1,397
Views
55
CrossRef citations to date
0
Altmetric
Reviews

Nonlinear Mechanical Response of Polymer Matrix Composites: A Review

, &
Pages 42-85 | Received 10 May 2019, Accepted 25 Jul 2019, Published online: 11 Sep 2019

References

  • Chow, C. L.; Yang, F. “A simple model for brittle composite lamina with damage”, J. Reinf. Plast. Compos. 1992, 11, 222–242. DOI:10.1177/073168449201100301.
  • Salavatian, M.; Smith, L. V. “The effect of transverse damage on the shear response of fiber reinforced laminates”, Compos. Sci. Technol. 2014, 95, 44–49. DOI:10.1016/j.compscitech.2014.02.012.
  • Singh, C. V.; Talreja, R. “Analysis of multiple off-axis ply cracks in composite laminates”, Int. J. Solids Struct. 2008, 45, 4574–4589. DOI:10.1016/j.ijsolstr.2008.04.004.
  • Talreja, R. “Damage analysis for structural integrity and durability of composite materials”, Fat. Fract. Eng. Mater. Struct. 2006, 29, 481–506. DOI:10.1111/j.1460-2695.2006.00974.x.
  • Cuntze, R. G. “The predictive capability of failure mode concept-based strength criteria for multi-directional laminates—Part b”, Compos. Sci. Technol. 2004, 64, 487–516. DOI:10.1016/S0266-3538(03)00225-2.
  • Camanho, P. P.; Dávila, C. G.; Pinho, S. T.; Iannucci, L.; Robinson, P. “Prediction of in situ strengths and matrix cracking in composites under transverse tension and in-plane shear”, Compos. A 2006, 37, 165–176. DOI:10.1016/j.compositesa.2005.04.023.
  • Sebaey, T. A.; Costa, J.; Maimi, P.; Batista, Y.; Blanco, N.; Mayugo.; J, A. “Measurement of the in situ transverse tensile strength of composite plies by means of the real time monitoring of microcracking”, Compos. B 2014, 65, 40–46. DOI:10.1016/j.compositesb.2014.02.001.
  • Groves, S. E.; Harris, C. E.; Highsmith, A. L.; Allen, D. H.; Norvell, R. G. “An experimental and analytical treatment of matrix cracking in cross-ply laminates”, Exp. Mech. 1987, 27, 73–79. DOI:10.1007/BF02318867.
  • Flaggs, D. L.; Kural, M. H. “Experimental determination of the in situ transverse lamina strength in graphite/epoxy laminates”, J. Compos. Mater. 1982, 16, 103–116. DOI:10.1177/002199838201600203.
  • Giannadakis, K.; Varna, J. “Analysis of nonlinear shear stress–strain response of unidirectional GF/EP composite”, Compos. A 2014, 62, 67–76. DOI:10.1016/j.compositesa.2014.03.009.
  • Sun, C. T.; Zhu, C. “The effect of deformation-induced change of fiber orientation on the non-linear behavior of polymeric composite laminates”, Compos. Sci. Technol. 2000, 60, 2337–2345. DOI:10.1016/S0266-3538(00)00029-4.
  • Fuller, J. D.; Wisnom, M. R. “Pseudo-ductility and damage suppression in thin ply CFRP angle-ply laminates”, Compos. A 2015, 69, 64–71. DOI:10.1016/j.compositesa.2014.11.004.
  • Cui, H.; Thomson, D.; Pellegrino, A.; Wiegand, J.; Petrinic, N. “Effect of strain rate and fibre rotation on the in-plane shear response of laminates in tension and compression tests”, Compos. Sci. Technol. 2016, 135, 106–115. DOI:10.1016/j.compscitech.2016.09.016.
  • Mandel, U.; Taubert, R.; Hinterhölzl, R. “Mechanism based nonlinear constitutive model for composite laminates subjected to large deformations”, Compos. Struct. 2015, 132, 98–108. DOI:10.1016/j.compstruct.2015.04.029.
  • Lafarie-Frenot, M. C.; Touchard, F. “Comparative in-plane shear behaviour of long-carbon-fibre composites with thermoset or thermoplastic matrix”, Compos. Sci. Technol. 1994, 52, 417–425. DOI:10.1016/0266-3538(94)90176-7.
  • Mandel, U.; Taubert, R.; Hinterhölzl, R. “Three-dimensional nonlinear constitutive model for composites”, Compos. Struct. 2016, 142, 78–86. DOI:10.1016/j.compstruct.2016.01.080.
  • Wisnom, M. R. “The effect of fibre rotation in ±45° tension tests on measured shear properties”, Composites 1995, 26, 25–32.
  • Sket, F.; Enfedaque, A.; Alton, C.; González, C.; Molina-Aldareguia, J. M.; Llorca, J. “Automatic quantification of matrix cracking and fiber rotation by X-ray computed tomography in shear-deformed carbon fiber-reinforced laminates”, Compos. Sci. Technol. 2014, 90, 129–138. DOI:10.1016/j.compscitech.2013.10.022.
  • Mauget, B. R.; Minnetyan, L.; Chamis, C. C. “Large deformation nonlinear response of soft composite structures via laminate analogy”, Journal of Advanced Materials; 2001, 34, 21–26. https://www.tib.eu/en/search/id/BLSE%3ARN093729341/Large-Deformation-Nonlinear-Response-of-Soft-Composite/?tx_tibsearch_search%5Bsearchspace%5D=tn
  • Herakovich, C. T.; Schroedter, R. D.; Gasser, A.; Guitard, L. “Damage evolution in [±45°]s laminates with fiber rotation”, Compos. Sci. Technol. 2000, 60, 2781–2789. DOI:10.1016/S0266-3538(00)00091-9.
  • Tao, J. X.; Sun, C. T. “Effect of matrix cracking on stiffness of composite laminates”, Mech. Mech. Adv. Mater. Struct. 1996, 3, 225–239. DOI:10.1080/10759419608945865.
  • Schuecker, C.; Pettermann, H. E. “Combining elastic brittle damage with plasticity to model the non-linear behavior of fiber reinforced laminates”, In Mechanical Response of Composites; Springer: Berlin, Germany, 2008; pp 99–117.
  • Jadhav. Micro-Mechanical Analysis of Nonlinear Response of Unidirectional Composites; Washington University: St. Louis, 2000.
  • Varna, J.; Joffe, R.; Akshantala, N. V.; Talreja, R. “Damage in composite laminates with off-axis plies”, Compos. Sci. Technol. 1999, 59, 2139–2147. DOI:10.1016/S0266-3538(99)00070-6.
  • Pettersson, K. The Inclined Double Notch Shear Test for Determination of Interlaminar Shear Properties of Composite Laminates; KTH Royal Institute of Technology: Stockholm, Sweden, 2005.
  • Lagattu, F.; Lafarie-Frenot, M. C. “Variation of PEEK matrix crystallinity in APC-2 composite subjected to large shearing deformations”, Compos. Sci. Technol. 2000, 60, 605–612. DOI:10.1016/S0266-3538(99)00169-4.
  • Gilat, A.; Goldberg, R. K.; Roberts, G. D. “Strain rate sensitivity of epoxy resin in tensile and shear loading”, J. Aerosp. Eng. 2007, 20, 75–89. DOI:10.1061/(ASCE)0893-1321(2007)20:2(75).
  • Vogler, T. J.; Kyriakides, S. “Inelastic behavior of an AS4/PEEK composite under combined transverse compression and shear, Part I : Experiments”, Int. J. Plastic. 1999, 15, 807–836.
  • Van Paepegem, W.; De Baere, I.; Degrieck, J. “Modelling the nonlinear shear stress–strain response of glass fibre-reinforced composites. Part I: Experimental results”, Compos. Sci. Technol. 2006, 66, 1455–1464. DOI:10.1016/j.compscitech.2005.04.014.
  • Lou, Y. C.; Schapery, R. A. “Viscoelastic characterization of a nonlinear fiber-reinforced plastic”, J. Compos. Mater. 1971, 5, 208–234. DOI:10.1177/002199837100500206.
  • ASTM D3518/D3518m-18. Standard Test Method for In-Plane Shear Response of Polymer Matrix Composite Materials by Tensile Test of a ±45° Laminate; ASTM International: West Conshohocken, PA, 2018.
  • Totry, E.; González, C.; LLorca, J.; Molina-Aldareguía, J. M. “Mechanisms of shear deformation in fiber-reinforced polymers: experiments and simulations”, Int. J. Fract. 2009, 158, 197–209. DOI:10.1007/s10704-009-9353-4.
  • Totry, E.; Molina-Aldareguía, J. M.; González, C.; LLorca, J. “Effect of fiber, matrix and interface properties on the in-plane shear deformation of carbon-fiber reinforced composites”, Compos. Sci. Technol. 2010, 70, 970–980. DOI:10.1016/j.compscitech.2010.02.014.
  • Thiruppukuzhi, S. V.; Sun, C. T. “Models for the strain-rate-dependent behavior of polymer composites”, Compos. Sci. Technol. 2001, 61, 1–12. DOI:10.1016/S0266-3538(00)00133-0.
  • Cho, J.; Fenner, J.; Werner, B.; Daniel, I. M. “A constitutive model for fiber-reinforced polymer composites”, J. Compos. Mater. 2010, 44, 3133–3150. DOI:10.1177/0021998310371547.
  • Weeks, C. A.; Sun, C. T. “Modeling non-linear rate-dependent behavior in fiber-reinforced composites”, Compos. Sci. Technol. 1998, 58, 603–611. DOI:10.1016/S0266-3538(97)00183-8.
  • Ogihara, S.; Kobayashi, S.; Reifsnider, K. L. “Characterization of nonlinear behavior of carbon/epoxy unidirectional and angle-ply laminates”, Adv. Compos. Mater. 2002, 11, 239–254. DOI:10.1163/156855102762506281.
  • Kawai, M.; Zhang, J. Q.; Saito, S.; Xiao, Y.; Hatta, H. “Tension–compression asymmetry in the off-axis nonlinear rate-dependent behavior of a unidirectional carbon/epoxy laminate at high temperature and incorporation into viscoplasticity modeling”, Adv. Compos. Mater. 2009, 18, 265–285. DOI:10.1163/156855109X434702.
  • Ploeckl, M.; Kuhn, P.; Grosser, J.; Wolfahrt, M.; Koerber, H. “A dynamic test methodology for analyzing the strain-rate effect on the longitudinal compressive behavior of fiber-reinforced composites”, Compos. Struct. 2017, 180, 429–438. DOI:10.1016/j.compstruct.2017.08.048.
  • Hsiao, H. M.; Daniel, I. M. “Strain rate behavior of composite materials”, Compos. B 1998, 29, 521–533. DOI:10.1016/S1359-8368(98)00008-0.
  • Koerber, H.; Camanho, P. P. “High strain rate characterisation of unidirectional carbon–epoxy IM7-8552 in longitudinal compression”, Compos. A 2011, 42, 462–470. DOI:10.1016/j.compositesa.2011.01.002.
  • Van Dreumel, W. H. M.; Kamp, J. L. M. “Non-Hookean behaviour in the fibre direction of carbon-fibre composites and the influence of fibre waviness on the tensile properties”, J. Compos. Mater. 1977, 11, 461–469. DOI:10.1177/002199837701100408.
  • Djordjević, I. M.; Sekulić, D. R.; Stevanović, M. M. “Non-linear elastic behaviour of carbon fibres of different structural and mechanical characteristic”, J. Serbian Chem. Soc. 2007, 72, 513–521.
  • Stecenko, T. B.; Stevanovi, M. M. “Variation of elastic moduli with strain in carbon/epoxy laminates”, J. Compos. Mater. 1990, 24, 1152–1158. DOI:10.1177/002199839002401103.
  • Curtis, G. J.; Milne, J. M.; Reynolds, W. N. “Non-Hookean behaviour of strong carbon fibres”, Nature 1968, 220, 1024. DOI:10.1038/2201024a0.
  • Madhukar, M. S.; Drzal, L. T. “Fiber-matrix adhesion and its effect on composite mechanical properties: II. Longitudinal (0) and transverse (90) tensile and flexure behavior of graphite/epoxy composites”, J. Compos. Mater. 1991, 25, 958–991. DOI:10.1177/002199839102500802.
  • Vaughan, T. J.; Mccarthy, C. T. “Micromechanical modelling of the transverse damage behaviour in fibre reinforced composites”, Compos. Sci. Technol. 2011, 71, 388–396. DOI:10.1016/j.compscitech.2010.12.006.
  • Totry, E.; Gonza, C.; Llorca, J. “Failure locus of fiber-reinforced composites under transverse compression and out-of-plane shear”, Compos. Sci. Technol. 2008, 68, 829–839. DOI:10.1016/j.compscitech.2007.08.023.
  • Yang, L.; Yan, Y.; Liu, Y.; Ran, Z. “Microscopic failure mechanisms of fiber-reinforced polymer composites under transverse tension and compression”, Compos. Sci. Technol. 2012, 72, 1818–1825. DOI:10.1016/j.compscitech.2012.08.001.
  • Vural, M.; Kidd, T. H.; Ravichandran, G. “Dynamic transverse compressive failure of unidirectional fiber reinforced composites”, In Proceedings of the 11th International Conference on Fracture (ICF11), Turin, Italy, 2005.
  • Totry, E.; González, C.; Llorca, J. “Prediction of the failure locus of C/PEEK composites under transverse compression and longitudinal shear through computational micromechanics”, Compos. Sci. Technol. 2008, 68, 3128–3136. DOI:10.1016/j.compscitech.2008.07.011.
  • Gonzalez, C.; Llorca, J. “Mechanical behavior of unidirectional fiber-reinforced polymers under transverse compression: Microscopic mechanisms and modeling”, Compos. Sci. Technol. 2007, 67, 2795–2806. DOI:10.1016/j.compscitech.2007.02.001.
  • Puck, A.; Schürmann, H. “Failure analysis of FRP laminates by means of physically based phenomenological models”, Compos. Sci. Technol. 2002, 62, 1633–1662. DOI:10.1016/S0266-3538(01)00208-1.
  • Davila, C. G.; Camanho, P. P.; Rose, C. A. “Failure criteria for FRP laminates”, J. Compos. Mater. 2005, 39, 323–345. DOI:10.1177/0021998305046452.
  • Gamstedt, E. K.; Sjögren, B. A. “Micromechanisms in tension-compression fatigue of composite laminates containing transverse plies”, Compos. Sci. Technol. 1999, 59, 167–178. DOI:10.1016/S0266-3538(98)00061-X.
  • Hobbiebrunken, T.; Hojo, M.; Adachi, T.; De Jong, C.; Fiedler, B. “Evaluation of interfacial strength in CF/epoxies using FEM and in-situ experiments”, Compos. A 2006, 37, 2248–2256. DOI:10.1016/j.compositesa.2005.12.021.
  • Taheri-Behrooz, F.; Bakhshi, N. “Neuber’s rule accounting for the material nonlinearity influence on the stress concentration of the laminated composites”, J. Reinf. Plast. Compos. 2017, 36, 214–225. DOI:10.1177/0731684416680302.
  • Taheri-Behrooz, F.; Shamaei Kashani, A. R.; Hefzabad.; R. “Effects of material nonlinearity on load distribution in multi-bolt composite joints”, Compos. Struct. 2015, 125, 195–201. DOI:10.1016/j.compstruct.2015.01.047.
  • Samareh-Mousavi, S. S.; Mandegarian, S.; Taheri-Behrooz, F. “A nonlinear FE analysis to model progressive fatigue damage of cross-ply laminates under pin-loaded conditions”, Int. J. Fatigue 2019, 119, 290–301. DOI:10.1016/j.ijfatigue.2018.10.010.
  • Xiao, X. “Modeling energy absorption with a damage mechanics based composite material model”, J. Compos. Mater. 2009, 43, 427–444.
  • Guedes, RM. (Eds) “Creep and fatigue in polymer matrix composites”, In Viscoelastic constitutive modeling of creep and stress relaxation in polymers and polymer matrix composites. Woodhead Publishing: Cambridge, 2011; pp 3–47.
  • Hsiao, H. M.; Daniel, I. M.; Cordes, R. D. “Strain rate effects on the transverse compressive and shear behavior of unidirectional composites”, J. Compos. Mater. 1999, 33, 1620–1642. DOI:10.1177/002199839903301703.
  • Chandra Ray, B.; Rathore, D. “A review on mechanical behavior of FRP composites at different loading speeds”, Crit. Rev. Solid State Mater. Sci. 2015, 40, 119–135. DOI:10.1080/10408436.2014.940443.
  • Jones, R.; Chiu, W. K.; Paul, J. “Designing for damage tolerant bonded joints”, Compos. Struct. 1993, 25, 201–207. DOI:10.1016/0263-8223(93)90166-N.
  • Hosur, M. V.; Alexander, J.; Vaidya, U. K.; Jeelani, S. “High strain rate compression response of carbon/epoxy laminate composites.” Compos. Struct. 2001, 52, 405–417. DOI:10.1016/S0263-8223(01)00031-9.
  • Koerber, H.; Xavier, J.; Camanho, P. P. “High strain rate characterisation of unidirectional carbon-epoxy IM7-8552 in transverse compression and in-plane shear using digital image correlation”, Mech. Mater. 2010, 42, 1004–1019. DOI:10.1016/j.mechmat.2010.09.003.
  • Zhou, Y.; Wang, Y.; Jeelani, S.; Xia, Y. “Experimental study on tensile behavior of carbon fiber and carbon fiber reinforced aluminum at different strain rate”, Appl. Compos. Mater. 2007, 14, 17–31. DOI:10.1007/s10443-006-9028-5.
  • Mohseni Shakib, S. M.; Li, S. “Modified three rail shear fixture (ASTM D 4255/D 4255M) and an experimental study of nonlinear in-plane shear behaviour of FRC”, Compos. Sci. Technol. 2009, 69, 1854–1866. DOI:10.1016/j.compscitech.2009.04.003.
  • Chiu, W. K.; Galea, S.; Jones, R. “The role of material nonlinearities in composite structures”, Compos. Struct. 1997, 38, 71–81. DOI:10.1016/S0263-8223(97)00043-3.
  • Sullivan, J. L. “Creep and physical aging of composites”, Compos. Sci. Technol. 1990, 39, 207–232. DOI:10.1016/0266-3538(90)90042-4.
  • Hastie, R.; Morris, D. “The effects of physical aging on the creep response of a thermoplastic composite”, In High Temperature and Environmental Effects on Polymeric Composites; ASTM International: West Conshohocken, PA, 1993; pp 163–163. DOI:10.1520/STP18055S.
  • Brinson, L. C.; Gates, T. S. “Effects of physical aging on long term creep of polymers and polymer matrix composites”, Int. J. Solids Struct. 1995, 32, 827–846. DOI:10.1016/0020-7683(94)00163-Q.
  • Gates, T. S.; Veazie, D. R.; Brinson, L. C. “Creep and physical aging in a polymeric composite: Comparison of tension and compression”, J. Compos. Mater. 1997, 31, 2478–2505. DOI:10.1177/002199839703102404.
  • Wang, J.; Xiao, Y. “Some improvements on Sun–Chen’s one-parameter plasticity model for fibrous composites – Part I: Constitutive modelling for tension–compression asymmetry response”, J. Compos. Mater. 2017, 51, 405–418. DOI:10.1177/0021998316644853.
  • Wang, J.; Xiao, Y.; Inoue, K.; Kawai, M.; Xue, Y. “Modeling of nonlinear response in loading-unloading tests for fibrous composites under tension and compression”, Compos. Struct. 2019, 207, 894–908. DOI:10.1016/j.compstruct.2018.09.054.
  • Kawai, M.; Masuko, Y. “Macromechanical modeling and analysis of the viscoplastic behavior of unidirectional fiber-reinforced composites”, J. Compos. Mater. 2003, 37, 1885–1902. DOI:10.1177/002199803035185.
  • Ladeveze, P.; LeDantec, E. “Damage modelling of the elementary ply for laminated composites”, Compos. Sci. Technol. 1992, 43, 257–267. DOI:10.1016/0266-3538(92)90097-M.
  • Kawai, M.; Masuko, Y.; Kawase, Y.; Negishi, R. “Micromechanical analysis of the off-axis rate-dependent inelastic behavior of unidirectional AS4/PEEK at high temperature”, Int. J. Mech. Sci. 2001, 43, 2069–2090. DOI:10.1016/S0020-7403(01)00029-7.
  • Taubert, R.; Mandel, U.; Hinterhölzl, R. “Study of layup influences on the nonlinear behavior of composites by evaluation of ply stiffness reduction”, Compos. A 2015, 79, 63–73. DOI:10.1016/j.compositesa.2015.09.010.
  • Mohsenishakib, S. M. “Shear nonlinearity behaviour of fibrous composites under cyclic loading. Part I: Experimental investigation”, Aerospace Mechanics Journal, 2013, 12, 39–49.
  • Rui, Y.; Sun, C. T. “A constitutive model for AS4/PEEK thermoplastic composites under cyclic loading”, 1990, In Proceedings of the Sixth Technical Conference of American Society for Composites, October 6–9, Albany, New York, 1064–1079.
  • Rui, Y.; Sun, C. T. “Cyclic plasticity in AS4/PEEK composite laminates”, J. Thermoplast. Compos. Mater. 1993, 6, 312–322. DOI:10.1177/089270579300600404.
  • Salavatian, M.; Smith, L. “An improved analytical model for shear modulus of fiber reinforced laminates with damage”, Compos. Sci. Technol. 2014, 105, 9–14. DOI:10.1016/j.compscitech.2014.09.015.
  • Puck, A.; Mannigel, M. “Physically based non-linear stress–strain relations for the inter-fibre fracture analysis of FRP laminates”, Compos. Sci. Technol. 2007, 67, 1955–1964. DOI:10.1016/j.compscitech.2006.10.008.
  • Swanson, S.R.; Messick, M.J.; Tian, Z. “Failure of carbon/epoxy lamina under combined stress”, J. Compos. Mater. 1987, 21, 619–630. DOI:10.1177/002199838702100703.
  • Colvin, G. E.; Swanson, S. R. “Mechanical characterization of IM7/8551-7 carbon/epoxy under biaxial stress”, J. Eng. Mater. Technol. 1990, 112, 61–67. DOI:10.1115/1.2903188.
  • Swanson, S. R.; Qian, Y. “Multiaxial characterization of T800/3900-2 carbon/epoxy composites”, Compos. Sci. Technol. 1992, 43, 197–203. DOI:10.1016/0266-3538(92)90009-R.
  • Caddell, R. M.; Raghava, R. S.; Atkins, A. G. “A yield criterion for anisotropic and pressure dependent solids such as oriented polymers”, J. Mater. Sci. 1973, 8, 1641–1646. DOI:10.1007/BF00754900.
  • Liu, C.; Huang, Y.; Stout, M. “On the asymmetric yield surface of plastically orthotropic materials: A phenomenological study”, Acta Mater. 1997, 45, 2397–2406. DOI:10.1016/S1359-6454(96)00349-7.
  • Shin, E. S.; Pae, K. D. “Effects of hydrostatic pressure on in-plane shear properties of graphite/epoxy composites”, J. Compos. Mater. 1992, 26, 828–868. DOI:10.1177/002199839202600604.
  • Hoppel, C. P. R.; Bogetti, T. A.; Gillespie, J. W. “Literature review-effects of hydrostatic pressure on the mechanical behavior of composite materials”, J. Thermoplast. Compos. Mater. 1995, 8, 375–409. DOI:10.1177/089270579500800403.
  • Hine, P. J.; Duckett, R. A.; Kaddour, A. S.; Hinton, M. J.; Wells, G. M. “The effect of hydrostatic pressure on the mechanical properties of glass fibre/epoxy unidirectional composites”, Compos. A 2005, 36, 279–289. DOI:10.1016/j.compositesa.2004.06.004.
  • Pae, K. D.; Rhee, K. Y. “Effects of hydrostatic pressure on the compressive behavior of thick laminated 45° and 90° unidirectional graphite-fiber/epoxy-matrix composites”, Compos. Sci. Technol. 1995, 53, 281–287. DOI:10.1016/0266-3538(94)00080-8.
  • Kaddour, A. S.; Hinton, M. J.; Soden, P. D. “Behaviour of ±45° glass/epoxy filament wound composite tubes under quasi-static equal biaxial tension – Compression loading: Experimental results”, Compos. B 2003, 34, 689–704. DOI:10.1016/S1359-8368(03)00077-5.
  • Selzer, R.; Friedrich, K. “Mechanical properties and failure behaviour of carbon fibre-reinforced polymer composites under the influence of moisture”, Compos. A 1997, 28, 595–604. DOI:10.1016/S1359-835X(96)00154-6.
  • Zhou, J.; Lucas, J. P. “The effects of a water environment on anomalous absorption behavior in graphite/epoxy composites”, Compos. Sci. Technol. 1995, 53, 57–64. DOI:10.1016/0266-3538(94)00078-6.
  • Pérez-Pacheco, E.; Cauich-Cupul, J. I.; Valadez-González, A.; Herrera-Franco, P. J. “Effect of moisture absorption on the mechanical behavior of carbon fiber/epoxy matrix composites”, J. Mater. Sci. 2013, 48, 1873–1882. DOI:10.1007/s10853-012-6947-4.
  • Tsai, Y. I.; Bosze, E. J.; Barjasteh, E.; Nutt, S. R. “Influence of hygrothermal environment on thermal and mechanical properties of carbon fiber/fiberglass hybrid composites”, Compos. Sci. Technol. 2009, 69, 432–437. DOI:10.1016/j.compscitech.2008.11.012.
  • Ogi, K.; Takeda, N. “Effects of moisture content on nonlinear deformation behavior of CF/epoxy composites”, J. Compos. Mater. 1997, 31, 530–551. DOI:10.1177/002199839703100601.
  • Ogi, K.; Takeda, N.; Kobayashi, S.; Song, D.-Y. “Effect of temperature on nonlinear tensile stress–strain behavior of CF/epoxy composites”, J. Soc. Mater. Sci. 1996, 45, 478–483. DOI:10.2472/jsms.45.478.
  • Mouhmid, B.; Imad, A.; Benseddiq, N.; Benmedakhène, S.; Maazouz, A. “A study of the mechanical behaviour of a glass fibre reinforced polyamide 6,6: Experimental investigation”, Polym. Test. 2006, 25, 544–552. DOI:10.1016/j.polymertesting.2006.03.008.
  • Yeow, Y. T.; Morris, D. H.; Brinson, H. F. “Time-Temperature Behavior of a Unidirectional Graphite/Epoxy Composite”, 1979, in Composite Materials: Testing and Design (Fifth Conference), ed. S. Tsai (West Conshohocken, PA: ASTM International), 263–281.
  • Hu, G. K.; Weng, G. J. “Influence of thermal residual stresses on the composite macroscopic behavior”, Mech. Mater. 1998, 27, 229–240. DOI:10.1016/S0167-6636(97)00050-1.
  • Tsai, J.-L.; Chi, Y.-K. “Investigating thermal residual stress effect on mechanical behaviors of fiber composites with different fiber arrays”, Compos. B 2008, 39, 714–721. DOI:10.1016/j.compositesb.2007.05.005.
  • Aboudi, J. “Damage in composites-modeling of imperfect bonding”, Compos. Sci. Technol. 1987, 28, 103–128. DOI:10.1016/0266-3538(87)90093-5.
  • Bahei-El-Din, Y. A.; Dvorak, G. J. “Plastic deformation of a laminated plate with a hole”, J. Appl. Mech. 1980, 47, 827. DOI:10.1115/1.3153798.
  • Hsu, S.-Y.; Vogler, T. J.; Kyriakides, S. “Compressive strength predictions for fiber composites”, J. Appl. Mech. 1998, 65, 7. DOI:10.1115/1.2789050.
  • Hsu, S.-Y.; Vogler, T. J.; Kyriakides, S. “On the axial propagation of kink bands in fiber composites : Part II: Analysis”, Int. J. Solids Struct. 1999, 36, 575–595. DOI:10.1016/S0020-7683(98)00030-4.
  • Yerramalli, C. S.; Waas, A. M. “In situ matrix shear response using torsional test data of fiber reinforced unidirectional polymer composites”, J. Eng. Mater. Technol. 2002, 124, 152–159. DOI:10.1115/1.1446471.
  • LLorca, J.; González, C.; Molina-AldareguIa, J. M.; Segurado, J.; Seltzer, R.; Sket, F.; Rodriguez, M.; Sádaba, S.; Muñoz, R.; Canal, L. P. “Multiscale modeling of composite materials: A roadmap towards virtual testing”, Adv. Mater. 2011, 23, 5130–5147. DOI:10.1002/adma.201101683.
  • Cox, B.; Yang, Q. “In quest of virtual tests for structural composites”, Science 2006, 314, 1102–1107. DOI:10.1126/science.1131624.
  • Llorca, J.; Segurado, J. “Three-dimensional multiparticle cell simulations of deformation and damage in sphere-reinforced composites”, Mater. Sci. Eng. A 2004, 365, 267–274. DOI:10.1016/j.msea.2003.09.035.
  • Chawla, N.; Ganesh, V. V.; Wunsch, B. “Three-dimensional (3D) microstructure visualization and finite element modeling of the mechanical behavior of sic particle reinforced aluminum composites”, Scr. Mater. 2004, 51, 161–165. DOI:10.1016/j.scriptamat.2004.03.043.
  • Canal, L. P.; Segurado, J.; Llorca, J. “Failure surface of epoxy-modified fiber-reinforced composites under transverse tension and out-of-plane shear”, Int. J. Solids Struct. 2009, 46, 2265–2274. DOI:10.1016/j.ijsolstr.2009.01.014.
  • Hahn, H. T.; Tsai, S. W. “Nonlinear elastic behavior of unidirectional composite laminae”, J. Compos. Mater. 1973, 7, 102–118. DOI:10.1177/002199837300700108.
  • Hahn, H. T. “Nonlinear behavior of laminated composite plates”, J. Compos. Mater. 1973 1973, 7, 257–271. DOI:10.1177/002199837300700209.
  • Chang, F.-K.; Lessard, L. “Damage tolerance of laminated composites containing an open hole and subjected to compressive loadings: Part I — Analysis”, J. Compos. Mater. 1991, 25, 2–43. DOI:10.1016/0010-4361(91)90014-8.
  • Taheri-Behrooz, F.; Moghaddam, H. S. “Nonlinear numerical analysis of the v-notched rail shear test specimen”, Polym. Test. 2018, 65, 44–53. DOI:10.1016/j.polymertesting.2017.11.008.
  • Schuecker, C.; Dávila, C. G.; Pettermann, H. E. “Modeling the non-linear response of fiber-reinforced laminates using a combined damage/plasticity model”, 2008, NASA/TM-215314, Hampton, VA.
  • McCarthy, C. T.; O’Higgins, R. M.; Frizzell, R. M. “A cubic spline implementation of non-linear shear behaviour in three-dimensional progressive damage models for composite laminates”, Compos. Struct. 2010, 92, 173–181. DOI:10.1016/j.compstruct.2009.07.025.
  • Rose, C. A.; Dávila, C. G.; Leone, F. A. Analysis Methods for Progressive Damage of Composite Structures; NASA Langley Research Center: Cleveland, OH, 2013; NASA/TM-20.
  • Jones, R. M.; Nelson, D. A. R. “A new material model for the nonlinear biaxial behavior of ATJ-S graphite”, J. Compos. Mater. 1975, 9, 10–27. DOI:10.1177/002199837500900102.
  • Jones, R. M.; Nelson, D. A. R. “Material models for nonlinear deformation of graphite”, AIAA J. 1976, 14, 709–717. DOI:10.2514/3.61410.
  • Jones, R. M.; Morgan, H. S. “Analysis of nonlinear stress–strain behavior of fiber-reinforced composite materials”, AIAA J. 1977, 15, 1669–1676.
  • Jones, R. M.; Nelson, D. A. R. “Further characteristics of a nonlinear material model for ATJ-S graphite”, J. Compos. Mater. 1975, 9, 251–265. DOI:10.1177/002199837500900305.
  • Nahas, M. N. “Analysis of non-linear stress–strain response of laminated fibre-reinforced composites”, Fibre Sci. Technol. 1984, 20, 297–313. DOI:10.1016/0015-0568(84)90049-6.
  • Hashin, Z.; Bagchi, D.; Rosen, B. W.; Bell, B. Non-linear behavior of fiber composite laminates, 1974, Report for NASA, Washington, D.C.
  • Petit, P. H.; Waddoups, M. E. “A method of predicting the nonlinear behavior of laminated composites”, J. Compos. Mater. 1969, 3, 2–19. DOI:10.1177/002199836900300101.
  • Amijima, S.; Adachi, T. “Nonlinear stress–strain response of laminated composites”, J. Compos. Mater. 1979, 13, 206–218. DOI:10.1177/002199837901300303.
  • Sandhu, R. S. “Nonlinear behavior of unidirectional and angle ply laminates”, J. AIRCR 1976, 13, 104–111. DOI:10.2514/3.58638.
  • Surrel, Y.; Vautrin, A. “On a modeling of the plastic response of FRP under monotonic loading”, J. Compos. Mater. 1989, 23, 232–250. DOI:10.1177/002199838902300302.
  • Surrel, Y.; Vautrin, A. “Plastic behaviour of fibrous laminae”, Compos. Sci. Technol. 1993, 49, 45–50. DOI:10.1016/0266-3538(93)90020-H.
  • Sun, C. T.; Chen, J. L. “A simple flow rule for characterizing nonlinear behavior of fiber composites”, J. Compos. Mater. 1989, 23, 1009–1020. DOI:10.1177/002199838902301004.
  • Kenaga, D.; Doyle, J. F.; Sun, C. T. “The characterization of boron/aluminum composite in the nonlinear range as an orthotropic elastic-plastic material”, J. Compos. Mater. 1987, 21, 516–531. DOI:10.1177/002199838702100603.
  • Hill, R. The Mathematical Theory of Plasticity; Oxford University Press: Oxford, UK, 1998.
  • Sun, C. T.; Chung, I.; Chang, I. Y. “Modeling of elastic-plastic behavior of LDFTM and continuous fiber reinforced as-4/PEKK composites”, Compos. Sci. Technol. 1992, 43, 339–345. DOI:10.1016/0266-3538(92)90057-A.
  • Sun, C. X.; Yoon, K. J. “Characterization of elastic-plastic behavior of AS4/PEEK thermoplastic composite for temperature variation”, J. Compos. Mater. 1991, 25, 1297–1313. DOI:10.1177/002199839102501003.
  • Sun, C. T.; Yoon, K. J. “Elastic-plastic analysis of AS4/PEEK composite laminate using a one-parameter plasticity model”, J. Compos. Mater. 1992, 26, 293–308. DOI:10.1177/002199839202600208.
  • Tamuuzs, V.; Andersons, J.; Sparnins, E.; Varna, J. “Response of cross-ply composite to off-axis loading”, J. Compos. Mater. 2002, 36, 2125–2134. DOI:10.1177/0021998302036018976.
  • Sun, C. T.; Tao, J. “Prediction of failure envelopes and stress/strain behavior of composite laminates”, Compos. Sci. Technol. 1998, 58, 1125–1136. DOI:10.1016/S0266-3538(97)00013-4.
  • Sparnins, E.; Andersons, J. “Modeling the nonlinear deformation of composite laminates based on plasticity theory”, Mech. Compos. Mater. 2007, 43, 203–210. DOI:10.1007/s11029-007-0020-4.
  • Odegard, G.; Searles, K.; Kumosa, M. “Nonlinear analysis of woven fabric-reinforced graphite/PMR-15 composites under shear-dominated biaxial loads”, Mech. Mech. Adv. Mater. Struct. 2000, 7, 129–152. DOI:10.1080/107594100305348.
  • Ogihara, S.; Reifsnider, K. L. “Characterization of nonlinear behavior in woven composite laminates”, Appl. Compos. Mater. 2002, 9, 249–263. DOI:10.1023/A:1016069220255.
  • Wang, J.; Xiao, Y.; Kawai, M. “Parameter identification problem in one-parameter plasticity model for fibrous composites”, Adv. Compos. Mater. 2018, 3046, 1–23. DOI:10.1080/09243046.2018.1448684.
  • Vaziri, R.; Olson, M. D.; Anderson, D. L. “Plasticity-based constitutive model for fibre-reinforced composite laminates”, J. Compos. Mater. 1991, 25, 512–535. DOI:10.1177/002199839102500503.
  • Nanda, A.; Kuppusamy, T. “Three-dimensional elastic-plastic analysis of laminated composite plates”, Compos. Struct. 1991, 17, 213–225. DOI:10.1016/0263-8223(91)90052-Z.
  • Ogi, K.; Takeda, N. “Effect of strain rate on nonlinear deformation behavior in CFRP composites”, Adv. Compos. Mater. 1997, 6, 175–196. DOI:10.1163/156855197X00067.
  • Xie, M.; Adams, D. F. “A plasticity model for unidirectional composite materials and its applications in modeling composites testing”, Compos. Sci. Technol. 1995, 54, 11–21. DOI:10.1016/0266-3538(95)00035-6.
  • Yokozeki, T.; Ogihara, S.; Yoshida, S.; Ogasawara, T. “Simple constitutive model for nonlinear response of fiber-reinforced composites with loading-directional dependence”, Compos. Sci. Technol. 2007, 67, 111–118. DOI:10.1016/j.compscitech.2006.03.024.
  • Yoshida, S.; Yokozeki, T.; Toshio Ogasawara, S. O. “Evaluation of nonlinear behavior of CfRP laminates in tension and compression”, In 16th International Conference on Composite Materials and Evaluation, Tokyo, Japan, 2007; pp 1–7.
  • Drucker, D. C.; Prager, W. “Soil mechanics and plastic analysis or limit design”, Quart. Appl. Math. 1952, 10,157–165. DOI:10.1090/qam/48291.
  • Laux, T.; Wui, K.; Dulieu-Barton, J. M.; Thomsen, O. T. “A simple nonlinear constitutive model based on non-associative plasticity for UD composites : Development and calibration using a modified arcan fixture”, Int. J. Solids Struct. 2019, 162, 135–147. DOI:10.1016/j.ijsolstr.2018.12.004.
  • Wang, J.; Xiao, Y.; Kawai, M.; Inoue, K. “Observation and modeling of loading–unloading hysteresis behavior of unidirectional composites in compression”, J. Reinf. Plast. Compos. 2018, 37, 287–299. DOI:10.1177/0731684417743347.
  • Schmidt, B. R. J.; Wang, D.; Hansen, A. C. “Plasticity model for transversely isotropic materials”, J. Eng. Mech. 1993, 119, 748–766. DOI:10.1061/(ASCE)0733-9399(1993)119:4(748).
  • Hansen, A. C.; Blackketter, D. M.; Walrath, D. E. “Invariant-based flow rule for anisotropic plasticity applied to composite materials”, J. Appl. Mech. 1991, 58, 881–888. DOI:10.1115/1.2897701.
  • Thomson, D. M.; Erice, B.; Cui, H.; Hoffmann, J.; Wiegand, J.; Petrinic, N. “A puck-based localisation plane theory for rate- and pressure-dependent constitutive modelling of unidirectional fibre-reinforced polymers”, Compos. Struct. 2018, 184, 299–305. (September 2017), DOI:10.1016/j.compstruct.2017.09.088.
  • Dvorak, G. J.; Bahei-El-Din, Y. A. “Plasticity analysis of fibrous composites”, J. Appl. Mech. 1982, 49, 327–335. DOI:10.1115/1.3162088.
  • Bahei-El-Din, Y. A.; Dvorak, G. J. “Plasticity analysis of laminated composite plates”, J. Appl. Mech. 1982, 49, 740. DOI:10.1115/1.3162611.
  • Sun, C. T.; Chen, J. L. “A micromechanical model for plastic behavior of fibrous composites”, Compos. Sci. Technol. 1991, 40, 115–129. DOI:10.1016/0266-3538(91)90092-4.
  • Aboudi, J. “Closed form constitutive equations for metal matrix composites”, Int. J. Eng. Sci. 1987, 25, 1229–1240. DOI:10.1016/0020-7225(87)90085-1.
  • Aboudi, J. “The nonlinear behavior of unidirectional and laminated composites-A micromechanical approach”, J. Reinf. Plast. Compos. 1990, 9, 13–32. DOI:10.1177/073168449000900102.
  • Paley, M.; Aboudi, J. “Micromechanical analysis of composites by the generalized cells model”, Mech. Mater. 1992, 14, 127–139. DOI:10.1016/0167-6636(92)90010-B.
  • Winn, V. M.; Sridharan, S. “An investigation into the accuracy of a one-parameter nonlinear model for unidirectional composites”, J. Compos. Mater. 2001, 35, 1491–1507. DOI:10.1106/M99D-14RL-NHHF-CHWN.
  • Thiruppukuzhi, S. V.; Sun, C. T. “Testing and modeling high strain rate behavior of polymeric composites”, Compos. B 1998, 29, 535–546. DOI:10.1016/S1359-8368(98)00009-2.
  • Tsai, J.; Sun, C. T. “Constitutive model for high strain rate response of polymeric composites”, Compos. Sci. Technol. 2002, 62, 1289–1297. DOI:10.1016/S0266-3538(02)00064-7.
  • Bing, Q.; Sun, C. T. “Modeling and testing strain rate-dependent compressive strength of carbon/epoxy composites”, Compos. Sci. Technol. 2005, 65, 2481–2491. DOI:10.1016/j.compscitech.2005.06.012.
  • Micallef, K.; Fallah, A. S.; Curtis, P. T.; Louca, L. A. “A homogenised continuum constitutive model for visco-plastic deformation of uni-directional composites”, Compos. Struct. 2013, 99, 404–418. DOI:10.1016/j.compstruct.2012.12.006.
  • Hufner, D. R.; Accorsi, M. L. “A progressive failure theory for woven polymer-based composites subjected to dynamic loading”, Compos. Struct. 2009, 89, 177–185. DOI:10.1016/j.compstruct.2008.07.023.
  • Gates, T. S.; Sun, C. T. “Elastic/viscoplastic constitutive model for fiber reinforced thermoplastic composites”, AIAA J. 1991, 29, 457–463. DOI:10.2514/3.59922.
  • Wang, C.; Sun, C. T.; Gates, T. S. “Elastic/viscoplastic behavior of fiber-reinforced thermoplastic composites”, J. Reinf. Plast. Compos. 1996, 15, 360–377. DOI:10.1177/073168449601500402.
  • Gates, T. S. “Experimental characterization of nonlinear, rate-dependent behavior in advanced polymer matrix composites”, Exp. Mech. 1992, 32, 68–73. DOI:10.1007/BF02317988.
  • Gates, T. “Matrix-dominated stress/strain behavior in polymeric composites: effects of hold time, nonlinearity, and rate dependency”, In Vol. 11: Composite Materials-Testing and Design; West Conshohocken, PA: ASTM, 1993; pp 177–189. DOI:10.1520/STP12627S.
  • Yoon, K. J.; Sun, C. T. “Characterization of elastic-viscoplastic properties of an AS4/PEEK thermoplastic composite”, J. Compos. Mater. 1991, 25, 1277–1296. DOI:10.1177/002199839102501002.
  • Malvern, E. L. “The propagation of longitudinal waves of plastic deformation in a bar of material exhibiting a strain-rate effect”, J. Appl. Mech. 1951, 18, 203–208.
  • Gates, T. “Effects of elevated temperature on the viscoplastic modeling of graphite/polymeric composites”, In High Temperature and Environmental Effects on Polymeric Composites; West Conshohocken, PA: ASTM, 1993; pp 201–221. DOI:10.1520/STP18057S.
  • Bodner, S. R.; Partom, Y. “Constitutive equations for elastic-viscoplastic strain-hardening materials”, J. Appl. Mech. 1975, 42, 385. DOI:10.1115/1.3423586.
  • Goldberg, R.; Stouffer, D. “Strain rate dependent analysis of a polymer matrix composite utilizing a micromechanics approach”, J. Compos. Mater. 2002, 36, 773–793. DOI:10.1177/0021998302036007613.
  • Goldberg, R. K.; Roberts, G. D.; Gilat, A. “Implementation of an associative flow rule including hydrostatic stress effects into the high strain rate deformation analysis of polymer matrix composites”, J. Aerosp. Eng. 2005, 18, 18–27. DOI:10.1061/(ASCE)0893-1321(2005)18:1(18).
  • Goldberg, K. R. “Computational simulation of the high strain rate tensile response of polymer matrix composites”, 2002, NASA/TM-2002-211489, Washington, DC: NASA.
  • Stouffer, D. C.; Dame, L. T. Inelastic Deformation of Metals: Models, Mechanical Properties, and Metallurgy; JohnWiley & Sons: New York, 1996.
  • Mital, S. K.; Murthy, P. L. N.; Chamis, C. C. “Micromechanics for ceramic matrix composites via fiber substructuring”, J. Compos. Mater. 1995, 29, 614–633. DOI:10.1177/002199839502900504.
  • Schapery, R. A. “On the characterization of nonlinear viscoelastic materials”, Polym. Eng. Sci. 1969, 9, 295–310. DOI:10.1002/pen.760090410.
  • Schapery, R. A. A Theory of Non-Linear Thermoviscoelasticity Based on Irreversible Thermodynamics; American Society of Mechanical Engineers: New York, NY, 1966.
  • Schapery, R. A. “An engineering theory of nonlinear viscoelasticity with applications”, Int. J. Solids Struct. 1966, 2, 407–425. DOI:10.1016/0020-7683(66)90030-8.
  • Tuttle, M. E.; Brinson, H. F. “Prediction of the long-term creep compliance of general composite laminates”, Exp. Mech. 1986, 26, 89–102. DOI:10.1007/BF02319961.
  • Falahatgar, S. R.; Salehi, M.; Aghdam, M. M. “Nonlinear viscoelastic response of unidirectional fiber-reinforced composites in off-axis loading”, J. Reinf. Plast. Compos. 2009, 28, 1793–1811. DOI:10.1177/0731684408090711.
  • Haj-Ali, R. M.; Muliana, A. H. “Numerical finite element formulation of the schapery non-linear viscoelastic material model”, Int. J. Numer. Meth. Eng. 2004, 59, 25–45. DOI:10.1002/nme.861.
  • Haj-Ali, R. M.; Muliana, A. H. “A multi-scale constitutive formulation for the nonlinear viscoelastic analysis of laminated composite materials and structures”, Int. J. Solids Struct. 2004, 41, 3461–3490. DOI:10.1016/j.ijsolstr.2004.02.008.
  • Papanicolaou, G. C.; Zaoutsos, S. P.; Kontou, E. A. “Fiber orientation dependence of continuous carbon/epoxy composites nonlinear viscoelastic behavior”, Compos. Sci. Technol. 2004, 64, 2535–2545. DOI:10.1016/j.compscitech.2004.05.005.
  • Papanicolaou, G. C.; Zaoutsos, S. P.; Cardon, A. H. “Further development of a data reduction method for the nonlinear viscoelastic characterization of FRPS”, Compos. A 1999, 30, 839–848. DOI:10.1016/S1359-835X(99)00004-4.
  • Schapery, R. A. “Nonlinear viscoelastic and viscoplastic constitutive equations based on thermodynamics”, Mech. Time-Depend. Mater. 1997, 1, 209–240.
  • Zhu, X.; Chen, X.; Zhai, Z.; Yang, Z.; Li, X.; He, Z. “Strain rate dependent deformation of a polymer matrix composite with different microstructures subjected to off-axis loading”, Math. Probl. Eng. 2014, 2014. DOI:10.1155/2014/590787.
  • Chaboche, J. L. “Viscoplastic constitutive equations for the description of cyclic and anisotropic behaviour of metals”, Bull. Acad. Polym. Sci. Ser. Sci. Technol. 1977, 25, 33–42.
  • Kawai, M.; Zhang, J. Q.; Xiao, Y.; Hatta, H. “Modeling of tension-compression asymmetry in off-axis nonlinear rate-dependent behavior of unidirectional carbon/epoxy composites”, J. Compos. Mater. 2010, 44, 75–94. DOI:10.1177/0021998309345302.
  • Gates, T. S. “Matrix-dominated stress/strain behavior in polymeric composites : Effects of hold time, nonlinearity, and rate dependency”, 1993, in 11th Volume: Composite Materials—Testing and Design, ed. E. Camponeschi (West Conshohocken, PA: ASTM International), 177–189.
  • Maimí, P.; Camanho, P. P.; Mayugo, J. A.; Dávila, C. G. “A continuum damage model for composite laminates: Part I – Constitutive model”, Mech. Mater. 2007, 39, 897–908. DOI:10.1016/j.mechmat.2007.03.005.
  • Raghavan, P.; Ghosh, S. “A continuum damage mechanics model for unidirectional composites undergoing interfacial debonding”, Mech. Mater. 2005, 37, 955–979. DOI:10.1016/J.MECHMAT.2004.10.003.
  • Barbero, E. J.; Vivo, L. D. “A constitutive model for elastic damage in fiber-reinforced PMC laminae”, Int. J. Damage Mech. 2001, 10, 73–93. DOI:10.1106/6PQ6-31JW-F69K-74LU.
  • Asadi, A.; Raghavan, J. “Influence of time-dependent damage on creep of multidirectional polymer composite laminates”, Compos. B 2011, 42, 489–498. DOI:10.1016/j.compositesb.2010.12.003.
  • Davies, P.; MazÉas, F.; Casari, P. “Sea water aging of glass reinforced composites: Shear behaviour and damage modelling”, J. Compos. Mater. 2001, 35, 1343–1372. DOI:10.1106/MNBC-81UB-NF5H-P3ML.
  • O’Higgins, R. M.; McCarthy, C. T.; McCarthy, M. A. “Identification of damage and plasticity parameters for continuum damage mechanics modelling of carbon and glass fibre-reinforced composite materials”, Strain 2011, 47, 105–115. DOI:10.1111/j.1475-1305.2009.00649.x.
  • Johnson, A.; Pickett, A.; Rozycki, P. “Computational methods for predicting impact damage in composite structures”, Compos. Sci. Technol. 2001, 61, 2183–2192. DOI:10.1016/S0266-3538(01)00111-7.
  • Donadon, M. V.; Iannucci, L.; Falzon, B. G.; Hodgkinson, J. M.; de Almeida, S. F. M. “A progressive failure model for composite laminates subjected to low velocity impact damage”, Comput. Struct. 2008, 86, 1232–1252. DOI:10.1016/j.compstruc.2007.11.004.
  • Payan, J.; Hochard, C. “Damage modelling of laminated carbon/epoxy composites under static and fatigue loadings”, Int. J. Fatigue 2002, 24, 299–306. DOI:10.1016/S0142-1123(01)00085-8.
  • Hochard, C.; Aubourg, P. A.; Charles, J. P. “Modelling of the mechanical behaviour of woven-fabric CFRP laminates up to failure”, Compos. Sci. Technol. 2001, 61, 221–230. DOI:10.1016/S0266-3538(00)00199-8.
  • Allix, O.; Ladevèze, P. “Interlaminar interface modelling for the prediction of delamination”, Compos. Struct. 1992, 22, 235–242. DOI:10.1016/0263-8223(92)90060-P.
  • Flatscher, T.; Schuecker, C.; Pettermann, H. E. “Prediction of plastic strain accumulation in continuous fiber reinforced laminates by a constitutive ply model”, Int. J. Fract. 2009, 158, 145–156. DOI:10.1007/s10704-009-9345-4.
  • Schuecker, C.; Pettermann, H. E. “A continuum damage model for fiber reinforced laminates based on ply failure mechanisms”, Compos. Struct. 2006, 76, 162–173. DOI:10.1016/j.compstruct.2006.06.023.
  • Schuecker, C.; Pettermann, H. E. “Fiber reinforced laminates: Progressive damage modeling based on failure mechanisms”, Arch. Comput. Methods Eng. 2008, 15, 163–184. DOI:10.1007/s11831-008-9016-z.
  • Flatscher, T.; Pettermann, H. E. “A constitutive model for fiber-reinforced polymer plies accounting for plasticity and brittle damage including softening - Implementation for implicit FEM”, Compos. Struct. 2011, 93, 2241–2249. DOI:10.1016/j.compstruct.2011.03.012.
  • Van Paepegem, W.; De Baere, I.; Degrieck, J. “Modelling the nonlinear shear stress–strain response of glass fibre-reinforced composites. Part II: Model development and finite element simulations”, Compos. Sci. Technol. 2006, 66, 1465–1478. DOI:10.1016/j.compscitech.2005.04.018.
  • Mandel, U. Mechanism Based Constitutive Model for Composite Laminates; Technische Universität München: München, Germany, 2017.
  • Chen, J. F.; Morozov, E. V.; Shankar, K. “A combined elastoplastic damage model for progressive failure analysis of composite materials and structures”, Compos. Struct. 2012, 94, 3478–3489. DOI:10.1016/j.compstruct.2012.04.021.
  • Chen, J.-F.; Morozov, E. V.; Shankar, K. “Simulating progressive failure of composite laminates including in-ply and delamination damage effects”, Compos. A 2014, 61, 185–200. DOI:10.1016/j.compositesa.2014.02.013.
  • Vasiukov, D.; Panier, S.; Hachemi, A. “Non-linear material modeling of fiber-reinforced polymers based on coupled viscoelasticity – Viscoplasticity with anisotropic continuous damage mechanics”, Compos. Struct. 2015, 132, 527–535. DOI:10.1016/j.compstruct.2015.05.027.
  • Vogler, M.; Rolfes, R.; Camanho, P. P. “Modeling the inelastic deformation and fracture of polymer composites – Part I: Plasticity model”, Mech. Mater. 2013, 59, 50–64. DOI:10.1016/j.mechmat.2012.12.002.
  • Koerber, H.; Kuhn, P.; Ploeckl, M.; Otero, F.; Gerbaud, P.; Rolfes, R.; Camanho, P. P. “Experimental characterization and constitutive modeling of the non-linear stress – strain behavior of unidirectional carbon – epoxy under high strain rate loading”, Adv. Model. Simul. Eng. Sci. 2018 5:17. DOI:10.1186/s40323-018-0111-x.
  • Vyas, G. M.; Pinho, S. T.; Robinson, P. “Constitutive modelling of fibre-reinforced composites with unidirectional plies using a plasticity-based approach”, Compos. Sci. Technol. 2011, 71, 1068–1074. DOI:10.1016/j.compscitech.2011.03.009.
  • Camanho, P. P.; Bessa, M. A.; Catalanotti, G.; Vogler, M.; Rolfes, R. “Modeling the inelastic deformation and fracture of polymer composites – Part II: Smeared crack model”, Mech. Mater 2013, 59, 36–49. DOI:10.1016/j.mechmat.2012.12.001.
  • Song, B.; Chen, W.; Weerasooriya, T. “Quasi-static and dynamic compressive behaviors of a S-2 glass/SC15 composite”, J. Compos. Mater. 2003, 37, 1723–1743. DOI:10.1177/002199803035189.
  • Goldberg, R.; Carney, K.; DuBois, P.; Hoffarth, C.; Harrington, J.; Rajan, S.; Blankenhorn, G. Theoretical Development of an Orthotropic Elasto-Plastic Generalized Composite Material Model; National Aeronautics and Space Administration Glenn Research Center: Cleveland, OH, 2014; NASA/TM-20.
  • Goldberg, R. K.; Carney, K. S.; DuBois, P.; Hoffarth, C.; Rajan, S.; Blankenhorn, G. Analysis and Characterization of Damage Utilizing an Orthotropic Generalized Composite Material Model Suitable for Use in Impact Problems. National Aeronautics and Space Administration Glenn Research Center: Cleveland, OH, 2016; NASA/TM-20.
  • Goldberg, R. K.; Carney, K. S.; DuBois, P.; Hoffarth, C.; Khaled, B.; Shyamsunder, L.; Rajan, S.; Blankenhorn, G. Incorporation of Failure Into an Orthotropic Three-Dimensional Model With Tabulated Input Suitable for Use in Composite Impact Problems. National Aeronautics and Space Administration Glenn Research Center: Cleveland, OH, 2017; NASA/TM-20.
  • Barbero, E. J.; Lonetti, P. “An inelastic damage model for fiber reinforced laminates”, J. Compos. Mater. 2002, 36, 941–962. DOI:10.1177/0021998302036008549.
  • Boutaous, A.; Peseux, B.; Gornet, L.; Bélaidi, A. “A new modeling of plasticity coupled with the damage and identification for carbon fibre composite laminates”, Compos. Struct. 2006, 74, 1–9. DOI:10.1016/j.compstruct.2005.11.004.
  • Bogetti, T. A.; Hoppel, C. P. R.; Harik, V. M.; Newill, J. F.; Burns, B. P. “Predicting the nonlinear response and progressive failure of composite laminates”, Compos. Sci. Technol. 2004, 64, 329–342. DOI:10.1016/S0266-3538(03)00217-3.
  • Melro, A. R.; Camanho, P. P.; Andrade Pires, F. M.; Pinho, S. T. “Micromechanical analysis of polymer composites reinforced by unidirectional fibres: Part I – Constitutive modeling”, Int. J. Solids Struct. 2013, 50, 1897–1905. DOI:10.1016/j.ijsolstr.2013.02.009.
  • Galkin, S.; Schirmaier, F. J.; Kärger, L. “Simplified phenomenological model of the nonlinear behavior of FRPS under combined stress states”, J. Compos. Mater. 2018, 52, 475–485. DOI:10.1177/0021998317709332.
  • Tan, W.; Falzon, B. G. “Modelling the nonlinear behaviour and fracture process of AS4/PEKK thermoplastic composite under shear loading”, Compos. Sci. Technol. 2016, 126, 60–77. DOI:10.1016/j.compscitech.2016.02.008.
  • Park, I. K.; Park, K. J.; Kim, S. J. “Rate-dependent damage model for polymeric composites under in-plane shear dynamic loading”, Comput. Mater. Sci. 2015, 96, 506–519. DOI:10.1016/j.commatsci.2014.04.067.
  • Clegg, R. A.; White, D. M.; Riedel, W.; Harwick, W. “Hypervelocity impact damage prediction in composites : Part I — Material model and characterisation”, Int. J. Impact Eng. 2006, 33, 190–200. DOI:10.1016/j.ijimpeng.2006.09.055.
  • Donadon, M. V.; Almeida, S.; Faria, A. R. De, “A three-dimensional ply failure model for composite structures a three-dimensional ply failure model for composite structures”, Int. J. Aerosp. Eng. 2009, 2009, 1–22. DOI:10.1155/2009/486063.
  • Aragonés, D. Fracture Micromechanisms in C/Epoxy Composites Under Transverse Compression; Universidad Politécnica de Madrid: Madrid, Spain, 2007.
  • Kennedy, J. M.; Barnett, T. R.; Farley, G. L. “Experimental and analytical evaluation of a biaxial test for determining in-plane shear properties of composites”, Sampe Q 1992, 24, 28–37.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.