760
Views
24
CrossRef citations to date
0
Altmetric
Reviews

Structural Design and Applications of Stereoregular Fused Thiophenes and Their Oligomers and Polymers

, , , , , , & show all
Pages 318-358 | Received 14 Mar 2019, Accepted 16 Sep 2019, Published online: 15 Oct 2019

References

  • Ewa, S.-B.; Marzena, G.-Z.; Michal, K.; Henryk, J.; Mariola, S.; Danuta, S. New Naphthalene Diimide-Based Compounds Containing Triarylamine Units and Imine Linkages: Thermal, Optical and Electrochemical Properties. Synth. Met. 2011, 161, 2268–2279. DOI: 10.1016/j.synthmet.2011.08.032.
  • Wu, W.-P.; Liu, Y.-Q.; Zhu, D.-B. π-Conjugated Molecules with Fused Rings for Organic Field-Effect Transistors: Design, Synthesis and Applications. Chem. Soc. Rev. 2010, 39, 1489–1502. DOI: 10.1039/B813123F.
  • Cinar, M. E.; Ozturk, T. Thienothiophenes, Dithienothiophenes, and Thienoacenes: Syntheses, Oligomers, Polymers, and Properties. Chem. Rev. 2015, 115, 3036–3140. DOI: 10.1021/cr500271a.
  • Gunbas, G.; Toppare, L. Electrochromic Conjugated Polyheterocycles and Derivatives-Highlights from the Last Decade towards Realization of Long Lived Aspirations. Chem. Commun. 2012, 48, 1083–1101. DOI: 10.1039/C1CC14992J.
  • Cho, C.-M.; Neo, W.-T.; Ye, Q.; Lu, X.-H.; Xu, J.-W. Dithienothiophene-Based Triphenylamine-Containing Branched Copolymers for Electrochromic Applications. ChemPlusChem 2015, 80, 1306–1311. DOI: 10.1002/cplu.201500192.
  • Turkoglu, G.; Cinar, M. E.; Ozturk, T. Thiophene-Based Organic Semiconductors. Top. Curr. Chem. 2017, 375, 84–128. DOI: 10.1007/s41061-017-0174-z.
  • Chen, S.-L.; Qiao, X.-L.; Li, H.-P.; Li, H.-X. Acceptor-Donor-Acceptor Type Small Molecular Low Band Gap Organic Semiconductors Containing 2-Dicyanomethylen-3-Cyano-4,5,5-Trimethyl-Dihydrofuran. Chin. J. Chem. 2015, 33, 934–938. DOI: 10.1002/cjoc.201400811.
  • Xiao, K.; Liu, Y.-Q.; Qi, T.; Zhang, W.; Wang, F.; Gao, J.-H.; Qiu, W.-F.; Ma, Y.-Q.; Cui, G.-L.; Chen, S.-Y.; et al. A Highly π-Stacked Organic Semiconductor for Field-Effect Transistors Based on Linearly Condensed Pentathienoacene. J. Am. Chem. Soc. 2005, 127, 13281–13286. DOI: 10.1021/ja052816b.
  • Wang, C.-Z.; Do, J.-H.; Akther, T.; Feng, X.; Matsumoto, T.; Tanaka, J.; Redshaw, C.; Yamato, T. Synthesis and Fluorescence Emission Properties of D-π-D Monomers Based on Dithieno[3,2-b:2′,3′-d]Thiophene. J. Lumin. 2017, 188, 388–393. DOI: 10.1016/j.jlumin.2017.04.060.
  • Patil, A. V.; Lee, W.-H.; Kim, K.; Park, H.; Kang, I. N.; Lee, S.-H. Synthesis and Photovoltaic Properties of Narrow Band Gap Copolymers of Dithieno[3,2-b:2′,3′-d] Thiophene and Diketopyrrolopyrrole. Polym. Chem. 2011, 2, 2907–2916. DOI: 10.1039/c1py00274k.
  • Lin, C.-J.; Lee, W.-Y.; Lu, C.; Lin, H.-W.; Chen, W.-C. Biaxially Extended Thiophene-Fused Thiophene Conjugated Copolymers for High Performance Field Effect Transistors. Macromolecules 2011, 44, 9565–9573. DOI: 10.1021/ma202017q.
  • Vyprachticky, D.; Demirtas, L.; Dzhabarov, V.; Pokorna, V.; Ertas, E.; Ozturk, T.; Cimrova, V. New Copolymers with Thieno[3,2-b]Thiophene or Dithieno[3,2-b:2′,3′-d]Thiophene Units Possessing Electron-Withdrawing 4-Cyanophenyl Groups: Synthesis and Photophysical, Electrochemical, and Electroluminescent Properties. J. Polym. Sci. Part A: Polym. Chem. 2017, 55, 2629–2638. DOI: 10.1002/pola.28657.
  • Hou, J.-H.; Inganäs, O.; Friend, R. H.; Gao, F. Organic Solar Cells Based on Non-Fullerene Acceptors. Nat. Mater. 2018, 17, 119–128. DOI: 10.1038/nmat5063.
  • Jung, J.-W.; Liu, F.; Russell, T. P.; Jo, W. H. A High Mobility Conjugated Polymer Based on Dithienothiophene and Diketopyrrolopyrrole for Organic Photovoltaics. Energy Environ. Sci. 2012, 5, 6857–6861. DOI: 10.1039/c2ee21149a.
  • Sannasi, V.; Jeyakumar, D. Effect of Co-Monomers on Triphenylamine-Thiazolothiazole-Based Donor-Acceptor Copolymers: Synthesis and Their Optical Properties. ChemistrySelect 2017, 2, 1992–1998. DOI: 10.1002/slct.201601496.
  • Priyanka, P.; Vegiraju, S.; Lin, J.-Y.; Ni, J.-S.; Huang, H.-Y.; Agustin, R. D.; Yau, S. L.; Lin, T.-C.; Chen, M.-C. Synthesis and Characterization of Two-Photon Active Chromophores Based on Asymmetrically Substituted Tetrathienoacene Scaffolds. Dyes Pigments 2016, 133, 65–72. DOI: 10.1016/j.dyepig.2016.05.038.
  • Chen, S.; Jacobs, D. L.; Xu, J.-K.; Li, Y.-X.; Wang, C.-Y.; Zang, L. 1D Nanofiber Composites of Perylene Diimides for Visible-Light-Driven Hydrogen Evolution from Water. RSC Adv. 2014, 4, 48486–48491. DOI: 10.1039/C4RA09258A.
  • Chen, S.; Wang, C.; Bunes, B. R.; Li, Y.-X.; Wang, C.-Y.; Zang, L. Enhancement of Visible-Light-Driven Photocatalytic H2 Evolution from Water over g-C3N4 through Combination with Perylene Diimide Aggregates. Appl. Catal. A Gen. 2015, 498, 63–68. DOI: 10.1016/j.apcata.2015.03.026.
  • Zang, L.; Che, Y.; Moore, J. S. One-Dimensional Self-Assembly of Planar π-Conjugated Molecules: Adaptable Building Blocks for Organic Nanodevices. Acc. Chem. Res. 2008, 41, 1596–1608. DOI: 10.1021/ar800030w.
  • Che, Y.; Yang, X.-M.; Balakrishnan, K.; Zuo, J.-M.; Zang, L. Highly Polarized and Self-Waveguided Emission from Single-Crystalline Organic Nanobelts. Chem. Mater. 2009, 21, 2930–2934. DOI: 10.1021/cm9007409.
  • Chen, S.; Slattum, P.; Wang, C.-Y.; Zang, L. Self-Assembly of Perylene Imide Molecules into 1D Nanostructures: Methods, Morphologies, and Applications. Chem. Rev. 2015, 115, 11967–11998. DOI: 10.1021/acs.chemrev.5b00312.
  • Datar, A.; Oitker, R.; Zang, L. Surface-Assisted One-Dimensional Self-Assembly of a Perylene Based Semiconductor Molecule. Chem. Commun. 2006, 15, 1649–1651. DOI: 10.1039/b518060k.
  • Che, Y.; Yang, X.-M.; Liu, G.-L.; Yu, C.; Ji, H.-W.; Zuo, J.-M.; Zhao, J.-C.; Zang, L. Ultrathin n-Type Organic Nanoribbons with High Photoconductivity and Application in Optoelectronic Vapor Sensing of Explosives. J. Am. Chem. Soc. 2010, 132, 5743–5750. DOI: 10.1021/ja909797q.
  • Wang, X.-D.; Meng, F.-L.; Wang, T.-Z.; Li, C.-C.; Tang, H.-T.; Gao, Z.-M.; Li, S.; Jiang, F.-X.; Xu, J.-K. High Performance of PEDOT:PSS/SiC-NWs Hybrid Thermoelectric Thin Film for Energy Harvesting. J. Alloy. Compd. 2018, 734, 121–129. DOI: 10.1016/j.jallcom.2017.11.013.
  • Gu, H.; Ming, S.-L.; Lin, K.-W.; Chen, S.; Liu, X.-M.; Lu, B.-Y.; Xu, J.-K. Isoindigo as an Electron-Deficient Unit for High-Performance Polymeric Electrochromics. Electrochim. Acta 2018, 260, 772–782. DOI: 10.1016/j.electacta.2017.12.033.
  • Liu, J.; Jia, Y.-H.; Jiang, Q.-L.; Jiang, F.-X.; Li, C.-C.; Wang, X.-D.; Liu, P.; Liu, P.-P.; Hu, F.; Du, Y.-K.; et al. Highly Conductive Hydrogel Polymer Fibers toward Promising Wearable Thermoelectric Energy Harvesting. ACS Appl. Mater. Interfaces 2018, 10, 44033–44040. DOI: 10.1021/acsami.8b15332.
  • Aragó, J.; Viruela, P. M.; Orti, E. From Linear Quaterthiophene to Sulflower: A Comparative Theoretical Study. J. Mol. Struc. Theochem. 2009, 912, 27–31. DOI: 10.1016/j.theochem.2009.03.021.
  • Liu, Y.; Sun, X.-N.; Di, C.-A.; Liu, Y.-Q.; Du, C.-Y.; Lu, K.; Ye, S.-H.; Yu, G. Hexathienoacene: Synthesis, Characterization, and Thin-Film Transistors. Chem. Asian J. 2010, 5, 1550–1554. DOI: 10.1002/asia.201000001.
  • Xue, Y.; Xue, Z.-X.; Zhang, W.-W.; Zhang, W.-N.; Chen, S.; Lin, K.-W.; Xu, J.-K. Enhanced Electrochromic Performances of Polythieno[3,2-b]Thiophene with Multicolor Conversion via Embedding EDOT Segment. Polymer 2018, 159, 150–156. DOI: 10.1016/j.polymer.2018.11.018.
  • Zhang, Y.-X.; Cai, X.; Bian, Y.-Z.; Li, X.-Y.; Jiang, J.-Z. Heteroatom Substitution of Oligothienoacenes: From Good p-Type Semiconductors to Good Ambipolar Semiconductors for Organic Field-Effect Transistors. J. Phys. Chem. C 2008, 112, 5148–5159. DOI: 10.1021/jp710123r.
  • Kwon, T.-H.; Armel, V.; Nattestad, A.; MacFarlane, D. R.; Bach, U.; Lind, S. J.; Gordon, K.; C.; Tang, W.-H.; Jones, D. J.; Holmes, A. B. Dithienothiophene (DTT)-Based Dyes for Dye-Sensitized Solar Cells: Synthesis of 2,6-Dibromo-DTT. J. Org. Chem. 2011, 76, 4088–4093. DOI: 10.1021/jo2001484.
  • Kim, J. S.; Kim, B.-Y.; Kim, U.-Y.; Shin, H.; Nam, J. S.; Roh, D. H.; Park, J.-H.; Kwon, T.-H. Molecular Engineering for Enhanced Charge Transfer in Thin-Film Photoanode. ACS Appl. Mater. Interfaces 2017, 9, 34812–34820. DOI: 10.1021/acsami.7b08098.
  • Yoon, G. B.; Kwon, H.-Y.; Jung, S.-K.; Lee, J.-K.; Lee, J. Effect of Donor Building Blocks on the Charge-Transfer Characteristics of Diketopyrrolopyrrole-Based Donor-Acceptor-Type Semiconducting Copolymers. ACS Appl. Mater. Interfaces 2017, 9, 39502–39510. DOI: 10.1021/acsami.7b11897.
  • Jeong, M.; Chen, S.-S.; Lee, S. M.; Wang, Z.-W.; Yang, Y.-K.; Zhang, Z.-G.; Zhang, C.-F.; Xiao, M.; Li, Y.-F.; Yang, C. Feasible D1-A-D2-A Random Copolymers for Simultaneous High-Performance Fullerene and Nonfullerene Solar Cells. Adv. Energy Mater. 2018, 8, 1702166. DOI: 10.1002/aenm.201702166.
  • Shin, E.-Y.; Cho, H. J.; Jung, S.; Yang, C.; Noh, Y.-Y. A High-k Fluorinated P(VDF-TrFE)-g-PMMA Gate Dielectric for High-Performance Flexible Field-Effect Transistors. Adv. Funct. Mater. 2018, 28, 1704780. DOI: 10.1002/adfm.201704780.
  • Ho, D.; Jeon, M.; Kim, H.; Gidron, O.; Kim, C.; Seo, S. Y. Solution-Processable Dithieno[3,2-b:2′,3′-d]Thiophene Derivatives for Organic Thin-Film Transistors and Complementary-Like Inverters. Org. Electron 2018, 52, 356–363. DOI: 10.1016/j.orgel.2017.11.023.
  • Kini, G. P.; Oh, S.; Abbas, Z.; Rasool, S.; Jahandar, M.; Song, C. E.; Lee, S. K.; Shin, W. S.; So, W.-W.; Lee, J.-C. Effects on Photovoltaic Performance of Dialkyloxy-Benzothiadiazole Copolymers by Varying the Thienoacene Donor. ACS Appl. Mater. Interfaces 2017, 9, 12617–12628. DOI: 10.1021/acsami.6b12670.
  • Li, Z.; Malenfant, P.; Tao, Y.; Ding, J.-F. Thermochromic and Photovoltaic Properties of an Alternating Copolymer of Dithieno[3,2-b:2′,3′-d]Thiophene and Thieno[3,4-c]Pyrrole-4,6-Dione. Macromol. Chem. Phys. 2013, 214, 447–452. DOI: 10.1002/macp.201200468.
  • Hasegawa, T.; Takeya, J. Organic Field-Effect Transistors Using Single Crystals. Sci. Technol. Adv. Mater. 2009, 10, 024314. DOI: 10.1088/1468-6996/10/2/024314.
  • Günes, S.; Neugebauer, H.; Sariciftci, N. S. Conjugated Polymer-Based Organic Solar Cells. Chem. Rev. 2007, 107, 1324–1338. DOI: 10.1021/cr050149z.
  • Clarke, T. M.; Durrant, J. R. Charge Photogeneration in Organic Solar Cells. Chem. Rev. 2010, 110, 6736–6767. DOI: 10.1021/cr900271s.
  • Dong, X.; Tian, H.-K.; Xie, Z.-Y.; Geng, Y.-H.; Wang, F.-S. Donor-Acceptor Conjugated Polymers Based on Two-Dimensional Thiophene Derivatives for Bulk Heterojunction Solar Cells. Polym. Chem. 2017, 8, 421–430. DOI: 10.1039/C6PY01767C.
  • Mamillapalli, N. C.; Vegiraju, S.; Priyanka, P.; Lin, C.-Y.; Luo, X.-L.; Tsai, H.-C.; Hong, S.-H.; Ni, J.-S.; Lien, W.-C.; Kwon, G.; et al. Solution-Processable End-Functionalized Tetrathienoacene Semiconductors: Synthesis, Characterization and Organic Field Effect Transistors Applications. Dyes Pigments 2017, 145, 584–590. DOI: 10.1016/j.dyepig.2017.06.017.
  • Vegiraju, S.; Huang, D.-Y.; Priyanka, P.; Li, Y.-S.; Luo, X.-L.; Hong, S.-H.; Ni, J.-S.; Tung, S.-H.; Wang, C.-L.; Lien, W.-C.; et al. High Performance Solution-Processable Tetrathienoacene (TTAR) Based Small Molecules for Organic Field Effect Transistors (OFETs). Chem. Commun. 2017, 53, 5898–5901. DOI: 10.1039/C7CC02714A.
  • Tang, W.-H.; Singh, S. P.; Ong, K. H.; Chen, Z.-K. Synthesis of Thieno[3,2-b]Thiophene Derived Conjugated Oligomers for Field-Effect Transistors Applications. J. Mater. Chem. 2010, 20, 1497–1505. DOI: 10.1039/b920112b.
  • Sun, Y.-M.; Ma, Y.-Q.; Liu, Y.-Q.; Lin, Y.-Y.; Wang, Z.-Y.; Wang, Y.; Di, C.-A.; Xiao, K.; Chen, X.-M.; Qiu, W.-F.; et al. High-Performance and Stable Organic Thin-Film Transistors Based on Fused Thiophenes. Adv. Funct. Mater. 2006, 16, 426–432. DOI: 10.1002/adfm.200500547.
  • Li, X.-C.; Sirringhaus, H.; Garnier, F.; Holmes, A. B.; Moratti, S. C.; Feeder, N.; Clegg, W.; Teat, S. J.; Friend, R. H. A Highly π-Stacked Organic Semiconductor for Thin Film Transistors Based on Fused Thiophenes. J. Am. Chem. Soc. 1998, 120, 2206–2207. DOI: 10.1021/ja9735968.
  • Vegiraju, S.; He, G.-Y.; Kim, C.; Priyanka, P.; Chiu, Y.-J.; Liu, C.-W.; Huang, C.-Y.; Ni, J.-S.; Wu, Y.-W.; Chen, Z.-H.; et al. Solution-Processable Dithienothiophenoquinoid (DTTQ) Structures for Ambient-Stable n-Channel Organic Field Effect Transistors. Adv. Funct. Mater. 2017, 27, 1606761. DOI: 10.1002/adfm.201606761.
  • Wu, Q.-H.; Qiao, X.-L.; Huang, Q.-L.; Li, J.; Xiong, Y.; Gao, X.-K.; Li, H.-X. High-Performance n-Channel Field Effect Transistors Based on Solution-Processed Dicyanomethylene-Substituted Tetrathienoquinoid. RSC Adv. 2014, 4, 16939–16943. DOI: 10.1039/C3RA47095D.
  • Wang, Y.; Liu, D.-D.; Ikeda, S.; Kumashiro, R.; Nouch, R.; Xu, Y.-X.; Shang, H.; Ma, Y.-G.; Tanigaki, K. Ambipolar Behavior of 2,5-Diphenyl-1,4-Distyrylbenzene Based Field Effect Transistors: An Experimental and Theoretical Study. Appl. Phys. Lett. 2010, 97, 033305. DOI: 10.1063/1.3465659.
  • Ahmed, M. O.; Wang, C.-M.; Keg, P.; Pisula, W.; Lam, Y.-M.; Ong, B. S.; Ng, S.-C.; Chen, Z.-K.; Mhaisalkar, S. G. Thieno[3,2-b]Thiophene Oligomers and Their Applications as p-Type Organic Semiconductors. J. Mater. Chem. 2009, 19, 3449–3456. DOI: 10.1039/b900979e.
  • Liu, Y.; Di, C.-A.; Du, C.-Y.; Liu, Y.-Q.; Lu, K.; Qiu, W.-F.; Yu, G. Synthesis, Structures, and Properties of Fused Thiophenes for Organic Field-Effect Transistors. Chem. Eur. J. 2010, 16, 2231–2239. DOI: 10.1002/chem.200902755.
  • Wang, C.-Z.; Do, J.-H.; Akther, T.; Feng, X.; Horsburgh, L.; Elsegood, M. R. J.; Redshaw, C.; Yamato, T. D-π-D Chromophores Based on Dithieno[3,2-b:2′,3′-d]Thiophene (DTT): Potential Application in the Fabrication of Solar Cell. Tetrahedron 2017, 73, 307–312. DOI: 10.1016/j.tet.2016.11.077.
  • Chen, M.-C.; Vegiraju, S.; Huang, C.-M.; Huang, P.-Y.; Prabakaran, K.; Yau, S. L.; Chen, W.-C.; Peng, W.-T.; Chao, I.; Kim, C.; et al. Asymmetric Fused Thiophenes for Field-Effect Transistors: Crystal Structure-Film Microstructure-Transistor Performance Correlations. J. Mater. Chem. C 2014, 2, 8892–8902. DOI: 10.1039/C4TC01454E.
  • Liu, Y.; Wang, Y.; Wu, W.-P.; Liu, Y.-Q.; Xi, H.-X.; Wang, L.-M.; Qiu, W.-F.; Lu, K.; Du, C.-Y.; Yu, G. Synthesis, Characterization, and Field-Effect Transistor Performance of Thieno[3,2-b]Thieno[2′,3′:4,5]Thieno[2,3-d]Thiophene Derivatives. Adv. Funct. Mater. 2009, 19, 772–778. DOI: 10.1002/adfm.200800829.
  • Mieno, H.; Yasuda, T.; Yang, Y. S.; Adachi, C. Self-Assembly, Physicochemical, and Field-Effect Transistor Properties of Solution-Crystallized Organic Semiconductors Based on π-Extended Dithieno[3,2-b:2′,3′-d]Thiophenes. Chem. Lett. 2014, 43, 293–295. DOI: 10.1246/cl.130914.
  • Yang, Y.-S.; Yasuda, T.; Kakizoe, H.; Mieno, H.; Kino, H.; Tateyama, Y.; Adachi, C. High Performance Organic Field-Effect Transistors Based on Single-Crystal Microribbons and Microsheets of Solution-Processed Dithieno[3,2-b:2′,3′-d]Thiophene Derivatives. Chem. Commun. 2013, 49, 6483–6485. DOI: 10.1039/c3cc42114g.
  • Yang, L.-P.; Wang, M.-M.; Slattum, P. M.; Bunes, B. R.; Wang, Y.-H.; Wang, C.-Y.; Zang, L. Donor-Acceptor Supramolecular Organic Nanofibers as Visible-Light Photoelectrocatalysts for Hydrogen Production. ACS Appl. Mater. Interfaces 2018, 10, 19764–19772. DOI: 10.1021/acsami.8b05637.
  • Zang, L. Interfacial Donor-Acceptor Engineering of Nanofiber Materials to Achieve Photoconductivity and Applications. Acc. Chem. Res. 2015, 48, 2705–2714. DOI: 10.1021/acs.accounts.5b00176.
  • Lüttich, F.; Lehmann, D.; Friedrich, M.; Chen, Z.-H.; Facchetti, A.; Christian, V. B.; Zahn, R. T. D.; Harald, G. Interface Properties of OFETs Based on an Air-Stable n-Channel Perylene Tetracarboxylic Diimide Semiconductor. Phys. Status Solidi A 2012, 209, 585–593. DOI: 10.1002/pssa.201127592.
  • Wu, N.; Wang, C.; Bunes, B. R.; Zhang, Y.-Q.; Slattum, P. M.; Yang, X.-M.; Zang, L. Chemical Self-Doping of Organic Nanoribbons for High Conductivity and Potential Application as Chemiresistive Sensor. ACS Appl. Mater. Interfaces 2016, 8, 12360–12368. DOI: 10.1021/acsami.6b03151.
  • Würthner, F. Perylene Bisimide Dyes as Versatile Building Blocks for Functional Supramolecular Architectures. Chem. Commun. 2004, 14, 1564–1579. DOI: 10.1039/B401630K.
  • Kim, C.; Facchetti, A.; Marks, T. J. Gate Dielectric Microstructural Control of Pentacene Film Growth Mode and Field-Effect Transistor Performance. Adv. Mater. 2007, 19, 2561–2566. DOI: 10.1002/adma.200700101.
  • Yoon, M.-H.; Kim, C.; Facchetti, A.; Marks, T. J. Gate Dielectric Chemical Structure-Organic Field-Effect Transistor Performance Correlations for Electron, Hole, and Ambipolar Organic Semiconductors. J. Am. Chem. Soc. 2006, 128, 12851–12869. DOI: 10.1021/ja063290d.
  • Chen, M.-C.; Kim, C.; Chen, S.-Y.; Chiang, Y.-J.; Chung, M.-C.; Facchetti, A.; Marks, T. J. Functionalized Anthradithiophenes for Organic Field-Effect Transistors. J. Mater. Chem. 2008, 18, 1029–1036. DOI: 10.1039/b715746k.
  • Kwon, J.; Kim, T. M.; Oh, H.-S.; Kim, J.-J.; Hong, J.-I. Vacuum Processable Donor Material Based on Dithieno[3,2-b:2′,3′-d]Thiophene and Pyrene for Efficient Organic Solar Cells. RSC Adv. 2014, 4, 24453–24457. DOI: 10.1039/C4RA02895C.
  • Ning, Z.-J.; Tian, H. Triarylamine: A Promising Core Unit for Efficient Photovoltaic Material. Chem. Commun. 2009, 45, 5483–5495. DOI: 10.1039/b908802d.
  • Chen, C.; Yang, X.-C.; Cheng, M.; Zhang, F.-G.; Sun, L.-C. Degradation of Cyanoacrylic Acid-Based Organic Sensitizers in Dye-Sensitized Solar Cells. ChemSusChem 2013, 6, 1270–1275. DOI: 10.1002/cssc.201200949.
  • Sharma, G. D.; Mikroyannidis, J. A.; Roy, M. S.; Thomas, K. R. J.; Ball, R. J.; Kurchania, R. Dithienylthienothiadiazole-Based Organic Dye Containing Two Cyanoacrylic Acid Anchoring Units for Dye-Sensitized Solar Cells. RSC Adv. 2012, 2, 11457–11464. DOI: 10.1039/c2ra21718j.
  • Liu, X.-P.; Kong, F.-T.; Guo, F.-L.; Cheng, T.; Chen, W.-C.; Yu, T.; Chen, J.; Tan, Z.-A.; Dai, S.-Y. Influence of π-Linker on Triphenylamine-Based Hole Transporting Materials in Perovskite Solar Cells. Dyes Pigments 2017, 139, 129–135. DOI: 10.1016/j.dyepig.2016.12.022.
  • Ezhumalai, Y.; Lee, B.; Fan, M.-S.; Harutyunyan, B.; Prabakaran, K.; Lee, C.-P.; Chang, S. H.; Ni, J. S.; Vegiraju, S.; Priyanka, P.; et al. Metal-Free Branched Alkyl Tetrathienoacene (TTAR)-Based Sensitizers for High-Performance Dye-Sensitized Solar Cells. J. Mater. Chem. A 2017, 5, 12310–12321. DOI: 10.1039/C7TA01825H.
  • Zhou, N.-J.; Prabakaran, K.; Lee, B.; Chang, S. H.; Harutyunyan, B.; Guo, P.-J.; Butler, M. R.; Timalsina, A.; Bedzyk, M. J.; Ratner, M. A.; et al. Metal-Free Tetrathienoacene Sensitizers for High-Performance Dye-Sensitized Solar Cells. J. Am. Chem. Soc. 2015, 137, 4414–4423. DOI: 10.1021/ja513254z.
  • Deng, D.; Yang, Y.; Zhang, J.; He, C.; Zhang, M.-J.; Zhang, Z.-G.; Zhang, Z.-J.; Li, Y.-F. Triphenylamine-Containing Linear D-A-D Molecules with Benzothiadiazole as Acceptor Unit for Bulk-Heterojunction Organic Solar Cells. Org. Electron 2011, 12, 614–622. DOI: 10.1016/j.orgel.2011.01.013.
  • Xiao, Z.-Y.; Sun, K.; Subbiah, J.; Ji, S.; Jones, D. J.; Wong, W. W. H. Hydrogen Bonding in Bulk Heterojunction Solar Cells: A Case Study. Sci. Rep. 2014, 4, 5701.DOI: 10.1038/srep05701.
  • Lee, M.-W.; Kim, J.-Y.; Lee, D.-H.; Ko, M. J. Novel D-π-a Organic Dyes with Thieno[3,2-b]Thiophene-3,4-Ethylenedioxythiophene Unit as a π-Bridge for Highly Efficient Dye-Sensitized Solar Cells with Long-Term Stability. ACS Appl. Mater. Interfaces 2014, 6, 4102–4108. DOI: 10.1021/am405686z.
  • Kim, J.; Shim, H.-S.; Lee, H.; Choi, M.-S.; Kim, J.-J.; Seo, Y. Highly Efficient Vacuum-Processed Organic Solar Cells Containing Thieno[3,2-b]Thiophene-Thiazole. J. Phys. Chem. C 2014, 118, 11559–11565. DOI: 10.1021/jp5017467.
  • Yang, J.-B.; Ganesan, P.; Teuscher, J.; Moehl, T.; Kim, Y. J.; Yi, C.-Y.; Comte, P.; Pei, K.; Holcombe, T. W.; Nazeeruddin, M. K.; et al. Influence of the Donor Size in D-π-a Organic Dyes for Dye-Sensitized Solar Cells. J. Am. Chem. Soc. 2014, 136, 5722–5730. DOI: 10.1021/ja500280r.
  • Zoombelt, A. P.; Mathijssen, S. G. J.; Turbiez, M. G. R.; Wienk, M. M.; Janssen, R. A. J. Small Band Gap Polymers Based on Diketopyrrolopyrrole. J. Mater. Chem. 2010, 20, 2240–2246. DOI: 10.1039/b919066j.
  • Qu, S.-Y.; Tian, H. Diketopyrrolopyrrole (DPP)-Based Materials for Organic Photovoltaics. Chem. Commun. 2012, 48, 3039–3051. DOI: 10.1039/c2cc17886a.
  • Bijleveld, J. C.; Gevaerts, V. S.; Nuzzo, D. D.; Turbiez, M.; Mathijssen, S. G. J.; Leeuw, D. M. D.; Wienk, M. M.; Janssen, R. A. J. Efficient Solar Cells Based on an Easily Accessible Diketopyrrolopyrrole Polymer. Adv. Mater. 2010, 22, E242–E246. DOI: 10.1002/adma.201001449.
  • Li, W.-W.; Hendriks, K. H.; Wienk, M. M.; Janssen, R. A. J. Diketopyrrolopyrrole Polymers for Organic Solar Cells. Acc. Chem. Res. 2016, 49, 78–85. DOI: 10.1021/acs.accounts.5b00334.
  • Zhou, N.-J.; Vegiraju, S.; Yu, X.-G.; Manley, E. F.; Butler, M. R.; Leonardi, M. J.; Guo, P.-J.; Zhao, W.; Hu, Y.; Prabakaran, K.; et al. Diketopyrrolopyrrole (DPP) Functionalized Tetrathienothiophene (TTA) Small Molecules for Organic Thin Film Transistors and Photovoltaic Cells. J. Mater. Chem. C 2015, 3, 8932–8941. DOI: 10.1039/C5TC01348H.
  • Lu, C.; Chen, W.-C. Diketopyrrolopyrrole-Thiophene-Based Acceptor-Donor-Acceptor Conjugated Materials for High-Performance Field-Effect Transistors. Chem. Asian J. 2013, 8, 2813–2821. DOI: 10.1002/asia.201300677.
  • Wu, T.; Yu, C.-M.; Guo, Y.-L.; Liu, H.-T.; Yu, G.; Fang, Y.; Liu, Y.-Q. Synthesis, Structures, and Properties of Thieno[3,2-b]Thiophene and Dithiophene Bridged Isoindigo Derivatives and Their Organic Field-Effect Transistors Performance. J. Phys. Chem. C 2012, 116, 22655–22662. DOI: 10.1021/jp304697r.
  • Kim, C.; Chen, M.-C.; Chiang, Y.-J.; Guo, Y.-J.; Youn, J.; Huang, H.; Liang, Y.-J.; Lin, Y.-J.; Huang, Y.-W.; Hu, T.-S.; et al. Functionalized Dithieno[2,3-b:3′,2′-d]Thiophenes (DTTs) for Organic Thin-Film Transistors. Org. Electron 2010, 11, 801–813. DOI: 10.1016/j.orgel.2010.01.022.
  • Youn, J.; Vegiraju, S.; Emery, J. D.; Leever, B. J.; Kewalramani, S.; Lou, S. J.; Zhang, S. M.; Prabakaran, K.; Ezhumalai, Y.; Kim, C.; et al. Diperfluorophenyl Fused Thiophene Semiconductors for n-Type Organic Thin Film Transistors (OTFTs). Adv. Electron. Mater. 2015, 1, 1500098. DOI: 10.1002/aelm.201500098.
  • Khan, Q. U.; Tian, G.-F.; Bao, L.; Qi, S.-L.; Wu, D. Z. Highly Uniform Supramolecular Nano-Films Derived from Carbazole-Containing Perylene Diimide via Surface-Supported Self-Assembly and Their Electrically Bistable Memory Behavior. New J. Chem. 2018, 42, 11506–11515. DOI: 10.1039/C8NJ01380B.
  • Anthomy, J. E. Functionalized Acenes and Heteroacenes for Organic Electronics. Chem. Rev. 2006, 106, 5028–5048. DOI: 10.1021/cr050966z.
  • Nam, S.; Jang, J.; Anthony, J. E.; Park, J.-J.; Park, C. E.; Kim, K. High-Performance Triethylsilylethynyl Anthradithiophene Transistors Prepared without Solvent Vapor Annealing: The Effects of Self-Assembly during Dip-Coating. ACS Appl. Mater. Interfaces 2013, 5, 2146–2154. DOI: 10.1021/am303192b.
  • Li, R.-J.; Hu, W.-P.; Liu, Y.-Q.; Zhu, D.-B. Micro- and Nanocrystals of Organic Semiconductors. Acc. Chem. Res. 2010, 43, 529–540. DOI: 10.1021/ar900228v.
  • Moon, H.; Zeis, R.; Borkent, E.-J.; Besnard, C.; Lovinger, A. J.; Siegrist, T.; Kloc, C.; Bao, Z.-N. Synthesis, Crystal Structure, and Transistor Performance of Tetracene Derivatives. J. Am. Chem. Soc. 2004, 126, 15322–15323. DOI: 10.1021/ja045208p.
  • Ming, S.-L.; Zhen, S.-J.; Lin, K.-W.; Zhao, L.; Xu, J.-K.; Lu, B.-Y. Thiadiazolo[3,4-c]Pyridine as an Acceptor toward Fast-Switching Green Donor-Acceptor-Type Electrochromic Polymer with Low Bandgap. ACS Appl. Mater. Interfaces 2015, 7, 11089–11098. DOI: 10.1021/acsami.5b01188.
  • Lu, B.-Y.; Zhen, S.-J.; Zhang, S.-M.; Xu, J.-K.; Zhao, G.-Q. Highly Stable Hybrid Selenophene-3,4-Ethylenedioxythiophene as Electrically Conducting and Electrochromic Polymers. Polym. Chem. 2014, 5, 4896–4908. DOI: 10.1039/C4PY00529E.
  • Lin, K.-W.; Chen, S.; Lu, B.-Y.; Xu, J.-K. Hybrid π-Conjugated Polymers from Dibenzo Pentacyclic Centers: Precursor Design, Electrosynthesis and Electrochromics. Sci. China Chem. 2017, 60, 38–53. DOI: 10.1007/s11426-016-0298-2.
  • Yang, H.-Y.; Yen, Y.-S.; Hsu, Y.-C.; Chou, H.-H.; Lin, J. T. Organic Dyes Incorporating the Dithieno[3,2-b:2′,3′-d]Thiophene Moiety for Efficient Dye-Sensitized Solar Cells. Org. Lett. 2010, 12, 16–19. DOI: 10.1021/ol902327p.
  • Cheng, Y.-J.; Yang, S.-H.; Hsu, C.-S. Synthesis of Conjugated Polymer for Organic Solar Cell Applications. Chem. Rev. 2009, 109, 5868–5923. DOI: 10.1021/cr900182s.
  • Biniek, L.; Fall, S.; Chochos, C. L.; Leclerc, N.; Lévêque, P.; Heiser, T. Optimization of the Side-Chain Density to Improve the Charge Transport and Photovoltaic Performances of a Low Band Gap Copolymer. Org. Electron 2012, 13, 114–120. DOI: 10.1016/j.orgel.2011.10.011.
  • Patil, A. V.; Lee, W.-H.; Kim, K.; Lee, Y.-S.; Kang, I.-N.; Lee, S.-H. Synthesis and Characterization of Dithienothiophene/Benzothiadiazole Based Low Band Gap Donor-Acceptor Copolymers for Bulk Hetero Junction Photovoltaic Cells. Synth. Met. 2011, 161, 1838–1844. DOI: 10.1016/j.synthmet.2011.06.016.
  • Kini, G. P.; Lee, S. K.; Shin, W. S.; Moon, S.-J.; Song, C. E.; Lee, J.-C. Achieving a Solar Power Conversion Efficiency Exceeding 9% by Modifying the Structure of a Simple, Inexpensive and Highly Scalable Polymer. J. Mater. Chem. A 2016, 4, 18585–18597. DOI: 10.1039/C6TA08356K.
  • Jo, J. W.; Jung, J. W.; Ahn, H.; Ko, M. J.; Jen, A. K.-Y.; Son, H. J. Effect of Molecular Orientation of Donor Polymers on Charge Generation and Photovoltaic Properties in Bulk Heterojunction All-Polymer Solar Cells. Adv. Energy Mater. 2017, 7, 1601365. DOI: 10.1002/aenm.201601365.
  • Meager, I.; Ashraf, R.; S.; Mollinger, S.; Schroeder, B. C.; Bronstein, H.; Beatrup, D.; Vezie, M. S.; Kirchartz, T.; Salleo, A.; Nelson, J.; et al. Photocurrent Enhancement from Diketopyrrolopyrrole Polymer Solar Cells through Alkyl-Chain Branching Point Manipulation. J. Am. Chem. Soc. 2013, 135, 11537–11540. DOI: 10.1021/ja406934j.
  • Kim, K. H.; Chung, D. S.; Park, C. E.; Choi, D. H. π-Conjugated Main Chain Polymers Containing Bis(Bithiophenyl Dithienothiophene)-Based Repeating Group and Their Application to Polymer Solar Cells. Mol. Cryst. Liq. Cryst. 2011, 538, 187–192. DOI: 10.1080/15421406.2011.563720.
  • Choi, S.; Park, G. E.; Shin, J.; Um, H. A.; Cho, M. J.; Choi, D. H. Dithienothiophene-Diketopyrrolopyrrole-Containing Copolymers with Alkyl Side-Chain and Their Application to Polymer Solar Cells. Synth. Met. 2016, 212, 167–173. DOI: 10.1016/j.synthmet.2015.12.013.
  • Kong, R.; Xiao, Z.; Xie, F.-Y.; Jiang, J.-X.; Ding, L.-M. A D-A Copolymer Donor Containing an Alkylthio-Substituted Thieno[3,2-b]Thiophene Unit. New J. Chem. 2017, 41, 2895–2898. DOI: 10.1039/C6NJ03991J.
  • Shahid, M.; Ashraf, R. S.; Huang, Z.-G.; Kronemeijer, A. J.; McCarthy-Ward, T.; McCulloch, I.; Durrant, J. R.; Sirringhaus, H. S.; Heeney, M. Photovoltaic and Field Effect Transistor Performance of Selenophene and Thiophene Diketopyrrolopyrrole Co-Polymers with Dithienothiophene. J. Mater. Chem. 2012, 22, 12817–12823. DOI: 10.1039/c2jm31189e.
  • Zeng, Z.; Li, Y.; Deng, J.-F.; Huang, Q.; Peng, Q. Synthesis and Photovoltaic Performance of Low Band Gap Copolymers Based on Diketopyrrolopyrrole and Tetrathienoacene with Different Conjugated Bridges. J. Mater. Chem. A 2014, 2, 653–662. DOI: 10.1039/C3TA14022A.
  • Li, Y.-X.; Lee, T. H.; Park, S. Y.; Uddin, M. A.; Kim, T.; Hwang, S.; Kim, J. Y.; Woo, H. Y. Straight Chain D-A Copolymers Based on Thienothiophene and Benzothiadiazole for Efficient Polymer Field Effect Transistors and Photovoltaic Cells. Polym. Chem. 2016, 7, 4638–4646. DOI: 10.1039/C6PY00674D.
  • Kim, J.-H.; Park, J. B.; Jung, I. H.; Grimsdale, A. C.; Yoon, S. C.; Yang, H.; Hwang, D.-H. Well-Controlled Thieno[3,4-c]Pyrrole-4,6-(5H)-Dione Based Conjugated Polymers for High Performance Organic Photovoltaic Cells with the Power Conversion Efficiency Exceeding 9%. Energy Environ. Sci. 2015, 8, 2352–2356. DOI: 10.1039/C5EE01627D.
  • Bronstein, H.; Chen, Z.-Y.; Ashraf, R. S.; Zhang, W.-M.; Du, J.-P.; Durrant, J. R.; Tuladhar, P. S.; Song, K.; Watkins, S. E.; Geerts, Y.; et al. Thieno[3,2-b] thiophene-Diketopyrrolopyrrole-Containing Polymers for High-Performance Organic Field-Effect Transistors and Organic Photovoltaic Devices. J. Am. Chem. Soc. 2011, 133, 3272–3275. DOI: 10.1021/ja110619k.
  • Lee, S. K.; Lee, J.; Lee, H. Y.; Yoon, S. C.; Kim, J. R.; Kim, K. N.; Kim, H. J.; Shin, W. S.; Moon, S.-J. Synthesis and Characterization of New Dithienosilole-Based Copolymers for Polymer Solar Cells. J. Nanosci. Nanotechnol. 2011, 11, 4279–4284. DOI: 10.1166/jnn.2011.3699.
  • Patil, A. V.; Lee, W.-H.; Lee, E.; Kim, K.; Kang, I.-N.; Lee, S.-H. Synthesis and Photovoltaic Properties of a Low-Band-Gap Copolymer of Dithieno[3,2-b:2′,3′-d] Thiophene and Dithienylquinoxaline. Macromolecules 2011, 44, 1238–1241. DOI: 10.1021/ma102722d.
  • Zhang, X.-N.; Johnson, J. P.; Kampf, J. W.; Matzger, A. J. Ring Fusion Effects on the Solid-State Properties of Alpha-Oligothiophenes. Chem. Mater. 2006, 18, 3470–3476. DOI: 10.1021/cm0609348.
  • Yi, W.-J.; Zhao, S.; Sun, H.-L.; Kan, Y.-H.; Shi, J.-W.; Wan, S.-S.; Li, C.-L.; Wang, H. Isomers of Organic Semiconductors Based on Dithienothiophenes: The Effect of Sulphur Atoms Positions on the Intermolecular Interactions and Field-Effect Performances. J. Mater. Chem. C 2015, 3, 10856–10861. DOI: 10.1039/C5TC02287H.
  • Ding, Z.-Q.; Abbas, G.; Assender, H. E.; Morrison, J. J.; Yeates, S. G.; Patchett, E. R.; Taylor, D. M. Effect of Oxygen, Moisture and Illumination on the Stability and Reliability of Dinaphtho[2,3-b:2′,3′-f]Thieno[3,2-b]Thiophene (DNTT) OTFTs during Operation and Storage. ACS Appl. Mater. Interfaces 2014, 6, 15224–15231. DOI: 10.1021/am503560d.
  • Zhang, Y.-Y.; Ichikawa, M.; Hattori, J.; Kato, T.; Sazaki, A.; Kanazawa, S.; Kato, S.; Zhang, C.-H.; Taniguchi, Y. Fused Thiophene-Split Oligothiophenes with High Ionization Potentials for OTFTs. Synth. Met. 2009, 159, 1890–1895. DOI: 10.1016/j.synthmet.2009.06.016.
  • Cai, Z.-X.; Luo, H.-W.; Qi, P.-L.; Wang, J.-G.; Zhang, G.-X.; Liu, Z.-T.; Zhang, D.-P. Alternating Conjugated Electron Donor-Acceptor Polymers Entailing Pechrnann Dye Framework as the Electron Acceptor Moieties for High Performance Organic Semiconductors with Tunable Characteristics. Macromolecules 2014, 47, 2899–2906. DOI: 10.1021/ma5003694.
  • Sun, B.; Hong, W.; Aziz, H.; Li, Y.-N. A Pyridine-Flanked Diketopyrrolopyrrole (DPP)-Based Donor-Acceptor Polymer Showing High Mobility in Ambipolar and n-Channel Organic Thin Film Transistors. Polym. Chem. 2015, 6, 938–945. DOI: 10.1039/C4PY01193G.
  • Park, G. E.; Shin, J.; Lee, D. H.; Lee, T. W.; Shim, H.; Cho, M. J.; Pyo, S.; Choi, D. H. Acene-Containing Donor-Acceptor Conjugated Polymers: Correlation between the Structure of Donor Moiety, Charge Carrier Mobility, and Charge Transport Dynamics in Electronic Devices. Macromolecules 2014, 47, 3747–3754. DOI: 10.1021/ma500733y.
  • Jian, N.-N.; Gu, H.; Zhang, S.-M.; Liu, H.-T.; Qu, K.; Chen, S.; Liu, X.-M.; He, Y.-F.; Niu, G.-F.; Tai, S.-Y.; et al. Synthesis and Electrochromic Performances of Donor-Acceptor-Type Polymers from Chalcogenodiazolo [3,4-c]Pyridine and Alkyl ProDOTs. Electrochim. Acta 2018, 266, 263–275. DOI: 10.1016/j.electacta.2018.01.099.
  • Zhang, W.-N.; Zhang, W.-W.; Liu, H.-T.; Jian, N.-N.; Qu, K.; Chen, S.; Xu, J.-K. O/W Microemulsion as Electrolyte for Electro-Polymerization of 3,4-Ethylenedioxyselenophene. J. Electroanal. Chem. 2018, 813, 109–115. DOI: 10.1016/j.jelechem.2018.02.006.
  • Shao, S.; Shi, J.-J.; Murtaza, I.; Xu, P.-P.; He, Y.-W.; Ghosh, S.; Zhu, X.-S.; Perepichka, I. F.; Meng, H. Exploring the Electrochromic Properties of Poly(Thieno [3,2-b]Thiophene)s Decorated with Electron-Deficient Side Groups. Polym. Chem. 2017, 8, 769–784. DOI: 10.1039/C6PY01847E.
  • Shi, J.-J.; Zhu, X.-S.; Xu, P.-P.; Zhu, M.-M.; Guo, Y.-T.; He, Y.-W.; Hu, Z.; Murtaza, I.; Yu, H.-T.; Yan, L.-J.; et al. A Redox-Dependent Electrochromic Material: Tetri-EDOT Substituted Thieno[3,2-b]Thiophene. Macromol. Rapid Commun. 2016, 37, 1344–1351. DOI: 10.1002/marc.201600157.
  • Xu, P.-P.; Murtaza, I.; Shi, J.-J.; Zhu, M.-M.; He, Y.-W.; Yu, H.-T.; Goto, O.; Meng, H. Highly Transmissive Blue Electrochromic Polymers Based on Thieno[3,2-b]Thiophene. Polym. Chem. 2016, 7, 5351–5356. DOI: 10.1039/C6PY00989A.
  • Zhu, X.-S.; Zhu, Y.-N.; Murtaza, I.; Shi, J.-J.; He, Y.-W.; Xu, P.-P.; Zhu, M.-M.; Goto, O.; Meng, H. Thieno[3,2-b]Thiophene Based Electrochromic Polymers: Experimental Cum Theoretical Appraisal of the EDOT Position. RSC Adv. 2016, 6, 75522–75529. DOI: 10.1039/C6RA12319H.
  • Akbaşoğlu, N.; Balan, A.; Baran, D.; Cirpan, A.; Toppare, L. Electrochemical and Optical Studies of Furan and Thieno[3,2-b]Thiophene End Capped Benzotriazole Derivatives. J. Polym. Sci. A Polym. Chem. 2010, 48, 5603–5610. DOI: 10.1002/pola.24375.
  • Granqvist, C. G.; Arvizu, M. A.; Pehlivan, I. B.; Qu, H.-Y.; Wen, R.-T.; Niklasson, G. A. Electrochromic Materials and Devices for Energy Efficiency and Human Comfort in Buildings: A Critical Review. Electrochim. Acta 2018, 259, 1170–1182. DOI: 10.1016/j.electacta.2017.11.169.
  • Sahin, O.; Osken, I.; Ozturk, T. Investigation of Electrochromic Properties of Poly(3,5-Bis(4-Methoxyphenyl)Dithieno[3,2-b;2′,3′-d]Thiophene). Synth. Met. 2011, 161, 183–187. DOI: 10.1016/j.synthmet.2010.11.020.
  • Cho, C. M.; Ye, Q.; Neo, W. T.; Lin, T.-T.; Lu, X.-H.; Xu, J.-W. Ultrahigh Electron-Deficient Pyrrolo-Acenaphtho-Pyridazine-Dione Based Donor-Acceptor Conjugated Polymers for Electrochromic Applications. Polym. Chem. 2015, 6, 7570–7579. DOI: 10.1039/C5PY01129A.
  • Li, W.-S.; Guo, Y.-T.; Shi, J.-J.; Yu, H.-T.; Meng, H. Solution-Processable Neutral Green Electrochromic Polymer Containing Thieno[3,2-b]Thiophene Derivative as Unconventional Donor Units. Macromolecules 2016, 49, 7211–7219. DOI: 10.1021/acs.macromol.6b01624.
  • Xue, Y.; Xue, Z.-X.; Zhang, W.-W.; Zhang, W.-N.; Chen, S.; Lin, K.-W.; Xu, J.-K. Effects on Optoelectronic Performances of EDOT End-Capped Oligomers and Electrochromic Polymers by Varying Thienothiophene Cores. J. Electroanal. Chem. 2019, 834, 150–160. DOI: 10.1016/j.jelechem.2019.01.007.
  • Xue, Y.; Xue, Z.-X.; Zhang, W.-W.; Zhang, W.-N.; Chen, S.; Lin, K.-W.; Xu, J.-K. Thieno[3,2-b]Thiophene End-Capped All-Sulfur Analog of 3,4-Ethylenedioxythiophene and Its Eletrosynthesized Polymer: Is Distorted Conformation Not Suitable for Electrochromism? J. Polym. Sci. Part A: Polym. Chem. 2019, 57, 1041–1048. DOI: 10.1002/pola.29339.
  • Yuk, H.; Lu, B.-Y.; Zhao, X.-H. Hydrogel Bioelectronics. Chem. Soc. Rev. 2019, 48, 1642–1667. DOI: 10.1039/C8CS00595H.
  • Yersin, H.; Mataranga-Popa, L.; Li, S.-W.; Czerwieniec, R. Design Strategies for Materials Showing Thermally Activated Delayed Fluorescence and beyond: Towards the Fourth-Generation OLED Mechanism. J. Soc. Inf. Display 2018, 26, 194–199. DOI: 10.1002/jsid.654.
  • Lim, E.; Jung, B.-J.; Shim, H.-K. Improved EL Efficiency of Fluorene-Thieno [3,2-b]Thiophene-Based Conjugated Copolymers with Hole-Transporting or Electron-Transporting Units in the Main Chain. J. Polym. Sci. Part A: Polym. Chem. 2006, 44, 243–253. DOI: 10.1002/pola.21144.
  • Bharti, M.; Singh, A.; Samanta, S.; Aswal, D. K. Conductive Polymers for Thermoelectric Power Generation. Prog. Mater. Sci. 2018, 93, 270–310. DOI: 10.1016/j.pmatsci.2017.09.004.
  • DiSalvo, F. J. Thermoelectric Cooling and Power Generation. Science 1999, 285, 703–706. DOI: 10.1126/science.285.5428.703.
  • Hochbaum, A. I.; Chen, R.; Delgado, R. D.; Liang, W.-J.; Garnett, E. C.; Najarian, M.; Majumdar, A.; Yang, P.-D. Enhanced Thermoelectric Performance of Rough Silicon Nanowires. Nature 2008, 451, 163–167. DOI: 10.1038/nature06381.
  • Jiang, F.-X.; Xu, J.-K.; Lu, B.-Y.; Xie, Y.; Huang, R.-J.; Li, L.-F. Thermoelectric Performance of Poly(3,4-Ethylenedioxythiophene): Poly(Styrenesulfonate). Chin. Phys. Lett. 2008, 25, 2202–2205. DOI: 10.1088/0256-307x/25/6/076.
  • Shi, H.; Liu, C.-C.; Jiang, Q.-L.; Xu, J.-K. Effective Approaches to Improve the Electrical Conductivity of PEDOT:PSS: A Review. Adv. Electron. Mater. 2015, 1, 1500017. DOI: 10.1002/aelm.201500017.
  • Zhao, W.-Y.; Liu, Z.-Y.; Sun, Z.-G.; Zhang, Q.-J.; Wei, P.; Mu, X.; Zhou, H.-Y.; Li, C.-C.; Ma, S.-F.; He, D.-Q.; et al. Superparamagnetic Enhancement of Thermoelectric Performance. Nature 2017, 549, 247–251. DOI: 10.1038/nature23667.
  • Yue, R.-R.; Chen, S.; Lu, B.-Y.; Liu, C.-C.; Xu, J.-K. Facile Electrosynthesis and Thermoelectric Performance of Electroactive Free-Standing Polythieno[3,2-b]Thiophene Films. J. Solid State Electrochem. 2011, 15, 539–548. DOI: 10.1007/s10008-010-1095-8.
  • Yue, R.-R.; Chen, S.; Liu, C.-C.; Lu, B.-Y.; Xu, J.-K.; Wang, J.-M.; Liu, G.-D. Synthesis, Characterization, and Thermoelectric Properties of a Conducting Copolymer of 1,12-Bis(Carbazolyl)Dodecane and Thieno[3,2-b]Thiophene. J. Solid State Electrochem. 2012, 16, 117–126. DOI: 10.1007/s10008-011-1292-0.
  • Zhou, W.-Q.; Xu, J.-K. Progress in Conjugated Polyindoles: Synthesis, Polymerization Mechanisms, Properties, and Applications. Polym. Rev. 2017, 57, 248–275. DOI: 10.1080/15583724.2016.1223130.
  • Miller, J. R.; Simon, P. Electrochemical Capacitors for Energy Management. Science 2008, 321, 651–652. DOI: 10.1126/science.1158736.
  • El-Kady, M. F.; Strong, V.; Dubin, S.; Kaner, R. B. Laser Scribing of High-Performance and Flexible Graphene-Based Electrochemical Capacitors. Science 2012, 335, 1326–1330. DOI: 10.1126/science.1216744.
  • Ates, M.; Eren, N.; Osken, I.; Baslilar, S.; Ozturk, T. Poly(2,6-di(Thiophene-2-yl)-3,5bis(4-(Thiophene-2-yl)Phenyl)Dithieno[3,2-b;2′,3′-d]Thiophene)/Carbon Nanotube Composite for Capacitor Applications. J. Appl. Polym. Sci. 2014, 131, 40061–40069. DOI: 10.1002/app.40061.
  • Dubal, D. P.; Ayyad, O.; Ruiz, V.; Gómez-Romero, P. Hybrid Energy Storage: The Merging of Battery and Supercapacitor Chemistries. Chem. Soc. Rev. 2015, 44, 1777–1790. DOI: 10.1039/C4CS00266K.
  • Zhou, W.-Q.; Du, Y.-K.; Ren, F.-F.; Wang, C.-Y.; Xu, J.-K.; Yang, P. High Efficient Electrocatalytic Oxidation of Methanol on Pt/Polyindoles Composite Catalysts. Int. J. Hydrogen Energy 2010, 35, 3270–3279. DOI: 10.1016/j.ijhydene.2010.01.083.
  • Liang, A.; Li, D.; Zhou, W.; Wu, Y.; Ye, G.; Wu, J.; Chang, Y.; Wang, R.; Xu, J.; Nie, G.; et al. Robust Flexible WS2/PEDOT:PSS Film for Use in High-Performance Miniature Supercapacitors. J. Electroanal. Chem. 2018, 824, 136–146. DOI: 10.1016/j.jelechem.2018.07.040.
  • Yamashita, Y.; Tsurumi, J.; Ohno, M.; Fujimoto, R.; Kumagai, S.; Kurosawa, T.; Okamoto, T.; Takeya, J.; Watanabe, S. Efficient Molecular Doping of Polymeric Semiconductors Driven by Anion Exchange. Nature 2019, 572, 634–638. DOI: 10.1038/s41586-019-1504-9.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.