22,426
Views
186
CrossRef citations to date
0
Altmetric
Reviews

A Review on the Potential and Limitations of Recyclable Thermosets for Structural Applications

ORCID Icon, , , &
Pages 359-388 | Received 23 Apr 2019, Accepted 18 Sep 2019, Published online: 08 Oct 2019

References

  • Ellen MacArthur Foundation. The New Plastics Economy: Rethinking the Future of Plastics and Catalysing Action; Ellen McArthur Foundation: Cowes, 2017.
  • Soroudi, A.; Jakubowicz, I. Recycling of Bioplastics, Their Blends and Biocomposites: A Review. Eur. Polym. J. 2013, 49, 2839–2858. DOI: 10.1016/j.eurpolymj.2013.07.025.
  • Ambrose, C. A.; Hooper, R.; Potter, A. K.; Singh, M. M. Diversion from Landfill: Quality Products from Valuable Plastics. Resour. Conserv. Recycl. 2002, 36, 309–318. DOI: 10.1016/S0921-3449(02)00030-7.
  • Maris, J.; Bourdon, S.; Brossard, J.-M.; Cauret, L.; Fontaine, L.; Montembault, V. Mechanical Recycling: Compatibilization of Mixed Thermoplastic Wastes. Polym. Degrad. Stabil. 2018, 147, 245–266. DOI: 10.1016/j.polymdegradstab.2017.11.001.
  • Brouwer, M. T.; Thoden van Velzen, E. U.; Augustinus, A.; Soethoudt, H.; De Meester, S.; Ragaert, K. Predictive Model for the Dutch Post-Consumer Plastic Packaging Recycling System and Implications for the Circular Economy. Waste Manage. 2018, 71, 62–85. DOI: 10.1016/j.wasman.2017.10.034.
  • Biron, M.; Biron, M. 3 – Thermoplastics: Economic Overview. In Material Selection for Thermoplastic Parts; William Andrew Publishing: Oxford, 2016; pp 77–111.
  • Biron, M.; Biron, M. 2 – The Plastics Industry: Economic Overview. In Thermosets and Composites, 2nd ed.; William Andrew Publishing: Oxford, 2014; pp 25–104.
  • Yang, Y.; Boom, R.; Irion, B.; van Heerden, D.-J.; Kuiper, P.; de Wit, H. Recycling of Composite Materials. Chem. Eng. Process. Process Intens. 2012, 51, 53–68. DOI: 10.1016/j.cep.2011.09.007.
  • Oliveux, G.; Dandy, L. O.; Leeke, G. A. Current Status of Recycling of Fibre Reinforced Polymers: Review of Technologies, Reuse and Resulting Properties. Prog. Mater. Sci. 2015, 72, 61–99. DOI: 10.1016/j.pmatsci.2015.01.004.
  • Pickering, S. J. Recycling Technologies for Thermoset Composite Materials – Current Status. Compos. Part A: Appl. Sci. Manufact. 2006, 37, 1206–1215. DOI: 10.1016/j.compositesa.2005.05.030.
  • Zhong, N.; Post, W. Self-Repair of Structural and Functional Composites with Intrinsically Self-Healing Polymer Matrices: A Review. Compos. Part A: Appl. Sci. Manufact. 2015, 69, 226–239. DOI: 10.1016/j.compositesa.2014.11.028.
  • García, F.; Smulders, M. M. J. Dynamic Covalent Polymers. J. Polym. Sci. Part A: Polym. Chem. 2016, 54, 3551–3577. DOI: 10.1002/pola.28260.
  • Fortman, D. J.; Brutman, J. P.; De Hoe, G. X.; Snyder, R. L.; Dichtel, W. R.; Hillmyer, M. A. Approaches to Sustainable and Continually Recyclable Cross-Linked Polymers. ACS Sustainable Chem. Eng. 2018, 6, 11145–11159. DOI: 10.1021/acssuschemeng.8b02355.
  • Yang, S.; Chen, J.-S.; Körner, H.; Breiner, T.; Ober, C. K.; Poliks, M. D. Reworkable Epoxies: Thermosets with Thermally Cleavable Groups for Controlled Network Breakdown. Chem. Mater. 1998, 10, 1475–1482. DOI: 10.1021/cm970667t.
  • Rivero, G.; Nguyen, L.-T. T.; Hillewaere, X. K. D.; Du Prez, F. E. One-Pot Thermo-Remendable Shape Memory Polyurethanes. Macromolecules 2014, 47, 2010–2018. DOI: 10.1021/ma402471c.
  • Hayes, S. A.; Jones, F. R.; Marshiya, K.; Zhang, W. A Self-Healing Thermosetting Composite Material. Compos. Part A: Appl. Sci. Manufact. 2007, 38, 1116–1120. DOI: 10.1016/j.compositesa.2006.06.008.
  • Ma, S.; Webster, D. C. Degradable Thermosets Based on Labile Bonds or Linkages: A Review. Prog. Polym. Sci. 2018, 76, 65–110. DOI: 10.1016/j.progpolymsci.2017.07.008.
  • Pastine, S. J. Sustainable by Design: Introducing Recyclable Epoxytechnology. Presented at Society of Plastics Engineers – 13th Annual Automotive Composites Conference and Exhibition (ACCE), Novi, MI, USA, Sep 11–13, 2013.
  • La Rosa, A.; Blanco, I.; Banatao, D.; Pastine, S.; Björklund, A.; Cicala, G. Innovative Chemical Process for Recycling Thermosets Cured with Recyclamines® by Converting Bio-Epoxy Composites in Reusable Thermoplastic – An LCA Study. Materials 2018, 11, 353. DOI: 10.3390/ma11030353.
  • Kissounko, D. A.; Taynton, P.; Kaffer, C. New Material: Vitrimers Promise to Impact Composites. Reinforced Plast. 2018, 62, 162–166. DOI: 10.1016/j.repl.2017.06.084.
  • Overcash, M.; Twomey, J.; Asmatulu, E.; Vozzola, E.; Griffing, E. Thermoset Composite Recycling – Driving Forces, Development, and Evolution of New Opportunities. J. Compos. Mater. 2018, 52, 1033–1043. DOI: 10.1177/0021998317720000.
  • Ayre, D. Technology Advancing Polymers and Polymer Composites towards Sustainability: A Review. Curr. Opin. Green Sustain. Chem. 2018, 13, 108–112. DOI: 10.1016/j.cogsc.2018.06.018.
  • Ribeiro, M.; Fiúza, A.; Ferreira, A.; Dinis, M.; Meira Castro, A.; Meixedo, J.; Alvim, M. Recycling Approach towards Sustainability Advance of Composite Materials’ Industry. Recycling 2016, 1, 178. DOI: 10.3390/recycling1010178.
  • Asmatulu, E.; Twomey, J.; Overcash, M. Recycling of Fiber-Reinforced Composites and Direct Structural Composite Recycling Concept. J. Compos. Mater. 2014, 48, 593–608. DOI: 10.1177/0021998313476325.
  • Jensen, J. P.; Skelton, K. Wind Turbine Blade Recycling: Experiences, Challenges and Possibilities in a Circular Economy. Renew. Sustain. Energy Rev. 2018, 97, 165–176. DOI: 10.1016/j.rser.2018.08.041.
  • Bank, L.; Arias, F.; Yazdanbakhsh, A.; Gentry, T.; Al-Haddad, T.; Chen, J.-F.; Morrow, R. Concepts for Reusing Composite Materials from Decommissioned Wind Turbine Blades in Affordable Housing. Recycling 2018, 3, 3. DOI: 10.3390/recycling3010003.
  • Bernardeau, F.; Perrin, D.; Caro-Bretelle, A.-S.; Benezet, J.-C.; Ienny, P. Development of a Recycling Solution for Waste Thermoset Material: Waste Source Study, Comminution Scheme and Filler Characterization. J. Mater. Cycles Waste Manag. 2018, 20, 1320–1336. DOI: 10.1007/s10163-017-0698-x.
  • Job, S.; Mativenga, P.; Aizat Shuaib, N.; Oliveux, G. Composites Recycling: Where Are We Now? Composites UK Ltd.: Berkhamsted, 2016.
  • Palmer, J.; Savage, L.; Ghita, O. R.; Evans, K. E. Sheet Moulding Compound (SMC) from Carbon Fibre Recyclate. Compos. Part A: Appl. Sci. Manufact. 2010, 41, 1232–1237. DOI: 10.1016/j.compositesa.2010.05.005.
  • Pickering, S. J.; Kelly, R. M.; Kennerley, J. R.; Rudd, C. D.; Fenwick, N. J. A Fluidised-Bed Process for the Recovery of Glass Fibres from Scrap Thermoset Composites. Compos. Sci. Technol. 2000, 60, 509–523. DOI: 10.1016/S0266-3538(99)00154-2.
  • Cunliffe, A. M.; Jones, N.; Williams, P. T. Pyrolysis of Composite Plastic Waste. Environ. Technol. 2003, 24, 653–663. DOI: 10.1080/09593330309385599.
  • Al-Salem, S. M.; Antelava, A.; Constantinou, A.; Manos, G.; Dutta, A. A Review on Thermal and Catalytic Pyrolysis of Plastic Solid Waste (PSW). J. Environ. Manage. 2017, 197, 177–198. DOI: 10.1016/j.jenvman.2017.03.084.
  • Santella, C.; Cafiero, L.; De Angelis, D.; La Marca, F.; Tuffi, R.; Vecchio Ciprioti, S. Thermal and Catalytic Pyrolysis of a Mixture of Plastics from Small Waste Electrical and Electronic Equipment (WEEE). Waste Manage. 2016, 54, 143–152. DOI: 10.1016/j.wasman.2016.05.005.
  • Benedetti, M.; Cafiero, L.; De Angelis, D.; Dell’Era, A.; Pasquali, M.; Stendardo, S.; Tuffi, R.; Ciprioti, S. V. Pyrolysis of WEEE Plastics Using Catalysts Produced from Fly Ash of Coal Gasification. Front. Environ. Sci. Eng. 2017, 11, 11.
  • Naqvi, S. R.; Prabhakara, H. M.; Bramer, E. A.; Dierkes, W.; Akkerman, R.; Brem, G. A Critical Review on Recycling of End-of-Life Carbon Fibre/Glass Fibre Reinforced Composites Waste Using Pyrolysis towards a Circular Economy. Resour. Conserv. Recycl. 2018, 136, 118–129. DOI: 10.1016/j.resconrec.2018.04.013.
  • Alves, S. M. C.; da Silva, F. S.; Donadon, M. V.; Garcia, R. R.; Corat, E. J. Process and Characterization of Reclaimed Carbon Fiber Composites by Pyrolysis and Oxidation, Assisted by Thermal Plasma to Avoid Pollutants Emissions. J. Compos. Mater. 2018, 52, 1379–1398. DOI: 10.1177/0021998317724214.
  • Kim, K. W.; Jeong, J.-S.; An, K.-H.; Kim, B.-J. A Low Energy Recycling Technique of Carbon Fibers-Reinforced Epoxy Matrix Composites. Ind. Eng. Chem. Res., 2018, 58, 618–624. DOI: 10.1021/acs.iecr.8b02554.
  • Oliveux, G.; Bailleul, J. L.; Salle, E. L. G. L. Chemical Recycling of Glass Fibre Reinforced Composites Using Subcritical Water. Compos. Part A: Appl. Sci. Manufact. 2012, 43, 1809–1818. DOI: 10.1016/j.compositesa.2012.06.008.
  • Oliveux, G.; Bailleul, J.-L.; Le Gal La Salle, E.; Lefèvre, N.; Biotteau, G. Recycling of Glass Fibre Reinforced Composites Using Subcritical Hydrolysis: Reaction Mechanisms and Kinetics, Influence of the Chemical Structure of the Resin. Polym. Degrad. Stabil. 2013, 98, 785–800. DOI: 10.1016/j.polymdegradstab.2012.12.010.
  • Kuang, X.; Shi, Q.; Zhou, Y.; Zhao, Z.; Wang, T.; Qi, H. J. Dissolution of Epoxy Thermosets: Via Mild Alcoholysis: The Mechanism and Kinetics Study. RSC Adv. 2018, 8, 1493–1502. DOI: 10.1039/C7RA12787A.
  • Li, J.; Xu, P.-L.; Zhu, Y.-K.; Ding, J.-P.; Xue, L.-X.; Wang, Y.-Z. A Promising Strategy for Chemical Recycling of Carbon Fiber/Thermoset Composites: Self-Accelerating Decomposition in a Mild Oxidative System. Green Chem. 2012, 14, 3260–3263. DOI: 10.1039/c2gc36294e.
  • Sokoli, H. U.; Simonsen, M. E.; Søgaard, E. G. Investigation of Degradation Products Produced by Recycling the Solvent during Chemical Degradation of Fiber-Reinforced Composites. J. Reinforced Plast. Compos. 2017, 36, 1286–1296. DOI: 10.1177/0731684417707060.
  • Buggy, M.; Farragher, L.; Madden, W. Recycling of Composite Materials. J. Mater. Process. Technol. 1995, 55, 448–456. DOI: 10.1016/0924-0136(95)02037-3.
  • Dang, W.; Kubouchi, M.; Sembokuya, H.; Tsuda, K. Chemical Recycling of Glass Fiber Reinforced Epoxy Resin Cured with Amine Using Nitric Acid. Polymer 2005, 46, 1905–1912. DOI: 10.1016/j.polymer.2004.12.035.
  • Ma, Y.; Kim, D.; Nutt, S. R. Chemical Treatment for Dissolution of Amine-Cured Epoxies at Atmospheric Pressure. Polym. Degrad. Stabil. 2017, 146, 240–249. DOI: 10.1016/j.polymdegradstab.2017.10.014.
  • Ma, Y.; Nutt, S. Chemical Treatment for Recycling of Amine/Epoxy Composites at Atmospheric Pressure. Polym. Degrad. Stabil. 2018, 153, 307–317. DOI: 10.1016/j.polymdegradstab.2018.05.011.
  • Zhang, L.; Liu, J.; Nie, W.; Wang, K.; Wang, Y.; Yang, X.; Tang, T. Degradation of Anhydride-Cured Epoxy Resin Using Simultaneously Recyclable Solvent and Organic Base Catalyst. J. Mater. Cycles Waste Manag. 2018, 20, 568–577. DOI: 10.1007/s10163-017-0623-3.
  • Kuang, X.; Zhou, Y.; Shi, Q.; Wang, T.; Qi, H. J. Recycling of Epoxy Thermoset and Composites via Good Solvent Assisted and Small Molecules Participated Exchange Reactions. ACS Sustainable Chem. Eng. 2018, 6, 9189–9197. DOI: 10.1021/acssuschemeng.8b01538.
  • Vallee, M.; Tersac, G.; Destais-Orvoen, N.; Durand, G. Chemical Recycling of Class a Surface Quality Sheet-Molding Composites. Ind. Eng. Chem. Res. 2004, 43, 6317–6324. DOI: 10.1021/ie049871y.
  • Simón, D.; Rodríguez, J. F.; Carmona, M.; Serrano, A.; Borreguero, A. M. Glycolysis of Advanced Polyurethanes Composites Containing Thermoregulating Microcapsules. Chem. Eng. J. 2018, 350, 300–311. DOI: 10.1016/j.cej.2018.05.158.
  • Henry, L.; Schneller, A.; Doerfler, J.; Mueller, W. M.; Aymonier, C.; Horn, S. Semi-Continuous Flow Recycling Method for Carbon Fibre Reinforced Thermoset Polymers by Near- and Supercritical Solvolysis. Polym. Degrad. Stabil. 2016, 133, 264–274. DOI: 10.1016/j.polymdegradstab.2016.09.002.
  • Khalil, Y. F. Comparative Environmental and Human Health Evaluations of Thermolysis and Solvolysis Recycling Technologies of Carbon Fiber Reinforced Polymer Waste. Waste Manage. 2018, 76, 767–778. DOI: 10.1016/j.wasman.2018.03.026.
  • Khalil, Y. F. Sustainability Assessment of Solvolysis Using Supercritical Fluids for Carbon Fiber Reinforced Polymers Waste Management. Sustainable Prod. Consump. 2019, 17, 74–84. DOI: 10.1016/j.spc.2018.09.009.
  • Prinçaud, M.; Aymonier, C.; Loppinet-Serani, A.; Perry, N.; Sonnemann, G. Environmental Feasibility of the Recycling of Carbon Fibers from CFRPs by Solvolysis Using Supercritical Water. ACS Sustainable Chem. Eng. 2014, 2, 1498–1502. DOI: 10.1021/sc500174m.
  • Shuaib, N. A.; Mativenga, P. T. Carbon Footprint Analysis of Fibre Reinforced Composite Recycling Processes. Proc. Manufact. 2017, 7, 183–190. DOI: 10.1016/j.promfg.2016.12.046.
  • Wang, Z.; Xie, M.; Zhao, Y.; Yu, Y.; Fang, S. Synthesis and Properties of Novel Liquid Ester-Free Reworkable Cycloaliphatic Diepoxides for Electronic Packaging Application. Polymer 2003, 44, 923–929. DOI: 10.1016/S0032-3861(02)00873-X.
  • Wang, L.; Wong, C. P. Syntheses and Characterizations of Thermally Reworkable Epoxy Resins. Part I. J. Polym. Sci. A Polym. Chem. 1999, 37, 2991–3001. DOI: 10.1002/(SICI)1099-0518(19990801)37:15<2991::AID-POLA32>3.0.CO;2-V.
  • Wang, L.; Li, H.; Wong, C. P. Syntheses and Characterizations of Thermally Reworkable Epoxy Resins II. J. Polym. Sci. A Polym. Chem. 2000, 38, 3771–3782. DOI: 10.1002/1099-0518(20001015)38:20<3771::AID-POLA80>3.0.CO;2-4.
  • Liu, W.; Wang, Z.; Xiong, L.; Zhao, L. Phosphorus-Containing Liquid Cycloaliphatic Epoxy Resins for Reworkable Environment-Friendly Electronic Packaging Materials. Polymer 2010, 51, 4776–4783. DOI: 10.1016/j.polymer.2010.08.039.
  • Liu, W.; Wang, Z.; Chen, Z.; Zhao, L. Thermo-Initiated Cationic Polymerization of Phosphorus-Containing Cycloaliphatic Epoxides with Tunable Degradable Temperature. Polym. Degrad. Stabil. 2012, 97, 810–815. DOI: 10.1016/j.polymdegradstab.2012.01.028.
  • Chen, Z.; Zhao, L.; Wang, Z. Synthesis of Phosphite-Type Trifunctional Cycloaliphatic Epoxide and the Decrosslinking Behavior of Its Cured Network. Polymer 2013, 54, 5182–5187. DOI: 10.1016/j.polymer.2013.07.048.
  • Zhao, L.; Liu, Y.; Wang, Z.; Li, J.; Liu, W.; Chen, Z. Synthesis and Degradable Property of Novel Sulfite-Containing Cycloaliphatic Epoxy Resins. Polym. Degrad. Stabil. 2013, 98, 2125–2130. DOI: 10.1016/j.polymdegradstab.2013.09.007.
  • Zhang, X.; Chen, G.-C.; Collins, A.; Jacobson, S.; Morganelli, P.; Dar, Y. L.; Musa, O. M. Thermally Degradable Maleimides for Reworkable Adhesives. J. Polym. Sci. A Polym. Chem. 2009, 47, 1073–1084. DOI: 10.1002/pola.23217.
  • Chen, J.-S.; Ober, C. K.; Poliks, M. D. Characterization of Thermally Reworkable Thermosets: Materials for Environmentally Friendly Processing and Reuse. Polymer 2002, 43, 131–139. DOI: 10.1016/S0032-3861(01)00605-X.
  • Chen, J.-S.; Ober, C. K.; Poliks, M. D.; Zhang, Y.; Wiesner, U.; Cohen, C. Controlled Degradation of Epoxy Networks: Analysis of Crosslink Density and Glass Transition Temperature Changes in Thermally Reworkable Thermosets. Polymer 2004, 45, 1939–1950. DOI: 10.1016/j.polymer.2004.01.011.
  • Shirai, M. Reworkable UV Curing Materials. Prog. Organic Coat. 2007, 58, 158–165. DOI: 10.1016/j.porgcoat.2006.08.022.
  • Li, H.; Wang, L.; Jacob, K.; Wong, C. P. Syntheses and Characterizations of Thermally Degradable Epoxy Resins. III. J. Polym. Sci. A Polym. Chem. 2002, 40, 1796–1807. DOI: 10.1002/pola.10258.
  • Shirai, M.; Morishita, S.; Okamura, H.; Tsunooka, M. Photo-Cross-Linkable Polymers with Thermally Degradable Property. Chem. Mater. 2002, 14, 334–340. DOI: 10.1021/cm0103646.
  • Okamura, H.; Yamauchi, E.; Shirai, M. Photo-Cross-Linking and de-Cross-Linking of Modified Polystyrenes Having Degradable Linkages. React. Funct. Polym. 2011, 71, 480–488. DOI: 10.1016/j.reactfunctpolym.2011.01.008.
  • Okamura, H.; Toda, S.; Tsunooka, M.; Shirai, M. Photocrosslinking System Based on a Poly (Vinyl Phenol)/Thermally Degradable Diepoxy Crosslinker Blend. J. Polym. Sci. A Polym. Chem. 2002, 40, 3055–3062. DOI: 10.1002/pola.10394.
  • Shirai, M.; Kawaue, A.; Okamura, H.; Tsunooka, M. Photo-Cross-Linkable Polymers Having Degradable Properties on Heating. Chem. Mater. 2003, 15, 4075–4081. DOI: 10.1021/cm0302734.
  • Shirai, M.; Kawaue, A.; Okamura, H.; Tsunooka, M. Photocrosslinkable Polymers with Redissolution Property. Chem. Lett. 2002, 31, 940–942. DOI: 10.1246/cl.2002.940.
  • Okamura, H.; Shirai, M. Novel Photo-Cross-Linkable Dendrimers Having Thermal de-Cross-Linking Properties. Polymer 2010, 51, 5087–5094. DOI: 10.1016/j.polymer.2010.09.010.
  • Okamura, H.; Shin, K.; Shirai, M. Photocrosslinking System Using Highly-Functionalized Epoxy Crosslinkers Having Degradable Property. Polym. J. 2006, 38, 1237. DOI: 10.1295/polymj.PJ2006007.
  • Morell, M.; Ramis, X.; Ferrando, F.; Yu, Y.; Serra, A. New Improved Thermosets Obtained from DGEBA and a Hyperbranched Poly(Ester-Amide). Polymer 2009, 50, 5374–5383. DOI: 10.1016/j.polymer.2009.09.024.
  • Morell, M.; Erber, M.; Ramis, X.; Ferrando, F.; Voit, B.; Serra, A. New Epoxy Thermosets Modified with Hyperbranched Poly(Ester-Amide) of Different Molecular Weight. Eur. Polym. J. 2010, 46, 1498–1509. DOI: 10.1016/j.eurpolymj.2010.04.015.
  • Morell, M.; Fernández-Francos, X.; Ramis, X.; Serra, A. Synthesis of a New Hyperbranched Polyaminoester and Its Use as a Reactive Modifier in Anionic Curing of DGEBA Thermosets. Macromol. Chem. Phys. 2010, 211, 1879–1889. DOI: 10.1002/macp.201000152.
  • Ogino, K.; Chen, J.-S.; Ober, C. K. Synthesis and Characterization of Thermally Degradable Polymer Networks. Chem. Mater. 1998, 10, 3833–3838. DOI: 10.1021/cm9801183.
  • Kilian, L.; Wang, Z.-H.; Long, T. E. Synthesis and Cleavage of Core-Labile Poly(Alkyl Methacrylate) Star Polymers. J. Polym. Sci. A Polym. Chem. 2003, 41, 3083–3093. DOI: 10.1002/pola.10885.
  • Roper, T. M.; Kwee, T.; Lee, T. Y.; Guymon, C. A.; Hoyle, C. E. Photopolymerization of Pigmented Thiol-Ene Systems. Polymer 2004, 45, 2921–2929. DOI: 10.1016/j.polymer.2004.02.038.
  • Montague, M. F.; Hawker, C. J. Secondary Patterning of UV Imprint Features by Photolithography. Chem. Mater. 2007, 19, 526–534. DOI: 10.1021/cm0622102.
  • Adachi, M.; Okamura, H.; Shirai, M. A Reworkable Photothermal Dual-Curing System. Chem. Lett. 2013, 42, 1056–1058. DOI: 10.1246/cl.130415.
  • Acebo, C.; Fernández-Francos, X.; Ferrando, F.; Serra, À.; Ramis, X. New Epoxy Thermosets Modified with Multiarm Star Poly(Lactide) with Poly (Ethyleneimine) as Core of Different Molecular Weight. Eur. Polym. J. 2013, 49, 2316–2326. DOI: 10.1016/j.eurpolymj.2013.05.015.
  • González, L.; Ramis, X.; Salla, J. M.; Mantecón, A.; Serra, A. New Poly(Ether-Ester) Thermosets Obtained by Cationic Curing of DGEBA and 7,7-Dimethyl-6,8-Dioxaspiro[3.5] Nonane-5,9-Dione with Several Lewis Acids as Initiators. J. Polym. Sci. A Polym. Chem. 2008, 46, 1229–1239. DOI: 10.1002/pola.22464.
  • González, L.; Ramis, X.; Salla, J. M.; Mantecón, A.; Serra, A. The Degradation of New Thermally Degradable Thermosets Obtained by Cationic Curing of Mixtures of DGEBA and 6, 6-Dimethyl (4,8-Dioxaspiro [2.5] Octane-5,7-Dione). Polym. Degrad. Stabil. 2007, 92, 596–604. DOI: 10.1016/j.polymdegradstab.2007.01.007.
  • González, L.; Ramis, X.; Salla, J. M.; Serra, A.; Mantecón, A. New Thermosets Obtained from DGEBA and Meldrum Acid with Lanthanum and Ytterbium Triflates as Cationic Initiators. Eur. Polym. J. 2008, 44, 1535–1547. DOI: 10.1016/j.eurpolymj.2008.02.019.
  • Okamura, H.; Shin, K.; Tsunooka, M.; Shirai, M. Photocrosslinking System Using Multifunctional Epoxy Crosslinkers Having Thermally Degradable Properties. J. Polym. Sci. A Polym. Chem. 2004, 42, 3685–3696. DOI: 10.1002/pola.20232.
  • Okamura, H.; Shirai, M. Reworkable Resin Using Thiol-Ene System. J. Photopol. Sci. Technol. 2011, 24, 561–564. DOI: 10.2494/photopolymer.24.561.
  • Buchwalter, S. L.; Kosbar, L. L. Cleavable Epoxy Resins: Design for Disassembly of a Thermoset. J. Polym. Sci. A Polym. Chem. 1996, 34, 249–260. DOI: 10.1002/(SICI)1099-0518(19960130)34:2<249::AID-POLA11>3.0.CO;2-Q.
  • Hashimoto, T.; Meiji, H.; Urushisaki, M.; Sakaguchi, T.; Kawabe, K.; Tsuchida, C.; Kondo, K. Degradable and Chemically Recyclable Epoxy Resins Containing Acetal Linkages: Synthesis, Properties, and Application for Carbon Fiber-Reinforced Plastics. J. Polym. Sci. A Polym. Chem. 2012, 50, 3674–3681. DOI: 10.1002/pola.26160.
  • Harada, M.; Ando, J.; Yamaki, M.; Ochi, M. Synthesis, Characterization, and Mechanical Properties of a Novel Terphenyl Liquid Crystalline Epoxy Resin. J. Appl. Polym. Sci. 2015, 132, 1–7. DOI: 10.1002/app.41296.
  • González, S.; Fernández-Francos, X.; Salla, J. M.; Serra, A.; Mantecón, A.; Ramis, X. New Thermosets Obtained by the Cationic Copolymerization of Diglycidyl Ether of Bisphenol A with γ-Caprolactone with an Improvement in the Shrinkage. I. Study of the Chemical Processes and Physical Characteristics. J. Polym. Sci. A Polym. Chem. 2007, 45, 1968–1979. DOI: 10.1002/pola.21961.
  • Giménez, R.; Fernández-Francos, X.; Salla, J. M.; Serra, A.; Mantecón, A.; Ramis, X. New Degradable Thermosets Obtained by Cationic Copolymerization of DGEBA with an s (γ-Butyrolactone). Polymer 2005, 46, 10637–10647. DOI: 10.1016/j.polymer.2005.09.026.
  • Sangermano, M.; Tonin, M.; Yagci, Y. Degradable Epoxy Coatings by Photoinitiated Cationic Copolymerization of Bisepoxide with ε-Caprolactone. Eur. Polym. J. 2010, 46, 254–259. DOI: 10.1016/j.eurpolymj.2009.10.023.
  • Tsujii, A.; Namba, M.; Okamura, H.; Matsumoto, A. Radical Alternating Copolymerization of Twisted 1,3-Butadienes with Maleic Anhydride as a New Approach for Degradable Thermosetting Resin. Macromolecules 2014, 47, 6619–6626. DOI: 10.1021/ma501555n.
  • Nomura, K.; Tsujii, A.; Matsumoto, A. Synthesis and Ozone Degradation of Alternating Copolymers of N-Substituted Maleimides with Diene Monomers. Macromol. Chem. Phys. 2017, 218, 1700156. DOI: 10.1002/macp.201700156.
  • Lou, L.; Okamura, H.; Matsumoto, A. Crosslinking of Poly(Vinyl Alcohol) and Poly(Vinyl Acetate) Using Poly(Maleic Anhydride-Alt-2,4-Dimethyl-1,3-Pentadiene) as Polyfunctional Crosslinker and Decrosslinking by Ozone Degradation. J. Appl. Polym. Sci. 2017, 134, 1–6. DOI: 10.1002/app.44229.
  • Exner, M.; Pluim, H.; Dyer-Smith, P. Ozonolysis: The Green Oxidation. Chem. Today 2011, 29, 59–62.
  • Gallagher, J. J.; Hillmyer, M. A.; Reineke, T. M. Degradable Thermosets from Sugar-Derived Dilactones. Macromolecules 2014, 47, 498–505. DOI: 10.1021/ma401904x.
  • Ma, S.; Webster, D. C. Naturally Occurring Acids as Cross-Linkers to Yield VOC-Free, High-Performance, Fully Bio-Based, Degradable Thermosets. Macromolecules 2015, 48, 7127–7137. DOI: 10.1021/acs.macromol.5b01923.
  • Zhang, Y.; Wang, R.; Hua, Y.; Baumgartner, R.; Cheng, J. Trigger-Responsive Poly(β-Amino Ester) Hydrogels. ACS Macro Lett. 2014, 3, 693–697. DOI: 10.1021/mz500277j.
  • Guo, B.; Finne-Wistrand, A.; Albertsson, A.-C. Facile Synthesis of Degradable and Electrically Conductive Polysaccharide Hydrogels. Biomacromolecules 2011, 12, 2601–2609. DOI: 10.1021/bm200389t.
  • Bulmus, V.; Chan, Y.; Nguyen, Q.; Tran, H. L. Synthesis and Characterization of Degradable p(HEMA) Microgels: Use of Acid-Labile Crosslinkers. Macromol. Biosci. 2007, 7, 446–455. DOI: 10.1002/mabi.200600258.
  • Binauld, S.; Stenzel, M. H. Acid-Degradable Polymers for Drug Delivery: A Decade of Innovation. Chem. Commun. 2013, 49, 2082–2102. DOI: 10.1039/c2cc36589h.
  • Halpern, J. M.; Urbanski, R.; Weinstock, A. K.; Iwig, D. F.; Mathers, R. T.; von Recum, H. A. A Biodegradable Thermoset Polymer Made by Esterification of Citric Acid and Glycerol. J. Biomed. Mater. Res. 2014, 102, 1467–1477. DOI: 10.1002/jbm.a.34821.
  • Ulery, B. D.; Nair, L. S.; Laurencin, C. T. Biomedical Applications of Biodegradable Polymers. J. Polym. Sci. B Polym. Phys. 2011, 49, 832–864. DOI: 10.1002/polb.22259.
  • García, J. M.; Jones, G. O.; Virwani, K.; McCloskey, B. D.; Boday, D. J.; ter Huurne, G. M.; Horn, H. W.; Coady, D. J.; Bintaleb, A. M.; Alabdulrahman, A. M. S.; et al. Recyclable, Strong Thermosets and Organogels via Paraformaldehyde Condensation with Diamines. Science 2014, 344, 732–735.
  • Yuan, Y.; Sun, Y.; Yan, S.; Zhao, J.; Liu, S.; Zhang, M.; Zheng, X.; Jia, L. Multiply Fully Recyclable Carbon Fibre Reinforced Heat-Resistant Covalent Thermosetting Advanced Composites. Nat. Commun. 2017, 8, 14657. DOI: 10.1038/ncomms14657.
  • Yoshida, K.; Sanda, F.; Endo, T. Synthesis and Cationic Ring-Opening Polymerization of Mono- and Bifunctional Spiro Orthoesters Containing Ester Groups and Depolymerization of the Obtained Polymers: An Approach to Chemical Recycling for Polyesters as a Model System. J. Polym. Sci. A Polym. Chem. 1999, 37, 2551–2558. DOI: 10.1002/(SICI)1099-0518(19990715)37:14<2551::AID-POLA28>3.3.CO;2-G.
  • Hitomi, M.; Sanda, F.; Endo, T. Reversible Crosslinking-Decrosslinking of Polymers Having Bicyclo Orthoester Moieties in the Side Chains. Macromol. Chem. Phys. 1999, 200, 1268–1273. DOI: 10.1002/(SICI)1521-3935(19990601)200:6<1268::AID-MACP1268>3.0.CO;2-N.
  • Ogden, W. A.; Guan, Z. Recyclable, Strong, and Highly Malleable Thermosets Based on Boroxine Networks. J. Am. Chem. Soc. 2018, 140, 6217–6220. DOI: 10.1021/jacs.8b03257.
  • Kloxin, C. J.; Scott, T. F.; Adzima, B. J.; Bowman, C. N. Covalent Adaptable Networks (CANs): A Unique Paradigm in Crosslinked Polymers. Macromolecules 2010, 43, 2643–2653. DOI: 10.1021/ma902596s.
  • Jin, Y.; Yu, C.; Denman, R. J.; Zhang, W. Recent Advances in Dynamic Covalent Chemistry. Chem. Soc. Rev. 2013, 42, 6634–6654. DOI: 10.1039/c3cs60044k.
  • Denissen, W.; Winne, J. M.; Du Prez, F. E. Vitrimers: Permanent Organic Networks with Glass-like Fluidity. Chem. Sci. 2016, 7, 30–38. DOI: 10.1039/C5SC02223A.
  • Montarnal, D.; Capelot, M.; Tournilhac, F.; Leibler, L. Silica-Like Malleable Materials from Permanent Organic Networks. Science 2011, 334, 965–968. DOI: 10.1126/science.1212648.
  • Capelot, M.; Montarnal, D.; Tournilhac, F.; Leibler, L. Metal-Catalyzed Transesterification for Healing and Assembling of Thermosets. J. Am. Chem. Soc. 2012, 134, 7664–7667. DOI: 10.1021/ja302894k.
  • Lu, L.; Pan, J.; Li, G. Recyclable High-Performance Epoxy Based on Transesterification Reaction. J. Mater. Chem. A 2017, 5, 21505–21513. DOI: 10.1039/C7TA06397K.
  • Denissen, W.; Rivero, G.; Nicolaÿ, R.; Leibler, L.; Winne, J. M.; Du Prez, F. E. Vinylogous Urethane Vitrimers. Adv. Funct. Mater. 2015, 25, 2451–2457. DOI: 10.1002/adfm.201404553.
  • Azcune, I.; Odriozola, I. Aromatic Disulfide Crosslinks in Polymer Systems: Self-Healing, Reprocessability, Recyclability and More. Eur. Polym. J. 2016, 84, 147–160. DOI: 10.1016/j.eurpolymj.2016.09.023.
  • Zhou, F.; Guo, Z.; Wang, W.; Lei, X.; Zhang, B.; Zhang, H.; Zhang, Q. Preparation of Self-Healing, Recyclable Epoxy Resins and Low-Electrical Resistance Composites Based on Double-Disulfide Bond Exchange. Compos. Sci. Technol. 2018, 167, 79–85. DOI: 10.1016/j.compscitech.2018.07.041.
  • Canadell, J.; Goossens, H.; Klumperman, B. Self-Healing Materials Based on Disulfide Links. Macromolecules 2011, 44, 2536–2541. DOI: 10.1021/ma2001492.
  • Michal, B. T.; Jaye, C. A.; Spencer, E. J.; Rowan, S. J. Inherently Photohealable and Thermal Shape-Memory Polydisulfide Networks. ACS Macro Lett. 2013, 2, 694–699. DOI: 10.1021/mz400318m.
  • Pepels, M.; Filot, I.; Klumperman, B.; Goossens, H. Self-Healing Systems Based on Disulfide–Thiol Exchange Reactions. Polym. Chem. 2013, 4, 4955–4965. DOI: 10.1039/c3py00087g.
  • Lu, Y.-X.; Tournilhac, F.; Leibler, L.; Guan, Z. Making Insoluble Polymer Networks Malleable via Olefin Metathesis. J. Am. Chem. Soc. 2012, 134, 8424–8427. DOI: 10.1021/ja303356z.
  • Lu, Y.-X.; Guan, Z. Olefin Metathesis for Effective Polymer Healing via Dynamic Exchange of Strong Carbon–Carbon Double Bonds. J. Am. Chem. Soc. 2012, 134, 14226–14231. DOI: 10.1021/ja306287s.
  • Ma, Z.; Wang, Y.; Zhu, J.; Yu, J.; Hu, Z. Bio-Based Epoxy Vitrimers: Reprocessibility, Controllable Shape Memory, and Degradability. J. Polym. Sci. Part A: Polym. Chem. 2017, 55, 1790–1799. DOI: 10.1002/pola.28544.
  • Altuna, F. I.; Pettarin, V.; Williams, R. J. J. Self-Healable Polymer Networks Based on the Cross-Linking of Epoxidised Soybean Oil by an Aqueous Citric Acid Solution. Green Chem. 2013, 15, 3360–3366. DOI: 10.1039/c3gc41384e.
  • Liu, T.; Hao, C.; Wang, L.; Li, Y.; Liu, W.; Xin, J.; Zhang, J. Eugenol-Derived Biobased Epoxy: Shape Memory, Repairing, and Recyclability. Macromolecules 2017, 50, 8588–8597. DOI: 10.1021/acs.macromol.7b01889.
  • Brutman, J. P.; Delgado, P. A.; Hillmyer, M. A. Polylactide Vitrimers. ACS Macro Lett. 2014, 3, 607–610. DOI: 10.1021/mz500269w.
  • Liu, T.; Hao, C.; Zhang, S.; Yang, X.; Wang, L.; Han, J.; Li, Y.; Xin, J.; Zhang, J. A Self-Healable High Glass Transition Temperature Bioepoxy Material Based on Vitrimer Chemistry. Macromolecules 2018, 51, 5577–5585. DOI: 10.1021/acs.macromol.8b01010.
  • Henriksen, M. L.; Ravnsbaek, J. B.; Bjerring, M.; Vosegaard, T.; Daasbjerg, K.; Hinge, M. Epoxy Matrices Modified by Green Additives for Recyclable Materials. ChemSusChem 2017, 10, 2936–2944. DOI: 10.1002/cssc.201700712.
  • Reutenauer, P.; Buhler, E.; Boul, P. J.; Candau, S. J.; Lehn, J.-M. Room Temperature Dynamic Polymers Based on Diels-Alder Chemistry. Chem. Eur. J. 2009, 15, 1893–1900. DOI: 10.1002/chem.200802145.
  • Coope, T. S.; Turkenburg, D. H.; Fischer, H. R.; Luterbacher, R.; van Bracht, H.; Bond, I. P. Novel Diels-Alder Based Self-Healing Epoxies for Aerospace Composites. Smart Mater. Struct. 2016, 25, 084010. DOI: 10.1088/0964-1726/25/8/084010.
  • Luo, K.; Li, J.; Duan, G.; Wang, Y.; Yu, J.; Zhu, J.; Hu, Z. Comb-Shaped Aromatic Polyamide Cross-Linked by Diels-Alder Chemistry: Towards Recyclable and High-Performance Thermosets. Polymer 2018, 142, 33–42. DOI: 10.1016/j.polymer.2018.03.026.
  • Polgar, L. M.; Fortunato, G.; Araya-Hermosilla, R.; van Duin, M.; Pucci, A.; Picchioni, F. Cross-Linking of Rubber in the Presence of Multi-Functional Cross-Linking Aids via Thermoreversible Diels-Alder Chemistry. Eur. Polym. J. 2016, 82, 208–219. DOI: 10.1016/j.eurpolymj.2016.07.018.
  • Zhang, Y.; Broekhuis, A. A.; Picchioni, F. Thermally Self-Healing Polymeric Materials: The Next Step to Recycling Thermoset Polymers? Macromolecules 2009, 42, 1906–1912. DOI: 10.1021/ma8027672.
  • Chen, X.; Dam, M. A.; Ono, K.; Mal, A.; Shen, H.; Nutt, S. R.; Sheran, K.; Wudl, F. A Thermally Re-Mendable Cross-Linked Polymeric Material. Science 2002, 295, 1698–1702. DOI: 10.1126/science.1065879.
  • Turkenburg, D. H.; Fischer, H. R. Diels-Alder Based, Thermo-Reversible Cross-Linked Epoxies for Use in Self-Healing Composites. Polymer 2015, 79, 187–194. DOI: 10.1016/j.polymer.2015.10.031.
  • Billiet, S.; De Bruycker, K.; Driessen, F.; Goossens, H.; Van Speybroeck, V.; Winne, J. M.; Du Prez, F. E. Triazolinediones Enable Ultrafast and Reversible Click Chemistry for the Design of Dynamic Polymer Systems. Nat. Chem. 2014, 6, 815–821. DOI: 10.1038/nchem.2023.
  • Taynton, P.; Yu, K.; Shoemaker, R. K.; Jin, Y.; Qi, H. J.; Zhang, W. Heat- or Water-Driven Malleability in a Highly Recyclable Covalent Network Polymer. Adv. Mater. Weinheim. 2014, 26, 3938–3942. DOI: 10.1002/adma.201400317.
  • Whiteley, J. M.; Taynton, P.; Zhang, W.; Lee, S.-H. Ultra-Thin Solid-State Li-Ion Electrolyte Membrane Facilitated by a Self-Healing Polymer Matrix. Adv. Mater. 2015, 27, 6922–6927. DOI: 10.1002/adma.201502636.
  • Tsarevsky, N. V.; Matyjaszewski, K. Reversible Redox Cleavage/Coupling of Polystyrene with Disulfide or Thiol Groups Prepared by Atom Transfer Radical Polymerization. Macromolecules 2002, 35, 9009–9014. DOI: 10.1021/ma021061f.
  • Tesoro, G. C.; Sastri, V. Reversible Crosslinking in Epoxy Resins. I. Feasibility Studies. J. Appl. Polym. Sci. 1990, 39, 1425–1437. DOI: 10.1002/app.1990.070390702.
  • Sastri, V. R.; Tesoro, G. C. Reversible Crosslinking in Epoxy Resins. II. New Approaches. J. Appl. Polym. Sci. 1990, 39, 1439–1457. DOI: 10.1002/app.1990.070390703.
  • Takahashi, Y.; Tobolsky, A. V. Chemorheological Study on Natural Rubber Vulcanizates. Polym. J. 1971, 2, 457. DOI: 10.1295/polymj.2.457.
  • Rajan, V. V.; Dierkes, W. K.; Joseph, R.; Noordermeer, J. W. M. Science and Technology of Rubber Reclamation with Special Attention to NR-Based Waste Latex Products. Prog. Polym. Sci. 2006, 31, 811–834. DOI: 10.1016/j.progpolymsci.2006.08.003.
  • Wang, Z.; Miller, B.; Mabin, M.; Shahni, R.; Wang, Z. D.; Ugrinov, A.; Chu, Q. R. Cyclobutane-1,3-Diacid (CBDA): A Semi-Rigid Building Block Prepared by [2 + 2] Photocyclization for Polymeric Materials. Sci. Rep. 2017, 7, 13704. DOI: 10.1038/s41598-017-13983-z.
  • Froimowicz, P.; Frey, H.; Landfester, K. Towards the Generation of self-healing Materials by Means of a Reversible Photo-Induced Approach. Macromol. Rapid Commun. 2011, 32, 468–473. DOI: 10.1002/marc.201000643.
  • Chung, C.-M.; Roh, Y.-S.; Cho, S.-Y.; Kim, J.-G. Crack Healing in Polymeric Materials via Photochemical [2 + 2] Cycloaddition. Chem. Mater. 2004, 16, 3982–3984. DOI: 10.1021/cm049394+.
  • Liu, Y.; Farnsworth, M.; Tiwari, A. A Review of Optimisation Techniques Used in the Composite Recycling Area: State-of-the-Art and Steps towards a Research Agenda. J. Clean. Prod. 2017, 140, 1775–1781. DOI: 10.1016/j.jclepro.2016.08.038.
  • Hernández Santana, M.; den Brabander, M.; Garcia, S.; van der Zwaag, S. Routes to Make Natural Rubber Heal: A Review. Polym. Rev. 2018, 58, 585–609. DOI: 10.1080/15583724.2018.1454947.
  • Liang, B, Qin, B, Pastine, S, Li, X. Methods for Recycling Reinforced Composites, 2014.
  • La Rosa, A. D.; Banatao, D. R.; Pastine, S. J.; Latteri, A.; Cicala, G. Recycling Treatment of Carbon Fibre/Epoxy Composites: Materials Recovery and Characterization and Environmental Impacts through Life Cycle Assessment. Compos. Part B: Eng. 2016, 104, 17–25. DOI: 10.1016/j.compositesb.2016.08.015.
  • Cicala, G.; La Rosa, A.D.;, Latteri, A.;, Banatao, R.;, Pastine, S. The use of recyclable epoxy and hybrid lay up for biocomposites: Technical and LCA evaluation (2016) CAMX 2016 - Composites and Advanced Materials Expo. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85010064568&partnerID=40&md5=43b1c027a0c4a0223483b6dac50c2c72
  • Chabert, E.; Vial, J.; Cauchois, J.-P.; Mihaluta, M.; Tournilhac, F. Multiple Welding of Long Fiber Epoxy Vitrimer Composites. Soft Matter 2016, 12, 4838–4845. DOI: 10.1039/c6sm00257a.
  • Post, W.; Cohades, A.; Michaud, V.; van der Zwaag, S.; Garcia, S. J. Healing of a Glass Fibre Reinforced Composite with a Disulphide Containing Organic-Inorganic Epoxy Matrix. Compos. Sci. Technol. 2017, 152, 85–93. DOI: 10.1016/j.compscitech.2017.09.017.
  • Ruiz de Luzuriaga, A.; Martin, R.; Markaide, N.; Rekondo, A.; Cabañero, G.; Rodríguez, J.; Odriozola, I. Epoxy Resin with Exchangeable Disulfide Crosslinks to Obtain Reprocessable, Repairable and Recyclable Fiber-Reinforced Thermoset Composites. Mater. Horiz. 2016, 3, 241–247. DOI: 10.1039/C6MH00029K.
  • Taynton, P.; Ni, H.; Zhu, C.; Yu, K.; Loob, S.; Jin, Y.; Qi, H. J.; Zhang, W. Repairable Woven Carbon Fiber Composites with Full Recyclability Enabled by Malleable Polyimine Networks. Adv. Mater. Weinheim. 2016, 28, 2904–2909. DOI: 10.1002/adma.201505245.
  • Costanzo, P. J.; Beyer, F. L.; Jensen, R. E. Reversible Viscosity Reducing Polymer. U.S. Patent # 7,812,069, 2008.
  • Dello Iacono, S.; Martone, A.; Pastore, A.; Filippone, G.; Acierno, D.; Zarrelli, M.; Giordano, M.; Amendola, E. Thermally Activated Multiple Self-Healing Diels-Alder Epoxy System. Polym. Eng. Sci. 2017, 57, 674–679. DOI: 10.1002/pen.24570.
  • Khan, N. I.; Halder, S.; Gunjan, S.B.; Prasad, T. A Review on Diels-Alder Based Self-Healing Polymer Composites. IOP Conf. Ser: Mater. Sci. Eng. 2018, 377, 012007. DOI: 10.1088/1757-899X/377/1/012007.
  • Zhang, W.; Duchet, J.; Gérard, J. F. Self-Healable Interfaces Based on Thermo-Reversible Diels–Alder Reactions in Carbon Fiber Reinforced Composites. J. Colloid Interface Sci. 2014, 430, 61–68. DOI: 10.1016/j.jcis.2014.05.007.
  • Fei, J.; Duan, X.; Luo, L.; Zhang, C.; Qi, Y.; Li, H.; Feng, Y.; Huang, J. Grafting Methyl Acrylic onto Carbon Fiber via Diels-Alder Reaction for Excellent Mechanical and Tribological Properties of Phenolic Composites. Appl. Surf. Sci. 2018, 433, 349–357. DOI: 10.1016/j.apsusc.2017.09.211.
  • Peterson, A. M.; Jensen, R. E.; Palmese, G. R. Thermoreversible and Remendable Glass-Polymer Interface for Fiber-Reinforced Composites. Compos. Sci. Technol. 2011, 71, 586–592. DOI: 10.1016/j.compscitech.2010.11.022.
  • Ghezzo, F.; Smith, D. R.; Starr, T. N.; Perram, T.; Starr, A. F.; Darlington, T. K.; Baldwin, R. K.; Oldenburg, S. J. Development and Characterization of Healable Carbon Fiber Composites with a Reversibly Cross Linked Polymer. J. Compos. Mater. 2010, 44, 1587–1603. DOI: 10.1177/0021998310363165.
  • Park, J. S.; Darlington, T.; Starr, A. F.; Takahashi, K.; Riendeau, J.; Thomas Hahn, H. Multiple Healing Effect of Thermally Activated Self-Healing Composites Based on Diels-Alder Reaction. Compos. Sci. Technol. 2010, 70, 2154–2159. DOI: 10.1016/j.compscitech.2010.08.017.
  • Park, J. S.; Kim, H. S.; Hahn, H. T. Healing Behavior of a Carbon/Mendomer Composite. Presented at the American Society for Composites – 23rd Technical Conference of the American Society for Composites, Memphis, TN, Sep 9–11, 2008.
  • Imbernon, L.; Norvez, S. From Landfilling to Vitrimer Chemistry in Rubber Life Cycle. Eur. Polym. J. 2016, 82, 347–376. DOI: 10.1016/j.eurpolymj.2016.03.016.
  • Sienkiewicz, M.; Kucinska-Lipka, J.; Janik, H.; Balas, A. Progress in Used Tyres Management in the European Union: A Review. Waste Manag. 2012, 32, 1742–1751. DOI: 10.1016/j.wasman.2012.05.010.
  • Diaz, R.; Colomines, G.; Peuvrel-Disdier, E.; Deterre, R. Thermo-Mechanical Recycling of Rubber: Relationship between Material Properties and Specific Mechanical Energy. J. Mater. Process. Technol. 2018, 252, 454–468. DOI: 10.1016/j.jmatprotec.2017.10.014.
  • Hernández, M.; Grande, A. M.; Dierkes, W.; Bijleveld, J.; van der Zwaag, S.; García, S. J. Turning Vulcanized Natural Rubber into a Self-Healing Polymer: Effect of the Disulfide/Polysulfide Ratio. ACS Sustainable Chem. Eng. 2016, 4, 5776–5784. DOI: 10.1021/acssuschemeng.6b01760.
  • Xiang, H. P.; Qian, H. J.; Lu, Z. Y.; Rong, M. Z.; Zhang, M. Q. Crack Healing and Reclaiming of Vulcanized Rubber by Triggering the Rearrangement of Inherent Sulfur Crosslinked Networks. Green Chem. 2015, 17, 4315–4325. DOI: 10.1039/C5GC00754B.
  • Polgar, L. M.; van Duin, M.; Broekhuis, A. A.; Picchioni, F. Use of Diels–Alder Chemistry for Thermoreversible Cross-Linking of Rubbers: The Next Step toward Recycling of Rubber Products? Macromolecules 2015, 48, 7096–7105. DOI: 10.1021/acs.macromol.5b01422.
  • Araya-Hermosilla, R.; Fortunato, G.; Pucci, A.; Raffa, P.; Polgar, L.; Broekhuis, A. A.; Pourhossein, P.; Lima, G. M. R.; Beljaars, M.; Picchioni, F.; et al. Thermally Reversible Rubber-Toughened Thermoset Networks via Diels-Alder Chemistry. Eur. Polym. J. 2016, 74, 229–240. DOI: 10.1016/j.eurpolymj.2015.11.020.
  • Trovatti, E.; Lacerda, T. M.; Carvalho, A. J. F.; Gandini, A. Recycling Tires? Reversible Crosslinking of Poly(Butadiene). Adv. Mater. 2015, 27, 2242–2245. DOI: 10.1002/adma.201405801.
  • Zhong, N.; Garcia, S. J.; Van Der Zwaag, S. The Effect of Filler Parameters on the Healing of Thermal Conductivity and Mechanical Properties of a Thermal Interface Material Based on a Self-Healable Organic-Inorganic Polymer Matrix. Smart Mater. Struct. 2016, 25, 084016. DOI: 10.1088/0964-1726/25/8/084016.
  • Lafont, U.; Moreno-Belle, C.; van Zeijl, H.; van der Zwaag, S. Self-Healing Thermally Conductive Adhesives. J. Intell. Mater. Syst. Struct. 2014, 25, 67–74. DOI: 10.1177/1045389X13498314.
  • Li, J.; Zhang, G.; Sun, R.; Wong, C.-P. A Covalently Cross-Linked Reduced Functionalized Graphene Oxide/Polyurethane Composite Based on Diels-Alder Chemistry and Its Potential Application in Healable Flexible Electronics. J. Mater. Chem. C 2017, 5, 220–228. DOI: 10.1039/C6TC04715G.
  • Li, J.; Liang, J.; Li, L.; Ren, F.; Hu, W.; Li, J.; Qi, S.; Pei, Q. Healable Capacitive Touch Screen Sensors Based on Transparent Composite Electrodes Comprising Silver Nanowires and a Furan/Maleimide diels-Alder Cycloaddition Polymer. ACS Nano. 2014, 8, 12874–12882. DOI: 10.1021/nn506610p.
  • Zou, Z.; Zhu, C.; Li, Y.; Lei, X.; Zhang, W.; Xiao, J. Rehealable, Fully Recyclable, and Malleable Electronic Skin Enabled by Dynamic Covalent Thermoset Nanocomposite. Sci. Adv. 2018, 4, eaaq0508. DOI: 10.1126/sciadv.aaq0508.