1,036
Views
35
CrossRef citations to date
0
Altmetric
Reviews

Current Scenario of Poly (2,5-Benzimidazole) (ABPBI) as Prospective PEM for Application in HT-PEMFC

, ORCID Icon, , &
Pages 267-317 | Received 22 Nov 2018, Accepted 24 Aug 2019, Published online: 30 Sep 2019

References

  • Li, Q.; He, R.; Jensen, J. O.; Bjerrum, N. J. Approaches and Recent Development of Polymer Electrolyte Membranes for Fuel Cells Operating above 100 °C. Chem. Mater. 2003, 15, 4896–4915. DOI: 10.1021/cm0310519.
  • Qingfeng, L.; Hjuler, H. A.; Hasiotis, C.; Kallitsis, J. K.; Kontoyannis, C. G.; Bjerrum, N. J. A Quasi-Direct Methanol Fuel Cell System Based on Blend Polymer Membrane Electrolytes. Electrochem. Solid-State Lett. 2002, 5, A125–A128. DOI: 10.1149/1.1473335.
  • Zhang, H.; Shen, P. K. Recent Development of Polymer Electrolyte Membranes for Fuel Cells. Chem. Rev. 2012, 112, 2780–2832. DOI: 10.1021/cr200035s.
  • Ribeirinha, P.; Alves, I.; Vázquez, F. V.; Schuller, G.; Boaventura, M.; Mendes, A. Heat Integration of Methanol Steam Reformer with a High-Temperature Polymeric Electrolyte Membrane Fuel Cell. Energy 2017, 120, 468–477. DOI: 10.1016/j.energy.2016.11.101.
  • Iulianelli, A.; Ribeirinha, P.; Mendes, A.; Basile, A. Methanol Steam Reforming for Hydrogen Generation via Conventional and Membrane Reactors: A Review. Renew. Sustain. Energy Rev. 2014, 29, 355–368. DOI: 10.1016/j.rser.2013.08.032.
  • Bose, S.; Kuila, T.; Nguyen, T. X. H.; Kim, N. H.; Lau, K. T.; Lee, J. H. Polymer Membranes for High Temperature Proton Exchange Membrane Fuel Cell: Recent Advances and Challenges. Prog. Polym. Sci. 2011, 36, 813–843. DOI: 10.1016/j.progpolymsci.2011.01.003.
  • Kreuer, K. D. On the Development of Proton Conducting Polymer Membranes for Hydrogen and Methanol Fuel Cells. J. Memb. Sci. 2001, 185, 29–39. DOI: 10.1016/S0376-7388(00)00632-3.
  • Kraytsberg, A.; Ein-Eli, Y. Review of Advanced Materials for Proton Exchange Membrane Fuel Cells. Energy Fuels 2014, 28, 7303–7330. DOI: 10.1021/ef501977k.
  • Rosli, R. E.; Sulong, A. B.; Daud, W. R. W.; Zulkifley, M. A.; Husaini, T.; Rosli, M. I.; Majlan, E. H.; Haque, M. A. A Review of High-Temperature Proton Exchange Membrane Fuel Cell (HT-PEMFC) System. Int. J. Hydrogen Energy 2017, 42, 9293–9314. DOI: 10.1016/j.ijhydene.2016.06.211.
  • Neburchilov, V.; Martin, J.; Wang, H.; Zhang, J. A Review of Polymer Electrolyte Membranes for Direct Methanol Fuel Cells. J. Power Sources 2007, 169, 221–238. DOI: 10.1016/j.jpowsour.2007.03.044.
  • Rikukawa, M.; Sanui, K. Proton-Conducting Polymer Electrolyte Membranes Based on Hydrocarbon Polymers. Prog. Polym. Sci. 2000, 25, 1463–1502. DOI: 10.1016/S0079-6700(00)00032-0.
  • Colomban, P.; Philippe, C. eds., Proton Conductors: Solids, Membranes and Gels-Materials and Devices. Cambridge University Press: Cambridge, 1992; Vol. 2.
  • Li, Q.; Jensen, J. O.; Savinell, R. F.; Bjerrum, N. J. High Temperature Proton Exchange Membranes Based on Polybenzimidazoles for Fuel Cells. Prog. Polym. Sci. 2009, 34, 449–477. DOI: 10.1016/j.progpolymsci.2008.12.003.
  • Chandan, A.; Hattenberger, M.; El-Kharouf, A.; Du, S.; Dhir, A.; Self, V.; Pollet, B. G.; Ingram, A.; Bujalski, W. High Temperature (HT) Polymer Electrolyte Membrane Fuel Cells (PEMFC)-a Review. J. Power Sources 2013, 231, 264–278. DOI: 10.1016/j.jpowsour.2012.11.126.
  • Authayanun, S.; Im-Orb, K.; Arpornwichanop, A. A Review of the Development of High Temperature Proton Exchange Membrane Fuel Cells. Cuihua Xuebao/Chinese J. Catal. 2015, 36, 473–483. DOI: 10.1016/S1872-2067(14)60272-2.
  • Melchior, J. P.; Majer, G.; Kreuer, K. D. Why Do Proton Conducting Polybenzimidazole Phosphoric Acid Membranes Perform Well in High-Temperature PEM Fuel Cells? Phys. Chem. Chem. Phys. 2017, 19, 601–612. DOI: 10.1039/C6CP05331A.
  • Quartarone, E.; Angioni, S.; Mustarelli, P. Polymer and Composite Membranes for Proton-Conducting, High-Temperature Fuel Cells: A Critical Review. Materials (Basel) 2017, 10, 687. DOI: 10.3390/ma10070687.
  • Haque, M. A.; Sulong, A. B.; Loh, K. S.; Majlan, E. H.; Husaini, T.; Rosli, R. E. Acid Doped Polybenzimidazoles Based Membrane Electrode Assembly for High Temperature Proton Exchange Membrane Fuel Cell: A Review. Int. J. Hydrogen Energy 2017, 42, 9156–9179. DOI: 10.1016/j.ijhydene.2016.03.086.
  • Araya, S. S.; Zhou, F.; Liso, V.; Sahlin, S. L.; Vang, J. R.; Thomas, S.; Gao, X.; Jeppesen, C.; Kaer, S. K. A Comprehensive Review of PBI-Based High Temperature PEM Fuel Cells. Int. J. Hydrogen Energy 2016, 41, 21310–21344. DOI: 10.1016/j.ijhydene.2016.09.024.
  • Seel1, D. C.; Benicewicz, B. C.; Xiao, L.; Schmidt, T. J. High-Temperature Polybenzimidazole-Based Membranes. In Handbook of Fuel Cells – Fundamentals, Technology and Applications; Vielstich W., Gasteiger H. A., Lamm A., Yokokawa H., Eds.; John Wiley & Sons, Ltd., 2010. ISBN: 978-0-470-97400-1.
  • Asensio, J. A.; Sánchez, E. M.; Gómez-Romero, P. Proton-Conducting Membranes Based on Benzimidazole Polymers for High-Temperature PEM Fuel Cells. A Chemical Quest. Chem. Soc. Rev. 2010, 39, 3210–3239. DOI: 10.1039/b922650h.
  • Asensio, J. A.; Gómez-Romero, P. Recent Developments on Proton Conducting Poly(2,5-Benzimidazole) (ABPBI) Membranes for High Temperature Polymer Electrolyte Membrane Fuel Cells. Fuel Cells 2005, 5, 336–343. DOI: 10.1002/fuce.200400081.
  • Liu, Y.; Lehnert, W.; Janßen, H.; Samsun, R. C.; Stolten, D. A Review of High-Temperature Polymer Electrolyte Membrane Fuel-Cell (HT-PEMFC)-Based Auxiliary Power Units for Diesel-Powered Road Vehicles. J. Power Sources 2016, 311, 91–102. DOI: 10.1016/j.jpowsour.2016.02.033.
  • Bhattacharya, P.K. Water flooding in the proton exchange membrane fuel cell. Directions 2015, 15 (1).
  • Besancon, B. M.; Hasanov, V.; Imbault-Lastapis, R.; Benesch, R.; Barrio, M.; Mølnvik, M. J. Hydrogen Quality from Decarbonized Fossil Fuels to Fuel Cells. Int. J. Hydrogen Energy 2009, 34, 2350–2360. DOI: 10.1016/j.ijhydene.2008.12.071.
  • Sui, S.; Wang, X.; Zhou, X.; Su, Y.; Riffat, S.; Liu, C. Jun, A Comprehensive Review of Pt Electrocatalysts for the Oxygen Reduction Reaction: Nanostructure, Activity, Mechanism and Carbon Support in PEM Fuel Cells. J. Mater. Chem. A 2017, 5, 1808–1825. DOI: 10.1039/C6TA08580F.
  • Shao, Y.; Yin, G.; Wang, Z.; Gao, Y. Proton Exchange Membrane Fuel Cell from Low Temperature to High Temperature: Material Challenges. J. Power Sources 2007, 167, 235–242. DOI: 10.1016/j.jpowsour.2007.02.065.
  • Chandran, P.; Ghosh, A.; Ramaprabhu, S. High-Performance Platinum-Free Oxygen Reduction Reaction and Hydrogen Oxidation Reaction Catalyst in Polymer Electrolyte Membrane. Fuel Cell. Sci. Rep. 2018, 8, 1–11.
  • Oono, Y. Study on Cell Performance and Study on Cell Performance and Durability of High Durability of High-Temperature Proton Exchange Membrane Fuel Cells, 2013. daido-it.ac.jp
  • Weber, A.; Ivers-Tiffée, E. Materials and Concepts for Solid Oxide Fuel Cells (SOFCs) in Stationary and Mobile Applications. J. Power Sources 2004, 127, 273–283. DOI: 10.1016/j.jpowsour.2003.09.024.
  • Authayanun, S.; Hacker, V. Energy and Exergy Analyses of a Stand-Alone HT-PEMFC Based Trigeneration System for Residential Applications. Energy Convers. Manag 2018, 160, 230–242. DOI: 10.1016/j.enconman.2018.01.022.
  • Myles, T.; Bonville, L.; Maric, R. Catalyst, Membrane, Free Electrolyte Challenges, and Pathways to Resolutions in High Temperature Polymer Electrolyte Membrane Fuel Cells. Catalysts 2017, 7, 16. DOI: 10.3390/catal7010016.
  • Debe, M. K. Electrocatalyst Approaches and Challenges for Automotive Fuel Cells. Nature 2012, 486, 43–51. DOI: 10.1038/nature11115.
  • Wang, K. Y.; Chung, T. S.; Rajagopalan, R. Novel polybenzimidazole (PBI) nanofiltration membranes for the separation of sulfate and chromate from high alkalinity brine to facilitate the chlor-alkali process. Ind. & eng. chem. res. 2007, 46(5), 1572–1577. DOI: 10.1021/ie061435j
  • Wainright, J. S.; Wang, J. T.; Weng, D.; Savinell, R. F. Acid-Doped Polybenzimidazoles: A New Polymer Electrolyte. J. Electrochem. Soc. 1995, 142, L121–L123. DOI: 10.1149/1.2044337.
  • Gharda, K. H.; Trivedi, P. D.; Parida, T. R.; Biradar, A. Method for processing a high temperature resistant thermosetting material. US 2018/0066136 A1, U.S. Patent Application 15/676,187, 2018.
  • Hastak, R. S.; Sivaraman, P.; Potphode, D. D.; Shashidhara, K.; Samui, A. B. All Solid Supercapacitor Based on Activated Carbon and Poly [2,5-Benzimidazole] for High Temperature Application. Electrochim. Acta 2012, 59, 296–303. DOI: 10.1016/j.electacta.2011.10.102.
  • Jiang, C.; Jie, X.; Kang, G.; Liu, D.; Cao, Y.; Yuan, Q. Gas permeation properties of poly (2, 5# benzimidazole) derivative membranes. J App Poly Sci. 2014, 131, 1–10. DOI: 10.1002/APP.40440.
  • Sizov, V. E.; Kondratenko, M. S.; Gallyamov, M. O.; Stevenson, K. J. Advanced Porous Polybenzimidazole Membranes for Vanadium Redox Batteries Synthesized via a Supercritical Phase-Inversion Method. J. Supercrit. Fluids 2018, 137, 111–117. DOI: 10.1016/j.supflu.2018.03.018.
  • Lohokare, H. R.; Chaudhari, H. D.; Kharul, U. K. Solvent and PH-Stable Poly(2,5-Benzimidazole) (ABPBI) Based UF Membranes: Preparation and Characterizations. J. Memb. Sci. 2018, 563, 743–751. DOI: 10.1016/j.memsci.2018.06.052.
  • Kharul, U.; Lohokare, H.; Council of Scientific and Industrial Research (CSIR). Porous ABPBI [phosphoric acid doped poly (2, 5-benzimidazole)] membrane and process of preparing the same. U.S. Patent 9,757,696, 2017.
  • Asensio, J. A.; Borrós, S.; Gómez-Romero, P. Proton-Conducting Polymers Based on Benzimidazoles and Sulfonated Benzimidazoles. J. Polym. Sci. A Polym. Chem. 2002, 40, 3703–3710. DOI: 10.1002/pola.10451.
  • Kim, H. J.; Cho, S. Y.; An, S. J.; Eun, Y. C.; Kim, J. Y.; Yoon, H. K.; Kweon, H. J.; Yew, K. H. Synthesis of Poly(2,5-Benzimidazole)for Use as a Fuel-Cell Membrane. Macromol. Rapid Commun. 2004, 25, 894–897. DOI: 10.1002/marc.200300288.
  • Asensio, J. A.; Borrós, S.; Gómez-Romero, P. Proton-Conducting Membranes Based on Poly(2,5-Benzimidazole) (ABPBI) and Phosphoric Acid Prepared by Direct Acid Casting. J. Memb. Sci. 2004, 241, 89–93. DOI: 10.1016/j.memsci.2004.03.044.
  • Diaz, L. A.; Abuin, G. C.; Corti, H. R. Water and Phosphoric Acid Uptake of Poly [2,5-Benzimidazole] (ABPBI) Membranes Prepared by Low and High Temperature Casting. J. Power Sources 2009, 188, 45–50. DOI: 10.1016/j.jpowsour.2008.11.114.
  • Kim, S. K.; Kim, T. H.; Jung, J. W.; Lee, J. C. Polybenzimidazole Containing Benzimidazole Side Groups for High-Temperature Fuel Cell Applications. Polymer (Guildf) 2009, 50, 3495–3502. DOI: 10.1016/j.polymer.2009.06.018.
  • Krishnan, P.; Park, J. S.; Kim, C. S. Performance of a Poly(2,5-Benzimidazole) Membrane Based High Temperature PEM Fuel Cell in the Presence of Carbon Monoxide. J. Power Sources 2006, 159, 817–823. DOI: 10.1016/j.jpowsour.2005.11.071.
  • Asensio, J. A.; Borrós, S.; Gómez-Romero, P. Polymer Electrolyte Fuel Cells Based on Phosphoric Acid-Impregnated Poly(2,5-Benzimidazole) Membranes. J. Electrochem. Soc. 2004, 151, A304. DOI: 10.1149/1.1640628.
  • Liu, Q. (2, 5-benzimidazole)-based polymer electrolyte membranes for high-temperature fuel cell applications, 2010. Doctoral dissertation, Loughborough University's Institutional Repository, UK, 2010.
  • Linares, J. J.; Sánches, C.; V. Paganin, A.; Ernesto, R. González, Poly(2,5-Benzimidazole) Membranes: Physico-Chemical Characterization and HighTemperature PEMFC Application. ECS Trans. 2011, 41, 1579–1593.
  • Linares, J. J.; Sanches, C.; Paganin, V. A.; Gonzalez, E. R. Poly(2,5-Bibenzimidazole) Membranes: Physico-Chemical Characterization Focused on Fuel Cell Applications. J. Electrochem. Soc. 2012, 159, F194–F202.
  • Cho, J.; Blackwell, J.; Chvalun, S. N.; Litt, M.; Wang, Y. Structure of a Poly(2,5-Benzimidazole)/Phosphoric Acid Complex. J. Polym. Sci. B Polym. Phys. 2004, 42, 2576–2585. DOI: 10.1002/polb.20006.
  • Diaz, L. A.; Abuin, G. C.; Corti, H. R. Acid-Doped ABPBI Membranes Prepared by Low-Temperature Casting: Proton Conductivity and Water Uptake Properties Compared with Other Polybenzimidazole-Based Membranes. J. Electrochem. Soc. 2016, 163, F485–F491. DOI: 10.1149/2.0671606jes.
  • Viva, F.; Heredia, N.; Palmbaum, S. P.; Diaz, L.; De Diego, J.; Lozano, M.; Bruno, M.; Corti, H. Spray-Casting ABPBI Membranes for High Temperature PEM Fuel Cells. J. Electrochem. Soc. 2017, 164, F866–F872. DOI: 10.1149/2.1621707jes.
  • Vielstich, W.; Lamm, A. and Gasteiger, H. A.; eds., Handbook of fuel cells: fundamentals technology and applications; Wiley: New York, United Kingdom, 2003; Vol. 2, p 153.
  • Nayak, R.; Dey, T.; Ghosh, P. C.; Bhattacharyya, A. R. Phosphoric Acid Doped Poly (2, 5‐Benzimidazole)‐Based Proton Exchange Membrane for High Temperature Fuel Cell Application. Polym. Eng. Sci. 2016, 56, 1366–1374. DOI: 10.1002/pen.24370.
  • Das, A.; Ghosh, P.; Ganguly, S.; Banerjee, D.; Kargupta, K. Salt-Leaching Technique for the Synthesis of Porous Poly(2,5-Benzimidazole) (ABPBI) Membranes for Fuel Cell Application. J. Appl. Polym. Sci. 2018, 135, 45773–45711. DOI: 10.1002/app.45773.
  • Chaudhari, H. D.; Illathvalappil, R.; Kurungot, S.; Kharul, U. K. Preparation and Investigations of ABPBI Membrane for HT-PEMFC by Immersion Precipitation Method. J. Memb. Sci 2018, 564, 211–217. DOI: 10.1016/j.memsci.2018.07.026.
  • Zaidi, S. M.; Mikhailenko, S.; Robertson, G.; Guiver, M.; Kaliaguine, S. Proton Conducting Composite Membranes from Polyether Ether Ketone and Heteropolyacids for Fuel Cell Applications. J. Memb. Sci 2000, 173, 17–34. DOI: 10.1016/S0376-7388(00)00345-8.
  • Mikhailenko, S. D.; Wang, K.; Kaliaguine, S.; Xing, P.; Robertson, G. P.; Guiver, M. D. Proton Conducting Membranes Based on Cross-Linked Sulfonated Poly(Ether Ether Ketone) (SPEEK). J. Memb. Sci. 2004, 233, 93–99. DOI: 10.1016/j.memsci.2004.01.004.
  • Zheng, H.; Luo, H.; Mathe, M. Proton Exchange Membranes Based on Poly(2,5-Benzimidazole) and Sulfonated Poly(Ether Ether Ketone) for Fuel Cells. J. Power Sources 2012, 208, 176–179. DOI: 10.1016/j.jpowsour.2012.02.025.
  • Kerres, J.; Ullrich, a.; Meier, F.; Haring, T. Synthesis and Characterization of Novel Acid-Base Polymer Blends for Application in Membrane Fuel Cells. Solid State Ionics 1999, 125, 243–249. DOI: 10.1016/S0167-2738(99)00181-2.
  • Kerres, J.; Ullrich, A.; Häring, T.; Baldauf, M.; Gebhardt, U.; Preidel, W. Preparation, Characterization and Fuel Cell Application of New Acid-Base Blend Membranes. J. New Mater. Electrochem. Syst. 2000, 3, 229–239.
  • Sunda, A. P.; More, M.; Venkatnathan, A. A Molecular Investigation of the Nanostructure and Dynamics of Phosphoric-Triflic Acid Blends of Hydrated ABPBI [Poly(2,5-Benzimidazole)] Polymer Electrolyte Membranes. Soft Matter 2013, 9, 1122–1132. DOI: 10.1039/C2SM26927A.
  • Sen, U.; Acar, O.; Bozkurt, A.; Ata, A. Proton Conducting Polymer Blends from Poly (2, 5‐Benzimidazole) and Poly (2‐Acrylamido‐2‐Methyl‐1‐Propanesulfonic Acid). J. Appl. Polym. Sci. 2011, 120, 1193–1198. DOI: 10.1002/app.33026.
  • Acar, O.; Sen, U.; Bozkurt, A.; Ata, A. Proton Conducting Membranes Based on Poly(2,5-Benzimidazole) (ABPBI)-Poly(Vinylphosphonic Acid) Blends for Fuel Cells. Int. J. Hydrogen Energy 2009, 34, 2724–2730. DOI: 10.1016/j.ijhydene.2009.01.073.
  • Sen, U.; Usta, H.; Acar, O.; Citir, M.; Canlier, A.; Bozkurt, A.; Ata, A. Enhancement of Anhydrous Proton Conductivity of Poly(Vinylphosphonic Acid)-Poly(2,5-Benzimidazole) Membranes via in Situ Polymerization. Macromol. Chem. Phys. 2015, 216, 106–112. DOI: 10.1002/macp.201400401.
  • Agmon, N. The Grotthuss Mechanism. Chem. Phys. Lett. 1995, 244, 456–462. DOI: 10.1016/0009-2614(95)00905-J.
  • Ghandi, K. A Review of Ionic Liquids, Their Limits and Applications. Green Sustain. Chem. 2014, 04, 44–53. DOI: 10.4236/gsc.2014.41008.
  • Meine, N.; Benedito, F.; Rinaldi, R. Thermal Stability of Ionic Liquids Assessed by Potentiometric Titration. Green Chem. 2010, 12, 1711–1714. DOI: 10.1039/c0gc00091d.
  • Ahrens, S.; Peritz, A.; Strassner, T. Tunable Aryl Alkyl Ionic Liquids (TAAILs): The Next Generation of Ionic Liquids. Angew. Chem. Int. Ed. Engl. 2009, 48, 7908–7910. DOI: 10.1002/anie.200903399.
  • Weingarth, D.; Czekaj, I.; Fei, Z.; Foelske-Schmitz, A.; Dyson, P. J.; Wokaun, A.; Kotz, R. Electrochemical Stability of Imidazolium Based Ionic Liquids Containing Cyano Groups in the Anion: A Cyclic Voltammetry, XPS and DFT Study. J. Electrochem. Soc. 2012, 159, H611–H615. DOI: 10.1149/2.001207jes.
  • Wang, C.; Luo, H.; Luo, X.; Li, H.; Dai, S. Equimolar CO2 Capture by Imidazolium-Based Ionic Liquids and Superbase Systems. Green Chem. 2010, 12, 2019. DOI: 10.1039/c0gc00070a.
  • Greaves, T. L.; Drummond, C. J. Protic Ionic Liquids: Properties and Applications. Chem. Rev. 2008, 108, 206–237. DOI: 10.1021/cr068040u.
  • Hernández Carrillo, R.; Suarez-Guevara, J.; Torres-González, L. C.; Gómez-Romero, P.; Sánchez, E. M. Incorporation of Benzimidazolium Ionic Liquid in Proton Exchange Membranes ABPBI-H3PO4. J. Mol. Liq. 2013, 181, 115–120. DOI: 10.1016/j.molliq.2013.02.014.
  • Mishra, A. K.; Kim, N. H.; Lee, J. H. Effects of Ionic Liquid-Functionalized Mesoporous Silica on the Proton Conductivity of Acid-Doped Poly(2,5-Benzimidazole) Composite Membranes for High-Temperature Fuel Cells. J. Memb. Sci. 2014, 449, 136–145. DOI: 10.1016/j.memsci.2013.08.023.
  • Ye, Y. S.; Liang, G. W.; Chen, B. H.; Shen, W. C.; Tseng, C. Y.; Cheng, M. Y.; Rick, J.; Huang, Y. J.; Chang, F. C.; Hwang, B. J. Effect of Morphology of Mesoporous Silica on Characterization of Protic Ionic Liquid-Based Composite Membranes. J. Power Sources 2011, 196, 5408–5415. DOI: 10.1016/j.jpowsour.2011.02.066.
  • Zhang, F.; Bao, X.; Liu, Q.; Huang, M. High Temperature Polymer Electrolyte Membranes Based on Poly (2, 5-Benzimidazole) (ABPBI) and POSS Incorporated Ionic Liquid. J. Mater. Sci. Chem. Eng. 2014, 2, 86–93.
  • Bao, X.; Zhang, F.; Liu, Q. Sulfonated Poly(2,5-Benzimidazole) (ABPBI)/MMT/Ionic Liquids Composite Membranes for High Temperature PEM Applications. Int. J. Hydrogen Energy 2015, 40, 16767–16774. DOI: 10.1016/j.ijhydene.2015.07.127.
  • Yuan, Q.; Sun, G. H.; Han, K. F.; Yu, J. H.; Zhu, H.; Wang, Z. M. Copolymerization of 4-(3,4-Diamino-Phenoxy)-Benzoic Acid and 3,4-Diaminobenzoic Acid towards H3PO4-Doped PBI Membranes for Proton Conductor with Better Processability. Eur. Polym. J. 2016, 85, 175–186. DOI: 10.1016/j.eurpolymj.2016.10.002.
  • Kharul, U.; Lohokare, H. Council of Scientific and Industrial Research (CSIR), Porous ABPBI [poly (2, 5-benzimidazole)] membrane and process of preparing the same. U.S. Patent 8,715,783, 2014.
  • Hasiotis, C.; Deimede, V.; Kontoyannis, C. New Polymer Electrolytes Based on Blends of Sulfonated Polysulfones with Polybenzimidazole. Electrochim. Acta 2001, 46, 2401–2406. DOI: 10.1016/S0013-4686(01)00437-6.
  • Manea, C.; Mulder, M. New Polymeric Electrolyte Membranes Based on Proton Donor-Proton Acceptor Properties for Direct Methanol Fuel Cells. Desalination 2002, 147, 179–182. DOI: 10.1016/S0011-9164(02)00531-3.
  • Jagur-Grodzinski, J. Nanostructured Polyolefins/Clay Composites: Role of the Molecular Interaction at the Interface. Polym. Adv. Technol. 2006, 17, 395–418.
  • Kim, J.-D.; Mori, T.; Hayashi, S.; Honma, I. Anhydrous Proton-Conducting Properties of Nafion–1,2,4-Triazole and Nafion–Benzimidazole Membranes for Polymer Electrolyte Fuel Cells. J. Electrochem. Soc. 2007, 154, A290. DOI: 10.1149/1.2436611.
  • Zhai, Y.; Zhang, H.; Zhang, Y.; Xing, D. A Novel H3PO4/Nafion-PBI Composite Membrane for Enhanced Durability of High Temperature PEM Fuel Cells. J. Power Sources 2007, 169, 259–264. DOI: 10.1016/j.jpowsour.2007.03.004.
  • Kim, S. K.; Kim, T. H.; Ko, T.; Lee, J. C. Cross-Linked Poly(2,5-Benzimidazole) Consisting of Wholly Aromatic Groups for High-Temperature PEM Fuel Cell Applications. J. Memb. Sci. 2011, 373, 80–88. DOI: 10.1016/j.memsci.2011.02.039.
  • Choi, S. W.; Park, J. O.; Pak, C.; Choi, K. H.; Lee, J. C.; Chang, H. Design and Synthesis of Cross-Linked Copolymer Membranes Based on Poly(Benzoxazine) and Polybenzimidazole and Their Application to an Electrolyte Membrane for a High-Temperature PEM Fuel Cell. Polymers (Basel) 2013, 5, 77–111. DOI: 10.3390/polym5010077.
  • Kim, S. K.; Choi, S. W.; Jeon, W. S.; Park, J. O.; Ko, T.; Chang, H.; Lee, J. C. Cross-Linked Benzoxazine–Benzimidazole Copolymer Electrolyte Membranes for Fuel Cells at Elevated Temperature. Macromolecules 2012, 45, 1438–1446. DOI: 10.1021/ma202694p.
  • Kim, S. K.; Ko, T.; Choi, S. W.; Park, J. O.; Kim, K. H.; Pak, C.; Chang, H.; Lee, J. C. Durable Cross-Linked Copolymer Membranes Based on Poly(Benzoxazine) and Poly(2,5-Benzimidazole) for Use in Fuel Cells at Elevated Temperatures. J. Mater. Chem. 2012, 22, 7194–7205. DOI: 10.1039/c2jm15497h.
  • Sachdeva, S.; Turner, J. A.; Horan, J. L.; Herring, A. M. The Use of Heteropoly Acids in Proton Exchange Fuel Cells. In: Fuel Cells and Hydrogen Storage. Structure and Bonding; Bocarsly, A., Mingos, D. Ed.; Springer: Berlin, Heidelberg, 2011, Vol. 141.
  • Kourasi, M.; Wills, R. G. A.; Shah, A. A.; Walsh, F. C. Heteropolyacids for fuel cell applications. Electrochim. Acta 2014, 127, 454–466. DOI: 10.1016/j.electacta.2014.02.006.
  • Gómez-Romero, P.; Asensio, J. A.; Borrós, S. Hybrid Proton-Conducting Membranes for Polymer Electrolyte Fuel Cells: Phosphomolybdic Acid Doped Poly(2,5-Benzimidazole) - (ABPBI-H 3PMo12O40). Electrochim. Acta 2005, 50, 4715–4720. DOI: 10.1016/j.electacta.2005.02.029.
  • Wang, S.; Dong, F.; Li, Z. Proton-Conducting Membrane Preparation Based on SiO 2-Riveted Phosphotungstic Acid and Poly (2,5-Benzimidazole) via Direct Casting Method and Its Durability. J. Mater. Sci. 2012, 47, 4743–4749. DOI: 10.1007/s10853-012-6350-1.
  • Saleha, W. F. G.; Ramesh, R.; Nalajala, N.; Ladewig, B. P.; Neergat, M. Dielectric Relaxations in Phosphoric Acid-Doped Poly(2,5-Benzimidazole) and Its Composite Membranes. J. Appl. Polym. Sci. 2017, 134, 1–12. DOI: 10.1002/app.44867.
  • Paul, D. R.; Robeson, L. M. Polymer Nanotechnology: Nanocomposites. Polymer (Guildf) 2008, 49, 3187–3204. DOI: 10.1016/j.polymer.2008.04.017.
  • Kang, J. Y.; Eo, S. M.; Jeon, I. Y.; Choi, Y. S.; Tan, L. S.; Baek, J. B. Multifunctional Poly (2, 5‐Benzimidazole)/Carbon Nanotube Composite Films. J. Polym. Sci. A Polym. Chem. 2010, 48, 1067–1078. DOI: 10.1002/pola.23862.
  • Linlin, M.; Mishra, A. K.; Kim, N. H.; Lee, J. H. Poly (2, 5-Benzimidazole)–Silica Nanocomposite Membranes for High Temperature Proton Exchange Membrane Fuel Cell. J. Memb. Sci. 2012, 411, 91–98. DOI: 10.1016/j.memsci.2012.04.018.
  • Zhou, Y.; Feng, J.; Peng, H.; Qu, H.; Hao, J. Catalytic Pyrolysis and Flame Retardancy of Epoxy Resins with Solid Acid Boron Phosphate. Polym. Degrad. Stab. 2014, 110, 395–404. DOI: 10.1016/j.polymdegradstab.2014.10.009.
  • Grover, T.; Khandual, A.; Chatterjee, K. N.; Jamdagni, R. Flame Retardants: An Overview. Colourage 2014, 61, 29–36.
  • Di, S.; Yan, L.; Han, S.; Yue, B.; Feng, Q.; Xie, L.; Chen, J.; Zhang, D.; Sun, C. Enhancing the High-Temperature Proton Conductivity of Phosphoric Acid Doped Poly(2,5-Benzimidazole) by Preblending Boron Phosphate Nanoparticles to the Raw Materials. J. Power Sources 2012, 211, 161–168. DOI: 10.1016/j.jpowsour.2012.03.091.
  • Mosby, B. M.; Díaz, A.; Clearfield, A. Surface Modification of Layered Zirconium Phosphates: A Novel Pathway to Multifunctional Materials. Dalt. Trans. 2014, 43, 10328–10339. DOI: 10.1039/C4DT00613E.
  • Casciola, M.; Bagnasco, G.; Donnadio, A.; Micoli, L.; Pica, M.; Sganappa, M.; Turco, M. Conductivity and Methanol Permeability of Nafion-Zirconiumphosphate Compositemembranes Containing High Aspect Ratio Filler Particles. Fuel Cells 2009, 9, 394–400. DOI: 10.1002/fuce.200800135.
  • Kim, T. H.; Lim, T. W.; Park, Y. S.; Shin, K.; Lee, J. C. Proton-Conducting Zirconium Pyrophosphate/Poly(2,5-Benzimidazole) Composite Membranes Prepared by a PPA Direct Casting Methoda. Macromol. Chem. Phys. 2007, 208, 2293–2302. DOI: 10.1002/macp.200700261.
  • Mosby, B. M.; Díaz, A.; Bakhmutov, V.; Clearfield, A. Surface Functionalization of Zirconium Phosphate Nanoplatelets for the Design of Polymer Fillers. ACS Appl. Mater. Interfaces 2014, 6, 585–592. DOI: 10.1021/am4046553.
  • González-Villegas, J.; Kan, Y.; Bakhmutov, V. I.; García-Vargas, A.; Martínez, M.; Clearfield, A.; Colón, J. L. Poly(Ethylene Glycol)-Modified Zirconium Phosphate Nanoplatelets for Improved Doxorubicin Delivery. Inorganica Chim. Acta 2017, 468, 270–279. DOI: 10.1016/j.ica.2017.05.057.
  • Zheng, H.; Mathe, M. Enhanced Conductivity and Stability of Composite Membranes Based on Poly (2,5-Benzimidazole) and Zirconium Oxide Nanoparticles for Fuel Cells. J. Power Sources 2011, 196, 894–898. DOI: 10.1016/j.jpowsour.2010.09.028.
  • Liu, Q.; Bao, X.; Rogers, D. M.; Zou, S. Novel ABPBI/POSS Composite Membranes for High Temperature PEMFC Applications. ECS Transactions 2011, 30(1), 25–32. DOI: 10.1149/1.3562456
  • Liu, Q.; Sun, Q.; Ni, N.; Luo, F.; Zhang, R.; Hu, S.; Bao, X.; Zhang, F.; Zhao, F.; Li, X. Novel octopus shaped organic–inorganic composite membranes for PEMFCs. Int. J Hydrogen Energ. 2016, 41, 16160–16166.
  • Liu, Q.; Ni, N.; Sun, Q.; Wu, X.; Bao, X.; Fan, Z.; Zhang, R.; Hu, S.; Zhao, F.; Li, X. Poly (2, 5-Benzimidazole)/Trisilanolphenyl POSS Composite Membranes for Intermediate Temperature PEM Fuel Cells. J. Wuhan Univ. Technol-Mat. Sci. Edit. 2018, 33, 212–220. DOI: 10.1007/s11595-018-1808-x.
  • Luo, F.; Ni, N.; Liu, Q.T.; Hu, S. F.; Zhang, R. Preparation and Properties of ABPBI/POSS/IL Hybrid Proton Exchange Membrane Operated in Wide Temperature Range. DEStech Transactions on Environment, Energy and Earth Sciences, (edep), 2017. DOI: 10.12783/dteees/edep2017/15520.
  • Zhang, X. X.; Zhou, I. Y.; Fu, X. D.; Zhang, R.; Hu, S. F.; Zhao, F.; Li, X.; Ni, N.; Liu, Q.T. 2017. Preparation and Properties of Poly (2, 5-benzimidazole)/Sulfonated Sepiolite Composite Proton Exchange Membrane. DEStech Transactions on Environment, Energy and Earth Sciences, (edep), 2017. DOI: 10.12783/dteees/edep2017/15524.
  • Sárossy, Z.; Blomfeldt, T. O. J.; Hedenqvist, M. S.; Koch, C. B.; Ray, S. S.; Plackett, D. Composite Films of Arabinoxylan and Fibrous Sepiolite: Morphological, Mechanical, and Barrier Properties. ACS Appl. Mater. Interfaces 2012, 4, 3378–3386. DOI: 10.1021/am3002956.
  • Dong, F.; Li, Z.; Wang, S.; Wang, Z. Synthesis and Characteristics of Proton-Conducting Membranes Based on Cerium Sulfophenyl Phosphate and Poly (2, 5-Benzimidazole) by Hot-Pressing Method. Int. J. Hydrogen Energy 2011, 36, 11068–11074. DOI: 10.1016/j.ijhydene.2011.05.128.
  • Pandey, R. P.; Shukla, G.; Manohar, M.; Shahi, V. K. Graphene Oxide Based Nanohybrid Proton Exchange Membranes for Fuel Cell Applications: An Overview. Adv. Colloid Interface Sci. 2017, 240, 15–30. DOI: 10.1016/j.cis.2016.12.003.
  • Karim, M. R.; Hatakeyama, K.; Matsui, T.; Takehira, H.; Taniguchi, T.; Koinuma, M.; Matsumoto, Y.; Akutagawa, T.; Nakamura, T.; Noro, S. I.; et al. Graphene Oxide Nanosheet with High Proton Conductivity. J. Am. Chem. Soc. 2013, 135, 8097–8100. DOI: 10.1021/ja401060q.
  • Ammar, A.; Al-Enizi, A. M.; AlMaadeed, M. A. A.; Karim, A. Influence of Graphene Oxide on Mechanical, Morphological, Barrier, and Electrical Properties of Polymer Membranes. Arab. J. Chem. 2016, 9, 274–286. DOI: 10.1016/j.arabjc.2015.07.006.
  • Stoller, M. D.; Park, S.; Zhu, Y.; An, J.; Ruoff, R. S. Graphene-Based Ultracapacitors. Nano Lett. 2008, 8, 3498–3502. DOI: 10.1021/nl802558y.
  • Li, X.; Zhu, Y.; Cai, W.; Borysiak, M.; Han, B.; Chen, D.; Piner, R. D.; Colombo, L.; Ruoff, R. S. 3. Transfer of Large-Area Graphene Films for High-Performance Transparent Conductive Electrodes. Nano Lett. 2009, 9, 4359–4363. DOI: 10.1021/nl902623y.
  • Robinson, J. T.; Perkins, F. K.; Snow, E. S.; Wei, Z.; Sheehan, P. E. Reduced Graphene Oxide Molecular Sensors. Nano Lett. 2008, 8, 3137–3140. DOI: 10.1021/nl8013007.
  • Stankovich, S.; Dikin, D. A.; Dommett, G. H. B.; Kohlhaas, K. M.; Zimney, E. J.; Stach, E. A.; Piner, R. D.; Nguyen, S. B. T.; Ruoff, R. S. Graphene-Based Composite Materials. Nature 2006, 442, 282–286. DOI: 10.1038/nature04969.
  • Ramanathan, T.; Abdala, A. A.; Stankovich, S.; Dikin, D. A.; Herrera-Alonso, M.; Piner, R. D.; Adamson, D. H.; Schniepp, H. C.; Chen, X.; Ruoff, R. S.; et al. Functionalized Graphene Sheets for Polymer Nanocomposites. Nat. Nanotech. 2008, 3, 327–331. DOI: 10.1038/nnano.2008.96.
  • Ko, T.; Kim, K.; Lim, M.-Y.; Nam, S. Y.; Kim, T.-H.; Kim, S.-K.; Lee, J.-C. Sulfonated Poly(Arylene Ether Sulfone) Composite Membranes Having Poly(2,5-Benzimidazole)-Grafted Graphene Oxide for Fuel Cell Applications. J. Mater. Chem. A 2015, 3, 20595–20606. DOI: 10.1039/C5TA04849D.
  • Qiu, X.; Ueda, M.; Hu, H.; Sui, Y.; Zhang, X.; Wang, L. Poly(2,5-Benzimidazole)-Grafted Graphene Oxide as an Effective Proton Conductor for Construction of Nanocomposite Proton Exchange Membrane. ACS Appl. Mater. Interfaces 2017, 9, 33049–33058. DOI: 10.1021/acsami.7b07777.
  • Zheng, H.; Petrik, L.; Mathe, M. Preparation and Characterisation of Porous Poly(2,5benzimidazole) (ABPBI) Membranes Using Surfactants as Templates for Polymer Electrolyte Membrane Fuel Cells. Int. J. Hydrogen Energy 2010, 35, 3745–3750. DOI: 10.1016/j.ijhydene.2010.01.047.
  • Hien, N. T. X.; Kim, N, H.; Lee, H. K.; Lee, J. H. Preparation of Primary-Amine Functionalized Poly(2,5-Benzimidazole) Membrane for Fuel Cells. Adv. Mater. Res. 2010, 123–125, 1095–1098. DOI: 10.4028/www.scientific.net/AMR.123-125.1095.
  • Gao, H.; Lian, K. Proton-Conducting Polymer Electrolytes and Their Applications in Solid Supercapacitors: A Review. RSC Adv. 2014, 4, 33091–33113. DOI: 10.1039/C4RA05151C.
  • Kreuer, K. D.; Paddison, S. J.; Spohr, E.; Schuster, M. Transport in Proton Conductors for Fuel Cell Applications: Simulation, Elementary Reactions and Phenomenology. Chem. Rev. 2004, 104, 4637–4678. DOI: 10.1021/cr020715f.
  • Fontanella, J. J.; Edmondson, C. A.; Wintersgill, M. C.; Wu, Y.; Greenbaum, S. G. High-Pressure Electrical Conductivity and NMR Studies in Variable Equivalent Weight NAFION Membranes. Macromolecules 1996, 29, 4944–4951. DOI: 10.1021/ma9600926.
  • Ma, Y.-L.; Wainright, J. S.; Litt, M. H.; Savinell, R. F. Conductivity of PBI Membranes for High-Temperature Polymer Electrolyte Fuel Cells. J. Electrochem. Soc. 2004, 151, A8. DOI: 10.1149/1.1630037.
  • Sun, H.; Zuo, J.; Wang, X.; Wan, Y. Proton Transfer Reaction in Poly (2, 5-Polybenzimidazole) Doping with H3PO4. Int. J. Hydrogen Energy 2014, 39, 13808–13815. DOI: 10.1016/j.ijhydene.2014.03.111.
  • Sun, H.; Yu, M.; Zhao, X.; Almheiri, S. Molecular Simulation of Mass Transport in Phosphoric Acid Doped Poly(2,5-Benzimidazole) Polymer Electrolyte Membranes. Int. J. Hydrogen Energy 2016, 41, 7614–7621. DOI: 10.1016/j.ijhydene.2015.11.008.
  • Chiang, Y. C.; Tsai, D. S.; Liu, Y. H.; Chiang, C. W. PEM Fuel Cells of Poly(2,5-Benzimidazole) ABPBI Membrane Electrolytes Doped with Phosphoric Acid and Metal Phosphates. Mater. Chem. Phys 2018, 216, 485–490. DOI: 10.1016/j.matchemphys.2018.06.035.
  • Li, X.; Faghri, A. Review and Advances of Direct Methanol Fuel Cells (DMFCs) Part I: Design, Fabrication, and Testing with High Concentration Methanol Solutions. J. Power Sources 2013, 226, 223–240. DOI: 10.1016/j.jpowsour.2012.10.061.
  • Huang, Q. M.; Zhang, Q. L.; Huang, H. L.; Li, W. S.; Huang, Y. J.; Luo, J. L. Methanol Permeability and Proton Conductivity of Nafion Membranes Modified Electrochemically with Polyaniline. J. Power Sources 2008, 184, 338–343. DOI: 10.1016/j.jpowsour.2008.06.013.
  • Wootthikanokkhan, J.; Seeponkai, N. Methanol Permeability and Properties of DMFC Membranes Based on Sulfonated PEEK/PVDF Blends. J. Appl. Polym. Sci. 2006, 102, 5941–5947. DOI: 10.1002/app.25151.
  • Diaz, L. A.; Abuin, G. C.; Corti, H. R. Methanol Sorption and Permeability in Nafion and Acid-Doped PBI and ABPBI Membranes. J. Memb. Sci. 2012, 411–412, 35–44. DOI: 10.1016/j.memsci.2012.04.013.
  • Wang, L.; Advani, S. G.; Prasad, A. K. Membrane Electrode Assembly with Enhanced Membrane/Electrode Interface for Proton Exchange Membrane Fuel Cells. J. Phys. Chem. C 2013, 117, 945–948. DOI: 10.1021/jp306887p.
  • Endoh, E. Progress of highly durable mea for PEMFC under high temperature and low humidity conditions. ECS Transactions, 2008, 12, 41–50. DOI: 10.1149/1.2356118.
  • Dawoud, B.; Amer, E.; Gross, D. Experimental Investigation of an Adsorptive Thermal Energy Storage. Int. J. Energy Res. 2007, 31, 135–147. DOI: 10.1002/er.1235.
  • Park, C. H.; Lee, S. Y.; Hwang, D. S.; Shin, D. W.; Cho, D. H.; Lee, K. H.; Kim, T. W.; Kim, T. W.; Lee, M.; Kim, D. S.; et al. Nanocrack-Regulated Self-Humidifying Membranes. Nature 2016, 532, 480–483. DOI: 10.1038/nature17634.
  • Koraishy, B. M.; Meyers, J. P.; Wood, K. L. Manufacturing of direct methanol fuel cell electrodes by spraying. J Electrochem. Soc. 2011, 158(12), B1459-B1471. DOI: 10.1149/2.005112jes.
  • Bladergroen, B.; Su, H.; Pasupathi, S.; Linkov, V. Chapter 3, Overview of membrane electrode assembly preparation methods for solid polymer electrolyte electrolyzer; InTech: Croatia, 2012; 45–60. DOI: 10.5772/2820.
  • Breitwieser, M.; Klingele, M.; Vierrath, S.; Zengerle, R.; Thiele, S. Tailoring the Membrane-Electrode Interface in PEM Fuel Cells: A Review and Perspective on Novel Engineering Approaches. Adv. Energy Mater. 2018, 8, 1701257. DOI: 10.1002/aenm.201701257.
  • Jeon, Y.; Kim, D. J.; Koh, J. K.; Ji, Y.; Kim, J. H.; Shul, Y. G. Interface-Designed Membranes with Shape-Controlled Patterns for High-Performance Polymer Electrolyte Membrane Fuel Cells. Sci. Rep. 2015, 5, 1–11.
  • Liu, C. Y.; Sung, C. C. A Review of the Performance and Analysis of Proton Exchange Membrane Fuel Cell Membrane Electrode Assemblies. J. Power Sources 2012, 220, 348–353. DOI: 10.1016/j.jpowsour.2012.07.090.
  • Arlt, T.; Klages, M.; Messerschmidt, M.; Scholta, J.; Manke, I. Influence of Artificially Aged Gas Diffusion Layers on the Water Management of Polymer Electrolyte Membrane Fuel Cells Analyzed with in-Operando Synchrotron Imaging. Energy 2017, 118, 502–511. DOI: 10.1016/j.energy.2016.10.061.
  • Orogbemi, O. M.; Ingham, D. B.; Ismail, M. S.; Hughes, K. J.; Ma, L.; Pourkashanian, M. The Effects of the Composition of Microporous Layers on the Permeability of Gas Diffusion Layers Used in Polymer Electrolyte Fuel Cells. Int. J. Hydrogen Energy 2016, 41, 21345–21351. DOI: 10.1016/j.ijhydene.2016.09.160.
  • Liu, C.-T.; Chang, M.-H. Effects of Microporous Layer on PBI-Based Proton Exchange Membrane Fuel Cell Performance. Int. J. Electrochem. Sci. 2013, 8, 3687–3695.
  • Gostick, J. T.; Ioannidis, M. A.; Fowler, M. W.; Pritzker, M. D. On the Role of the Microporous Layer in PEMFC Operation. Electrochem. Commun. 2009, 11, 576–579. DOI: 10.1016/j.elecom.2008.12.053.
  • Sun, W.; Peppley, B. A.; Karan, K. Modeling the Influence of GDL and Flow-Field Plate Parameters on the Reaction Distribution in the PEMFC Cathode Catalyst Layer. J. Power Sources 2005, 144, 42–53. DOI: 10.1016/j.jpowsour.2004.11.035.
  • Kandlikar, S. G.; Garofalo, M. L.; Lu, Z. Water Management in a PEMFC: Water Transport Mechanism and Material Degradation in Gas Diffusion Layers. Fuel Cells 2011, 11, 814–823. DOI: 10.1002/fuce.201000172.
  • Strong, A.; Thornberry, C.; Beattie, S.; Chen, R.; Coles, S. R. Depositing Catalyst Layers in Polymer Electrolyte Membrane Fuel Cells: A Review. J. Fuel Cell Sci. Technol. 2015, 12, 064001. DOI: 10.1115/1.4031961.
  • Cindrella, L.; Kannan, A. M.; Lin, J. F.; Saminathan, K.; Ho, Y.; Lin, C. W.; Wertz, J. Gas Diffusion Layer for Proton Exchange Membrane Fuel Cells-A Review. J. Power Sources 2009, 194, 146–160. DOI: 10.1016/j.jpowsour.2009.04.005.
  • Zhu, H.; Kee, R. J. A General Mathematical Model for Analyzing the Performance of Fuel-Cell Membrane-Electrode Assemblies. J. Power Sources 2003, 117, 61–74. DOI: 10.1016/S0378-7753(03)00358-6.
  • Huang, D. C.; Yu, P. J.; Liu, F. J.; Huang, S. L.; Hsueh, K. L.; Chen, Y. C.; Wu, C. H.; Chang, W. C.; Tsau, F. H. Effect of Dispersion Solvent in Catalyst Ink on Proton Exchange Membrane Fuel Cell Performance. Int. J. Electrochem. Sci. 2011, 6, 2551–2565.
  • Zheng, W.; Wang, L.; Deng, F.; Giles, S. A.; Prasad, A. K.; Advani, S. G.; Yan, Y.; Vlachos, D. G. Durable and Self-Hydrating Tungsten Carbide-Based Composite Polymer Electrolyte Membrane Fuel Cells. Nat. Commun. 2017, 8, 1–7.
  • Sealy, C. The Problem with Platinum. Mater. Today 2008, 11, 65–68. DOI: 10.1016/S1369-7021(08)70254-2.
  • Arges, C. G.; Ramani, V. K.; Pintauro, P.N. The chalkboard: Anion exchange membrane fuel cells. Electrochem. Soc Interface 2010, 19, 31–35. DOI: 10.1149/2.F03102if.
  • Pasupathi, S.; Gomez, J. C. C.; Su, H.; Reddy, H.; Bujlo, P.; Sita, C. Recent Advances in High-Temperature PEM Fuel Cells; Pollet, B. G., Ed.; Power & Water: Wales, UK, 2016. ISBN: 978-0-12-809989-6.
  • Zhang, J.; Tang, Y.; Song, C.; Zhang, J. Polybenzimidazole-Membrane-Based PEM Fuel Cell in the Temperature Range of 120-200 °C. J. Power Sources 2007, 172, 163–171. DOI: 10.1016/j.jpowsour.2007.07.047.
  • Park, J. O.; Hong, S. G.; Kim, T.; Kwon, K.; Suh, S.; Cho, M.; Yoo, D. Role of Binders in High Temperature PEMFC Electrode. ECS Trans. 2006, 3,.447–451.
  • Jheng, L. C.; Chang, W. J. Y.; Hsu, S. L. C.; Cheng, P. Y. Durability of Symmetrically and Asymmetrically Porous Polybenzimidazole Membranes for High Temperature Proton Exchange Membrane Fuel Cells. J. Power Sources 2016, 323, 57–66. DOI: 10.1016/j.jpowsour.2016.05.043.
  • Eguchi, M.; Baba, K.; Onuma, T.; Yoshida, K.; Iwasawa, K.; Kobayashi, Y.; Uno, K.; Komatsu, K.; Kobori, M.; Nishitani-Gamo, M.; Ando, T. Influence of Ionomer/Carbon Ratio on the Performance of a Polymer Electrolyte Fuel Cell. Polymers (Basel) 2012, 4, 1645–1656. DOI: 10.3390/polym4041645.
  • Schmidt, T. J.; Baurmeister, J. Properties of High-Temperature PEFC Celtec®-P 1000 MEAs in Start/Stop Operation Mode. J. Power Sources 2008, 176, 428–434. DOI: 10.1016/j.jpowsour.2007.08.055.
  • Mazúr, P.; Soukup, J.; Paidar, M.; Bouzek, K. Gas Diffusion Electrodes for High Temperature PEM-Type Fuel Cells: role of a Polymer Binder and Method of the Catalyst Layer Deposition. J. Appl. Electrochem. 2011, 41, 1013–1019. DOI: 10.1007/s10800-011-0325-9.
  • Lobato, J.; Cañizares, P.; Rodrigo, M. A.; Linares, J. J.; Pinar, F. J. Study of the Influence of the Amount of PBI-H3PO4in the Catalytic Layer of a High Temperature PEMFC. Int. J. Hydrogen Energy 2010, 35, 1347–1355. DOI: 10.1016/j.ijhydene.2009.11.091.
  • Pan, C.; Li, Q.; Jensen, J. O.; He, R.; Cleemann, L. N.; Nilsson, M. S.; Bjerrum, N. J.; Zeng, Q. Preparation and Operation of Gas Diffusion Electrodes for High-Temperature Proton Exchange Membrane Fuel Cells. J. Power Sources 2007, 172, 278–286. DOI: 10.1016/j.jpowsour.2007.07.019.
  • You, D.; Lee, Y.; Cho, H.; Kim, J. H.; Pak, C.; Lee, G.; Park, K. Y.; Park, J. Y. High Performance Membrane Electrode Assemblies by Optimization of Coating Process and Catalyst Layer Structure in Direct Methanol Fuel Cells. Int. J. Hydrogen Energy 2011, 36, 5096–5103. DOI: 10.1016/j.ijhydene.2011.01.068.
  • Liang, X.; Pan, G.; Xu, L.; Wang, J. A Modified Decal Method for Preparing the Membrane Electrode Assembly of Proton Exchange Membrane Fuel Cells. Fuel 2015, 139, 393–400. DOI: 10.1016/j.fuel.2014.09.022.
  • Yoon, Y. J.; Kim, T. H.; Kim, S. U.; Yu, D. M.; Hong, Y. T. Low Temperature Decal Transfer Method for Hydrocarbon Membrane Based Membrane Electrode Assemblies in Polymer Electrolyte Membrane Fuel Cells. J. Power Sources 2011, 196, 9800–9809. DOI: 10.1016/j.jpowsour.2011.08.038.
  • Thanasilp, S.; Hunsom, M. Effect of MEA Fabrication Techniques on the Cell Performance of Pt-Pd/C Electrocatalyst for Oxygen Reduction in PEM Fuel Cell. Fuel 2010, 89, 3847–3852. DOI: 10.1016/j.fuel.2010.07.008.
  • Frey, T.; Linardi, M. Effects of Membrane Electrode Assembly Preparation on the Polymer Electrolyte Membrane Fuel Cell Performance. Electrochim. Acta 2004, 50, 99–105. DOI: 10.1016/j.electacta.2004.07.017.
  • Kim, K. H.; Lee, K. Y.; Kim, H. J.; Cho, E. A.; Lee, S. Y.; Lim, T. H.; Yoon, S. P.; Hwang, I. C.; Jang, J. H. The Effects of Nafion®Ionomer Content in PEMFC MEAs Prepared by a Catalyst-Coated Membrane (CCM) Spraying Method. Int. J. Hydrogen Energy 2010, 35, 2119–2126. DOI: 10.1016/j.ijhydene.2009.11.058.
  • Tang, H.; Wang, S.; Pan, M.; Jiang, S. P.; Ruan, Y. Performance of DMFCs Prepared by Hot-Pressed MEA and Catalyst-Coated Membrane. Fuel Cells Bull. 2007, 2007, 12–16. DOI: 10.1016/S1464-2859(07)70183-9.
  • Wannek, C.; Lehnert, W.; Mergel, J. Membrane Electrode Assemblies for High-Temperature Polymer Electrolyte Fuel Cells Based on Poly(2,5-Benzimidazole) Membranes with Phosphoric Acid Impregnation via the Catalyst Layers. J. Power Sources 2009, 192, 258–266. DOI: 10.1016/j.jpowsour.2009.03.051.
  • Wippermann, K.; Wannek, C.; Oetjen, H. F.; Mergel, J.; Lehnert, W. Cell Resistances of Poly(2,5-Benzimidazole)-Based High Temperature Polymer Membrane Fuel Cell Membrane Electrode Assemblies: Time Dependence and Influence of Operating Parameters. J. Power Sources 2010, 195, 2806–2809. DOI: 10.1016/j.jpowsour.2009.10.100.
  • Wannek, C.; Kohnen, B.; Oetjen, H. F.; Lippert, H.; Mergel, J. Durability of ABPBI-Based MEAs for High Temperature PEMFCs at Different Operating Conditions. Fuel Cells 2008, 8, 87–95. DOI: 10.1002/fuce.200700059.
  • Liang, H.; Su, H.; Pollet, B. G.; Linkov, V.; Pasupathi, S. Membrane Electrode Assembly with Enhanced Platinum Utilization for High Temperature Proton Exchange Membrane Fuel Cell Prepared by Catalyst Coating Membrane Method. J. Power Sources 2014, 266, 107–113. DOI: 10.1016/j.jpowsour.2014.05.014.
  • Su, H.; Jao, T. C.; Barron, O.; Pollet, B. G.; Pasupathi, S. Low Platinum Loading for High Temperature Proton Exchange Membrane Fuel Cell Developed by Ultrasonic Spray Coating Technique. J. Power Sources 2014, 267, 155–159. DOI: 10.1016/j.jpowsour.2014.05.086.
  • Maiyalagan, T.; Pasupathi, S.; Pollet, B. G. The Effects of Cathode Parameters on the Performance of Poly(2,5-Benzimidazole)-Based Polymer Electrolyte Membrane Fuel Cell. Electrocatalysis 2015, 6, 155–162. DOI: 10.1007/s12678-014-0228-8.
  • Su, H.; Pasupathi, S.; Bladergroen, B.; Linkov, V.; Pollet, B. G. Performance Investigation of Membrane Electrode Assemblies for High Temperature Proton Exchange Membrane Fuel Cell. J. Power Energy Eng. 2013, 2013, 95–100. DOI: 10.4236/jpee.2013.15016.
  • Kwon, K.; Kim, T. Y.; Yoo, D. Y.; Hong, S. G.; Park, J. O. Maximization of High-Temperature Proton Exchange Membrane Fuel Cell Performance with the Optimum Distribution of Phosphoric Acid. J. Power Sources 2009, 188, 463–467. DOI: 10.1016/j.jpowsour.2008.11.104.
  • Liang, H.; Su, H.; Pollet, B. G.; Pasupathi, S. Development of Membrane Electrode Assembly for High Temperature Proton Exchange Membrane Fuel Cell by Catalyst Coating Membrane Method. J. Power Sources 2015, 288, 121–127. DOI: 10.1016/j.jpowsour.2015.04.123.
  • Chen, Y.; Tian, T.; Wan, Z.; Wu, F.; Tan, J.; Pan, M. Influence of PTFE on Water Transport in Gas Diffusion Layer of Polymer Electrolyte Membrane Fuel Cell. Int. J. Electrochem. Sci. 2018, 13, 3827–3842. DOI: 10.20964/2018.04.53.
  • Su, H.; Pasupathi, S.; Bladergroen, B.; Linkov, V.; Pollet, B. G. Optimization of Gas Diffusion Electrode for Polybenzimidazole-Based High Temperature Proton Exchange Membrane Fuel Cell: Evaluation of Polymer Binders in Catalyst Layer. Int. J. Hydrogen Energy 2013, 38, 11370–11378. DOI: 10.1016/j.ijhydene.2013.06.107.
  • Qian, W.; Shang, Y.; Wang, S.; Xie, X.; Mao, Z. Phosphoric Acid Doped Composite Membranes from Poly (2,5-Benzimidazole) (ABPBI) and CsxH3-XPW12O40/CeO2 for the High Temperature PEMFC. Int. J. Hydrogen Energy 2013, 38, 11053–11059. DOI: 10.1016/j.ijhydene.2013.03.039.
  • Wu, J.; Yuan, X. Z.; Martin, J. J.; Wang, H.; Zhang, J.; Shen, J.; Wu, S.; Merida, W. A Review of PEM Fuel Cell Durability: Degradation Mechanisms and Mitigation Strategies. J. Power Sources 2008, 184, 104–119. DOI: 10.1016/j.jpowsour.2008.06.006.
  • Borup, R.; Meyers, J.; Pivovar, B.; Kim, Y. S.; Mukundan, R.; Garland, N.; Myers, D.; Wilson, M.; Garzon, F.; Wood, D.; et al. Scientific Aspects of Polymer Electrolyte Fuel Cell Durability and Degradation. Chem. Rev. 2007, 107, 3904–3951. DOI: 10.1021/cr050182l.
  • LaConti, A. R.; Fragala, A. R.; Boyack, J. R. In: Proceeding of the Symposium on Electrode Materials and Process for Energy Conversion and Storage; McIntyre, J. D. E., Srinvasan, S., Will F. G., Eds.; The Electrochemical Society, Inc.: Princeton, NJ, 1977, p. 354.
  • Antoine, O.; Bultel, Y.; Ozil, P.; Durand, R. 2000. Catalyst gradient for cathode active layer of proton exchange membrane fuel cell. Electrochim. Acta 2000, 45, 4493–4500. DOI: 10.1016/S0013-4686(00)00505-3.
  • Paulus, U. A.; Schmidt, T. J.; Gasteiger, H. A.; Behm, R. J. Oxygen Reduction on a High-Surface Area Pt/Vulcan Carbon Catalyst: A Thin-Film Rotating Ring-Disk Electrode Study. J. Electroanal. Chem. 2001, 495, 134–145. DOI: 10.1016/S0022-0728(00)00407-1.
  • Inaba, M.; Kinumoto, T.; Kiriake, M.; Umebayashi, R.; Tasaka, A.; Ogumi, Z. Gas Crossover and Membrane Degradation in Polymer Electrolyte Fuel Cells. Electrochim. Acta 2006, 51, 5746–5753. DOI: 10.1016/j.electacta.2006.03.008.
  • Ous, T.; Arcoumanis, C. Degradation Aspects of Water Formation and Transport in Proton Exchange Membrane Fuel Cell: A Review. J. Power Sources 2013, 240, 558–582. DOI: 10.1016/j.jpowsour.2013.04.044.
  • Won, S.; Oh, K.; Ju, H. Numerical Degradation Studies of High-Temperature Proton Exchange Membrane Fuel Cells with Phosphoric Acid-Doped PBI Membranes. Int. J. Hydrogen Energy 2016, 41, 8296–8306. DOI: 10.1016/j.ijhydene.2015.10.153.
  • Trogadas, P.; Parrondo, J.; Ramani, V. Degradation Mitigation in PEM Fuel Cells Using Metal Nanoparticle and Metal Oxide Additives. Funct. Polym. Nanocompos. Energy Storage Convers. 2010, 1034, 187–207.
  • Trogadas, P.; Parrondo, J.; Mijangos, F.; Ramani, V. Degradation Mitigation in PEM Fuel Cells Using Metal Nanoparticle Additives. J. Mater. Chem. 2011, 21, 19381–19388. DOI: 10.1039/c1jm14077a.
  • Banham, D.; Ye, S.; Cheng, T.; Knights, S.; Stewart, S. M.; Wilson, M.; Garzon, F. Effect of CeOx Crystallite Size on the Chemical Stability of CeOx Nanoparticles. J. Electrochem. Soc. 2014, 161, F1075–F1080. DOI: 10.1149/2.0931410jes.
  • Schlick, S.; Danilczuk, M.; Drews, A. R.; Kukreja, R. S. Scavenging of Hydroxyl Radicals by Ceria Nanoparticles: Effect of Particle Size and Concentration. J. Phys. Chem. C 2016, 120, 6885–6890. DOI: 10.1021/acs.jpcc.6b00404.
  • Shin, D.; Han, M.; Shul, Y. G.; Lee, H.; Bae, B. Analysis of Cerium-Composite Polymer-Electrolyte Membranes during and after Accelerated Oxidative-Stability Test. J. Power Sources 2018, 378, 468–474. DOI: 10.1016/j.jpowsour.2017.12.074.
  • Oono, Y.; Sounai, A.; Hori, M. Long-Term Cell Degradation Mechanism in High-Temperature Proton Exchange Membrane Fuel Cells. J. Power Sources 2012, 210, 366–373. DOI: 10.1016/j.jpowsour.2012.02.098.
  • Jung, G.; Bin; Chen, H. H.; Yan, W. M. Performance Degradation Studies on an Poly 2,5-Benzimidazole High-Temperature Proton Exchange Membrane Fuel Cell Using an Accelerated Degradation Technique. J. Power Sources 2014, 247, 354–359. DOI: 10.1016/j.jpowsour.2013.08.112.
  • Oono, Y.; Sounai, A.; Hori, M. Prolongation of Lifetime of High Temperature Proton Exchange Membrane Fuel Cells. J. Power Sources 2013, 241, 87–93. DOI: 10.1016/j.jpowsour.2013.03.122.
  • Su, H.; Xu, Q.; Chong, J.; Li, H.; Sita, C.; Pasupathi, S. Eliminating Micro-Porous Layer from Gas Diffusion Electrode for Use in High Temperature Polymer Electrolyte Membrane Fuel Cell. J. Power Sources 2017, 341, 302–308. DOI: 10.1016/j.jpowsour.2016.12.029.
  • Oono, Y.; Fukuda, T.; Sounai, A.; Hori, M. Influence of Operating Temperature on Cell Performance and Endurance of High Temperature Proton Exchange Membrane Fuel Cells. J. Power Sources 2010, 195, 1007–1014. DOI: 10.1016/j.jpowsour.2009.08.097.
  • Franceschini, E. A.; Corti, H. R. Elastic Properties of Nafion, Polybenzimidazole and Poly [2,5-Benzimidazole] Membranes Determined by AFM Tip Nano-Indentation. J. Power Sources 2009, 188, 379–386. DOI: 10.1016/j.jpowsour.2008.12.019.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.