, Y.; Schnabel, W. “Charge-transfer complexes of pyridinium ions and methyl- and methoxy-substituted benzenes as photoinitiators for the cationic polymerization of cyclohexene oxide and related compounds”, Polymer (Guildf) 1994, 35, 2428–2431. DOI:10.1016/0032-3861(94)90783-8.
  • McGary, C. W.; Patrick, C. T.; Smith, P. L. “Resins from endo-dicyclopentadiene dioxide”, J. Appl. Polym. Sci. 1963, 7, 1–14. DOI:10.1002/app.1963.070070101.
  • Vidil, T.; Tournilhac, F.; Musso, S.; Robisson, A.; Leibler, L. “Control of reactions and network structures of epoxy thermosets”, Prog. Polym. Sci. 2016, 62, 126–179. DOI:10.1016/j.progpolymsci.2016.06.003.
  • Zhang, D.; Liu, C.; Chen, S.; Zhang, J.; Cheng, J.; Miao, M. “Highly efficient preparation of hyperbranched epoxy resins by UV-initiated thiol-ene click reaction”, Prog. Org. Coatings 2016, 101, 178–185. DOI:10.1016/j.porgcoat.2016.08.010.
  • Saba, N.; Jawaid, M.; Alothman, O. Y.; Paridah, M. T.; Hassan, A. “Recent advances in epoxy resin, natural fiber-reinforced epoxy composites and their applications”, J. Reinf. Plast. Compos. 2016, 35, 447–470. DOI:10.1177/0731684415618459.
  • Baroncini, E. A.; Kumar Yadav, S.; Palmese, G. R.; Stanzione, J. F. “Recent advances in bio-based epoxy resins and bio-based epoxy curing agents”, J. Appl. Polym. Sci. 2016, 133, 44103. DOI:10.1002/app.44103.
  • Xin, J.; Li, M.; Li, R.; Wolcott, M. P.; Zhang, J. “Green epoxy resin system based on lignin and tung oil and its application in epoxy asphalt”, ACS Sustainable Chem. Eng. 2016, 4, 2754–2761. DOI:10.1021/acssuschemeng.6b00256.
  • Auvergne, R.; Caillol, S.; David, G.; Boutevin, B.; Pascault, J. P. “Biobased thermosetting epoxy: present and future”, Chem. Rev. 2014, 114, 1082–1115. DOI:10.1021/cr3001274.
  • Montarnal, D.; Capelot, M.; Tournilhac, F.; Leibler, L. “Silica-like malleable materials from permanent organic networks”, Science 2011, 334, 965–968. DOI:10.1126/science.1212648.
  • Altuna, F. I.; Hoppe, C. E.; Williams, R. J. J. “Shape memory epoxy vitrimers based on DGEBA crosslinked with dicarboxylic acids and their blends with citric acid”, RSC Adv. 2016, 6, 88647–88655. DOI:10.1039/C6RA18010H.
  • Johnston, K.; Pavuluri, S. K.; Leonard, M. T.; Desmulliez, M. P. Y.; Arrighi, V. “Microwave and thermal curing of an epoxy resin for microelectronic applications”, Thermochim. Acta 2015, 616, 100–109. DOI:10.1016/j.tca.2015.08.010.
  • Shi, Q.; Yu, K.; Kuang, X.; Mu, X.; Dunn, C. K.; Dunn, M. L.; Wang, T.; Jerry Qi, H. “Recyclable 3D printing of vitrimer epoxy”, Mater. Horiz. 2017, 4, 598–607. DOI:10.1039/C7MH00043J.
  • Fache, M.; Boutevin, B.; Caillol, S. ‘Vanillin, a key-intermediate of biobased polymers”, Eur. Polym. J. 2015, 68, 488–502. DOI:10.1016/j.eurpolymj.2015.03.050.
  • Nouailhas, H.; Aouf, C.; Le Guerneve, C.; Caillol, S.; Boutevin, B.; Fulcrand, H. “Synthesis and properties of biobased epoxy resins. Part 1. Glycidylation of flavonoids by epichlorohydrin”, J. Polym. Sci. A Polym. Chem. 2011, 49, 2261–2270. DOI:10.1002/pola.24659.
  • Levchik, S.; Piotrowski, A.; Weil, E.; Yao, Q. “New developments in flame retardancy of epoxy resins”, Polym. Degrad. Stab. 2005, 88, 57–62. DOI:10.1016/j.polymdegradstab.2004.02.019.
  • Domun, N.; Hadavinia, H.; Zhang, T.; Sainsbury, T.; Liaghat, G. H.; Vahid, S. “Improving the fracture toughness and the strength of epoxy using nanomaterials – a review of the current status”, Nanoscale 2015, 7, 10294–10329. DOI:10.1039/C5NR01354B.
  • Zha, R.; Chen, M.; Shi, T.; Nadimicherla, R.; Jiang, T.; Zhang, Z.; Zhang, M. “Double dimensionally ordered nanostructures: Toward a multifunctional reinforcing nanohybrid for epoxy resin”, RSC Adv. 2017, 7, 1177–1190. DOI:10.1039/C6RA26365H.
  • Pinto, D.; Bernardo, L.; Amaro, A.; Lopes, S. “Mechanical properties of epoxy nanocomposites using titanium dioxide as reinforcement – a review”, J Nano Res. 2015, 95, 506–524. DOI:10.4028/www.scientific.net/JNanoR.30.9.
  • Liu, S.; Fan, X.; He, C. “Improving the fracture toughness of epoxy with nanosilica-rubber core-shell nanoparticles”, Compos. Sci. Technol. 2016, 125, 132–140. DOI:10.1016/j.compscitech.2016.01.009.
  • Kamar, N. T.; Drzal, L. T. “Micron and nanostructured rubber toughened epoxy: A direct comparison of mechanical, thermomechanical and fracture properties”, Polymer (United Kingdom) 2016, 92, 114–124. DOI:10.1016/j.polymer.2016.03.084.
  • Carolan, D.; Ivankovic, A.; Kinloch, A. J.; Sprenger, S.; Taylor, A. C. “Toughening of epoxy-based hybrid nanocomposites”, Polymer (United Kingdom) 2016, 97, 179–190. DOI:10.1016/j.polymer.2016.05.007.
  • Dong, W.; Liu, H. C.; Park, S. J.; Jin, F. L. “Fracture toughness improvement of epoxy resins with short carbon fibers”, J. Ind. Eng. Chem. 2014, 20, 1220–1222. DOI:10.1016/j.jiec.2013.06.053.
  • Naebe, M.; Wang, J.; Amini, A.; Khayyam, H.; Hameed, N.; Li, L. H.; Chen, Y.; Fox, B. “Mechanical property and structure of covalent functionalised graphene/epoxy nanocomposites”, Sci. Rep. 2014, 4, 1–7. https://doi.org/10.1038/srep04375.
  • Miao, X.; Meng, Y.; Li, X. “A novel all-purpose epoxy-terminated hyperbranched polyether sulphone toughener for an epoxy/amine system”, Polymer (United Kingdom) 2015, 60, 88–95. DOI:10.1016/j.polymer.2015.01.034.
  • Liu, C.; Sun, M.; Zhang, B.; Zhang, X.; Li, J.; Xue, G.; Wang, L.; Zhao, M.; Song, C.; Li, Q.; Jia, J. “Preparation of 4-(4-Hydroxyphenoxy)phenol diglycidyl ether with improved toughness behavior”, J. Appl. Polym. Sci. 2018, 135, 46458. DOI:10.1002/app.46458.
  • Shang, C.; Zhao, X.; Sun, B.; Yang, X.; Zhang, Y.; Huang, W. “Synthesis and properties of novel trifunctional epoxy triglycidyl of 4-(4-Aminophenoxy)phenol with high toughness”, J. Appl. Polym. Sci. 2015, 132, n/a. DOI:10.1002/app.41878.
  • Harada, M.; Sumitomo, K.; Nishimoto, Y.; Ochi, M. “Relationship between fracture toughness and domain size of liquid-crystalline epoxy resins having polydomain structure”, J. Polym. Sci. B Polym. Phys. 2009, 47, 156–165. DOI:10.1002/polb.21626.
  • Li, Y.; Badrinarayanan, P.; Kessler, M. R. “Liquid crystalline epoxy resin based on biphenyl mesogen: Thermal characterization”, Polymer (Guildf) 2013, 54, 3017–3025. DOI:10.1016/j.polymer.2013.03.043.
  • Ruiz-Pérez, L.; Royston, G. J.; Fairclough, J. P. A.; Ryan, A. J. “Toughening by nanostructure”, Polymer (Guildf) 2008, 49, 4475–4488. DOI:10.1016/j.polymer.2008.07.048.
  • He, R.; Zhan, X.; Zhang, Q.; Chen, F. “Improving the toughness of epoxy with a reactive tetrablock copolymer containing maleic anhydride”, J. Appl. Polym. Sci. 2016, 133, n/a. DOI:10.1002/app.42826.
  • He, R.; Zhan, X.; Zhang, Q.; Chen, F. “Toughening of an epoxy thermoset with poly[styrene-alt-(maleic acid)]-block-polystyrene-block-poly(n-butyl acrylate) reactive core–shell particles”, RSC Adv. 2016, 6, 35621–35627. DOI:10.1039/C6RA05048D.
  • He, R.; Zhan, X.; Zhang, Q.; Zhang, G.; Chen, F. “Control of inclusion size and toughness by reactivity of multiblock copolymer in epoxy composites”, Polym. (United Kingdom) 2016, 92, 222–230. DOI:10.1016/j.polymer.2016.04.003.
  • Francis, R.; Baby, D. K. “A reactive polystyrene-block-polyisoprene star copolymer as a toughening agent in an epoxy thermoset”, Colloid Polym. Sci. 2016, 294, 565–574. DOI:10.1007/s00396-015-3810-6.
  • Garate, H.; Goyanes, S.; D’Accorso, N. B. “Controlling nanodomain morphology of epoxy thermosets modified with reactive amine-containing epoxidized poly(styrene-b-isoprene-b-styrene) block copolymer”, Macromolecules 2014, 47, 7416–7423. DOI:10.1021/ma501496x.
  • Garate, H.; Mondragon, I.; Goyanes, S.; D’Accorso, N. B. “Controlled epoxidation of poly(styrene-b-isoprene-b-styrene) block copolymer for the development of nanostructured epoxy thermosets”, J. Polym. Sci. A Polym. Chem. 2011, 49, 4505–4515. DOI:10.1002/pola.24893.
  • Belmonte, A.; Däbritz, F.; Ramis, X.; Serra, A.; Voit, B.; Fernández-Francos, X. “Cure kinetics modeling and thermomechanical properties of cycloaliphatic epoxy-anhydride thermosets modified with hyperstar polymers”, J. Polym. Sci. Part B: Polym. Phys. 2014, 52, 1227–1242. DOI:10.1002/polb.23555.
  • Morell, M.; Lederer, A.; Ramis, X.; Voit, B.; Serra, A. “Multiarm star poly(glycidol)-block-poly (e-caprolactone) of differentarm lengths and their use as modifiers of diglycidylether of bisphenol a thermosets”, J. Polym. Sci. A Polym. Chem. 2011, 49, 2395–2406. DOI:10.1002/pola.24670.
  • Yi, F.; Yu, R.; Zheng, S.; Li, X. “Nanostructured thermosets from epoxy and poly(2,2,2-trifluoroethyl acrylate)-block-poly(glycidyl methacrylate) diblock copolymer: demixing of reactive blocks and thermomechanical properties”, Polymer (Guildf) 2011, 52, 5669–5680. DOI:10.1016/j.polymer.2011.09.055.
  • Hameed, N.; Guo, Q.; Xu, Z.; Hanley, T. L.; Mai, Y.-W. “Reactive block copolymer modified thermosets: Highly ordered nanostructures and improved properties”, Soft Matter 2010, 6, 6119–6129. DOI:10.1039/c0sm00480d.
  • Xu, Z.; Hameed, N.; Guo, Q.; Mai, Y. W. “Nanostructures and thermomechanical properties of epoxy thermosets containing reactive diblock copolymer”, J. Appl. Polym. Sci. 2010, 115, 2110–2118. DOI:10.1002/app.31284.
  • Guo, Q.; Liu, J.; Chen, L.; Wang, K. “Nanostructures and nanoporosity in thermoset epoxy blends with an amphiphilic polyisoprene-block-poly(4-Vinyl Pyridine) reactive diblock copolymer”, Polymer (Guildf) 2008, 49, 1737–1742. DOI:10.1016/j.polymer.2008.02.033.
  • Kaur, N. “Perspectives of ionic liquids applications for the synthesis of five- and six-membered O,N-heterocycles”, Synth. Commun. 2018, 48, 473–495. DOI:10.1080/00397911.2017.1406521.
  • Prado, R.; Weber, C. C. Applications of Ionic Liquids, In Application, Purification, and Recovery of Ionic Liquids; Elsevier Inc: Amsterdam, Netherlands, 2016.; pp 1–58. https://doi.org/10.1016/B978-0-444-63713-0.00001-8.
  • Chen, S.; Zhang, J.; Zhou, J.; Zhang, D.; Zhang, A. “Dramatic toughness enhancement of benzoxazine/epoxy thermosets with a novel hyperbranched polymeric ionic liquid”, Chem. Eng. J. 2018, 334, 1371–1382. DOI:10.1016/j.cej.2017.11.104.
  • Nguyen, T. K. L.; Livi, S.; Soares, B. G.; Barra, G. M. O.; Gérard, J. F.; Duchet-Rumeau, J.; Lyon, U.; De Lyon, F.; Lyon, I.; Villeurbanne, F. “Development of sustainable thermosets from cardanol-based epoxy prepolymer and ionic liquids”, ACS Sustain. Chem. Eng. 2017, 5, 8429–8438. DOI:10.1021/acssuschemeng.7b02292.
  • Nguyen, T. K. L.; Livi, S.; Soares, B. G.; Pruvost, S.; Duchet-Rumeau, J.; Gérard, J. F. “Ionic liquids: A new route for the design of epoxy networks”, ACS Sustain. Chem. Eng. 2016, 4, 481–490. DOI:10.1021/acssuschemeng.5b00953.
  • Leclère, M.; Livi, S.; Maréchal, M.; Picard, L.; Duchet-Rumeau, J. “The properties of new epoxy networks swollen with ionic liquids”, RSC Adv. 2016, 6, 56193–56204. DOI:10.1039/C6RA08824D.
  • Nguyen, T. K. L.; Soares, B. G.; Duchet-Rumeau, J.; Livi, S. “Dual functions of ILs in the core-shell particle reinforced epoxy networks: Curing agent vs dispersion aids”, Compos. Sci. Technol. 2017, 140, 30–38. DOI:10.1016/j.compscitech.2016.12.021.
  • Yang, H.; Yu, K.; Mu, X.; Shi, X.; Wei, Y.; Guo, Y.; Qi, H. J. “A molecular dynamics study of bond exchange reactions in covalent adaptable networks”, Soft Matter 2015, 11, 6305–6317. DOI:10.1039/C5SM00942A.
  • Snijkers, F.; Pasquino, R.; Maffezzoli, A. “Curing and viscoelasticity of vitrimers”, Soft Matter 2017, 13, 258–268. DOI:10.1039/C6SM00707D.
  • Snyder, R. L.; Fortman, D. J.; De Hoe, G. X.; Hillmyer, M. A.; Dichtel, W. R. “Reprocessable acid-degradable polycarbonate vitrimers”, Macromolecules 2018, 51, 389–397. DOI:10.1021/acs.macromol.7b02299.
  • Yang, Y.; Zhang, X. Q.; Wei, Y.; Ji, Y. “A liquid crystalline vitrimer with better actuation repeatability”, Acta Polym. Sin 2017, 2017, 1662–1667. https://doi.org/10.11777/j.issn1000-3304.2017.17134.
  • Chen, Q.; Yu, X.; Pei, Z.; Yang, Y.; Wei, Y.; Ji, Y. “Multi-stimuli responsive and multi-functional oligoaniline-modified vitrimers”, Chem. Sci. 2017, 8, 724–733. DOI:10.1039/C6SC02855A.
  • Denissen, W.; Rivero, G.; Nicolaÿ, R.; Leibler, L.; Winne, J. M.; Du Prez, F. E. “Vinylogous urethane vitrimers”, Adv. Funct. Mater. 2015, 25, 2451–2457. DOI:10.1002/adfm.201404553.
  • Hameed, N.; Dumée, L. F.; Allioux, F. M.; Reghat, M.; Church, J. S.; Naebe, M.; Magniez, K.; Parameswaranpillai, J.; Fox, B. L. “Graphene based room temperature flexible nanocomposites from permanently cross-linked networks”, Sci. Rep. 2018, 8, 4–11. https://doi.org/10.1038/s41598-018-21114-5.
  • Hameed, N.; Salim, N. V. V.; Walsh, T. R. R.; Wiggins, J. S. S.; Ajayan, P. M. M.; Fox, B. L. L. “Ductile thermoset polymers via controlling network flexibility”, Chem. Commun. 2015, 51, 9903–9906. DOI:10.1039/C4CC10192H.
  • Hameed, N.; Bavishi, J.; Parameswaranpillai, J.; Salim, N. V.; Joseph, J.; Madras, G.; Fox, B. L. “Thermally flexible epoxy/cellulose blends mediated by an ionic liquid”, RSC Adv. 2015, 5, 52832–52836. DOI:10.1039/C5RA05900C.
  • Soares, B. G.; Alves, F. F. “Nanostructured epoxy-rubber network modified with mwcnt and ionic liquid: Electrical, dynamic-mechanical, and adhesion properties”, Polym. Compos. 2018, 39, E2584–E2594. DOI:10.1002/pc.24852.
  • Saurín, N.; Sanes, J.; Bermúdez, M. D. “Self-healing of abrasion damage in epoxy resin–ionic liquid nanocomposites”, Tribol. Lett. 2015, 58, 4. https://doi.org/10.1007/s11249-015-0490-9.
  • Soares, B. G.; Silva, A. A.; Pereira, J.; Livi, S. “Preparation of epoxy/jeffamine networks modified with phosphonium based ionic liquids”, Macromol. Mater. Eng. 2015, 300, 312–319. DOI:10.1002/mame.201400293.
  • Zhang, S.; Yang, P.; Bai, Y.; Zhou, T.; Zhu, R.; Gu, Y. “Polybenzoxazines: Thermal responsiveness of hydrogen bonds and application as latent curing agents for thermosetting resins”, ACS Omega 2017, 2, 1529–1534. DOI:10.1021/acsomega.7b00075.
  • Kudo, K.; Furutani, M.; Arimitsu, K. “Imidazole derivatives with an intramolecular hydrogen bond as thermal latent curing agents for thermosetting resins”, ACS Macro Lett. 2015, 4, 1085–1088. DOI:10.1021/acsmacrolett.5b00601.
  • Konuray, A. O.; Fernández-Francos, X.; Ramis, X. “Latent curing of epoxy-thiol thermosets”, Polym. (United Kingdom) 2017, 116, 191–203. https://doi.org/10.1016/j.polymer.2017.03.064.
  • Nikafshar, S.; Zabihi, O.; Hamidi, S.; Moradi, Y.; Barzegar, S.; Ahmadi, M.; Naebe, M. “A renewable bio-based epoxy resin with improved mechanical performance that can compete with DGEBA”, RSC Adv. 2017, 7, 8694–8701. DOI:10.1039/C6RA27283E.
  • Silva, A. A.; Livi, S.; Netto, D. B.; Soares, B. G.; Duchet, J.; Gérard, J.-F. “New epoxy systems based on ionic liquid”, Polymer (Guildf) 2013, 54, 2123–2129. DOI:10.1016/j.polymer.2013.02.021.
  • Throckmorton, J. A.; Watters, A. L.; Geng, X.; Palmese, G. R. “Room temperature ionic liquids for epoxy nanocomposite synthesis: Direct dispersion and cure”, Compos. Sci. Technol. 2013, 86, 38–44. DOI:10.1016/j.compscitech.2013.06.016.
  • Maka, H.; Spychaj, T.; Pilawka, R. “Epoxy resin/phosphonium ionic liquid/carbon nanofiller systems: Chemorheology and properties”, Express Polym. Lett. 2014, 8, 723–732. DOI:10.3144/expresspolymlett.2014.75.
  • Xu, Y.; Le, Dayo, A. Q.; Wang, J.; Wang, A.; Ran, Lv, D.; Zegaoui, A.; Derradji, M.; Liu, W. b. “Mechanical and thermal properties of a room temperature curing epoxy resin and related hemp fibers reinforced composites using a novel in-situ generated curing agent”, Mater. Chem. Phys. 2018, 203, 293–301. DOI:10.1016/j.matchemphys.2017.10.004.
  • Odom, M. G. B.; Sweeney, C. B.; Parviz, D.; Sill, L. P.; Saed, M. A.; Green, M. J. “Rapid curing and additive manufacturing of thermoset systems using scanning microwave heating of carbon nanotube/epoxy composites”, Carbon N. Y. 2017, 120, 447–453. DOI:10.1016/j.carbon.2017.05.063.
  • Yang, Y.; Pei, Z.; Zhang, X.; Tao, L.; Wei, Y.; Ji, Y. “Correction: Carbon nanotube–vitrimer composite for facile and efficient photo-welding of epoxy”, Chem. Sci. 2017, 8, 2464–2464. DOI:10.1039/C6SC90083F.
  • Griffini, G.; Invernizzi, M.; Levi, M.; Natale, G.; Postiglione, G.; Turri, S. “3D-printable CFR polymer composites with dual-cure sequential IPNs”, Polymer (United Kingdom) 2016, 91, 174–179. DOI:10.1016/j.polymer.2016.03.048.
  • Joosten, M. W.; Agius, S.; Hilditch, T.; Wang, C. “Effect of residual stress on the matrix fatigue cracking of rapidly cured epoxy/anhydride composites”, Compos. Part A Appl. Sci. Manuf. 2017, 101, 521–528. DOI:10.1016/j.compositesa.2017.07.007.
  • Wang, Y.; Liu, W.; Qiu, Y.; Wei, Y. “A one-component, fast-cure, and economical epoxy resin system suitable for liquid molding of automotive composite parts”, Materials (Basel) 2018, 11, 685. DOI:10.3390/ma11050685.
  • Lakho, D. A.; Yao, D.; Cho, K.; Ishaq, M.; Wang, Y. “Study of the curing kinetics toward development of fast-curing epoxy resins”, Polym. – Plast. Technol. Eng. 2017, 56, 161–170. DOI:10.1080/03602559.2016.1185623.
  • Pramanik, M.; Fowler, E. W.; Rawlins, J. W. “Cure kinetics of several epoxy – amine systems at ambient and high temperatures”, J. Coat. Technol. Res. 2014, 11, 143–157. DOI:10.1007/s11998-013-9565-4.
  • Xu, J.; Yang, J.; Liu, X.; Wang, H.; Zhang, J.; Fu, S. “Preparation and characterization of fast-curing powder epoxy adhesive at middle temperature”, R Soc. Open Sci. 2018, 5, 180566. DOI:10.1098/rsos.180566.
  • Liu, X.; Luo, J.; Fan, J.; Lin, S.; Jia, L.; Jia, X.; Cai, Q.; Yang, X. “Comprehensive enhancement in overall properties of MWCNTs-COOH/epoxy composites by microwave: An efficient approach to strengthen interfacial bonding via localized superheating effect”, Compos. Part B Eng. 2019, 174, 106909. DOI:10.1016/j.compositesb.2019.106909.
  • Zhang, L.; Li, Y.; Zhou, J. “Anisotropic dielectric properties of carbon fiber reinforced polymer composites during microwave curing”, Appl. Compos. Mater. 2018, 25, 1339–1356. DOI:10.1007/s10443-017-9669-6.
  • Martin, B.; Puentes, J.; Wruck, L.; Osswald, T. A. “Degree of cure of epoxy/acrylic photopolymers: Characterization with raman spectroscopy and a modified phenomenological model”, Polym. Eng. Sci. 2018, 58, 228–237. DOI:10.1002/pen.24550.
  • Yu, K.; Shi, Q.; Li, H.; Jabour, J.; Yang, H.; Dunn, M. L.; Wang, T.; Qi, H. J. “Interfacial welding of dynamic covalent network polymers”, J. Mech. Phys. Solids 2016, 94, 1–17. DOI:10.1016/j.jmps.2016.03.009.
  • He, X.; Hanzon, D. W.; Yu, K. “Cyclic welding behavior of covalent adaptable network polymers”, J. Polym. Sci. Part B: Polym. Phys. 2018, 56, 402–413. DOI:10.1002/polb.24553.
  • Ma, S.; Webster, D. C. “Degradable thermosets based on labile bonds or linkages: A review”, Prog. Polym. Sci. 2018, 76, 65–110. DOI:10.1016/j.progpolymsci.2017.07.008.
  • Zou, W.; Dong, J.; Luo, Y.; Zhao, Q.; Xie, T. “Dynamic covalent polymer networks: From old chemistry to modern day innovations”, Adv. Mater. 2017, 29, 1606100. DOI:10.1002/adma.201606100.
  • Scheiner, M.; Dickens, T. J.; Okoli, O. “Progress towards self-healing polymers for composite structural applications”, Polym. (United Kingdom) 2016, 83, 260–282. DOI:10.1016/j.polymer.2015.11.008.
  • Urdl, K.; Kandelbauer, A.; Kern, W.; Müller, U.; Thebault, M.; Zikulnig-Rusch, E. “Self-healing of densely crosslinked thermoset polymers – a critical review”, Prog. Org. Coatings 2017, 104, 232–249. DOI:10.1016/j.porgcoat.2016.11.010.
  • Altuna, F.; Hoppe, C.; Williams, R. “Epoxy vitrimers: The effect of transesterification reactions on the network structure”, Polymers (Basel) 2018, 10, 43. DOI:10.3390/polym10010043.
  • Zhang, H.; Xu, X. “Improving the transesterification and electrical conductivity of vitrimers by doping with conductive polymer wrapped carbon nanotubes”, Compos. Part A Appl. Sci. Manuf. 2017, 99, 15–22. DOI:10.1016/j.compositesa.2017.03.037.
  • Liu, T.; Hao, C.; Wang, L.; Li, Y.; Liu, W.; Xin, J.; Zhang, J. “Eugenol-derived biobased epoxy: Shape memory, repairing, and recyclability”, Macromolecules 2017, 50, 8588–8597. DOI:10.1021/acs.macromol.7b01889.
  • Ma, S.; Webster, D. C. “Naturally occurring acids as cross-linkers to yield voc-free, high-performance, fully bio-based, degradable thermosets”, Macromolecules 2015, 48, 7127–7137. DOI:10.1021/acs.macromol.5b01923.
  • Ruiz de Luzuriaga, A.; Martin, R.; Markaide, N.; Rekondo, A.; Cabañero, G.; Rodríguez, J.; Odriozola, I. “Epoxy resin with exchangeable disulfide crosslinks to obtain reprocessable, repairable and recyclable fiber-reinforced thermoset composites”, Mater. Horiz. 2016, 3, 241–247. DOI:10.1039/C6MH00029K.
  • Takahashi, A.; Ohishi, T.; Goseki, R.; Otsuka, H. “Degradable epoxy resins prepared from diepoxide monomer with dynamic covalent disulfide linkage”, Polymer (Guildf) 2016, 82, 319–326. DOI:10.1016/j.polymer.2015.11.057.
  • Post, W.; Cohades, A.; Michaud, V.; van der Zwaag, S.; Garcia, S. J. “Healing of a glass fibre reinforced composite with a disulphide containing organic-inorganic epoxy matrix”, Compos. Sci. Technol. 2017, 152, 85–93. DOI:10.1016/j.compscitech.2017.09.017.
  • Avilés, M. D.; Saurín, N.; Espinosa, T.; Sanes, J.; Arias-Pardilla, J.; Carrión, F. J.; Bermúdez, M. D. “Self-lubricating, wear resistant protic ionic liquid-epoxy resin”, Express Polym. Lett. 2017, 11, 219–229. DOI:10.3144/expresspolymlett.2017.23.
  • Liu, Y.-L.; Chuo, T.-W. “Self-healing polymers based on thermally reversible Diels–Alder chemistry”, Polym. Chem. 2013, 4, 2194–2205. DOI:10.1039/c2py20957h.
  • Dello Iacono, S.; Martone, A.; Pastore, A.; Filippone, G.; Acierno, D.; Zarrelli, M.; Giordano, M.; Amendola, E. “Thermally activated multiple self-healing Diels-Alder epoxy system”, Polym. Eng. Sci. 2017, 57, 674–679. DOI:10.1002/pen.24570.
  • Huang, Z.; Wang, Y.; Zhu, J.; Yu, J.; Hu, Z. “Surface engineering of nanosilica for vitrimer composites”, Compos. Sci. Technol. 2018, 154, 18–27. DOI:10.1016/j.compscitech.2017.11.006.
  • Cohades, A.; Hostettler, N.; Pauchard, M.; Plummer, C. J. G.; Michaud, V. “Stitched shape memory alloy wires enhance damage recovery in self-healing fibre-reinforced polymer composites”, Compos. Sci. Technol. 2018, 161, 22–31. DOI:10.1016/j.compscitech.2018.03.040.
  • Karger-Kocsis, J.; Kéki, S. “Review of progress in shape memory epoxies and their composites”, Polymers (Basel) 2017, 10, 34–38. DOI:10.3390/polym10010034.
  • Ng, F.; Couture, G.; Philippe, C.; Boutevin, B.; Caillol, S. “Bio-based aromatic epoxy monomers for thermoset materials” Molecules 2017, 22, 149. DOI:10.3390/molecules22010149.
  • Hu, F.; La Scala, J. J.; Sadler, J. M.; Palmese, G. R. “Synthesis and characterization of thermosetting furan-based epoxy systems”, Macromolecules 2014, 47, 3332–3342. DOI:10.1021/ma500687t.
  • Moazzen, K.; Zohuriaan-Mehr, M. J.; Jahanmardi, R.; Kabiri, K. “Toward poly(furfuryl alcohol) applications diversification: novel self-healing network and toughening epoxy–Novolac Resin”, J. Appl. Polym. Sci. 2018, 135, 45921–45911. DOI:10.1002/app.45921.
  • Byun, K.-S.; Choi, W. J.; Lee, H.-Y.; Sim, M.-J.; Cha, S.-H.; Lee, J.-C. “The effect of electron density in furan pendant group on thermal-reversible Diels–Alder reaction based self-healing properties of polymethacrylate derivatives”, RSC Adv. 2018, 8, 39432–39443. DOI:10.1039/C8RA07268J.
  • Yu, K.; Taynton, P.; Zhang, W.; Dunn, M. L.; Qi, H. J. “Influence of stoichiometry on the glass transition and bond exchange reactions in epoxy thermoset polymers”, RSC Adv. 2014, 4, 48682–48690. DOI:10.1039/C4RA06543C.
  • Ying, W.; Bin, Yang, H. S.; Moon, D. S.; Lee, M. W.; Ko, N. Y.; Kwak, N. H.; Lee, B.; Zhu, J.; Zhang, R. “Epoxy resins toughened with in situ Azide-Alkyne polymerized polysulfones”, J. Appl. Polym. Sci. 2018, 135, 45790. DOI:10.1002/app.45790.
  • Wan, J.; Zhao, J.; Gan, B.; Li, C.; Molina-Aldareguia, J.; Zhao, Y.; Pan, Y. T.; Wang, D. Y. “Ultrastiff biobased epoxy resin with high Tg and low permittivity: From synthesis to properties”, ACS Sustainable Chem. Eng. 2016, 4, 2869–2880. DOI:10.1021/acssuschemeng.6b00479.
  • Mo, H.; Huang, X.; Liu, F.; Yang, K.; Li, S.; Jiang, P. “Nanostructured electrical insulating epoxy thermosets with high thermal conductivity, high thermal stability, high glass transition temperatures and excellent dielectric properties”, IEEE Trans. Dielect. Electr. Insul. 2015, 22, 906–915. DOI:10.1109/TDEI.2015.7076791.
  • Isarn, I.; Gamardella, F.; Massagués, L.; Fernàndez-Francos, X.; Serra, A.; Ferrando, F. “New epoxy composite thermosets with enhanced thermal conductivity and high Tg obtained by cationic homopolymerization”, Polym. Compos. 2018, 39, E1760–E1769. DOI:10.1002/pc.24774.
  • Tang, Y.; Zhao, F.; Fei, X.; Wei, W.; Li, X.; Luo, J.; Zhu, Y.; Liu, X. “Noncovalent functionalization of carbon nanotubes using branched random copolymer for improvement of thermal conductivity and mechanical properties of epoxy thermosets”, Polym. Int. 2018, 67, 1128–1136. DOI:10.1002/pi.5622.
  • Li, S.; Yu, X.; Bao, H.; Yang, N. “High thermal conductivity of bulk epoxy resin by bottom- up parallel-linking and strain: A molecular dynamics study”, J. Phys. Chem. C 2018, 122, 13140–13147. DOI:10.1021/acs.jpcc.8b02001.
  • Xu, J.; Liu, B.; Wang, X.; Hu, D. “Computational model of 18650 lithium-ion battery with coupled strain rate and SOC dependencies”, Appl. Energy 2016, 172, 180–189. DOI:10.1016/j.apenergy.2016.03.108.
  • Wang, Q.; Ping, P.; Zhao, X.; Chu, G.; Sun, J.; Chen, C. “Thermal runaway caused fire and explosion of lithium ion battery”, J. Power Sources 2012, 208, 210–224. DOI:10.1016/j.jpowsour.2012.02.038.
  • Golubkov, A. W.; Planteu, R.; Krohn, P.; Rasch, B.; Brunnsteiner, B.; Thaler, A.; Hacker, V. “Thermal runaway of large automotive Li-ion batteries”, RSC Adv. 2018, 8, 40172–40186. DOI:10.1039/C8RA06458J.
  • Radue, M. S.; Varshney, V.; Baur, J. W.; Roy, A. K.; Odegard, G. M. “Molecular modeling of cross-linked polymers with complex cure pathways: A case study of bismaleimide resins”, Macromolecules 2018, 51, 1830–1840. DOI:10.1021/acs.macromol.7b01979.
  • Raquez, J. M.; Deléglise, M.; Lacrampe, M. F.; Krawczak, P. “Thermosetting (Bio)materials derived from renewable resources: A critical review”, Prog. Polym. Sci. 2010, 35, 487–509. DOI:10.1016/j.progpolymsci.2010.01.001.
  • Ghosh, N. N.; Kiskan, B.; Yagci, Y. “Polybenzoxazines-new high performance thermosetting resins: Synthesis and properties”, Prog. Polym. Sci. 2007, 32, 1344–1391. DOI:10.1016/j.progpolymsci.2007.07.002.
  • García, J. M.; Jones, G. O.; Virwani, K.; Mccloskey, B. D.; Boday, D. J.; Huurne, G. M.; Horn, H. W.; Coady, D. J.; Bintaleb, A. M.; Alabdulrahman, A. M. S. “Recyclable, strong thermosets and organogels via paraformaldehyde condensation with diamines”, Science 2014, 344, 732–735. DOI:10.1126/science.1251484.
  • El-Mahdy, A. F. M.; Kuo, S.-W. “Direct synthesis of poly(benzoxazine imide) from an ortho -benzoxazine: Its thermal conversion to highly cross-linked polybenzoxazole and blending with poly(4-Vinylphenol). Polym. Chem. 2018, 9, 1815–1826. DOI:10.1039/C8PY00087E.
  • Li, Y.; Ji, J.; Wang, Y.; Li, R.; Zhong, W. H. “Soy protein-treated nanofillers creating adaptive interfaces in nanocomposites with effectively improved conductivity”, J. Mater. Sci. 2018, 53, 8653–8665. DOI:10.1007/s10853-018-2121-y.
  • Castellino, M.; Chiolerio, A.; Shahzad, M. I.; Jagdale, P. V.; Tagliaferro, A. “Electrical conductivity phenomena in an epoxy resin-carbon-based materials composite”, Compos. Part A Appl. Sci. Manuf. 2014, 61, 108–114. DOI:10.1016/j.compositesa.2014.02.012.
  • Gojny, F. H.; Wichmann, M. H. G.; Fiedler, B.; Kinloch, I. A.; Bauhofer, W.; Windle, A. H.; Schulte, K. “Evaluation and identification of electrical and thermal conduction mechanisms in carbon nanotube/epoxy composites”, Polymer (Guildf) 2006, 47, 2036–2045. DOI:10.1016/j.polymer.2006.01.029.
  • Gu, H.; Ma, C.; Gu, J.; Guo, J.; Yan, X.; Huang, J.; Zhang, Q.; Guo, Z. “An overview of multifunctional epoxy nanocomposites”, J. Mater. Chem. C 2016, 4, 5890–5906. DOI:10.1039/C6TC01210H.
  • Mamunya, Y. P.; Davydenko, V. V.; Pissis, P.; Lebedev, E. V. “Electrical and thermal conductivity of polymers filled with metal powders”, Eur. Polym. J. 2002, 38, 1887–1897. DOI:10.1016/S0014-3057(02)00064-2.
  • Zhang, X.; Sun, H.; Yang, C.; Zhang, K.; Yuen, M. M. F. F.; Yang, S. “Highly conductive polymer composites from room-temperature ionic liquid cured epoxy resin: Effect of interphase layer on percolation conductance”, RSC Adv. 2013, 3, 1916–1921. DOI:10.1039/C2RA23027E.
  • Stauffer, D.; Aharony, A. Introduction to Percolation Theory, 2nd ed.; Taylor & Francis: London, 1992.
  • Mutiso, R. M.; Winey, K. I. “Electrical properties of polymer nanocomposites containing rod-like nanofillers”, Prog. Polym. Sci. 2015, 40, 63–84. DOI:10.1016/j.progpolymsci.2014.06.002.
  • Maksym, P.; Tarnacka, M.; Dzienia, A.; Matuszek, K.; Chrobok, A.; Kaminski, K.; Paluch, M. “Enhanced polymerization rate and conductivity of ionic liquid-based epoxy resin”, Macromolecules 2017, 50, 3262–3272. DOI:10.1021/acs.macromol.6b02749.
  • Goh, P. S.; Ismail, A. F.; Ng, B. C. “Directional alignment of carbon nanotubes in polymer matrices: contemporary approaches and future advances”, Compos. Part A Appl. Sci. Manuf. 2014, 56, 103–126. DOI:10.1016/j.compositesa.2013.10.001.
  • Ladani, R. B.; Wu, S.; Kinloch, A. J.; Ghorbani, K.; Zhang, J.; Mouritz, A. P.; Wang, C. H. “Multifunctional properties of epoxy nanocomposites reinforced by aligned nanoscale carbon”, Mater. Des. 2016, 94, 554–564. DOI:10.1016/j.matdes.2016.01.052.
  • Khan, S. U.; Pothnis, J. R.; Kim, J. K. “Effects of carbon nanotube alignment on electrical and mechanical properties of epoxy nanocomposites”, Compos. Part A Appl. Sci. Manuf. 2013, 49, 26–34. DOI:10.1016/j.compositesa.2013.01.015.
  • Joo, Y.; Agarkar, V.; Sung, S. H.; Savoie, B. M.; Boudouris, B. W. “A nonconjugated radical polymer glass with high electrical conductivity”, Science 2018, 359, 1391–1395. DOI:10.1126/science.aao7287.
  • Hussain, I.; Capricho, J.; Yawer, M. A. “Synthesis of Biaryls via ligand-free Suzuki Miyaura cross-coupling reactions: A review of homogeneous and heterogeneous catalytic developments”, Adv. Synth. Catal. 2016, 358, 3320–3349. DOI:10.1002/adsc.201600354.
  • Li, N.; Huang, Y.; Du, F.; He, X.; Lin, X.; Gao, H.; Ma, Y.; Li, F.; Chen, Y.; Eklund, P. C. “Electromagnetic interference (EMI) shielding of single-walled carbon nanotube epoxy composites”, Nano Lett. 2006, 6, 1141–1145. DOI:10.1021/nl0602589.
  • Thostenson, E. T.; Chou, T. W. “Carbon nanotube networks: sensing of distributed strain and damage for life prediction and self healing”, Adv. Mater. 2006, 18, 2837–2841. DOI:10.1002/adma.200600977.
  • SiqiLiMi, C. C. “Wireless power transfer for electric vehicle applications”, IEEE J. Emerg. Sel. Top. Power Electron. 2015, 3, 4–17. https://doi.org/10.1109/JESTPE.2014.2319453.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.