2,087
Views
45
CrossRef citations to date
0
Altmetric
Reviews

Recent Progress in the Synthesis and Property Enhancement of Waterborne Polyurethane Nanocomposites: Promising and Versatile Macromolecules for Advanced Applications

&
Pages 226-266 | Received 13 Mar 2019, Accepted 11 Sep 2019, Published online: 12 Oct 2019

References

  • Noreen, A.; Zia, K. M.; Zuber, M.; Tabasum, S.; Saif, M. J. Recent Trends in Environmentally Friendly Water-Borne Polyurethane Coatings: A Review. Korean J. Chem. Eng. 2016, 33, 388–400. DOI: 10.1007/s11814-015-0241-5.
  • Jeon, H. T.; Jang, M. K.; Kim, B. K.; Kim, K. H. Synthesis and Characterizations of Waterborne Polyurethane-Silica Hybrids Using Sol-Gel Process. Colloids Surf. A: Physicochem. Eng. Aspects 2007, 302, 559–567. DOI: 10.1016/j.colsurfa.2007.03.043.
  • Zhang, X.; Wang, W.; Yu, D. Synthesis of Waterborne Polyurethane-Silver Nanoparticle Antibacterial Coating for Synthetic Leather. J. Coat. Technol. Res. 2018, 15, 415–423. DOI: 10.1007/s11998-017-9997-3.
  • Li, Q.; Ye, J.; Qiu, T.; Guo, L.; He, L.; Li, X. Synthesis of Waterborne Polyurethane Containing Alkoxysilane Side Groups: Study on Spacer Linkages. J. Appl. Polym. Sci. 2018, 135, 46628. DOI: 10.1002/app.46628.
  • Li, Q.; Guo, L.; Qiu, T.; Xiao, W.; Du, D.; Li, X. Synthesis of Waterborne Polyurethane Containing Alkoxysilane Side Groups and the Properties of the Hybrid Coating Films. Appl. Surf. Sci. 2016, 377, 66–74. DOI: 10.1016/j.apsusc.2016.03.166.
  • Zhou, X.; Li, Y.; Fang, C.; Li, S.; Cheng, Y.; Lei, W.; Meng, X. Recent Advances in Synthesis of Waterborne Polyurethane and Their Application in Water-Based Ink: A Review. J Mater. Sci. Tech. 2015, 31, 708–722. DOI: 10.1016/j.jmst.2015.03.002.
  • Honarkar, H. Waterborne Polyurethanes: A Review. J Disp. Sci. Tech. 2018, 39, 507–516. DOI: 10.1080/01932691.2017.1327818.
  • Li, R.; Shan, Z. Research for Waterborne Polyurethane/Composites with Heat Transfer Performance: A Review. Polym. Bull. 2018, 75, 4823–4836. DOI: 10.1007/s00289-018-2276-3.
  • Panda, S. S.; Panda, B. P.; Nayak, S. K.; Mohanty, S. A Review on Waterborne Thermosetting Polyurethane Coatings Based on Castor Oil: Synthesis, Characterization, and Application. Polym.-Plast. Technol. Eng. 2018, 57, 500–522. DOI: 10.1080/03602559.2016.1275681.
  • Shin, E. J.; Choi, S. M. Advances in Waterborne Polyurethane-Based Biomaterials for Biomedical Applications; Singapore: Springer Nature, 2018, 1077, 251–283.
  • Madbouly, S. A.; Otaigbe, J. U. Recent Advances in Synthesis, Characterization and Rheological Properties of Polyurethanes and POSS/Polyurethane Nanocomposites Dispersions and Films. Progress Polym. Sci. (Oxford) 2009, 34, 1283–1332. DOI: 10.1016/j.progpolymsci.2009.08.002.
  • Wang, W.; Guo, Y.; Otaigbe, J. U. Synthesis and Characterization of Novel Biodegradable and Biocompatible Poly(Ester-Urethane) Thin Films Prepared by Homogeneous Solution Polymerization. Polymer 2008, 49, 4393–4398. DOI: 10.1016/j.polymer.2008.07.057.
  • Tiarks, F.; Landfester, K.; Antonietti, M. One-Step Preparation of Polyurethane Dispersions by Miniemulsion Polyaddition. J. Polym. Sci. A Polym. Chem. 2001, 39, 2520–2524. DOI: 10.1002/pola.1228.
  • Madbouly, S. A.; Otaigbe, J. U.; Nanda, A. K.; Wicks, D. A. Rheological Behavior of Aqueous Polyurethane Dispersions: Effects of Solid Content, Degree of Neutralization, Chain Extension, and Temperature. Macromolecules 2005, 38, 4014–4023. DOI: 10.1021/ma050453u.
  • Barr??Re, M.; Landfester, K. High Molecular Weight Polyurethane and Polymer Hybrid Particles in Aqueous Miniemulsion. Macromolecules 2003, 36, 5119–5125. DOI: 10.1021/ma025981+.
  • Nicolaÿ, R.; Kwak, Y.; Matyjaszewski, K. A Green Route to Well-Defined High-Molecular-Weight (Co)Polymers Using ARGET ATRP with Alkyl Pseudohalides and Copper Catalysis. Ange. Chem.– Int. Edit. 2010, 49, 541–544. DOI: 10.1002/anie.200905340.
  • Król, P.; Chmielarz, P. Recent Advances in ATRP Methods in Relation to the Synthesis of Copolymer Coating Materials. Progr. Org. Coat. 2014, 77, 913–948. DOI: 10.1016/j.porgcoat.2014.01.027.
  • Jakubowski, W.; Min, K.; Matyjaszewski, K. Activators Regenerated by Electron Transfer for Atom Transfer Radical Polymerization of Styrene. Macromol. 2006, 39, 39–45. DOI: 10.1021/ma0522716.
  • Zhang, P.; Xu, P.; Fan, H.; Sun, Z.; Wen, J. Covalently Functionalized Graphene towards Molecular-Level Dispersed Waterborne Polyurethane Nanocomposite with Balanced Comprehensive Performance. Appl. Surf. Sci. 2019, 471, 595–606. DOI: 10.1016/j.apsusc.2018.11.235.
  • Gao, X.; Zhu, Y.; Zhou, S.; Gao, W.; Wang, Z.; Zhou, B. Preparation and Characterization of Well-Dispersed Waterborne Polyurethane/CaCO3 Nanocomposites. Colloids Surf. A: Physicochem. Eng. Aspects 2011, 377, 312–317. DOI: 10.1016/j.colsurfa.2011.01.025.
  • Christopher, G.; Kulandainathan, M. A.; Harichandran, G. Comparative Study of Effect of Corrosion on Mild Steel with Waterborne Polyurethane Dispersion Containing Graphene Oxide versus Carbon Black Nanocomposites. Progr. Org. Coat. 2015, 89, 199–211. DOI: 10.1016/j.porgcoat.2015.09.022.
  • Santamaria-Echart, A.; Ugarte, L.; Garcıa-Astrain, C.; Arbelaiz, A.; Corcuera, M. A.; Eceiza, A. Cellulose Nanocrystals Reinforced Environmentally-Friendly Waterborne Polyurethane Nanocomposites. Carbohydr. Polym. 2016, 151, 1203–1209. DOI: 10.1016/j.carbpol.2016.06.069.
  • Santamaria-Echart, A.; Ugarte, L.; Arbelaiz, A.; Gabilondo, N.; Corcuera, M. A.; Eceiza, A. Two Different Incorporation Routes of Cellulose Nanocrystals in Waterborne Polyurethane Nanocomposites. Eur. Polym. J. 2016, 76, 99–109. DOI: 10.1016/j.eurpolymj.2016.01.035.
  • Kale, M. B.; Luo, Z.; Zhang, X.; Dhamodharan, D.; Divakaran, N.; Mubarak, S.; Wu, L.; Xu, Y. Waterborne Polyurethane/Graphene Oxide-Silica Nanocomposites with Improved Mechanical and Thermal Properties for Leather Coatings Using Screen Printing. Polymer 2019, 170, 43–53. DOI: 10.1016/j.polymer.2019.02.055.
  • Jiang, X.; Wang, K.; Ding, M.; Li, J.; Tan, H.; Wang, Z.; Fu, Q. Quantitative Grafting of Peptide onto the Nontoxic Biodegradable Waterborne Polyurethanes to Fabricate Peptide Modified Scaffold for Soft Tissue Engineering. J. Mater. Sci: Mater. Med. 2011, 22, 819–827. DOI: 10.1007/s10856-011-4265-z.
  • Zafar, F.; Ghosal, A.; Sharmin, E.; Chaturvedi, R.; Nishat, N. A Review on Cleaner Production of Polymeric and Nanocomposite Coatings Based on Waterborne Polyurethane Dispersions from Seed Oils. Progr. Org. Coat. 2019, 131, 259–275. DOI: 10.1016/j.porgcoat.2019.02.014.
  • Kwon, J. Y.; Kim, H. D. Preparation and Properties of Acid-Treated Multiwalled Carbon Nanotube/Waterborne Polyurethane Nanocomposites. J. Appl. Polym. Sci. 2005, 96, 595–604. DOI: 10.1002/app.21436.
  • Kwon, J.; Kim, H. Comparison of the Properties of Waterborne Polyurethane/Multiwalled Carbon Nanotube and Acid-Treated Multiwalled Carbon Nanotube Composites Prepared by in Situ Polymerization. J. Polym. Sci. A Polym. Chem. 2005, 43, 3973–3985. DOI: 10.1002/pola.20897.
  • Heck, C. A.; Henrique, J.; Santos, Z.; Wolf, C. R. Hybrid Silicas/Waterborne Polyurethane Composite Properties : In Situ Formation vs. Grafting Methods. J. Sol-Gel Sci. Technol. 2017, 81, 505–513. DOI: 10.1007/s10971-016-4220-z.
  • Ahmadi, Y.; Ahmad, S. Formulation of a Promising Antimicrobial and Anticorrosive Bi-Functional Boronated Hyperbranched Oleo-Polyurethane Composite Coating through the Exploitation of Functionalized Reduced Graphene Oxide as Chain Extender. Appl. Surf. Sci. 2019, 494, 196–210. DOI: 10.1016/j.apsusc.2019.07.138.
  • Du, W.; Jin, Y.; Lai, S.; Shi, L.; Shen, Y.; Pan, J. Urethane-Silica Functionalized Graphene Oxide for Enhancing Mechanical Property and Fire Safety of Waterborne Polyurethane Coposites. Appl. Surf. Sci. 2019, 471, 595–606. DOI: 10.1016/j.apsusc.2019.06.227.
  • Xi, T.; Tang, L.; Hao, W.; Yao, L.; Cui, P. Morphology and Pervaporation Performance of Ionic Liquid and Waterborne Polyurethane Composite Membranes. RSC Adv. 2018, 8, 7792–7799. DOI: 10.1039/C7RA13761C.
  • Wan, T.; Chen, D. Preparation of β-Cyclodextrin Reinforced Waterborne Polyurethane Nanocomposites with Excellent Mechanical and Self-Healing Property. Compos. Sci. Technol. 2018, 168, 55–62. DOI: 10.1016/j.compscitech.2018.08.049.
  • Bhat, S. I.; Ahmadi, Y.; Ahmad, S. Recent Advances in Structural Modifications of Hyperbranched Polymers and Their Applications. Ind. Eng. Chem. Res. 2018, 57, 10754–10785. DOI: 10.1021/acs.iecr.8b01969.
  • Ahmadi, Y.; Siddiqui, M. T.; Haq, Q. M. R.; Ahmad, S. Synthesis and Characterization of Surface-Active Antimicrobial Hyperbranched Polyurethane Coatings Based on Oleo-Ethers of Boric Acid. Arab. J. Chem. 2018.
  • Asif, A.; Huang, C.; Shi, W. Structure - Property Study of Waterborne, Polyurethane Acrylate Dispersions Based on Hyperbranched Aliphatic Polyester for UV-Curable Coatings. Colloid Polym. Sci. 2004, 283, 200–208. DOI: 10.1007/s00396-004-1123-2.
  • Asif, A.; Shi, W.; Shen, X.; Nie, K. Physical and Thermal Properties of UV Curable Waterborne Polyurethane Dispersions Incorporating Hyperbranched Aliphatic Polyester of Varying Generation Number. Polymer 2005, 46, 11066–11078. DOI: 10.1016/j.polymer.2005.09.046.
  • Asif, A.; Hu, L.; Shi, W. Synthesis, Rheological, and Thermal Properties of Waterborne Hyperbranched Polyurethane Acrylate Dispersions for UV Curable Coatings. Colloid Polym. Sci. 2009, 287, 1041–1049. DOI: 10.1007/s00396-009-2062-8.
  • Jena, K. K.; Sahoo, S.; Narayan, R.; Aminabhavi, M.; Raju, K. Novel Hyperbranched Waterborne Polyurethane-Urea/Silica Hybrid Coatings and Their Characterizations. Polym. Int. 2011, 60, 1504–1513. DOI: 10.1002/pi.3109.
  • Florian, P.; Jena, K. K.; Allauddin, S.; Narayan, R.; Raju, K. V. S. N. Preparation and Characterization of Waterborne Hyperbranched Polyurethane-Urea and Their Hybrid Coatings. Ind. Eng. Chem. Res. 2010, 49, 4517–4527. DOI: 10.1021/ie900840g.
  • Lin, Y.; Zhou, Y.; Xu, C.; Xie, A.; Yang, M.; Yang, S.; Chen, H. Study on Synthesis and Thickening Property of Hyperbranched Waterborne Polyurethane. Progr. Org. Coat. 2013, 76, 1302–1307. DOI: 10.1016/j.porgcoat.2013.04.001.
  • Park, J. H.; Bae, S. Y.; Kim, B. K. Hyperbranched Waterborne Polyurethanes. Polym. Bull. 2013, 70, 859–869. DOI: 10.1007/s00289-012-0891-y.
  • Xu, C.; Chen, H.; Xie, A.; Chen, H.; Zhou, Y.; Li, Y.; Yang, M. Study on Associating Thickening Mechanism and Structure–Efficiency Relationship of Hyperbranched Waterborne Polyurethane. Prog. Org. Coat 2016, 92, 73–79. DOI: 10.1016/j.porgcoat.2015.11.010.
  • Boton, L.; Puguan, J. M.; Latif, M.; Kim, H. Synthesis and Properties of Quick-Drying UV-Curable Hyperbranched Waterborne Polyurethane Coating. Prog. Org. Coat. 2018, 125, 201–206. DOI: 10.1016/j.porgcoat.2018.09.017.
  • Gogoi, S.; Karak, N. Biobased Biodegradable Waterborne Hyperbranched Polyurethane as an Ecofriendly Sustainable Material. ACS Sust. Chem. Eng. 2014, 2, 2730–2738. DOI: 10.1021/sc5006022.
  • Gogoi, S.; Karak, N. Bio-Based High-Performance Waterborne Hyperbranched Polyurethane Thermoset. Polym. Adv. Technol. 2015, 26, 589–596. DOI: 10.1002/pat.3490.
  • Gogoi, S.; Kumar, M.; Mandal, B. B.; Karak, N. High Performance Luminescent Thermosetting Waterborne Hyperbranched Polyurethane/Carbon Quantum Dot Nanocomposite with in Vitro Cytocompatibility. Comp. Sci. Tech. 2015, 118, 39–46. DOI: 10.1016/j.compscitech.2015.08.010.
  • Gogoi, S.; Kumar, M.; Mandal, B. B.; Karak, N. A Renewable Resource Based Carbon Dot Decorated Hydroxyapatite Nanohybrid and Its Fabrication with Waterborne Hyperbranched Polyurethane for Bone Tissue Engineering. RSC Adv. 2016, 6, 26066–26076. DOI: 10.1039/C6RA02341J.
  • Chen, S.; Zhang, S.; Li, Y.; Zhao, G. Synthesis and Properties of Novel UV - Curable Hyperbranched Waterborne Polyurethane/Fe3O4nanocomposite Films with Excellent Magnetic Properties. RSC Adv. 2015, 5, 4355–4363. DOI: 10.1039/C4RA13683G.
  • Han, W.-S. Synthesis and Characterization of Hyperbranched Waterborne Polyurethane/Ag Nanoparticle Composites. Polym. Compos. 2018, 39, 1967–1977. DOI: 10.1002/pc.24156.
  • Luo, S.; Fan, L.; Yang, K.; Zhong, Z.; Wu, X.; Ren, T. In Situ and Controllable Synthesis of Ag NPs in Tannic Acid-Based Hyperbranched Waterborne Polyurethanes to Prepare Antibacterial Polyurethanes/Ag NPs Composites. RSC Adv. 2018, 8, 36571–36578. DOI: 10.1039/C8RA07575A.
  • Gooch, J. W.; Dong, H.; Schork, F. J. Waterborne Oil-Modified Polyurethane Coatings via Hybrid. J. Appl. Polym. Sci. 2000, 76, 105–114. DOI: 10.1002/(SICI)1097-4628(20000404)76:1<105::AID-APP14>3.0.CO;2-8.
  • Turri, S.; Levi, M.; Trombetta, T. Waterborne Anionomeric Polyurethane-Ureas from Functionalized Fluoropolyethers. J. Appl. Polym. Sci. 2004, 93, 136–144. DOI: 10.1002/app.20441.
  • Jang, J. Y.; Jhon, Y. K.; Cheong, I. W.; Kim, J. H. Effect of Process Variables on Molecular Weight and Mechanical Properties of Water-Based Polyurethane Dispersion. Colloids Surf. A. 2002, 196, 135–143.
  • Xie, D. Y.; Song, F.; Zhang, M.; Wang, X. L.; Wang, Y. Z. Roles of Soft Segment Length in Structure and Property of Soy Protein Isolate/Waterborne Polyurethane Blend Films. Ind. Eng. Chem. Res. 2016, 55, 1229–1235. DOI: 10.1021/acs.iecr.5b04185.
  • Zhang, Y.; Shao, L.; Liu, B.; Wang, F.; Wang, Y. Effect of Molecular Weight of Liquid Polysulfide on Water and Organic Solvent Resistances of Waterborne Polyurethane/Polysulfide Copolymer. Prog. Org. Coat 2017, 112, 219–224. DOI: 10.1016/j.porgcoat.2017.07.010.
  • Yu, F.; Cao, L.; Meng, Z.; Lin, N.; Liu, X. Y. Crosslinked Waterborne Polyurethane with High Waterproof Performance. Polym. Chem. 2016, 7, 3913–3922. DOI: 10.1039/C6PY00350H.
  • Liao, L.; Li, X.; Wang, Y.; Fu, H.; Li, Y. Effects of Surface Structure and Morphology of Nanoclays on the Properties of Jatropha Curcas Oil-Based Waterborne Polyurethane/Clay Nanocomposites. Ind. Eng. Chem. Res. 2016, 55, 11689–11699. DOI: 10.1021/acs.iecr.6b02527.
  • Delpech, M. C.; Coutinho, F. M. B. Waterborne Anionic Polyurethanes and Poly(Urethane-Urea)s: Influence of the Chain Extender on Mechanical and Adhesive Properties. Polymer Testing 2000, 19, 939–952. DOI: 10.1016/S0142-9418(99)00066-5.
  • Zhao, B.; Qian, Y.; Qian, X.; Fan, J.; Feng, Y. Fabrication and Characterization of Waterborne Polyurethane/Silver Nanocomposite Foams. Polym. Compos. 2019, 40, 1492–1498. DOI: 10.1002/pc.24888.
  • Kim, K.; Byung; Seo, W. J.; Jeong, M. H. Morphology and Properties of Waterborne Polyurethane/Clay Nanocomposites. Eur. Polym. J. 2003, 39, 85–91. DOI: 10.1016/S0014-3057(02)00173-8.
  • Kuan, H.-C.; Ma, C.-C. M.; Chang, W.-P.; Yuen, S.-M.; Wu, H.-H.; Lee, T.-M. Synthesis, Thermal, Mechanical and Rheological Properties of Multiwall Carbon Nanotube/Waterborne Polyurethane Nanocomposite. Compos. Sci. Technol. 2005, 65, 1703–1710. DOI: 10.1016/j.compscitech.2005.02.017.
  • Ma, X. Y.; Zhang, W. D. Effects of Flower-like ZnO Nanowhiskers on the Mechanical, Thermal and Antibacterial Properties of Waterborne Polyurethane. Polym. Degr. Stability 2009, 94, 1103–1109. DOI: 10.1016/j.polymdegradstab.2009.03.024.
  • Wang, X.; Xing, W.; Feng, X.; Yu, B.; Song, L.; Yeoh, G. H.; Hu, Y. Enhanced Mechanical and Barrier Properties of Polyurethane Nanocomposite Films with Randomly Distributed Molybdenum Disulfide Nanosheets. Compos. Sci. Technol. 2016, 127, 142–148. DOI: 10.1016/j.compscitech.2016.02.029.
  • Gurunathan, T.; Chung, J. S. Physicochemical Properties of Amino-Silane-Terminated Vegetable Oil-Based Waterborne Polyurethane Nanocomposites. ACS Sustainable Chem. Eng. 2016, 4, 4645–4653.
  • Gurunathan, T.; Chung, J. S. Synthesis of Aminosilane Crosslinked Cationomeric Waterborne Polyurethane Nanocomposites and Its Physicochemical Properties. Colloids Surf. A: Physicochem. Eng. Aspects 2017, 522, 124–132. DOI: 10.1016/j.colsurfa.2017.02.061.
  • Mondragon, G.; Santamaria-Echart, A.; Hormaiztegui, M. E. V.; Arbelaiz, A.; Peña-Rodriguez, C.; Mucci, V.; Corcuera, M.; Aranguren, M. I.; Eceiza, A. Nanocomposites of Waterborne Polyurethane Reinforced with Cellulose Nanocrystals from Sisal Fibres. J. Polym. Environ. 2018, 26, 1869–1880. DOI: 10.1007/s10924-017-1089-z.
  • Lee, Y. R.; Raghu, A. V.; Jeong, H. M.; Kim, B. K. Properties of Waterborne Polyurethane/Functionalized Graphene Sheet Nanocomposites Prepared by an in Situ Method. Macromol. Chem. Phys. 2009, 210, 1247–1254. DOI: 10.1002/macp.200900157.
  • Zhang, L.; Zhang, H.; Guo, J. Synthesis and Properties of UV-Curable Polyester-Based Waterborne Polyurethane/Functionalized Silica Composites and Morphology of Their Nanostructured Films. Ind. Eng. Chem. Res. 2012, 51, 8434–8441. DOI: 10.1021/ie3000248.
  • Li, R.; Shan, Z. Research on Structural Features and Thermal Conductivity of Waterborne Polyurethane. Progr. Org. Coatings 2017, 104, 271–279. DOI: 10.1016/j.porgcoat.2016.11.027.
  • Li, R.; Loontjens, J. A. T.; Shan, Z. The Varying Mass Ratios of Soft and Hard Segments in Waterborne Polyurethane Films : Performances of Thermal Conductivity and Adhesive Properties. Eur. Polym. J. 2019, 112, 423–432. DOI: 10.1016/j.eurpolymj.2019.01.025.
  • Du, W.; Zhang, Z.; Su, H.; Lin, H.; Li, Z. Urethane-Functionalized Graphene Oxide for Improving Compatibility and Thermal Conductivity of Waterborne Polyurethane Composites. Ind. Eng. Chem. Res. 2018, 57, 7146–7155. DOI: 10.1021/acs.iecr.8b00656.
  • Wu, Y.; Guo, P.; Zhao, Y.; Liu, X.; Du, Z. Hydrophobic, Transparent Waterborne Polyurethane-Polydimethylsiloxane Composites Prepared from Aqueous Sol-Gel Process and Applied in Corrosion Protection. Prog. Org. Coat 2019, 127, 231–238. DOI: 10.1016/j.porgcoat.2018.06.002.
  • Yang, C. H.; Liu, F. J.; Liu, Y. P.; Liao, W. T. Hybrids of Colloidal Silica and Waterborne Polyurethane. J. Colloid Interface Sci. 2006, 302, 123–132. DOI: 10.1016/j.jcis.2006.06.001.
  • Yeh, J. M.; Yao, C. T.; Hsieh, C. F.; Yang, H. C.; Wu, C. P. Preparation and Properties of Amino-Terminated Anionic Waterborne-Polyurethane-Silica Hybrid Materials through a Sol-Gel Process in the Absence of an External Catalyst. Eur. Polym. J. 2008, 44, 2777–2783. DOI: 10.1016/j.eurpolymj.2008.06.040.
  • Zhang, S.; Renliu, Jiang, J.; Yang, C.; Chen, M.; Liu, X. Facile Synthesis of Waterborne UV-Curable Polyurethane/Silica Nanocomposites and Morphology, Physical Properties of Its Nanostructured Films. Progr. Org. Coat. 2011, 70, 1–8.
  • Sow, C.; Riedl, B.; Blanchet, P. UV-Waterborne Polyurethane-Acrylate Nanocomposite Coatings Containing Alumina and Silica Nanoparticles for Wood: Mechanical, Optical, and Thermal Properties Assessment. J. Coat. Technol. Res. 2011, 8, 211–221. DOI: 10.1007/s11998-010-9298-6.
  • Yong, Q.; Liao, B.; Huang, J.; Guo, Y.; Liang, C.; Pang, H. Preparation and Characterization of a Novel Low Gloss Waterborne Polyurethane Resin. Surf. Coat. Tech. 2018, 341, 78–85. DOI: 10.1016/j.surfcoat.2018.01.012.
  • Sun, Z.; Fan, H.; Chen, Y.; Huang, J. S. 2017 - Synthesis of Self-Matting Waterborne Polyurethane Coatings with Excellent Transmittance. Polym. Int. 2018, 67, 78–84. DOI: 10.1002/pi.5472.
  • Zeng, Z.; Chen, M.; Jin, H.; Li, W.; Xue, X.; Zhou, L.; Pei, Y.; Zhang, H.; Zhang, Z. Thin and Flexible Multi-Walled Carbon Nanotube/Waterborne Polyurethane Composites with High-Performance Electromagnetic Interference Shielding. Carbon. 2016, 96, 768–777. DOI: 10.1016/j.carbon.2015.10.004.
  • Açikalin, E.; Atici, O.; Sayinti, A.; Çoban, K.; Erkalfa, H. Preparation of Dendritic Waterborne Polyurethane-Urea/Ni-Zn Ferrite Composite Coatings and Investigation of Their Microwave Absorption Properties. Progr. Org. Coat. 2013, 76, 972–978. DOI: 10.1016/j.porgcoat.2012.10.008.
  • Yeh, J. M.; Yao, C. T.; Hsieh, C. F.; Lin, L. H.; Chen, P. L.; Wu, J. C.; Yang, H. C.; Wu, C. P. Preparation, Characterization and Electrochemical Corrosion Studies on Environmentally Friendly Waterborne Polyurethane/Na+-MMT Clay Nanocomposite Coatings. Eur. Polym. J. 2008, 44, 3046–3056. DOI: 10.1016/j.eurpolymj.2008.05.037.
  • Lee, H.; Lin, L. Waterborne Polyurethane/Clay Nanocomposites: Novel Effects of the Clay and Its Interlayer Ions on the Morphology and Physical and Electrical Properties. ACS Macromol. 2006, 39, 6133–6141. DOI: 10.1021/ma060621y.
  • Ding, J. N.; Fan, Y.; Zhao, C. X.; Liu, Y. B.; Yu, C. T.; Yuan, N. Y. Electrical Conductivity of Waterborne Polyurethane/Graphene Composites Prepared by Solution Mixing. J. Compos. Mater. 2012, 46, 747–752. DOI: 10.1177/0021998311413835.
  • Zhang, S.; Li, Y.; Peng, L.; Li, Q.; Chen, S.; Hou, K. Synthesis and Characterization of Novel Waterborne Polyurethane Nanocomposites with Magnetic and Electrical Properties. Comp. Part A: Appl. Sci. Manufacturing 2013, 55, 94–101. DOI: 10.1016/j.compositesa.2013.05.018.
  • Leonardo, M.; Rosane, S.; Dumas, A.; Corvo, M.; Almeida, P.; Einloft, S. Waterborne Polyurethane/Fe3O4-Synthetic Talc Composites: Synthesis, Characterization, and Magnetic Properties. Polym. Bull. 2018, 75, 1915–1930. DOI: 10.1007/s00289-017-2133-9.
  • Wang, S.; Li, S.; Hou, C.; Ma, G.; Wang, H.; Wu, J.; Hao, X.; Zhang, H. Functionalization of Multiwalled Carbon Nanotubes by Amidation and Michael Addition Reactions and the Effect of the Functional Chains on the Properties of Waterborne Polyurethane Composites. J. Appl. Polym. Sci. 2018, 135, 46757. DOI: 10.1002/app.46757.
  • Xu, Y.; Yang, Y.; Yan, D. X.; Duan, H.; Zhao, G.; Liu, Y. Gradient Structure Design of Flexible Waterborne Polyurethane Conductive Films for Ultraefficient Electromagnetic Shielding with Low Reflection Characteristic. ACS Appl. Mater. Interfaces 2018, 10, 19143–19152. DOI: 10.1021/acsami.8b05129.
  • Cao, X.; Li, C. M.; Bao, H.; Bao, Q.; Dong, H. Fabrication of Strongly Fluorescent Quantum Dot-Polymer Composite in Aqueous Solution. Chem. Mater. 2007, 19, 3773–3779. DOI: 10.1021/cm070898s.
  • Zhou, C.; Xie, T.; Zhou, R.; Trindle, C. O.; Tikman, Y.; Zhang, X.; Zhang, G. Waterborne Polyurethanes with Tunable Fluorescence and Room- Temperature Phosphorescence. ACS Appl. Mater. Interfaces 2015, 7, 17209–17216. DOI: 10.1021/acsami.5b04075.
  • Kumar, R.; Yadav, R.; Kolhe, M. A.; Bhosale, R. S.; Narayan, R. 8-Hydroxypyrene-1,3,6-Trisulfonic Acid Trisodium Salt (HPTS) Based High Fluorescent, PH Stimuli Waterborne Polyurethane Coatings. Polymer 2018, 136, 157–165. DOI: 10.1016/j.polymer.2017.12.056.
  • Pilehkouhi, M.; Shaki, H.; Khosravi, A.; Khorasani, M.; Zamani, E. Synthesis and Characterization of a Fluorescent Water-Borne Polyurethane Based on a Novel Naphthalimide Dye. J. Macromol. Sci., Part B: Phys. 2018, 57, 151–167. DOI: 10.1080/00222348.2018.1435501.
  • Hu, X. H.; Zhang, X. Y.; Dai, J. B. Synthesis and Characterization of a Novel Waterborne Stilbene-Based Polyurethane Fluorescent Brightener. Chinese Chem. Lett. 2011, 22, 997–1000. DOI: 10.1016/j.cclet.2011.01.028.
  • Yin, X.; Luo, Y.; Zhang, J. Synthesis and Characterization of Halogen-Free Flame Retardant Two-Component Waterborne Polyurethane by Different Modification. Ind. Eng. Chem. Res. 2017, 56, 1791–1802. DOI: 10.1021/acs.iecr.6b04452.
  • Dias, G.; Prado, M.; Ligabue, R.; Poirier, M.; Le Roux, C.; Martin, F.; Fery-Forgues, S.; Einloft, S. Synthetic Talc as a New Platform for Producing Fluorescent Clay Polyurethane Nanocomposites. Appl. Clay Sci. 2018, 158, 37–45. DOI: 10.1016/j.clay.2018.03.012.
  • Meng, B. Q.; Lee, S.; Nah, C.; Lee, Y. Preparation of Waterborne Polyurethanes Using an Amphiphilic Diol for Breathable Waterproof Textile Coatings. Progr. Org. Coat. 2009, 66, 382–386. DOI: 10.1016/j.porgcoat.2009.08.016.
  • Tsai, Y.; Li, S.; Hu, S.; Chang, W.; Jeng, U.; Hsu, S. Synthesis of Thermoresponsive Amphiphilic Polyurethane Gel as a New Cell Printing Material near Body Temperature. ACS Appl. Mater. Interfaces 2015, 7, 27613–27623. DOI: 10.1021/acsami.5b10697.
  • Omrani, I.; Babanejad, N.; Shendi, H. K.; Nabid, M. R. Fully Glutathione Degradable Waterborne Polyurethane Nanocarriers: Preparation, Redox-Sensitivity, and Triggered Intracellular Drug Release. Mater. Sci. Eng. C. 2017, 70, 607–616. DOI: 10.1016/j.msec.2016.09.036.
  • Sun, D.; Miao, X.; Zhang, K.; Kim, H.; Yuan, Y. Triazole-Forming Waterborne Polyurethane Composites Fabricated with Silane Coupling Agent Functionalized Nano-Silica. J. Colloid Interface Sci. 2011, 361, 483–490. DOI: 10.1016/j.jcis.2011.05.062.
  • Han, Y.; Chen, Z.; Dong, W.; Xin, Z. Improved Water Resistance, Thermal Stability, and Mechanical Properties of Waterborne Polyurethane Nanohybrids Reinforced by Fumed Silica via in Situ Polymerization. High Performance Polym. 2015, 27, 824–832. DOI: 10.1177/0954008314563058.
  • Zhang, F.; Wang, R.; He, Y.; Lin, W.; Li, Y.; Shao, Y.; Li, J.; Ding, M.; Luo, F.; Tan, H.; Fu, Q. A Biomimetic Hierarchical Structure with a Hydrophilic Surface and a Hydrophobic Subsurface Constructed from Waterborne Polyurethanes Containing a Self-Assembling Peptide Extender. J. Mater. Chem. B. 2018, 6, 4326–4337. DOI: 10.1039/C8TB01279B.
  • Pathan, S.; Ahmad, S. Green and Sustainable Anticorrosive Coating Derived from Waterborne Linseed Alkyd Using Organic-Inorganic Hybrid Cross Linker. Prog. Org. Coat 2018, 122, 189–198. DOI: 10.1016/j.porgcoat.2018.05.026.
  • Zafar, F.; Sharmin, E.; Zafar, H.; Shah, M. Y.; Nishat, N.; Ahmad, S. Facile Microwave-Assisted Preparation of Waterborne Polyesteramide/OMMT Clay Bio-Nanocomposites for Protective Coatings. Indus. Crops Products 2015, 67, 484–491. DOI: 10.1016/j.indcrop.2015.01.057.
  • Liu, H.; Li, C.; Sun, X. S. Soy-Oil-Based Waterborne Polyurethane Improved Wet Strength of Soy Protein Adhesives on Wood. Inter. J. Adhesion Adhesives 2017, 73, 66–74. DOI: 10.1016/j.ijadhadh.2016.09.006.
  • Luo, S.; Yang, K.; Zhong, Z.; Wu, X.; Ren, T. Facile Preparation of Degradable Multi-Arm-Star- Branched Waterborne Polyurethane with Bio-Based Tannic Acid. RSC Adv. 2018, 8, 37765–37773. DOI: 10.1039/C8RA07875K.
  • Hormaiztegui, M. E. V.; Mucci, V. L.; Santamaria-Echart, A.; Corcuera, M. Á.; Eceiza, A.; Aranguren, M. I. Waterborne Polyurethane Nanocomposites Based on Vegetable Oil and Microfibrillated Cellulose. J. Appl. Polym. Sci. 2016, 133, 44207. DOI: 10.1002/app.44207.
  • Zhang, Y.; He, X.; Ding, M.; He, W.; Li, J.; Li, J.; Tan, H. Antibacterial and Biocompatible Cross-Linked Waterborne Polyurethanes Containing Gemini Quaternary Ammonium Salts. Biomacromol. 2018, 19, 279–287. DOI: 10.1021/acs.biomac.7b01016.
  • Hsu, S. H.; Tseng, H. J.; Lin, Y. C. The Biocompatibility and Antibacterial Properties of Waterborne Polyurethane-Silver Nanocomposites. Biomater. 2010, 31, 6796–6808. DOI: 10.1016/j.biomaterials.2010.05.015.
  • Gao, Z.; Peng, J.; Zhong, T.; Sun, J.; Wang, X.; Yue, C. Biocompatible Elastomer of Waterborne Polyurethane Based on Castor Oil and Polyethylene Glycol with Cellulose Nanocrystals. Carbohydr. Polym. 2012, 87, 2068–2075. DOI: 10.1016/j.carbpol.2011.10.027.
  • Omrani, I.; Babanejad, N.; Shendi, H. K.; Nabid, M. R. Preparation and Evaluation of a Novel Sunflower Oil-Based Waterborne Polyurethane Nanoparticles for Sustained Delivery of Hydrophobic Drug. Eur. J. Lipid Sci. Technol. 2017, 119, 1600283. DOI: 10.1002/ejlt.201600283.
  • Liu, Y.; Du, H.; Liu, L.; Leng, J. Shape Memory Polymers and Their Composites in Aerospace Applications: A Review. Smart Mater. Struct. 2014, 23, 023001. DOI: 10.1088/0964-1726/23/2/023001.
  • Lewis, C. L.; Dell, E. M. A Review of Shape Memory Polymers Bearing Reversible Binding Groups. J. Polym. Sci. Part B: Polym. Phys. 2016, 54, 1340–1364. DOI: 10.1002/polb.23994.
  • Xiao, X.; Kong, D.; Qiu, X.; Zhang, W.; Zhang, F.; Liu, L.; Liu, Y.; Zhang, S.; Hu, Y.; Leng, J. Shape-Memory Polymers with Adjustable High Glass Transition Temperatures. Macromol. 2015, 48, 3582–3589. DOI: 10.1021/acs.macromol.5b00654.
  • Wu, J.; Yuan, C.; Ding, Z.; Isakov, M.; Mao, Y.; Wang, T.; Dunn, M. L.; Qi, H. J. Multi-Shape Active Composites by 3D Printing of Digital Shape Memory Polymers. Sci. Rep. 2016, 6, 1–11. DOI: 10.1038/srep24224.
  • Sun, F.; Yang, J.; Zhang, H.; Yi, L.; Luo, K.; Zhao, L.; Wu, J. Multi-Functional Composite Aerogels Enabled by Chemical Integration of Graphene Oxide and Waterborne Polyurethane via a Facile and Green Method. Compos. Sci. Technol. 2018, 165, 175–182. DOI: 10.1016/j.compscitech.2018.06.027.
  • Wang, Z.; Li, W.; Yang, X.; Cao, J.; Tu, Y.; Wu, R.; Wang, W. Highly Stretchable and Compressible Shape Memory Hydrogels Based on Polyurethane Network and Supramolecular Interaction. Mater. Today Commun. 2018, 17, 246–251. DOI: 10.1016/j.mtcomm.2018.09.006.
  • Lee, S. K.; Yoon, S. H.; Chung, I.; Hartwig, A.; Kim, B. K. Waterborne Polyurethane Nanocomposites Having Shape Memory Effects. J. Polym. Sci. A Polym. Chem. 2011, 49, 634–641. DOI: 10.1002/pola.24473.
  • Wang, Y. J.; Jeng, U. S.; Hsu, S. H. Biodegradable Water-Based Polyurethane Shape Memory Elastomers for Bone Tissue Engineering. ACS Biomater. Sci. Eng. 2018, 4, 1397–1406. DOI: 10.1021/acsbiomaterials.8b00091.
  • Gaikwad, M. S.; Kusumkar, V. V.; Yemul, O. S.; Hundiwale, D. G.; Mahulikar, P. P. Eco-Friendly Waterborne Coating from Bio-Based Polyester Amide Resin. Polym. Bull. 2019, 76(6), 2743–2763. DOI: 10.1007/s00289-018-2511-y.
  • Jayanth, D.; Kumar, P. S.; Nayak, G. C.; Kumar, J. S.; Pal, S. K.; Rajasekar, R. A Review on Biodegradable Polymeric Materials Striving towards the Attainment of Green Environment. J. Polym. Environ. 2018, 26, 838–865. DOI: 10.1007/s10924-017-0985-6.
  • Rahman, M. M.; Kim, H. D. Synthesis and Characterization of Waterborne Polyurethane Adhesives Containing Different Amount of Ionic Groups (I). J. Appl. Polym. Sci. 2006, 102, 5684–5691. DOI: 10.1002/app.25052.
  • Fu, H.; Yan, C.; Zhou, W.; Huang, H. Nano-SiO2/Fluorinated Waterborne Polyurethane Nanocomposite Adhesive for Laminated Films. J. Ind. Eng. Chem. 2014, 20, 1623–1632. DOI: 10.1016/j.jiec.2013.08.009.
  • Heck, C. A.; Dos Santos, J. H. Z.; Wolf, C. R. Waterborne Polyurethane: The Effect of the Addition or in Situ Formation of Silica on Mechanical Properties and Adhesion. In. J. Adhesion Adhesives 2015, 58, 13–20. DOI: 10.1016/j.ijadhadh.2014.12.006.
  • Orgilés-Calpena, E.; Arán-Aís, F.; Torró-Palau, A. M.; Ara, F. Chemical Functionalization and Dispersion of Carbon Nanofibers in Waterborne Polyurethane Adhesives Chemical Functionalization and Dispersion of Carbon Nanofibers in Waterborne Polyurethane Adhesives. J. Adh 2013, 89, 174–191.
  • Ruanpan, S.; Manuspiya, H. Synthesized Amino-Functionalized Porous Clay Heterostructure as an Effective Thickener in Waterborne Polyurethane Hybrid Adhesives for Lamination Processes. Int. J. Adhesion Adhesives 2018, 80, 66–75. DOI: 10.1016/j.ijadhadh.2017.10.005.
  • Cristofolini, L.; Guidetti, G.; Morellato, K.; Gibertini, M.; Calvaresi, M.; Zerbetto, F.; Montalti, M.; Falini, G. Graphene Materials Strengthen Aqueous Polyurethane Adhesives. ACS Omega 2018, 3, 8829–8835. DOI: 10.1021/acsomega.8b01342.
  • Fu, H.; Wang, Y.; Chen, W.; Zhou, W.; Xiao, J. A Novel Silanized CoFe2O4/Fluorinated Waterborne Polyurethane Pressure Sensitive Adhesive. Appl. Surf. Sci. 2015, 351, 1204–1212. DOI: 10.1016/j.apsusc.2015.06.121.
  • Rahman, M. M.; Yoo, H.; Mi, C. J.; Kim, H. Synthesis and Characterization of Waterborne Polyurethane/Clay Nanocomposite – Effect on Adhesive Strength. Macromol. Symp. 2007, 249, 251–258. DOI: 10.1002/masy.200750341.
  • Ahmadi, Y.; Ahmad, S. Surface-Active Antimicrobial and Anticorrosive Oleo-Polyurethane/Graphene Oxide Nanocomposite Coatings: Synergistic Effects of in-Situ Polymerization and π-π Interaction. Prog. Org. Coat 2019, 127, 168–180. DOI: 10.1016/j.porgcoat.2018.11.019.
  • Khatoon, H.; Ahmad, S. Vanadium Pentoxide-Enwrapped Polydiphenylamine/Polyurethane Nanocomposite: High-Performance Anticorrosive Coating. ACS Appl. Mater. Interfaces 2019, 11, 2374–2385. DOI: 10.1021/acsami.8b17861.
  • Irfan, M.; Bhat, S. I.; Ahmad, S. Reduced Graphene Oxide Reinforced Waterborne Soy Alkyd Nanocomposites: Formulation, Characterization and Corrosion Inhibition Analysis. ACS Sustain. Chem. Eng. 2018, 6, 14820–14830. DOI: 10.1021/acssuschemeng.8b03349.
  • Irfan, M.; Bhat, S. I.; Ahmad, S. Waterborne-Reduced Graphene Oxide Dispersed Bio-Polyester Amide Nanocomposites: An Approach towards Eco-Friendly Anticorrosive Coatings. New J. Chem. 2019, 43, 4706–4720. DOI: 10.1039/C8NJ03383H.
  • Zafar, S.; Zafar, F.; Riaz, U.; Ahmad, S. Synthesis, Characterization, and Anticorrosive Coating Properties of Waterborne Interpenetrating Polymer Network Based on Epoxy-Acrylic-Oleic Acid with Butylated Melamine Formaldehyde. J. Appl. Polym. Sci. 2009, 113, 827–838. DOI: 10.1002/app.29726.
  • Rahman, O. U.; Kashif, M.; Ahmad, S. Nanoferrite Dispersed Waterborne Epoxy-Acrylate: Anticorrosive Nanocomposite Coatings. Prog. Org. Coat 2015, 80, 77–86. DOI: 10.1016/j.porgcoat.2014.11.023.
  • Yang, H.; Kong, X.; Lu, W.; Liu, Y.; Guo, J.; Liu, S. High Anticorrosion Chromate-Free Passive Films Made by Titanate and Waterborne Polyurethane on Galvanized Steel Sheet. Progress in Organic Coatings 2010, 67, 375–380. DOI: 10.1016/j.porgcoat.2010.01.001.
  • Cai, K.; Zuo, S.; Luo, S.; Yao, C.; Liu, W.; Ma, J.; Mao, H.; Li, Z. Preparation of Polyaniline/Graphene Composites with Excellent anti-Corrosion Properties and Their Anticorrosive Coatings. RSC Adv. 2016, 6, 95965–95972. DOI: 10.1039/C6RA19618G.
  • Deyab, M. A.; Essehli, R.; Bali, B.; El .; Lachkar, M. Fabrication and Evaluation of Rb2Co(H2P2O7)2$2H2O/Waterborne Polyurethane Nanocomposite Coating for Corrosion Protection Aspects. RSC Adv. 2017, 7, 55074–55080. DOI: 10.1039/C7RA11212B.
  • Luo, J.; Wang, J.; Wen, S.; Yu, D.; Wu, Y.; Sun, K. Improved Corrosion Resistance Based on APTES-Grafted Reduced Sulfonated Graphene/Waterborne Polyurethane Coatings. J. Coat. Technol. Res. 2018, 15, 1107–1115. DOI: 10.1007/s11998-018-0048-5.
  • Li, J.; Gan, L.; Liu, Y.; Mateti, S.; Lei, W.; Chen, Y.; Yang, J. Boron Nitride Nanosheets Reinforced Waterborne Polyurethane Coatings for Improving Corrosion Resistance and Antifriction Properties. Eur. Polym. J. 2018, 104, 57–63. DOI: 10.1016/j.eurpolymj.2018.04.042.
  • Liang, H.; Liu, L.; Lu, J.; Chen, M.; Zhang, C. Castor Oil-Based Cationic Waterborne Polyurethane Dispersions: Storage Stability, Thermo-Physical Properties and Antibacterial Properties. Indust. Crops Prod. 2018, 117, 169–178. DOI: 10.1016/j.indcrop.2018.02.084.
  • Liu, H.; Song, J.; Shang, S.; Song, Z.; Wang, D. Cellulose Nanocrystal/Silver Nanoparticle Composites as Bifunctional Nanofillers within Waterborne Polyurethane. ACS Appl. Mater. Interfaces 2012, 4, 2413–2419. DOI: 10.1021/am3000209.
  • Wu, J.; Wang, C.; Mu, C.; Lin, W. A Waterborne Polyurethane Coating Functionalized by Isobornyl with Enhanced Antibacterial Adhesion and Hydrophobic Property. Eur. Polym. J. 2018, 108, 498–506. DOI: 10.1016/j.eurpolymj.2018.09.034.
  • Ahmadi, Y.; Yadav, M.; Ahmad, S. Oleo-Polyurethane-Carbon Nanocomposites: E Ff Ects of in-Situ Polymerization and Sustainable Precursor on Structure. Mech., Thermal, Antimicr. Surf.-Activity. Comp. Part B 2019, 164, 683–692. DOI: 10.1016/j.compositesb.2019.01.078.
  • Gabry, A. A. E. L. K. E. Application of Prepared Waterborne Polyurethane Extended with Chitosan to Impart Antibacterial Properties to Acrylic Fabrics. J. Mater Sci: Mater Med. 2010, 21, 507–514.
  • Wattanodorn, Y.; Jenkan, R.; Atorngitjawat, P.; Wirasate, S. Antibacterial Anionic Waterborne Polyurethanes/Ag Nanocomposites with Enhanced Mechanical Properties. Polym. Testing 2014, 40, 163–169. DOI: 10.1016/j.polymertesting.2014.09.004.
  • Iqbal, S.; Ahmad, S. Recent Development in Hybrid Conducting Polymers: Synthesis, Applications and Future Prospects. J. Industr. Eng. Chem. 2018, 60, 53–84. DOI: 10.1016/j.jiec.2017.09.038.
  • Khatoon, H.; Ahmad, S. A Review on Conducting Polymer Reinforced Polyurethane Composites. J. Industr. Eng. Chem. 2017, 53, 1–22. DOI: 10.1016/j.jiec.2017.03.036.
  • Iqbal, S.; Shah, J.; Kotnala, R. K.; Ahmad, S. Highly Efficient Low Cost EMI Shielding by Barium Ferrite Encapsulated Polythiophene Nanocomposite. J. All. Comp. 2019, 779, 487–496. DOI: 10.1016/j.jallcom.2018.11.307.
  • Hsiao, S. T.; Ma, C. C. M.; Tien, H. W.; Liao, W. H.; Wang, Y. S.; Li, S. M.; Huang, Y. C. Using a Non-Covalent Modification to Prepare a High Electromagnetic Interference Shielding Performance Graphene Nanosheet/Water-Borne Polyurethane Composite. Carbon 2013, 60, 57–66. DOI: 10.1016/j.carbon.2013.03.056.
  • Yu, M. m.; Chen, S. h.; Zhou, Z.; Zhu, M. f. Novel Flexible Broadband Microwave Absorptive Fabrics Coated with Graphite Nanosheets/Polyurethane Nanocomposites. Progr. Nat. Sci.: Mater. Int. 2012, 22, 288–294. DOI: 10.1016/j.pnsc.2012.06.004.
  • Hsiao, S. T.; Ma, C. C. M.; Tien, H. W.; Liao, W. H.; Wang, Y. S.; Li, S. M.; Yang, C. Y.; Lin, S. C.; Yang, R. B. Effect of Covalent Modification of Graphene Nanosheets on the Electrical Property and Electromagnetic Interference Shielding Performance of a Water-Borne Polyurethane Composite. ACS Appl. Mater. Interfaces 2015, 7, 2817–2826. DOI: 10.1021/am508069v.
  • Hu, J. W.; Li, M. W.; Zhang, M. Q.; Xiao, D. S.; Cheng, G. S.; Rong, M. Z. Preparation of Binary Conductive Polymer Composites with Very Low Percolation Threshold by Latex Blending. Macromol. Rapid Commun. 2003, 24, 889–893. DOI: 10.1002/marc.200300014.
  • He, H.; Xu, X.-B.; Zhang, D.-F. An Aligned Macro-Porous Carbon Nanotube/Waterborne Polyurethane Sensor for the Detection of Flowing Organic Vapors. Sensors Actuators, B: Chem. 2013, 176, 940–944. DOI: 10.1016/j.snb.2012.09.095.
  • Chen, S. G.; Hu, J. W.; Zhang, M. Q.; Li, M. W.; Rong, M. Z. Gas Sensitivity of Carbon Black/Waterborne Polyurethane Composites. Carbon 2004, 42, 645–651. DOI: 10.1016/j.carbon.2004.01.002.
  • Yang, Y.; Huang, Y.; Chen, Y.; Wang, D.; Liu, H.; Hu, C. Diffusion and Sorption of Benzene Vapor through Polybutadiene/Acrylonitrile-Based Polyurethanes. J. Appl. Polym. Sci. 2004, 91, 2984–2991. DOI: 10.1002/app.13509.
  • Chen, S. G.; Hu, X. L.; Hu, J.; Zhang, M. Q.; Rong, M. Z.; Zheng, Q. Relationships between Organic Vapor Adsorption Behaviors and Gas Sensitivity of Carbon Black Filled Waterborne Polyurethane Composites. Sensors Actuators, B: Chem. 2006, 119, 110–117. DOI: 10.1016/j.snb.2005.12.002.
  • Chen, S. G.; Hu, J. W.; Zhang, M. Q.; Rong, M. Z.; Zheng, Q. Improvement of Gas Sensing Performance of Carbon Black/Waterborne Polyurethane Composites: Effect of Crosslinking Treatment. Sensors Actuat. B: Chem. 2006, 113, 361–369. DOI: 10.1016/j.snb.2005.03.026.
  • Zhao, B.; Fu, R. W.; Zhang, M. Q.; Yang, H.; Rong, M. Z.; Zheng, Q. Effect of Soft Segments of Waterborne Polyurethane on Organic Vapor Sensitivity of Carbon Black Filled Waterborne Polyurethane Composites. Polym. J. 2006, 38, 799–806. DOI: 10.1295/polymj.PJ2005202.
  • Shieh, Y. T.; Zeng, Z. H.; Cheng, C. C. Waterborne Polyurethane Colloids with Sensitive CO2-Switchable Hydrophilic/Hydrophobic Properties. Macromol. Chem. Phys. 2018, 219, 1800247–1800246. DOI: 10.1002/macp.201800247.
  • Sun, C.; Liu, J.; Gong, Y.; Wilkinson, D. P.; Zhang, J. Recent Advances in All-Solid-State Rechargeable Lithium Batteries. Nano Energy 2017, 33, 363–386. DOI: 10.1016/j.nanoen.2017.01.028.
  • Cheng, Y.-T.; Wen, T.-C. Novel Waterborne Polyurethane Based Electrolytes for Lithium Batteries - (II) the Effect of Adding LiCF3SO3-PC. Solid State Ion. 1998, 110, 161–171. DOI: 10.1016/S0167-2738(97)00531-6.
  • Wen, T. C.; Wu, M. S.; Yang, C. H. Spectroscopic Investigations of Poly(Oxypropylene)Glycol-Based Waterborne Polyurethane Doped with Lithium Perchlorate. Macromol. 1999, 32, 2712–2720. DOI: 10.1021/ma9804489.
  • Li, Y.-J.; Chen, S.; Wu, F. Waterborne Polyurethane Polymer Electrolytes Containing Poly(Ethylene Glycol) and Polydimethylsiloxane in Soft Segments. Asian J. Chem. 2014, 26, 5703–5708. DOI: 10.14233/ajchem.2014.18187.
  • Bao, J.; Qu, X.; Qi, G.; Huang, Q.; Wu, S.; Tao, C.; Gao, M.; Chen, C. Solid Electrolyte Based on Waterborne Polyurethane and Poly(Ethylene Oxide) Blend Polymer for All-Solid-State Lithium Ion Batteries. Solid State Ion. 2018, 320, 55–63. DOI: 10.1016/j.ssi.2018.02.030.
  • Wang, J. A.; Lu, Y. T.; Lin, S. C.; Wang, Y. S.; Ma, C. C. M.; Hu, C. C. Designing a Novel Polymer Electrolyte for Improving the Electrode/Electrolyte Interface in Flexible All-Solid-State Electrical Double-Layer Capacitors. ACS Appl. Mater. Interfaces 2018, 10, 17871–17882. DOI: 10.1021/acsami.8b02046.
  • Wu, Y.; Lin, W.; Hao, H.; Li, J.; Luo, F.; Tan, H. Nanofibrous Scaffold from Electrospinning Biodegradable Waterborne Polyurethane/Poly(Vinyl Alcohol) for Tissue Engineering Application. J. Biomater. Sci., Polym. Ed. 2017, 28, 648–663. DOI: 10.1080/09205063.2017.1294041.
  • Hao, H.; Deng, Y.; Wu, Y.; Liu, S.; Lin, W.; Li, J.; Luo, F.; Tan, H. Synthesis of Biodegradable Waterborne Phosphatidylcholine Polyurethanes for Soft Tissue Engineering Applications. Regen. Biomater. 2017, 4, 69–79. DOI: 10.1093/rb/rbw046.
  • Jiang, X.; Yu, F.; Wang, Z.; Li, J.; Tan, H.; Ding, M.; Fu, Q. Fabrication and Characterization of Waterborne Biodegradable Polyurethanes 3-Dimensional Porous Scaffolds for Vascular Tissue Engineering. J. Biomater. Sci. Polym. Ed. 2010, 21, 1637–1652. DOI: 10.1163/092050609X12525750021270.
  • Chaudhari, A. A.; Vig, K.; Baganizi, D. R.; Sahu, R.; Dixit, S.; Dennis, V.; Singh, S. R.; Pillai, S. R. Future Prospects for Scaffolding Methods and Biomaterials in Skin Tissue Engineering: A Review. IJMS. 2016, 17, 1974. DOI: 10.3390/ijms17121974.
  • Arti, V.; Ahmad, S. Hydrogels in Tissue Engineering: Scope and Applications. Curr. Pharm. Biotechnol. 2015, 16, 606–620. DOI: 10.2174/138920101607150427111651.
  • Kouser, R.; Vashist, A.; Zafaryab, M.; Rizvi, M. A.; Ahmad, S. Biocompatible and Mechanically Robust Nanocomposite Hydrogels for Potential Applications in Tissue Engineering. Mater. Sci. Eng. C. 2018, 84, 168–179. DOI: 10.1016/j.msec.2017.11.018.
  • Hung, K. C.; Tseng, C. S.; Dai, L. G.; Hsu, S. h. Water-Based Polyurethane 3D Printed Scaffolds with Controlled Release Function for Customized Cartilage Tissue Engineering. Biomater. 2016, 83, 156–168. DOI: 10.1016/j.biomaterials.2016.01.019.
  • Shie, M. Y.; Chang, W. C.; Wei, L. J.; Huang, Y. H.; Chen, C. H.; Shih, C. T.; Chen, Y. W.; Shen, Y. F. 3D Printing of Cytocompatible Water-Based Light-Cured Polyurethane with Hyaluronic Acid for Cartilage Tissue Engineering Applications. Materials 2017, 10, 136. DOI: 10.3390/ma10020136.
  • Hsieh, C. T.; Liao, C. Y.; Dai, N. T.; Tseng, C. S.; Yen, B. L.; Hsu, S. h. 3D Printing of Tubular Scaffolds with Elasticity and Complex Structure from Multiple Waterborne Polyurethanes for Tracheal Tissue Engineering. Appl. Mater. Today 2018, 12, 330–341. DOI: 10.1016/j.apmt.2018.06.004.
  • Ou, C. W.; Su, C. H.; Jeng, U. S.; Hsu, S. H. Characterization of Biodegradable Polyurethane Nanoparticles and Thermally Induced Self-Assembly in Water Dispersion. ACS Appl. Mater. Interfaces 2014, 6, 5685–5694. DOI: 10.1021/am500213t.
  • Ali, A.; Ahmed, S. A Review on Chitosan and Its Nanocomposites in Drug Delivery. Int. J. Biol. Macromol. 2018, 109, 273–286. DOI: 10.1016/j.ijbiomac.2017.12.078.
  • Rahman, M. M.; Zahir, M. H.; Kim, H. D. Synthesis and Properties of Waterborne Polyurethane (WBPU)/Modified Lignin Amine (MLA) Adhesive: A Promising Adhesive Material. Polymers 2016, 8, 318–328. DOI: 10.3390/polym8090318.
  • Nakatani, H.; Nakamura, T.; Motokucho, S. A Study on Recyclable Waterborne Polyurethane Process with a Photo and Thermal Hybrid Treatment System. Reac. Func. Poly 2018, 127, 168–176. DOI: 10.1016/j.reactfunctpolym.2018.04.012.
  • Wang, N.; Burugapalli, K.; Song, W.; Halls, J.; Moussy, F.; Ray, A.; Zheng, Y. Electrospun Fibro-Porous Polyurethane Coatings for Implantable Glucose Biosensors. Biomaterials 2013, 34, 888–901. DOI: 10.1016/j.biomaterials.2012.10.049.
  • Shin, J. H.; Marxer, S. M.; Schoenfisch, M. H. Nitric Oxide-Releasing Sol-Gel Particle/Polyurethane Glucose Biosensors. Anal. Chem. 2004, 76, 4543–4549. DOI: 10.1021/ac049776z.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.