2,546
Views
98
CrossRef citations to date
0
Altmetric
Reviews

Processing and Properties of Nanofibrous Bacterial Cellulose-Containing Polymer Composites: A Review of Recent Advances for Biomedical Applications

, , , &
Pages 144-170 | Received 30 Aug 2018, Accepted 24 Aug 2019, Published online: 17 Sep 2019

References

  • Kumbar, S. G.; James, R.; Nukavarapu, S. P.; Laurencin, C. T. Electrospun Nanofiber Scaffolds: Engineering Soft Tissues. Biomed. Mater. 2008, 3, 034002. DOI:10.1088/1748-6041/3/3/034002.
  • Arya, N.; Sharma, P.; Katti, D. S. Designing Nanofibrous Scaffolds for Tissue Engineering. In Advanced Biomaterials: fundamentals, Processing, and Applications. New Jersey, United States: John Wiley & Sons, Inc, 2010; pp. 435–497.
  • Ashammakhi, N.; Ndreu, A.; Piras, A. M.; Nikkola, L.; Sindelar, T.; Ylikauppila, H.; Harlin, A.; Gomes, M. E.; Neves, N. M.; Chiellini, E.; et al. Biodegradable Nanomats Produced by Electrospinning: Expanding Multifunctionality and Potential for Tissue Engineering. J. Nanosci. Nanotechnol. 2007, 7, 862–882. DOI:10.1166/jnn.2007.485.
  • Han, D.; Gouma, P. I. Electrospun Bioscaffolds That Mimic the Topology of Extracellular Matrix. Nanomedicine 2006, 2, 37–41. DOI:10.1016/j.nano.2006.01.002.
  • Kluge, J. A.; Mauck, R. L. “Synthetic/Biopolymer Nanofibrous Composites as Dynamic Tissue Engineering Scaffolds”, In Biomedical Applications of Polymeric Nanofibers; Jayakumar, R. and Nair, S. Eds.; Springer Berlin Heidelberg: Berlin, Heidelberg, 2012. pp. 101–130.
  • Zhang, Y. Z.; Su, B.; Venugopal, J.; Ramakrishna, S.; Lim, C. T. Biomimetic and Bioactive Nanofibrous Scaffolds from Electrospun Composite Nanofibers. Int. J. Nanomed. 2007, 2, 623–638.
  • Lu, Y.; Huang, J.; Yu, G.; Cardenas, R.; Wei, S.; Wujcik, E. K.; Guo, Z. Coaxial Electrospun Fibers: Applications in Drug Delivery and Tissue Engineering. Wires. Nanomed. Nanobiotechnol. 2016, 8, 654–677. DOI:10.1002/wnan.1391.
  • Qu, H.; Wei, S.; Guo, Z. Coaxial Electrospun Nanostructures and Their Applications. J. Mater. Chem. A 2013, 1, 11513–11528. DOI:10.1039/c3ta12390a.
  • Qin, X. 3 - Coaxial electrospinning of nanofibers A2 - Afshari, Mehdi, In Electrospun Nanofibers; Sawston, Cambridge, United Kingdom: Woodhead Publishing, 2017. pp. 41–71.
  • Li, W.-J.; Tuan, R. S. Fabrication and Application of Nanofibrous Scaffolds in Tissue Engineering. Current Protocols in Cell Biology/Editorial Board 2009, 42, 25.2.1–25.2.12. DOI:10.1002/0471143030.cb2502s42.
  • Ndreu, A.; Nikkola, L.; Ylikauppila, H.; Ashammakhi, N.; Hasirci, V. Electrospun Biodegradable Nanofibrous Mats for Tissue Engineering. Nanomedicine (Lond.) 2008, 3, 45–60. DOI:10.2217/17435889.3.1.45.
  • McCullen, S. D.; Ramaswamy, S.; Clarke, L. I.; Gorga, R. E. Nanofibrous Composites for Tissue Engineering Applications. Wires. Nanomed. Nanobiotechnol. 2009, 1, 369–390. DOI:10.1002/wnan.39.
  • Ingavle, G. C.; Leach, J. K. Advancements in Electrospinning of Polymeric Nanofibrous Scaffolds for Tissue Engineering. Tissue Eng. Part B Rev. 2014, 20, 277–293. DOI:10.1089/ten.teb.2013.0276.
  • Rajwade, J. M.; Paknikar, K. M.; Kumbhar, J. V. Applications of Bacterial Cellulose and Its Composites in Biomedicine. Appl. Microbiol. Biotechnol. 2015, 99, 2491–2511. DOI:10.1007/s00253-015-6426-3.
  • Shah, N.; Ul-Islam, M.; Khattak, W. A.; Park, J. K. Overview of Bacterial Cellulose Composites: A Multipurpose Advanced Material. Carbohydr. Polym. 2013, 98, 1585–1598. DOI:10.1016/j.carbpol.2013.08.018.
  • Cacicedo, M. L.; Castro, M. C.; Servetas, I.; Bosnea, L.; Boura, K.; Tsafrakidou, P.; Dima, A.; Terpou, A.; Koutinas, A.; Castro, G. R. Progress in Bacterial Cellulose Matrices for Biotechnological Applications. Bioresour. Technol. 2016, 213, 172–180. DOI:10.1016/j.biortech.2016.02.071.
  • de Olyveira, G. M.; Manzine Costa, L. M.; Basmaji, P.; Xavier Filho, L. Bacterial Nanocellulose for Medicine Regenerative. J. Nanotechnol. Eng. Med. 2011, 2, 034001–034001-8. DOI:10.1115/1.4004181.
  • Annabi, N.; Tsang, K.; Mithieux, S. M.; Nikkhah, M.; Ameri, A.; Khademhosseini, A.; Weiss, A. S. Highly Elastic Micropatterned Hydrogel for Engineering Functional Cardiac Tissue. Adv. Funct. Mater. 2013, 23, 4950–4959. DOI:10.1002/adfm.201300570.
  • Ul-Islam, M.; Khan, T.; Park, J. K. Water Holding and Release Properties of Bacterial Cellulose Obtained by in Situ and Ex Situ Modification. Carbohydr. Polym. 2012, 88, 596–603. DOI:10.1016/j.carbpol.2012.01.006.
  • Kim, J.; Cai, Z.; Chen, Y. Biocompatible Bacterial Cellulose Composites for Biomedical Application. J. Nanotechnol. Eng. Med. 2010, 1, 011006–011006-7. DOI:10.1115/1.4000062.
  • Kim, I.-Y.; Seo, S.-J.; Moon, H.-S.; Yoo, M.-K.; Park, I.-Y.; Kim, B.-C.; Cho, C.-S. Chitosan and Its Derivatives for Tissue Engineering Applications. Biotechnol. Adv. 2008, 26, 1–21. DOI:10.1016/j.biotechadv.2007.07.009.
  • Siró, I.; Plackett, D. Microfibrillated Cellulose and New Nanocomposite Materials: A Review. Cellulose 2010, 17, 459–494. DOI:10.1007/s10570-010-9405-y.
  • Saheb, D. N.; Jog, J. P. Natural Fiber Polymer Composites: A Review. Adv. Polym. Technol. 1999, 18, 351–363. DOI:10.1002/(SICI)1098-2329(199924)18:4<351::AID-ADV6>3.3.CO;2-O.
  • Kushwaha, R. K.; Srivastava, A. Recent Developments in Bio-Nanocomposites: A Review. Res. J. Nanosci. Eng. 2018, 2, 1–4.
  • Li, Z.; Zhou, X.; Pei, C. Effect of Sisal Fiber Surface Treatment on Properties of Sisal Fiber Reinforced Polylactide Composites. Int. J. Polym. Sci. 2011, 2011, 1. DOI:10.1155/2011/803428.
  • Bodin, A.; Bharadwaj, S.; Wu, S.; Gatenholm, P.; Atala, A.; Zhang, Y. Tissue-Engineered Conduit Using Urine-Derived Stem Cells Seeded Bacterial Cellulose Polymer in Urinary Reconstruction and Diversion. Biomaterials 2010, 31, 8889–8901. DOI:10.1016/j.biomaterials.2010.07.108.
  • Shoda, M.; Sugano, Y. Recent Advances in Bacterial Cellulose Production. Biotechnol. Bioprocess Eng. 2005, 10, 1. DOI:10.1007/BF02931175.
  • Petersen, N.; Gatenholm, P. Bacterial Cellulose-Based Materials and Medical Devices: Current State and Perspectives. Appl. Microbiol. Biotechnol. 2011, 91, 1277–1286. DOI:10.1007/s00253-011-3432-y.
  • Habibi, Y.; Lucia, L. A.; Rojas, O. J. Cellulose Nanocrystals: Chemistry, Self-Assembly, and Applications. Chem. Rev. 2010, 110, 3479–3500. DOI:10.1021/cr900339w.
  • Scheers, I.; Palermo, J.; Freedman, S.; Wilschanski, M.; Shah, U.; Abu-El-Hajia, M.; Barth, B.; Fishman, D.; Gariepy, C.; Giefer, M. NCBINCBI Logo Skip to Main Content Skip to Navigation Resources How to about NCBI Accesskeys Sign in to NCBI PubMed US National Library of Medicine National Institutes of Health Search Database Search Term Clear Input Advanced Help Result Filters Format: Abstract Send to J Pediatr Gastroenterol Nutr. 2018 May 9. J. Pediatr. Gastroenterol. Nutr. 2018, 75, 400–403.
  • Hu, Y. A Novel Bioabsorbable Bacterial Cellulose. Ph.D. thesis, The Graduate School College of Engineering, The Pennsylvania State University, 2011.
  • Cannon, R. E.; Anderson, S. M. Biogenesis of Bacterial Cellulose. Crit. Rev. Microbiol. 1991, 17, 435–447. DOI:10.3109/10408419109115207.
  • Torres, F. G.; Commeaux, S.; Troncoso, O. P. Biocompatibility of Bacterial Cellulose Based Biomaterials. JFB. 2012, 3, 864–878. DOI:10.3390/jfb3040864.
  • Feng, Y.; Zhang, X.; Shen, Y.; Yoshino, K.; Feng, W. A Mechanically Strong, Flexible and Conductive Film Based on Bacterial Cellulose/Graphene Nanocomposite. Carbohydr. Polym. 2012, 87, 644–649. DOI:10.1016/j.carbpol.2011.08.039.
  • Wu, J.; Zheng, Y.; Song, W.; Luan, J.; Wen, X.; Wu, Z.; Chen, X.; Wang, Q.; Guo, S. In Situ Synthesis of Silver-Nanoparticles/Bacterial Cellulose Composites for Slow-Released Antimicrobial Wound Dressing. Carbohydr. Polym. 2014, 102, 762–771. DOI:10.1016/j.carbpol.2013.10.093.
  • Shao, W.; Liu, H.; Liu, X.; Wang, S.; Zhang, R. Anti-Bacterial Performances and Biocompatibility of Bacterial Cellulose/Graphene Oxide Composites. RSC Adv. 2015, 5, 4795–4803. DOI:10.1039/C4RA13057J.
  • Zhu, W.; Li, W.; He, Y.; Duan, T. In-Situ Biopreparation of Biocompatible Bacterial Cellulose/Graphene Oxide Composites Pellets. Appl. Surf. Sci. 2015, 338, 22–26. DOI:10.1016/j.apsusc.2015.02.030.
  • Phisalaphong, M.; Suwanmajo, T.; Tammarate, P. Synthesis and Characterization of Bacterial Cellulose/Alginate Blend Membranes. J. Appl. Polym. Sci. 2008, 107, 3419–3424. DOI:10.1002/app.27411.
  • Yano, S.; Maeda, H.; Nakajima, M.; Hagiwara, T.; Sawaguchi, T. Preparation and Mechanical Properties of Bacterial Cellulose Nanocomposites Loaded with Silica Nanoparticles. Cellulose 2008, 15, 111–120. DOI:10.1007/s10570-007-9152-x.
  • Yoon, S. H.; Jin, H.-J.; Kook, M.-C.; Pyun, Y. R. Electrically Conductive Bacterial Cellulose by Incorporation of Carbon Nanotubes. Biomacromolecules 2006, 7, 1280–1284. DOI:10.1021/bm050597g.
  • Zhang, T.; Wang, W.; Zhang, D.; Zhang, X.; Ma, Y.; Zhou, Y.; Qi, L. Biotemplated Synthesis of Gold Nanoparticle–Bacteria Cellulose Nanofiber Nanocomposites and Their Application in Biosensing. Adv. Funct. Mater. 2010, 20, 1152–1160. DOI:10.1002/adfm.200902104.
  • Ul-Islam, M.; Khattak, W. A.; Ullah, M. W.; Khan, S.; Park, J. K. Synthesis of Regenerated Bacterial Cellulose-Zinc Oxide Nanocomposite Films for Biomedical Applications. Cellulose 2014, 21, 433–447. DOI:10.1007/s10570-013-0109-y.
  • Katepetch, C.; Rujiravanit, R. Synthesis of Magnetic Nanoparticle into Bacterial Cellulose Matrix by Ammonia Gas-Enhancing in Situ co-Precipitation Method. Carbohydr. Polym. 2011, 86, 162–170. DOI:10.1016/j.carbpol.2011.04.024.
  • Arias, S. L.; Shetty, A. R.; Senpan, A.; Echeverry-Rendón, M.; Reece, L. M.; Allain, J. P. Fabrication of a Functionalized Magnetic Bacterial Nanocellulose with Iron Oxide Nanoparticles. J. Vis. Exp. 2016, (111), e52951. DOI:10.3791/52951.
  • Andrade, F. K.; Costa, R.; Domingues, L.; Soares, R.; Gama, M. Improving Bacterial Cellulose for Blood Vessel Replacement: Functionalization with a Chimeric Protein Containing a Cellulose-Binding Module and an Adhesion Peptide. Acta Biomater. 2010, 6, 4034–4041. DOI:10.1016/j.actbio.2010.04.023.
  • Moniri, M.; Boroumand Moghaddam, A.; Azizi, S.; Abdul Rahim, R.; Bin Ariff, A.; Zuhainis Saad, W.; Navaderi, M.; Mohamad, R. Production and Status of Bacterial Cellulose in Biomedical Engineering. Nanomaterials 2017, 7, 257. DOI:10.3390/nano7090257.
  • Saibuatong, O-a.; Phisalaphong, M. Novo Aloe Vera–Bacterial Cellulose Composite Film from Biosynthesis. Carbohydr. Polym. 2010, 79, 455–460. DOI:10.1016/j.carbpol.2009.08.039.
  • Ul-Islam, M.; Ha, J. H.; Khan, T.; Park, J. K. Effects of Glucuronic Acid Oligomers on the Production, Structure and Properties of Bacterial Cellulose. Carbohydr. Polym. 2013, 92, 360–366. DOI:10.1016/j.carbpol.2012.09.060.
  • Tang, W.; Jia, S.; Jia, Y.; Yang, H. The Influence of Fermentation Conditions and Post-Treatment Methods on Porosity of Bacterial Cellulose Membrane. World J. Microbiol. Biotechnol. 2010, 26, 125. DOI:10.1007/s11274-009-0151-y.
  • Ul-Islam, M.; Shah, N.; Ha, J. H.; Park, J. K. Effect of Chitosan Penetration on Physico-Chemical and Mechanical Properties of Bacterial Cellulose. Korean J. Chem. Eng. 2011, 28, 1736. DOI:10.1007/s11814-011-0042-4.
  • Khan, S.; Ul-Islam, M.; Khattak, W. A.; Ullah, M. W.; Park, J. K. Bacterial Cellulose-Titanium Dioxide Nanocomposites: Nanostructural Characteristics, Antibacterial Mechanism, and Biocompatibility. Cellulose 2015, 22, 565–579. DOI:10.1007/s10570-014-0528-4.
  • Maneerung, T.; Tokura, S.; Rujiravanit, R. Impregnation of Silver Nanoparticles into Bacterial Cellulose for Antimicrobial Wound Dressing. Carbohydr. Polym. 2008, 72, 43–51. DOI:10.1016/j.carbpol.2007.07.025.
  • Backdahl, H.; Esguerra, M.; Delbro, D.; Risberg, B.; Gatenholm, P. Engineering Microporosity in Bacterial Cellulose Scaffolds. J. Tissue Eng. Regen. Med. 2008, 2, 320–330. DOI:10.1002/term.97.
  • Qiu, K.; Netravali, A. N. A Review of Fabrication and Applications of Bacterial Cellulose Based Nanocomposites. Polym. Rev. 2014, 54, 598–626. DOI:10.1080/15583724.2014.896018.
  • Percival, S. Answers Linked to Percival SL, Bowler PG, Russell AD. Bacterial Resistance to Silver in Wound Care. J Hosp Infect 2005; 60: 1—7. J. Hosp. Infect. 2006, 62, 239. DOI:10.1016/j.jhin.2005.04.007.
  • Chen, S.; Zhou, B.; Hu, W.; Zhang, W.; Yin, N.; Wang, H. Polyol Mediated Synthesis of ZnO Nanoparticles Templated by Bacterial Cellulose. Carbohydr. Polym. 2013, 92, 1953–1959. DOI:10.1016/j.carbpol.2012.11.059.
  • Li, M.; Lv, X.; Ma, X.; Sun, F.; Tang, L.; Wang, Z. Direct Synthesis of Monodispersed ZnO Nanoparticles in an Aqueous Solution. Mater. Lett. 2007, 61, 690–693.
  • Mao, Z.; Shi, Q.; Zhang, L.; Cao, H. The Formation and UV-Blocking Property of Needle-Shaped ZnO Nanorod on Cotton Fabric. Thin Solid Films 2009, 517, 2681–2686. DOI:10.1016/j.tsf.2008.12.007.
  • GonçAlves, G.; Marques, P. A. A. P.; Neto, C. P.; Trindade, T.; Peres, M.; Monteiro, T. Growth, Structural, and Optical Characterization of ZnO-Coated Cellulosic Fibers. Cryst. Growth Design 2009, 9, 386–390. DOI:10.1021/cg800596z.
  • Chen, M.; Kang, H.; Gong, Y.; Guo, J.; Zhang, H.; Liu, R. Bacterial Cellulose Supported Gold Nanoparticles with Excellent Catalytic Properties. ACS Appl. Mater. Interfaces 2015, 7, 21717–21726. DOI:10.1021/acsami.5b07150.
  • Jain, P. K.; Huang, X.; El-Sayed, I. H.; El-Sayed, M. A. Noble Metals on the Nanoscale: optical and Photothermal Properties and Some Applications in Imaging, Sensing, Biology, and Medicine. Acc. Chem. Res. 2008, 41, 1578–1586. DOI:10.1021/ar7002804.
  • Jin, M.; Liu, H.; Zhang, H.; Xie, Z.; Liu, J.; Xia, Y. Synthesis of Pd Nanocrystals Enclosed by {100} Facets and with Sizes< 10 nm for Application in CO Oxidation. Nano Res. 2011, 4, 83–91.
  • Wang, S.; Zhang, M.; Zhang, W. Yolk − Shell Catalyst of Single Au Nanoparticle Encapsulated within Hollow Mesoporous Silica Microspheres. ACS Catal. 2011, 1, 207–211. DOI:10.1021/cs1000762.
  • Laudenslager, M. J.; Schiffman, J. D.; Schauer, C. L. Carboxymethyl Chitosan as a Matrix Material for Platinum, Gold, and Silver Nanoparticles. Biomacromolecules 2008, 9, 2682–2685. DOI:10.1021/bm800835e.
  • Chen, P.; Kim, H.-S.; Kwon, S.-M.; Yun, Y. S.; Jin, H.-J. Regenerated Bacterial Cellulose/Multi-Walled Carbon Nanotubes Composite Fibers Prepared by Wet-Spinning. Curr Appl. Phys. 2009, 9, e96–e99. DOI:10.1016/j.cap.2008.12.038.
  • Salavagione, H. J.; Gómez, M. A.; Martínez, G. Polymeric Modification of Graphene through Esterification of Graphite Oxide and Poly (Vinyl Alcohol). Macromolecules 2009, 42, 6331–6334. DOI:10.1021/ma900845w.
  • Yoshikawa, H.; Tamai, N.; Murase, T.; Myoui, A. Interconnected Porous Hydroxyapatite Ceramics for Bone Tissue Engineering. J R Soc Interface 2009, 6, S341–S8.
  • Na, Y.; Chen, S-y.; Ouyang, Y.; Lian, T.; Yang, J-x.; Wang, H-p. Biomimetic Mineralization Synthesis of Hydroxyapatite Bacterial Cellulose Nanocomposites. Progr Nat Sci: Mater Int.2011, 21, 472–477. DOI:10.1016/S1002-0071(12)60085-9.
  • Wan, Y.; Huang, Y.; Yuan, C.; Raman, S.; Zhu, Y.; Jiang, H.; He, F.; Gao, C. Biomimetic Synthesis of Hydroxyapatite/Bacterial Cellulose Nanocomposites for Biomedical Applications. Mater. Sci. Eng. C 2007, 27, 855–864. DOI:10.1016/j.msec.2006.10.002.
  • Azarniya, A.; Eslahi, N.; Mahmoudi, N.; Simchi, A. Effect of Graphene Oxide Nanosheets on the Physico-Mechanical Properties of Chitosan/Bacterial Cellulose Nanofibrous Composites. Compos. Part A Appl. Sci. Manufact. 2016, 85, 113–122. DOI:10.1016/j.compositesa.2016.03.011.
  • Eichhorn, S. J.; Dufresne, A.; Aranguren, M.; Marcovich, N. E.; Capadona, J. R.; Rowan, S. J.; Weder, C.; Thielemans, W.; Roman, M.; Renneckar, S.; et al. Current International Research into Cellulose Nanofibres and Nanocomposites. J. Mater. Sci. 2010, 45, 1. DOI:10.1007/s10853-009-3874-0.
  • Park, W. I.; Kang, M.; Kim, H. S.; Jin, H. J. Electrospinning of poly (ethylene oxide) with bacterial cellulose whiskers. In Macromolecular Symposia; Weinheim, Germany: Wiley Online Library, 2007. pp. 289–294. DOI:10.1002/masy.200750347.
  • Xiao, Y.; Cao, Y.; Xin, B.; Liu, Y.; Chen, Z.; Lin, L.; Sun, Y. Fabrication and Characterization of Electrospun Cellulose/Polyacrylonitrile Nanofibers with Cu (II) Ions. Cellulose 2018, 25, 2955–2963. DOI:10.1007/s10570-018-1784-5.
  • Mahdavi, M.; Mahmoudi, N.; Rezaie Anaran, F.; Simchi, A. Electrospinning of Nanodiamond-Modified Polysaccharide Nanofibers with Physico-Mechanical Properties Close to Natural Skins. Mar. Drugs 2016, 14, 128. DOI:10.3390/md14070128.
  • Li, X.; Bian, F.; Lin, J.; Zeng, Y. Effect of Electric Field on the Morphology and Mechanical Properties of Electrospun Fibers. RSC Adv. 2016, 6, 50666–50672. DOI:10.1039/C6RA09635B.
  • Aydogdu, M. O.; Altun, E.; Crabbe-Mann, M.; Brako, F.; Koc, F.; Ozen, G.; Kuruca, S. E.; Edirisinghe, U.; Luo, C.; Gunduz, O.; Edirisinghe, M. Cellular Interactions with Bacterial Cellulose: Polycaprolactone Nanofibrous Scaffolds Produced by a Portable Electrohydrodynamic Gun for Point-of-Need Wound Dressing. Int. Wound J. 15, 789–797. DOI:10.1111/iwj.12929.
  • Li, Z.; Yin, X.; Qin, J.; Zhu, L. “Preparation and Hemocompatibility of Electrospun Bacteria Cellulose Sulfate/Polyvinyl Alcohol Nanofibrous Composite Membrane”, In IOP Conference Series: Materials Science and Engineering; IOP Publishing, 2018. pp. 022005. DOI:10.1088/1757-899X/382/2/022005.
  • Ardila, N.; Medina, N.; Arkoun, M.; Heuzey, M.-C.; Ajji, A.; Panchal, C. J. Chitosan–Bacterial Nanocellulose Nanofibrous Structures for Potential Wound Dressing Applications. Cellulose 2016, 23, 3089–3104. DOI:10.1007/s10570-016-1022-y.
  • Sofokleous, P.; Stride, E.; Bonfield, W.; Edirisinghe, M. Design, Construction and Performance of a Portable Handheld Electrohydrodynamic Multi-Needle Spray Gun for Biomedical Applications. Mater. Sci. Eng. C 2013, 33, 213–223. DOI:10.1016/j.msec.2012.08.033.
  • Lau, W. K.; Sofokleous, P.; Day, R.; Stride, E.; Edirisinghe, M. A Portable Device for in Situ Deposition of Bioproducts. Bioinspir. Biomim. Nanobiomater. 2014, 3, 94–105. DOI:10.1680/bbn.13.00030.
  • Fabra, M. J.; López-Rubio, A.; Ambrosio-Martín, J.; Lagaron, J. M. Improving the Barrier Properties of thermoplastic corn starch-Based Films Containing Bacterial Cellulose Nanowhiskers by Means of PHA Electrospun Coatings of Interest in Food Packaging. Food Hydrocoll. 2016, 61, 261–268. DOI:10.1016/j.foodhyd.2016.05.025.
  • Park, D. J.; Choi, Y.; Heo, S.; Cho, S. Y.; Jin, H.-J. Bacterial Cellulose Nanocrystals-Embedded Silk Nanofibers. J. Nanosci. Nanotechnol. 2012, 12, 6139–6144. DOI:10.1166/jnn.2012.6371.
  • Gao, C.; Wan, Y.; He, F.; Liang, H.; Luo, H.; Han, J. Mechanical, Moisture Absorption, and Photodegradation Behaviors of Bacterial Cellulose Nanofiber‐Reinforced Unsaturated Polyester Composites. Adv. Polym. Technol. 2011, 30, 249–256. DOI:10.1002/adv.20220.
  • Taokaew, S.; Phisalaphong, M.; Newby, B-m. Z. Modification of Bacterial Cellulose with Organosilanes to Improve Attachment and Spreading of Human Fibroblasts. Cellulose 2015, 22, 2311–2324. DOI:10.1007/s10570-015-0651-x.
  • Shao, W.; Wu, J.; Liu, H.; Ye, S.; Jiang, L.; Liu, X. Novel Bioactive Surface Functionalization of Bacterial Cellulose Membrane. Carbohydr. Polym. 2017, 178, 270–276. DOI:10.1016/j.carbpol.2017.09.045.
  • Fernandes, S. C.; Sadocco, P.; Alonso-Varona, A.; Palomares, T.; Eceiza, A.; Silvestre, A. J.; Mondragon, I.; Freire, C. S. Bioinspired Antimicrobial and Biocompatible Bacterial Cellulose Membranes Obtained by Surface Functionalization with Aminoalkyl Groups. ACS Appl. Mater. Interfaces 2013, 5, 3290–3297. DOI:10.1021/am400338n.
  • Wang, H.; Hansen, M. B.; Löwik, D. W.; van Hest, J. C.; Li, Y.; Jansen, J. A.; Leeuwenburgh, S. C. Oppositely Charged Gelatin Nanospheres as Building Blocks for Injectable and Biodegradable Gels. Adv. Mater. 2011, 23, H119–H124. DOI:10.1002/adma.201003908.
  • Hu, W.; Chen, S.; Xu, Q.; Wang, H. Solvent-Free Acetylation of Bacterial Cellulose under Moderate Conditions. Carbohydr. Polym. 2011, 83, 1575–1581. DOI:10.1016/j.carbpol.2010.10.016.
  • Ifuku, S.; Nogi, M.; Abe, K.; Handa, K.; Nakatsubo, F.; Yano, H. Surface Modification of Bacterial Cellulose Nanofibers for Property Enhancement of Optically Transparent Composites: dependence on Acetyl-Group DS. Biomacromolecules 2007, 8, 1973–1978. DOI:10.1021/bm070113b.
  • Ramírez, J. A. Á.; Hoyos, C. G.; Arroyo, S.; Cerrutti, P.; Foresti, M. L. Acetylation of Bacterial Cellulose Catalyzed by Citric Acid: Use of Reaction Conditions for Tailoring the Esterification Extent. Carbohydr. Polym. 2016, 153, 686–695. DOI:10.1016/j.carbpol.2016.08.009.
  • Iwata, T.; Indrarti, L.; Azuma, J.-I. Affinity of Hemicellulose for Cellulose Produced by Acetobacter Xylinum. Cellulose 1998, 5, 215–228. DOI:10.1023/A:1009237401548.
  • Shim, H.; Karina, M.; Yudianti, R.; Indrarti, L.; Azuma, J-i.; Uyama, H. One-Sided Surface Modification of Bacterial Cellulose Sheet as 2, 3-Dialdehyde. Polym-Plast. Technol. Eng. 2015, 54, 305–309. DOI:10.1080/03602559.2014.977428.
  • Pertile, R. A.; Andrade, F. K.; Alves, C.; Jr.; Gama, M. Surface Modification of Bacterial Cellulose by Nitrogen-Containing Plasma for Improved Interaction with Cells. Carbohydr. Polym. 2010, 82, 692–698. DOI:10.1016/j.carbpol.2010.05.037.
  • Frone, A.; Panaitescu, D.; Chiulan, I.; Nicolae, C.; Casarica, A.; Gabor, A.; Trusca, R.; Damian, C.; Purcar, V.; Alexandrescu, E.; Stanescu, P. Surface Treatment of Bacterial Cellulose in Mild, Eco-Friendly Conditions. Coatings 2018, 8, 221. DOI:10.3390/coatings8060221.
  • Lee, K.-Y.; Blaker, J. J.; Bismarck, A. Surface Functionalisation of Bacterial Cellulose as the Route to Produce Green Polylactide Nanocomposites with Improved Properties. Compos. Sci. Technol. 2009, 69, 2724–2733. DOI:10.1016/j.compscitech.2009.08.016.
  • Ul-Islam, M.; Khan, S.; Ullah, M. W.; Park, J. K. Bacterial Cellulose Composites: Synthetic Strategies and Multiple Applications in Bio-Medical and Electro-Conductive Fields. Biotechnol J 2015, 10, 1847–1861. DOI:10.1002/biot.201500106.
  • Picheth, G. F.; Pirich, C. L.; Sierakowski, M. R.; Woehl, M. A.; Sakakibara, C. N.; de Souza, C. F.; Martin, A. A.; da Silva, R.; de Freitas, R. A. Bacterial Cellulose in Biomedical Applications: A Review. Int. J. Biol. Macromol. 2017, 104, 97–106. DOI:10.1016/j.ijbiomac.2017.05.171.
  • Kim, J.; Kim, S. W.; Park, S.; Lim, K. T.; Seonwoo, H.; Kim, Y.; Hong, B. H.; Choung, Y. H.; Chung, J. H. Bacterial Cellulose Nanofibrillar Patch as a Wound Healing Platform of Tympanic Membrane Perforation. Adv. Healthcare Mater. 2013, 2, 1525–1531. DOI:10.1002/adhm.201200368.
  • Moreira, S.; Silva, N. B.; Almeida-Lima, J.; Rocha, H. A. O.; Medeiros, S. R. B.; Alves, C.; Jr.; Gama, F. M. BC Nanofibres: In Vitro Study of Genotoxicity and Cell Proliferation. Toxicol. Lett. 2009, 189, 235–241. DOI:10.1016/j.toxlet.2009.06.849.
  • Chen, Y.; Xi, T.; Zheng, Y.; Guo, T.; Hou, J.; Wan, Y.; Gao, C. In Vitro Cytotoxicity of Bacterial Cellulose Scaffolds Used for Tissue-Engineered Bone. J. Bioact. Compat. Polym. 2009, 24, 137–145. DOI:10.1177/0883911509102710.
  • Leung, V.; Ko, F. Biomedical Applications of Nanofibers. Polym. Adv. Technol. 2011, 22, 350–365. DOI:10.1002/pat.1813.
  • Rim, N. G.; Shin, C. S.; Shin, H. Current Approaches to Electrospun Nanofibers for Tissue Engineering. Biomed. Mater. 2013, 8, 014102. DOI:10.1088/1748-6041/8/1/014102.
  • Kim, J. E.; Noh, K. T.; Yu, H. S.; Lee, H. Y.; Jang, J. H.; Kim, H. W. A Fibronectin Peptide‐Coupled Biopolymer Nanofibrous Matrix to Speed up Initial Cellular Events. Adv. Eng. Mater. 2010, 12, B94–B100. DOI:10.1002/adem.200980008.
  • Zhang, Y.; Ouyang, H.; Lim, C. T.; Ramakrishna, S.; Huang, Z. M. Electrospinning of Gelatin Fibers and Gelatin/PCL Composite Fibrous Scaffolds. J. Biomed. Mater. Res. 2005, 72, 156–165. DOI:10.1002/jbm.b.30128.
  • Palaninathan, V.; Raveendran, S.; Rochani, A. K.; Chauhan, N.; Sakamoto, Y.; Ukai, T.; Maekawa, T.; Kumar, D. S. Bioactive Bacterial Cellulose Sulfate Electrospun Nanofibers for Tissue Engineering Applications. J. Tissue Eng. Regen. Med. 2018, 12, 1634. DOI:10.1002/term.2689.
  • Zhang, H.; Wang, J.; Wang, K.; Xu, L. A Bilayered PLGA/Multiwall Carbon Nanotubes/Bacterial Cellulose Composite Membrane for Tissue Regeneration of Maxillary Canine Periodontal Bone Defects. Mater. Lett. 2018, 212, 118–121. DOI:10.1016/j.matlet.2017.10.058.
  • Ostadhossein, F.; Mahmoudi, N.; Morales-Cid, G.; Tamjid, E.; Navas-Martos, F.; Soriano-Cuadrado, B.; Paniza, J.; Simchi, A. Development of Chitosan/Bacterial Cellulose Composite Films Containing Nanodiamonds as a Potential Flexible Platform for Wound Dressing. Materials 2015, 8, 6401. DOI:10.3390/ma8095309.
  • Zhang, X.; Fang, Y.; Chen, W. Preparation of Silver/Bacterial Cellulose Composite Membrane and Study on Its Antimicrobial Activity. Synth. React. Inorg. Met.-Org. Nano-Metal Chem. 2013, 43, 907–913. DOI:10.1080/15533174.2012.750674.
  • Barud, H. S.; Regiani, T.; #237; Marques, R. F. C.; Lustri, W. R.; Messaddeq, Y.; Ribeiro, S. J. L. Antimicrobial Bacterial Cellulose-Silver Nanoparticles Composite Membranes. J. Nanomater. 2011, 2011, 1. DOI:10.1155/2011/721631.
  • Wu, C.-N.; Fuh, S.-C.; Lin, S.-P.; Lin, Y.-Y.; Chen, H.-Y.; Liu, J.-M.; Cheng, K.-C. TEMPO-Oxidized Bacterial Cellulose Pellicle with Silver Nanoparticles for Wound Dressing. Biomacromolecules 2018, 19, 544–554. DOI:10.1021/acs.biomac.7b01660.
  • Yang, G.; Xie, J.; Hong, F.; Cao, Z.; Yang, X. Antimicrobial Activity of Silver Nanoparticle Impregnated Bacterial Cellulose Membrane: Effect of Fermentation Carbon Sources of Bacterial Cellulose. Carbohydr. Polym. 2012, 87, 839–845. DOI:10.1016/j.carbpol.2011.08.079.
  • Khalid, A.; Khan, R.; Ul-Islam, M.; Khan, T.; Wahid, F. Bacterial Cellulose-Zinc Oxide Nanocomposites as a Novel Dressing System for Burn Wounds. Carbohydr. Polym. 2017, 164, 214–221. DOI:10.1016/j.carbpol.2017.01.061.
  • Ul-Islam, M.; Khan, T.; Khattak, W. A.; Park, J. K. Bacterial cellulose-MMTs Nanoreinforced Composite Films: novel Wound Dressing Material with Antibacterial Properties. Cellulose 2013, 20, 589–596. DOI:10.1007/s10570-012-9849-3.
  • Liu, L.-P.; Yang, X.-N.; Ye, L.; Xue, D.-D.; Liu, M.; Jia, S.-R.; Hou, Y.; Chu, L.-Q.; Zhong, C. Preparation and Characterization of a Photocatalytic Antibacterial Material: Graphene Oxide/TiO2/Bacterial Cellulose Nanocomposite. Carbohydr. Polym. 2017, 174, 1078–1086. DOI:10.1016/j.carbpol.2017.07.042.
  • Zang, S.; Zhang, R.; Chen, H.; Lu, Y.; Zhou, J.; Chang, X.; Qiu, G.; Wu, Z.; Yang, G. Investigation on Artificial Blood Vessels Prepared from Bacterial Cellulose. Mater. Sci. Eng. C 2015, 46, 111–117. DOI:10.1016/j.msec.2014.10.023.
  • Putra, A.; Kakugo, A.; Furukawa, H.; Gong, J. P.; Osada, Y. Tubular Bacterial Cellulose Gel with Oriented Fibrils on the Curved Surface. Polymer 2008, 49, 1885–1891. DOI:10.1016/j.polymer.2008.02.022.
  • Leitão, A. F.; Faria, M. A.; Faustino, A. M.; Moreira, R.; Mela, P.; Loureiro, L.; Silva, I.; Gama, M. A Novel Small‐Caliber Bacterial Cellulose Vascular Prosthesis: Production, Characterization, and Preliminary in Vivo Testing. Macromol. Biosci. 2016, 16, 139–150. DOI:10.1002/mabi.201500251.
  • Bäckdahl, H.; Risberg, B.; Gatenholm, P. Observations on Bacterial Cellulose Tube Formation for Application as Vascular Graft. Mater. Sci. Eng. C 2011, 31, 14–21. DOI:10.1016/j.msec.2010.07.010.
  • Zimmermann, K. A.; LeBlanc, J. M.; Sheets, K. T.; Fox, R. W.; Gatenholm, P. Biomimetic Design of a Bacterial Cellulose/Hydroxyapatite Nanocomposite for Bone Healing Applications. Mater. Sci. Eng. C 2011, 31, 43–49. DOI:10.1016/j.msec.2009.10.007.
  • Zaborowska, M.; Bodin, A.; Backdahl, H.; Popp, J.; Goldstein, A.; Gatenholm, P. Microporous Bacterial Cellulose as a Potential Scaffold for Bone Regeneration. Acta Biomater. 2010, 6, 2540–2547. DOI:10.1016/j.actbio.2010.01.004.
  • Favi, P. M.; Benson, R. S.; Neilsen, N. R.; Hammonds, R. L.; Bates, C. C.; Stephens, C. P.; Dhar, M. S. Cell Proliferation, Viability, and in Vitro Differentiation of Equine Mesenchymal Stem Cells Seeded on Bacterial Cellulose Hydrogel Scaffolds. Mater. Sci. Eng. C Mater. Biol. Appl. 2013, 33, 1935–1944. DOI:10.1016/j.msec.2012.12.100.
  • Eslahi, N.; Abdorahim, M.; Simchi, A. Smart Polymeric Hydrogels for Cartilage Tissue Engineering: A Review on the Chemistry and Biological Functions. Biomacromolecules 2016, 17, 3441–3463. DOI:10.1021/acs.biomac.6b01235.
  • Akaraonye, E.; Filip, J.; Safarikova, M.; Salih, V.; Keshavarz, T.; Knowles Jonathan, C.; Roy, I. Composite Scaffolds for Cartilage Tissue Engineering Based on Natural Polymers of Bacterial Origin, Thermoplastic Poly(3‐Hydroxybutyrate) and Micro‐Fibrillated Bacterial Cellulose. Polym. Int. 2016, 65, 780–791. DOI:10.1002/pi.5103.
  • Svensson, A.; Nicklasson, E.; Harrah, T.; Panilaitis, B.; Kaplan, D. L.; Brittberg, M.; Gatenholm, P. Bacterial Cellulose as a Potential Scaffold for Tissue Engineering of Cartilage. Biomaterials 2005, 26, 419–431. DOI:10.1016/j.biomaterials.2004.02.049.
  • Feldmann, E.-M.; Sundberg, J. F.; Bobbili, B.; Schwarz, S.; Gatenholm, P.; Rotter, N. Description of a Novel Approach to Engineer Cartilage with Porous Bacterial Nanocellulose for Reconstruction of a Human Auricle. J. Biomater. Appl. 2013, 28, 626–640. DOI:10.1177/0885328212472547.
  • Wang, J.; Gao, C.; Zhang, Y.; Wan, Y. Preparation and in Vitro Characterization of BC/PVA Hydrogel Composite for Its Potential Use as Artificial Cornea Biomaterial. Mater. Sci. Eng. C 2010, 30, 214–218. DOI:10.1016/j.msec.2009.10.006.
  • Goncalves, S.; Padrao, J.; Rodrigues, I. P.; Silva, J. P.; Sencadas, V.; Lanceros-Mendez, S.; Girao, H.; Dourado, F.; Rodrigues, L. R. Bacterial Cellulose as a Support for the Growth of Retinal Pigment Epithelium. Biomacromolecules 2015, 16, 1341–1351. DOI:10.1021/acs.biomac.5b00129.
  • Li, X.; Wan, W.; Panchal, C. J. “Transparent bacterial cellulose nanocomposite hydrogels”; Google Patents, 2015.
  • Ullah, H.; Wahid, F.; Santos, H. A.; Khan, T. Advances in Biomedical and Pharmaceutical Applications of Functional Bacterial Cellulose-Based Nanocomposites. Carbohydr. Polym. 2016, 150, 330–352. DOI:10.1016/j.carbpol.2016.05.029.
  • Derikvand, F.; Yin, D. T.; Barrett, R.; Brumer, H. Cellulose-Based Biosensors for Esterase Detection. Anal. Chem. 2016, 88, 2989–2993. DOI:10.1021/acs.analchem.5b04661.
  • Hu, H.; Wang, F.; Yu, L.; Sugimura, K.; Zhou, J.; Nishio, Y. Synthesis of Novel Fluorescent Cellulose Derivatives and Their Applications in Detection of Nitroaromatic Compounds. ACS Sustain. Chem. Eng. 2018, 6, 1436–1445. DOI:10.1021/acssuschemeng.7b03855.
  • Orelma, H.; Filpponen, I.; Johansson, L. S.; Osterberg, M.; Rojas, O. J.; Laine, J. Surface Functionalized Nanofibrillar Cellulose (NFC) Film as a Platform for Immunoassays and Diagnostics. Biointerphases 2012, 7, 61. DOI:10.1007/s13758-012-0061-7.
  • Avery, R. K.; Albadawi, H.; Akbari, M.; Zhang, Y. S.; Duggan, M. J.; Sahani, D. V.; Olsen, B. D.; Khademhosseini, A.; Oklu, R. An Injectable Shear-Thinning Biomaterial for Endovascular Embolization. Sci. Transl. Med. 2016, 8, 365ra156. DOI:10.1126/scitranslmed.aah5533.
  • Jasim, A.; Ullah, M. W.; Shi, Z.; Lin, X.; Yang, G. Fabrication of Bacterial Cellulose/Polyaniline/Single-Walled Carbon Nanotubes Membrane for Potential Application as Biosensor. Carbohydr. Polym. 2017, 163, 62–69. DOI:10.1016/j.carbpol.2017.01.056.
  • Li, D.; Ao, K.; Wang, Q.; Lv, P.; Wei, Q. Preparation of Pd/Bacterial Cellulose Hybrid Nanofibers for Dopamine Detection. Molecules 2016, 21, DOI:10.3390/molecules21050618.
  • Fontenot, K. R.; Edwards, J. V.; Haldane, D.; Pircher, N.; Liebner, F.; Condon, B. D.; Qureshi, H.; Yager, D. Designing Cellulosic and Nanocellulosic Sensors for Interface with a Protease Sequestrant Wound-Dressing Prototype: Implications of Material Selection for Dressing and Protease Sensor Design. J. Biomater. Appl. 2017, 32, 622–637. DOI:10.1177/0885328217735049.
  • Lin, N.; Dufresne, A. Nanocellulose in Biomedicine: Current Status and Future Prospect. Eur. Polym. J. 2014, 59, 302–325. DOI:10.1016/j.eurpolymj.2014.07.025.
  • Silvestre, A. J.; Freire, C. S.; Neto, C. P. Do Bacterial Cellulose Membranes Have Potential in Drug-Delivery Systems? Exp. Opin. Drug Deliv. 2014, 11, 1113–1124. DOI:10.1517/17425247.2014.920819.
  • Potzinger, Y.; Kralisch, D.; Fischer, D. Bacterial Nanocellulose: The Future of Controlled Drug Delivery? Ther. Deliv. 2017, 8, 753–761. DOI:10.4155/tde-2017-0059.
  • Trovatti, E.; Freire, C. S. R.; Pinto, P. C.; Almeida, I. F.; Costa, P.; Silvestre, A. J. D.; Neto, C. P.; Rosado, C. Bacterial Cellulose Membranes Applied in Topical and Transdermal Delivery of Lidocaine Hydrochloride and Ibuprofen: In Vitro Diffusion Studies. Int. J. Pharm. 2012, 435, 83–87. DOI:10.1016/j.ijpharm.2012.01.002.
  • Mohd Amin, M. C. I.; Ahmad, N.; Halib, N.; Ahmad, I. Synthesis and Characterization of Thermo- and pH-Responsive Bacterial Cellulose/Acrylic Acid Hydrogels for Drug Delivery. Carbohydr. Polym. 2012, 88, 465–473. DOI:10.1016/j.carbpol.2011.12.022.
  • Ullah, H.; Badshah, M.; Mäkilä, E.; Salonen, J.; Shahbazi, M.-A.; Santos, H. A.; Khan, T. Fabrication, Characterization and Evaluation of Bacterial Cellulose-Based Capsule Shells for Oral Drug Delivery. Cellulose 2017, 24, 1445–1454. DOI:10.1007/s10570-017-1202-4.
  • Silva, N. H.; Rodrigues, A. F.; Almeida, I. F.; Costa, P. C.; Rosado, C.; Neto, C. P.; Silvestre, A. J.; Freire, C. S. Bacterial Cellulose Membranes as Transdermal Delivery Systems for Diclofenac: In Vitro Dissolution and Permeation Studies. Carbohydr. Polym. 2014, 106, 264–269. DOI:10.1016/j.carbpol.2014.02.014.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.