2,023
Views
37
CrossRef citations to date
0
Altmetric
Reviews

Interlaminar Fracture Toughness Characterization of Laminated Composites: A Review

&
Pages 542-593 | Received 15 Mar 2019, Accepted 02 Oct 2019, Published online: 30 Oct 2019

References

  • Naebe, M.; Abolhasani, M. M.; Khayyam, H.; Amini, A.; Fox, B. Crack Damage in Polymers and Composites: A Review. Polym. Rev. 2016, 56, 31–69. DOI: 10.1080/15583724.2015.1078352.
  • Kumar, P.; Prashant, K. Elements of Fracture Mechanics, McGraw Hill Education: India; 2009.
  • Davies, P.; Blackman, B. R. K.; Brunner, A. J. Standard Test Methods for Delamination Resistance of Composite Materials: Current Status. Appl. Compos. Mater. 1998, 5, 345–364.
  • ASTM. D5528-01: Standard Test Method for Mode I Interlaminar Fracture Toughness of Unidirectional Fiber-Reinforced Polymer Matrix Composites 1. Am. Stand. Test. Methods 2014, 03, (Reapproved 2007), 1–12.
  • D7905/D7905M-14; ASTM D7905/D7905M-14. Standard Test Method for Determination of the Mode II Interlaminar Fracture Toughness of Unidirectional Fiber-Reinforced Polymer Matrix Composites. ASTM B. Stand. 2014, 15.03, 1–18.
  • Wang, W.-X.; Nakata, M.; Takao, Y.; Matsubara, T. Experimental Investigation on Test Methods for Mode II Interlaminar Fracture Testing of Carbon Fiber Reinforced Composites. Compos. Part A Appl. Sci. Manuf. 2009, 40, 1447–1455.
  • Szekrényes, A.; Uj, J. Mode-II Fracture in E-Glass-Polyester Composite. J. Compos. Mater. 2005, 39, 1747–1768. DOI: 10.1177/0021998305051120.
  • D5045-99. Standard Test Methods for Plane-Strain Fracture Toughness and Strain Energy Release Rate of Plastic Materials. ASTM B. Stand. 1999, 1–9. DOI: 10.1520/D5045-99
  • Quan, D.; Urdániz, J. L.; Ivanković, A. Enhancing Mode-I and Mode-II Fracture Toughness of Epoxy and Carbon Fibre Reinforced Epoxy Composites Using Multi-Walled Carbon Nanotubes. Mater. Des. 2018, 143, 81–92. DOI: 10.1016/j.matdes.2018.01.051.
  • Johnston, N. J. Matrix Resin Effects in Composite Delamination: Mode I Fracture Aspects. In Toughened Composites: ASTM STP 937, Hunston, D. L., Moulton, R. J., Johnston, N. J., Bascom, W. D., Eds.; American Society for Testing and Materials: Philadelphia, PA, 1987; pp 74–94.
  • Fan, C.; Ben Jar, P.-Y.; Cheng, J.-J. R. Internal-Notched Flexure Test for Measurement of Mode II Delamination Resistance of Fibre-Reinforced Polymers. J. Compos. 2013, 2013, 1–7. DOI: 10.1155/2013/695862.
  • Ma, Y.; Yang, Y.; Sugahara, T.; Hamada, H. A Study on the Failure Behavior and Mechanical Properties of Unidirectional Fiber Reinforced Thermosetting and Thermoplastic Composites. Compos. Part B Eng. 2016, 99, 162–172. DOI: 10.1016/j.compositesb.2016.06.005.
  • Abdelal, N. R.; Donaldson, S. L. Interlaminar Fracture Toughness and Electromagnetic Interference Shielding of Hybrid-Stitched Carbon Fiber Composites. J. Reinf. Plast. Compos. 2018, 37, 1131–1141. DOI: 10.1177/0731684418787642.
  • Velmurugan, R.; Solaimurugan, S. Improvements in Mode I Interlaminar Fracture Toughness and in-Plane Mechanical Properties of Stitched Glass/Polyester Composites. Compos. Sci. Technol. 2007, 67, 61–69. DOI: 10.1016/j.compscitech.2006.03.032.
  • Hoffmann, J.; Brast, A.; Scharr, G. Z-Pin Insertion Process for Through-Thickness Reinforced Thermoplastic Composites. J. Compos. Mater. 2018, 53, 173–181.
  • Yan, S.; Zeng, X.; Long, A. Experimental Assessment of the Mechanical Behaviour of 3D Woven Composite T-Joints. Compos. Part B Eng. 2018, 154, 108–113. DOI: 10.1016/j.compositesb.2018.08.007.
  • Wood, M. D. K.; Sun, X.; Tong, L.; Luo, Q.; Katzos, A.; Rispler, A. A New ENF Test Specimen for the Mode II Delamination Toughness Testing of Stitched Woven CFRP Laminates. J. Compos. Mater. 2007, 41, 1743–1772.
  • Liu, H. Y.; Yan, W.; Yu, X. Y.; Mai, Y. W. Experimental Study on Effect of Loading Rate on Mode I Delamination of Z-Pin Reinforced Laminates. Compos. Sci. Technol. 2007, 67, 1294–1301. DOI: 10.1016/j.compscitech.2006.10.001.
  • Jung, H.; Kim, Y. Mode I Fracture Toughness of Carbon-Glass/Epoxy Interply Hybrid Composites. J. Mech. Sci. Technol. 2015, 29, 1955–1962. DOI: 10.1007/s12206-015-0416-3.
  • Zainol Abidin, M. S.; Herceg, T.; Greenhalgh, E. S.; Shaffer, M.; Bismarck, A. Enhanced Fracture Toughness of Hierarchical Carbon Nanotube Reinforced Carbon Fibre Epoxy Composites with Engineered Matrix Microstructure. Compos. Sci. Technol. 2019, 170, 85–92. DOI: 10.1016/j.compscitech.2018.11.017.
  • Kim, H.; Oh, E.; Hahn, H. T.; Lee, K. H. Enhancement of Fracture Toughness of Hierarchical Carbon Fiber Composites via Improved Adhesion between Carbon Nanotubes and Carbon Fibers. Compos. Part A Appl. Sci. Manuf. 2015, 71, 72–83. DOI: 10.1016/j.compositesa.2014.12.014.
  • Eskizeybek, V.; Yar, A.; Avcı, A. CNT-PAN Hybrid Nanofibrous Mat Interleaved Carbon/Epoxy Laminates with Improved Mode I Interlaminar Fracture Toughness. Compos. Sci. Technol. 2018, 157, 30–39. DOI: 10.1016/j.compscitech.2018.01.021.
  • Zhou, H.; Du, X.; Liu, H. Y.; Zhou, H.; Zhang, Y.; Mai, Y. W. Delamination Toughening of Carbon Fiber/Epoxy Laminates by Hierarchical Carbon Nanotube-Short Carbon Fiber Interleaves. Compos. Sci. Technol. 2017, 140, 46–53. DOI: 10.1016/j.compscitech.2016.12.018.
  • Zheng, N.; Huang, Y.; Liu, H. Y.; Gao, J.; Mai, Y. W. Improvement of Interlaminar Fracture Toughness in Carbon Fiber/Epoxy Composites with Carbon Nanotubes/Polysulfone Interleaves. Compos. Sci. Technol. 2017, 140, 8–15. DOI: 10.1016/j.compscitech.2016.12.017.
  • Qian, X.; Kravchenko, O. G.; Pedrazzoli, D.; Manas-Zloczower, I. Manas-Zloczower, I. Effect of Polycarbonate Film Surface Morphology and Oxygen Plasma Treatment on Mode I and II Fracture Toughness of Interleaved Composite Laminates. Compos. Part A Appl. Sci. Manuf. 2018, 105, 138–149. DOI: 10.1016/j.compositesa.2017.11.016.
  • Chen, S. F.; Jang, B. Z. Fracture Behaviour of Interleaved Fiber-Resin Composites. Compos. Sci. Technol. 1991, 41, 77–97. DOI: 10.1016/0266-3538(91)90054-S.
  • Aljarrah, M. T.; Abdelal, N. R. Improvement of the Mode I Interlaminar Fracture Toughness of Carbon Fiber Composite Reinforced with Electrospun Nylon Nanofiber. Compos. Part B Eng. 2019, 165, 379–385.
  • Fenner, J. S.; Daniel, I. M. Hybrid Nanoreinforced Carbon/Epoxy Composites for Enhanced Damage Tolerance and Fatigue Life. Compos. Part A Appl. Sci. Manuf. 2014, 65, 47–56. DOI: 10.1016/j.compositesa.2014.05.023.
  • Singh, K. K.; Singh, R. K.; Kumar, P. Toughness of Adhesive Bonded Interface under Static and Dynamic Loads – An Experimental Study. J. Reinf. Plast. Compos. 2009, 28, 601–611.
  • Floros, I. S.; Tserpes, K. I.; Löbel, T. Mode-I, Mode-II and Mixed-Mode I + II Fracture Behavior of Composite Bonded Joints: Experimental Characterization and Numerical Simulation. Compos. Part B Eng. 2015, 78, 459–468. DOI: 10.1016/j.compositesb.2015.04.006.
  • Takeda, T.; Narita, F. Fracture Behavior and Crack Sensing Capability of Bonded Carbon Fiber Composite Joints with Carbon Nanotube-Based Polymer Adhesive Layer under Mode I Loading. Compos. Sci. Technol. 2017, 146, 26–33. DOI: 10.1016/j.compscitech.2017.04.014.
  • Buchholz, F.; Rikards, R.; Wang, H. Computational Analysis of Interlaminar Fracture of Laminated Composites. Int. J. Fract. 1997, 86, 37–57.
  • Fanteria, D.; Lazzeri, L.; Panettieri, E.; Mariani, U.; Rigamonti, M. Experimental Characterization of the Interlaminar Fracture Toughness of a Woven and a Unidirectional Carbon/Epoxy Composite. Compos. Sci. Technol. 2017, 142, 20–29. DOI: 10.1016/j.compscitech.2017.01.028.
  • Gupta, A. K.; Velmurugan, R.; Joshi, M. Numerical and Experimental Study of Multimode Failure Phenomena in GFRP Laminates of Different Lay-Ups. Int. J. Crashworthiness. 2018, 23, 87–99. DOI: 10.1080/13588265.2017.1308784.
  • Im, J.; Shin, K.; Hwang, T. Effect of Temperature on Interlaminar Fracture Toughness of Filament-Wound Carbon/Epoxy Composites. Trans. Korean Soc. Mech. Eng. A 2015, 39, 491–497. DOI: 10.3795/KSME-A.2015.39.5.491.
  • Zhao, Y.; Liu, W.; Seah, L. K.; Chai, G. B. Delamination Growth Behavior of a Woven E-Glass/Bismaleimide Composite in Seawater Environment. Compos. Part B Eng. 2016, 106, 332–343. DOI: 10.1016/j.compositesb.2016.09.045.
  • Morais, D. T. S.; Avila, A. F. A Methodology for Quality Control Evaluation for Laminated Composites Manufacturing. J. Brazilian Soc. Mech. Sci. Eng. 2005, 27, 248–254.
  • Shivakumar, K. N.; Panduranga, R.; Skujins, J.; Miller, S. Assessment of Mode-II Fracture Tests for Unidirectional Fiber Reinforced Composite Laminates. J. Reinf. Plast. Compos. 2015, 34, 1905–1925. DOI: 10.1177/0731684415602335.
  • Albertsen, H.; Ivens, J.; Peters, P.; Wevers, M.; Verpoest, I. Interlaminar Fracture Toughness of CFRP Influenced by Fibre Surface Treatment: Part 1. Experimental Results. Compos. Sci. Technol. 1995, 54, 133–145. DOI: 10.1016/0266-3538(95)00048-8.
  • Madhukar, M. S.; Drzal, L. T. Fiber-Matrix Adhesion and Its Effect on Composite Mechanical Properties: IV. Mode I and Mode II Fracture Toughness of Graphite/Epoxy Composites. J. Compos. Mater. 1992, 26, 936–968. DOI: 10.1177/002199839202600701.
  • Davies, P.; Moulin, C.; Kausch, H. H.; Fischer, M. Measurement of GIc and GIIc in Carbon/Epoxy Composites. Compos. Sci. Technol. 1990, 39, 193–205. DOI: 10.1016/0266-3538(90)90041-3.
  • Kuboki, T.; Gallagher, E.; Jar, P. Y. B.; Cheng, J. J. R. A New Method to Quantify Delamination Resistance of Fibre Reinforced Polymers (FRP) under Transverse Loading. Appl. Compos. Mater. 2005, 12, 93–108. DOI: 10.1007/s10443-004-6205-2.
  • O’Brien, T. K. Interlaminar Fracture Toughness: The Long and Winding Road to Standardization. Compos. Part B Eng. 1998, 29, 57–62.
  • Hashemi, S.; Kinloch, A. J.; Williams, J. G. The Effects of Geometry, Rate and Temperature on the Mode I, Mode II and Mixed-Mode I/II Interlaminar Fracture of Carbon-Fibre/Poly(Ether-Ether Ketone) Composites. J. Compos. Mater. 1990, 24, 918–956. DOI: 10.1177/002199839002400902.
  • Warrier, A.; Godara, A.; Rochez, O.; Mezzo, L.; Luizi, F.; Gorbatikh, L.; Lomov, S. V.; VanVuure, A. W.; Verpoest, I. Verpoest, I. The Effect of Adding Carbon Nanotubes to Glass/Epoxy Composites in the Fibre Sizing and/or the Matrix. Compos. Part A Appl. Sci. Manuf. 2010, 41, 532–538. DOI: 10.1016/j.compositesa.2010.01.001.
  • Wicks, S. S.; Wang, W.; Williams, M. R.; Wardle, B. L. Multi-Scale Interlaminar Fracture Mechanisms in Woven Composite Laminates Reinforced with Aligned Carbon Nanotubes. Compos. Sci. Technol. 2014, 100, 128–135. DOI: 10.1016/j.compscitech.2014.06.003.
  • Farmand-Ashtiani, E.; Cugnoni, J.; Botsis, J. Specimen Thickness Dependence of Large Scale Fiber Bridging in Mode I Interlaminar Fracture of Carbon Epoxy Composite. Int. J. Solids Struct. 2015, 55, 58–65. DOI: 10.1016/j.ijsolstr.2014.03.031.
  • Xu, F.; Huang, D. D.; Du, X. Improving the Delamination Resistance of Carbon Fiber/Epoxy Composites by Brushing and Abrading of the Woven Fabrics. Constr. Build. Mater. 2018, 158, 257–263. DOI: 10.1016/j.conbuildmat.2017.10.015.
  • Shokrieh, M. M.; Heidari-Rarani, M. Effect of Stacking Sequence on R-Curve Behavior of Glass/Epoxy DCB Laminates with 0°//0° Crack Interface. Mater. Sci. Eng. A 2011, 529, 265–269. DOI: 10.1016/j.msea.2011.09.027.
  • Davies, P.; Casari, P.; Carlsson, L. A. Influence of Fibre Volume Fraction on Mode II Interlaminar Fracture Toughness of Glass/Epoxy Using the 4ENF Specimen. Compos. Sci. Technol. 2005, 65, 295–300. DOI: 10.1016/j.compscitech.2004.07.014.
  • Compston, P.; Jar, P. Y. B. Influence of Fibre Volume Fraction on the Mode I Interlaminar Fracture Toughness of a Glass-Fibre/Vinyl Ester Composite. Appl. Compos. Mater. 1999, 6, 353–368.
  • Chaudhry, M. S.; Czekanski, A.; Zhu, Z. H. Characterization of Carbon Nanotube Enhanced Interlaminar Fracture Toughness of Woven Carbon Fiber Reinforced Polymer Composites. Int. J. Mech. Sci. 2017, 131–132, 480–489. DOI: 10.1016/j.ijmecsci.2017.06.016.
  • Wicks, S. S.; de Villoria, R. G.; Wardle, B. L. Interlaminar and Intralaminar Reinforcement of Composite Laminates with Aligned Carbon Nanotubes. Compos. Sci. Technol. 2010, 70, 20. DOI: 10.1016/j.compscitech.2009.09.001.
  • Amirkhosravi, M.; Pishvar, M.; Altan, M. C. Improving Laminate Quality in Wet Lay-up/Vacuum Bag Processes by Magnet Assisted Composite Manufacturing (MACM). Compos. Part A Appl. Sci. Manuf. 2017, 98, 227–237. DOI: 10.1016/j.compositesa.2017.03.032.
  • Miyagawa, H.; Chiaki Sato, K. I. Effect of Fiber Orientation on Mode I Fracture Toughness of CFRP. J. Appl. Polym. Sci. 2009, 115, 3295–3302. DOI: 10.1002/app.30233.
  • Godara, A.; Mezzo, L.; Luizi, F.; Warrier, A.; Lomov, S. V.; van Vuure, A. W.; Gorbatikh, L.; Moldenaers, P.; Verpoest, I. Influence of Carbon Nanotube Reinforcement on the Processing and the Mechanical Behaviour of Carbon Fiber/Epoxy Composites. Carbon 2009, 47, 2914–2923. DOI: 10.1016/j.carbon.2009.06.039.
  • Tugrul Seyhan, A.; Tanoglu, M.; Schulte, K. Mode I and Mode II Fracture Toughness of E-Glass Non-Crimp Fabric/Carbon Nanotube (CNT) Modified Polymer Based Composites. Eng. Fract. Mech. 2008, 75, 5151–5162. DOI: 10.1016/j.engfracmech.2008.08.003.
  • Almuhammadi, K.; Alfano, M.; Yang, Y.; Lubineau, G. Analysis of Interlaminar Fracture Toughness and Damage Mechanisms in Composite Laminates Reinforced with Sprayed Multi-Walled Carbon Nanotubes. Mater. Des. 2014, 53, 921–927. DOI: 10.1016/j.matdes.2013.07.081.
  • Kim, M. T.; Rhee, K. Y.; Lee, J. H.; Hui, D.; Lau, A. K. T. Property Enhancement of a Carbon Fiber/Epoxy Composite by Using Carbon Nanotubes. Compos. Part B Eng. 2011, 42, 1257–1261. DOI: 10.1016/j.compositesb.2011.02.005.
  • Dixit, D.; Pal, R.; Kapoor, G.; Stabenau, M. Lightweight Composite Materials Processing; Elsevier Ltd: India, 2016.
  • Wallenberger, F. T.; Watson, J. C.; Hong, L. Glass Fibers. ASM Hanb. 2001, 21, 27–34.
  • Hollaway, L. C. Key Issues in the Use of Fibre Reinforced Polymer (FRP) Composites in the Rehabilitation and Retrofitting of Concrete Structures. In Service Life Estimation and Extension of Civil Engineering Structures, Karbhari, V. M., Lee, L. S., Eds.; Woodhead Publishing Limited: Cambridge, 2011; pp 3–74.
  • Paluvai, N. R.; Mohanty, S.; Nayak, S. K. Synthesis and Modifications of Epoxy Resins and Their Composites: A Review. Polym. Plast. Technol. Eng. 2014, 53, 1723–1758. DOI: 10.1080/03602559.2014.919658.
  • Stickel, J. M.; Nagarajan, M. Glass Fiber-Reinforced Composites: From Formulation to Application. Int. J. Appl. Glass Sci. 2012, 3, 122–136. DOI: 10.1111/j.2041-1294.2012.00090.x.
  • Santrach, D. Industrial Applications and Properties of Short Glass Fiber‐Reinforced Plastics. Polym. Compos. 1982, 3, 239–244. DOI: 10.1002/pc.750030410.
  • Yasufuku, S. Application of Glass Fiber-Reinforced Plastics to Electrical and Electronic Apparatus in Japan. IEEE Electr. Insul. Mag. 1994, 10, 8–15. DOI: 10.1109/57.259976.
  • Adam, H. Carbon Fibre in Automotive Applications. Mater. Des. 1997, 18, 349–355. DOI: 10.1016/S0261-3069(97)00076-9.
  • McKenna, G. B. Interlaminar Effects in Fiber-Reinforced Plastics – A Review. Polym. Plast. Technol. Eng. 1975, 5, 23–53. DOI: 10.1080/03602557508063092.
  • Khan, S. U.; Kim, J. K. Impact and Delamination Failure of Multiscale Carbon Nanotube-Fiber Reinforced Polymer Composites: A Review. Int. J. Aeronaut. Space Sci. 2011, 12, 115–133. DOI: 10.5139/IJASS.2011.12.2.115.
  • Tang, Y.; Ye, L.; Zhang, Z.; Friedrich, K. Interlaminar Fracture Toughness and CAI Strength of Fibre-Reinforced Composites with Nanoparticles – A Review. Compos. Sci. Technol. 2013, 86, 26–37. DOI: 10.1016/j.compscitech.2013.06.021.
  • Carrillo-Escalante, H. J.; Alvarez-Castillo, A.; Valadez-Gonzalez, A.; Herrera-Franco, P. J. Effect of Fiber-Matrix Adhesion on the Fracture Behavior of a Carbon Fiber Reinforced Thermoplastic-Modified Epoxy Matrix. Carbon Lett. 2016, 19, 47–56. DOI: 10.5714/CL.2016.19.047.
  • Rikards, R.; Buchholz, F.-G.; Bledzki, A. K.; Wacker, G.; Korjakin, A. Mode I, Mode II, and Mixed-Mode I/II Interlaminar Fracture Toughness of GFRP Influenced by Fiber Surface Treatment. Mech. Compos. Mater. 1996, 32, 439–462. DOI: 10.1007/BF02313863.
  • Marieta, C.; Schulz, E.; Irusta, L.; Gabilondo, N.; Tercjak, A.; Mondragon, I. Evaluation of Fiber Surface Treatment and Toughening of Thermoset Matrix on the Interfacial Behaviour of Carbon Fiber-Reinforced Cyanate Matrix Composites. Compos. Sci. Technol. 2005, 65, 2189–2197.
  • Johar, M.; Low, K. O.; Israr, H. A.; Wong, K. J. Mode I and Mode II Delamination of a Chopped Strand Mat E-Glass Reinforced Vinyl Ester Composite. Plast. Rubber Compos. 2018, 47, 391–397. DOI: 10.1080/14658011.2018.1515287.
  • Dharmawan, F.; Simpson, G.; Herszberg, I.; John, S. Mixed Mode Fracture Toughness of GFRP Composites. Compos. Struct. 2006, 75, 328–338. DOI: 10.1016/j.compstruct.2006.04.020.
  • Navarro, P.; Aubry, J.; Pascal, F.; Marguet, S.; Ferrero, J. F.; Dorival, O. Influence of the Stacking Sequence and Crack Velocity on Fracture Toughness of Woven Composite Laminates in Mode I. Eng. Fract. Mech. 2014, 131, 340–348. DOI: 10.1016/j.engfracmech.2014.08.010.
  • Pishvar, M.; Amirkhosravi, M.; Altan, M. C. Magnet Assisted Composite Manufacturing : A Novel Fabrication Technique for High-Quality Composite Laminates. Polym. Compos. 2017, 40, 159–169.
  • Gill, A. F.; Robinson, P.; Pinho, S. Effect of Variation in Fibre Volume Fraction on Modes I and II Delamination Behaviour of 5HS Woven Composites Manufactured by RTM. Compos. Sci. Technol. 2009, 69, 2368–2375. DOI: 10.1016/j.compscitech.2009.02.008.
  • Sebaey, T. A.; Blanco, N.; Costa, J.; Lopes, C. S. Characterization of Crack Propagation in Mode I Delamination of Multidirectional CFRP Laminates. Compos. Sci. Technol. 2012, 72, 1251–1256. DOI: 10.1016/j.compscitech.2012.04.011.
  • Hudson, R. C.; Davidson, B. D.; Polaha, J. J. Effect of Remote Ply Orientation on the Perceived Mode I and Mode II Toughness of θ/θ and θ/−θ Interfaces. Appl. Compos. Mater. 1998, 5, 123–138.
  • Heidari-Rarani, M.; Sayedain, M. Finite Element Modeling Strategies for 2D and 3D Delamination Propagation in Composite DCB Specimens Using VCCT, CZM and XFEM Approaches. Theor. Appl. Fract. Mech. 2019, 103, 102246. DOI: 10.1016/j.tafmec.2019.102246.
  • Borowski, E.; Soliman, E.; Kandil, U.; Taha, M. Interlaminar Fracture Toughness of CFRP Laminates Incorporating Multi-Walled Carbon Nanotubes. Polymers 2015, 7, 1020. DOI: 10.3390/polym7061020.
  • Gong, X. J.; Hurez, A.; Verchery, G. On the Determination of Delamination Toughness by Using Multidirectional DCB Specimens. Polym. Test. 2010, 29, 658–666. DOI: 10.1016/j.polymertesting.2010.04.007.
  • Alfred Franklin, V.; Christopher, T. Fracture Energy Estimation of DCB Specimens Made of Glass/Epoxy: An Experimental Study. Adv. Mater. Sci. Eng. 2013, 2013, 412601. DOI: 10.1155/2013/412601.
  • Shetty, M. R.; Vijay Kumar, K. R.; Sudhir, S.; Raghu, P.; Madhuranath, A. D.; Rao, R. M. V. G. K. Effect of Fibre Orientation on Mode-I Interlaminar Fracture Toughness of Glass Epoxy Composites. J. Reinf. Plast. Compos. 2000, 19, 606–620. DOI: 10.1177/073168440001900801.
  • Hwang, J. H.; Lee, C. S.; Hwang, W. Effect of Crack Propagation Directions on the Interlaminar Fracture Toughness of Carbon/Epoxy Composite Materials. Appl. Compos. Mater. 2001, 8, 411–433.
  • Saravanakumar, K.; Farouk, N.; Arumugam, V. Effect of Fiber Orientation on Mode-I Delamination Resistance of Glass/Epoxy Laminates Incorporated with Milled Glass Fiber Fillers. Eng. Fract. Mech. 2018, 199, 61–70. DOI: 10.1016/j.engfracmech.2018.05.027.
  • Kharratzadeh, M.; Shokrieh, M. M.; Salamat-Talab, M. Effect of Interface Fiber Angle on the Mode I Delamination Growth of Plain Woven Glass Fiber-Reinforced Composites. Theor. Appl. Fract. Mech. 2018, 98, 1–12. DOI: 10.1016/j.tafmec.2018.09.006.
  • Alif, N.; Carlsson, L. A.; Boogh, L. The Effect of Weave Pattern and Crack Propagation Direction on Mode I Delamination Resistance of Woven Glass and Carbon Composites. Compos. Part B Eng. 1998, 29, 603–611. DOI: 10.1016/S1359-8368(98)00014-6.
  • Joan, G.; Funk, J. W. D. The Interlaminar Fracture Toughness of Graphite/Epoxy Composites; NASA TP-2950; NASA Langley Research Center: Hampton, VA, 1989.
  • Johar, M.; Israr, H. A.; Low, K. O.; Wong, K. J. Numerical Simulation Methodology for Mode II Delamination of Quasi-Isotropic Quasi-Homogeneous Composite Laminates. J. Compos. Mater. 2017, 51, 3955–3968. DOI: 10.1177/0021998317695414.
  • Davies, P.; Kausch, H. H.; Williams, J. G.; Kinloch, A. J.; Charalambides, M. N.; Pavan, A.; Moore, D. R.; Prediger, R.; Robinson, I.; Burgoyne, N.; et al. Round-Robin Interlaminar Fracture Testing of Carbon-Fibre-Reinforced Exopy and PEEK. Compos. Sci. Technol. 1992, 43, 129–136. DOI: 10.1016/0266-3538(92)90003-L.
  • Machado, J. J. M.; Marques, E. A. S.; Campilho, R. D. S. G.; da Silva, L. F. M. Mode I Fracture Toughness of CFRP as a Function of Temperature and Strain Rate. J. Compos. Mater. 2017, 51, 3315–3326.
  • Machado, J. J. M.; Marques, E. A. S.; Campilho, R. D. S. G.; da Silva, L. F. M. Mode II Fracture Toughness of CFRP as a Function of Temperature and Strain Rate. Compos. Part B Eng 2017, 114, 311–318. DOI: 10.1016/j.compositesb.2017.02.013
  • May, M. Measuring the Rate-Dependent Mode I Fracture Toughness of Composites – A Review. Compos. Part A Appl. Sci. Manuf. 2016, 81, 1–12. DOI: 10.1016/j.compositesa.2015.10.033.
  • Jacob, G. C.; Starbuck, J. M.; Fellers, J. F.; Simunovic, S.; Boeman, R. G. The Effect of Loading Rate on the Fracture Toughness of Fiber Reinforced Polymer Composites. J. Appl. Polym. Sci. 2005, 96, 899–904. DOI: 10.1002/app.21535.
  • Arrese, A.; Insausti, N.; Mujika, F.; Perez-Galmés, M.; Renart, J. A Novel Experimental Procedure to Determine the Cohesive Law in ENF Tests. Compos. Sci. Technol. 2019, 170, 42–50. DOI: 10.1016/j.compscitech.2018.11.031.
  • Shokrieh, M. M.; Salamat-Talab, M.; Heidari-Rarani, M. Dependency of Bridging Traction of DCB Composite Specimen on Interface Fiber Angle. Theor. Appl. Fract. Mech. 2017, 90, 22–32. DOI: 10.1016/j.tafmec.2017.02.009.
  • Aveiga, D.; Ribeiro, M. L. A Delamination Propagation Model for Fiber Reinforced Laminated Composite Materials. Math. Probl. Eng. 2018, 2018, 1861268. DOI: 10.1155/2018/1861268.
  • Sørensen, B. F.; Jacobsen, T. K. Large-Scale Bridging in Composites: R-Curves and Bridging Laws. Compos. Part A Appl. Sci. Manuf. 1998, 29, 1443–1451. DOI: 10.1016/S1359-835X(98)00025-6.
  • Manshadi, B. D.; Vassilopoulos, A. P.; Botsis, J. A Combined Experimental/Numerical Study of the Scaling Effects on Mode I Delamination of GFRP. Compos. Sci. Technol. 2013, 83, 32–39. DOI: 10.1016/j.compscitech.2013.04.016.
  • Lu, X.; Ridha, M.; Chen, B. Y.; Tan, V. B. C.; Tay, T. E. On Cohesive Element Parameters and Delamination Modelling. Eng. Fract. Mech. 2019, 206, 278–296. DOI: 10.1016/j.engfracmech.2018.12.009.
  • Pincheira, G.; Ferrada, N.; Hinojosa, J.; Montecino, G.; Torres, L.; Saavedra, K. A Study of Interlaminar Properties for a Unidirectional Glass Fiber Reinforced Epoxy Composite. Proc. IMECHE. 2018, 223, 348–357. DOI: 10.1177/1464420718816731.
  • Arrese, A.; Carbajal, N.; Vargas, G.; Mujika, F. A New Method for Determining Mode II R-Curve by the End-Notched Flexure Test. Eng. Fract. Mech. 2010, 77, 51–70. DOI: 10.1016/j.engfracmech.2009.09.008.
  • De Gracia, J.; Boyano, A.; Arrese, A.; Mujika, F. A New Approach for Determining the R-Curve in DCB Tests without Optical Measurements. Eng. Fract. Mech. 2015, 135, 274–285. DOI: 10.1016/j.engfracmech.2015.01.016.
  • De Gracia, J.; Boyano, A.; Arrese, A.; Mujika, F. Analysis of the DCB Test of Angle-Ply Laminates Including Residual Stresses. Theor. Appl. Fract. Mech. 2018, 94, 197–204. DOI: 10.1016/j.tafmec.2017.03.010.
  • Shahani, A. R.; Abolfathitabar, R.; Shooshtar, H. On the Validity of LEFM Methods to Investigate the Fracture Behavior of Angle-Ply Laminates. Compos. Part B Eng. 2019, 160, 249–253. (June 2018), DOI: 10.1016/j.compositesb.2018.10.013.
  • Brunner, A. J.; Blackman, B. R. K.; Davies, P. A Status Report on Delamination Resistance Testing of Polymer–Matrix Composites. Eng. Fract. Mech. 2008, 75, 2779–2794.
  • Fan, C.; Jar, P.-Y. B.; Cheng, J.-J. R. Internal-Notched Flexure Test for Measurement of Mode II Delamination Resistance of Fibre-Reinforced Polymers. J. Compos. 2013, 2013, 695862. DOI: 10.1155/2013/695862.
  • Tanaka, K.; Kageyama, K.; Hojo, M. Prestandardization Study on Mode II Interlaminar Fracture Toughness Test for CFRP in Japan. Composites 1995, 26, 257–267. DOI: 10.1016/0010-4361(95)93669-B.
  • Qiao, P.; Wang, J.; Davalos, J. F. Analysis of Tapered ENF Specimen and Characterization of Bonded Interface Fracture under Mode-II Loading. Int. J. Solids Struct. 2003, 40, 1865–1884.
  • Wichmann, M. H. G.; Sumfleth, J.; Gojny, F. H.; Quaresimin, M.; Fiedler, B.; Schulte, K. Glass-Fibre-Reinforced Composites with Enhanced Mechanical and Electrical Properties – Benefits and Limitations of a Nanoparticle Modified Matrix. Eng. Fract. Mech. 2006, 73, 2346–2359. DOI: 10.1016/j.engfracmech.2006.05.015.
  • Blackman, B. R. K.; Brunner, A. J.; Williams, J. G. Mode II Fracture Testing of Composites: A New Look at an Old Problem. Eng. Fract. Mech. 2006, 73, 2443–2455. DOI: 10.1016/j.engfracmech.2006.05.022.
  • de Morais, A. B.; Pereira, A. B. Application of the Effective Crack Method to Mode I and Mode II Interlaminar Fracture of Carbon/Epoxy Unidirectional Laminates. Compos. Part A Appl. Sci. Manuf. 2007, 38, 785–794. DOI: 10.1016/j.compositesa.2006.09.001.
  • Romhány, G.; Szebényi, G. Interlaminar Crack Propagation in MWCNT/Fiber Reinforced Hybrid Composites. Express Polym. Lett. 2009, 3, 145–151.
  • Martin, R. H.; Davidson, B. D. Mode II Fracture Toughness Evaluation Using a Four Point Bend End Notched Flexure Test. Plast. Rubb. Compos. 1999, 28, 401–406. DOI: 10.1179/146580199101540565.
  • Wood, M. D. K.; Sun, X.; Tong, L.; Luo, Q.; Katzos, A.; Rispler, A. A New ENF Test Specimen for the Mode II Delamination Toughness Testing of Stitched Woven CFRP Laminates. J. Compos. Mater. 2007, 41, 1743–1772. DOI: 10.1177/0021998306069890.
  • Maikuma, H.; Gillespie, J. W.; Wilkins, D. J. Mode II Interlaminar Fracture of the Center Notch Flexural Specimen under Impact Loading. J. Compos. Mater. 1990, 24, 124–149. DOI: 10.1177/002199839002400201.
  • Caimmi, F.; Frassine, R.; Pavan, A. A New Jig for Mode II Interlaminar Fracture Testing of Composite Materials under Quasi-Static and Moderately High Rates of Loading. Eng. Fract. Mech. 2006, 73, 2277–2291. DOI: 10.1016/j.engfracmech.2006.05.002.
  • Rikards, R. Interlaminar Fracture Behaviour of Laminated Composites. Comput. Struct. 2000, 76, 11–18. DOI: 10.1016/S0045-7949(99)00148-0.
  • Sacchetti, F.; Grouve, W. J. B.; Warnet, L. L.; Fernandez Villegas, I. Interlaminar Fracture Toughness of 5HS Carbon/PEEK Laminates. A Comparison between DCB, ELS and Mandrel Peel Tests. Polym. Test. 2018, 66, 13–23. DOI: 10.1016/j.polymertesting.2017.12.005.
  • Manjunatha, C. M.; Chandra, A. R. A.; Jagannathan, N. Fracture and Fatigue Behavior of Polymer Nanocomposites—A Review. J. Indian Inst. Sci., 2015, 95, 249–266. DOI: 10.1179/2055033215Y.0000000007.
  • Deep, V.; Rana, S.; Jin, H.; Chaurasia, A.; Mcleskey, J. T.; Sekkarapatti, M.; Gopal, N.; Whan, J. Progress in Polymer Science Functionalization of Carbon Nanomaterials for Advanced Polymer Nanocomposites : A Comparison Study between CNT and Graphene. Prog. Polym. Sci. 2017, 67, 1–47. DOI: 10.1016/j.progpolymsci.2016.12.010.
  • Papageorgiou, D. G.; Kinloch, I. A.; Young, R. J. Progress in Materials Science Mechanical Properties of Graphene and Graphene-Based Nanocomposites. Prog. Mater. Sci. 2017, 90, 75–127. DOI: 10.1016/j.pmatsci.2017.07.004.
  • Peponi, L.; Puglia, D.; Torre, L.; Valentini, L.; Kenny, J. M. Processing of Nanostructured Polymers and Advanced Polymeric Based Nanocomposites. Mater. Sci. Eng: R Rep. 2014, 85, 1–46. DOI: 10.1016/j.mser.2014.08.002.
  • Ji, X.; Xu, Y.; Zhang, W.; Cui, L.; Liu, J. Review of Functionalization, Structure and Properties of Graphene/Polymer Composite Fibers. Compos. Part A Appl. Sci. Manuf. 2016, 87, 29–45. DOI: 10.1016/j.compositesa.2016.04.011.
  • Iijima, S. Helical Microtubules of Graphitic Carbon. Nature 1991, 354, 56–58. DOI: 10.1038/354056a0.
  • Srivastava, V. K.; Gries, T.; Veit, D.; Quadflieg, T.; Mohr, B.; Kolloch, M. Effect of Nanomaterial on Mode I and Mode II Interlaminar Fracture Toughness of Woven Carbon Fabric Reinforced Polymer Composites. Eng. Fract. Mech. 2017, 180, 73–86. DOI: 10.1016/j.engfracmech.2017.05.030.
  • Ma, P. C.; Siddiqui, N. A.; Marom, G.; Kim, J. K. Dispersion and Functionalization of Carbon Nanotubes for Polymer-Based Nanocomposites: A Review. Compos. Part A Appl. Sci. Manuf. 2010, 41, 1345–1367. DOI: 10.1016/j.compositesa.2010.07.003.
  • Aqel, A.; El-Nour, K. M. M. A.; Ammar, R. A. A.; Al-Warthan, A. Carbon Nanotubes, Science and Technology Part (I) Structure, Synthesis and Characterisation. Arab. J. Chem. 2012, 5, 1–23. DOI: 10.1016/j.arabjc.2010.08.022.
  • Mubarak, N. M.; Abdullah, E. C.; Jayakumar, N. S.; Sahu, J. N. An Overview on Methods for the Production of Carbon Nanotubes. J. Ind. Eng. Chem. 2014, 20, 1186–1197. DOI: 10.1016/j.jiec.2013.09.001.
  • Zainuddin, S.; Fahim, A.; Arifin, T.; Hosur, M. V.; Rahman, M. M.; Tyson, J. D.; Jeelani, S. Optimization of Mechanical and Thermo-Mechanical Properties of Epoxy and E-Glass/Epoxy Composites Using NH2-MWCNTs, Acetone Solvent and Combined Dispersion Methods. Compos. Struct. 2014, 110, 39–50. DOI: 10.1016/j.compstruct.2013.11.010.
  • Rahman, M. M.; Zainuddin, S.; Hosur, M. V.; Malone, J. E.; Salam, M. B. A.; Kumar, A.; Jeelani, S. Improvements in Mechanical and Thermo-Mechanical Properties of e-Glass/Epoxy Composites Using Amino Functionalized MWCNTs. Compos. Struct. 2012, 94, 2397–2406.
  • Yip, M. C.; Lin, Y. C.; Wu, C. L. Effect of Multi-Walled Carbon Nanotubes Addition on Mechanical Properties of Polymer Composites Laminate. Polym. Polym. Compos. 2011, 19, 131–140. DOI: 10.1177/0967391111019002-313.
  • Fiedler, B.; Gojny, F. H.; Wichmann, M. H. G.; Nolte, M. C. M.; Schulte, K. Fundamental Aspects of Nano-Reinforced Composites. Compos. Sci. Technol. 2006, 66, 3115–3125. DOI: 10.1016/j.compscitech.2005.01.014.
  • Kim, M.; Park, Y.; Bin; Okoli, O. I.; Zhang, C. Processing, Characterization, and Modeling of Carbon Nanotube-Reinforced Multiscale Composites. Compos. Sci. Technol. 2009, 69, 335–342. DOI: 10.1016/j.compscitech.2008.10.019.
  • Soliman, E.; Kandil, U.; Taha, M. R. Improved Strength and Toughness of Carbon Woven Fabric Composites with Functionalized MWCNTs. Materials 2014, 7, 4640–4657. DOI: 10.3390/ma7064640.
  • Gojny, F. H.; Wichmann, M. H. G.; Köpke, U.; Fiedler, B.; Schulte, K. Carbon Nanotube-Reinforced Epoxy-Composites: Enhanced Stiffness and Fracture Toughness at Low Nanotube Content. Compos. Sci. Technol. 2004, 64, 2363–2371. DOI: 10.1016/j.compscitech.2004.04.002.
  • Gojny, F. H.; Wichmann, M. H. G.; Fiedler, B.; Schulte, K. Influence of Different Carbon Nanotubes on the Mechanical Properties of Epoxy Matrix Composites – A Comparative Study. Compos. Sci. Technol. 2005, 65, 2300–2313. DOI: 10.1016/j.compscitech.2005.04.021.
  • Sharma, K.; Shukla, M. Three-Phase Carbon Fiber Amine Functionalized Carbon Nanotubes Epoxy Composite: Processing, Characterisation, and Multiscale Modeling. J. Nanomater. 2014, 2014, 1–10. DOI: 10.1155/2014/837492.
  • Tariq, F.; Shifa, M.; Baloch, R. A. Mechanical and Thermal Properties of Multi-Scale Carbon Nanotubes–Carbon Fiber–Epoxy Composite. Arab. J. Sci. Eng. 2018, 43, 5937–5948. DOI: 10.1007/s13369-018-3091-8.
  • Mujika, F.; Vargas, G.; Ibarretxe, J.; De Gracia, J.; Arrese, A. Influence of the Modification with MWCNT on the Interlaminar Fracture Properties of Long Carbon Fiber Composites. Compos. Part B Eng. 2012, 43, 1336–1340. DOI: 10.1016/j.compositesb.2011.11.020.
  • Rodríguez-González, J. A.; Rubio-González, C.; Meneses-Nochebuena, C. A.; González-García, P.; Licea-Jiménez, L. Enhanced Interlaminar Fracture Toughness of Unidirectional Carbon Fiber/Epoxy Composites Modified with Sprayed Multi-Walled Carbon Nanotubes. Compos. Interfaces 2017, 24, 883–896. DOI: 10.1080/09276440.2017.1302279.
  • Rodríguez-González, J. A.; Rubio-González, C. Influence of Sprayed Multi-Walled Carbon Nanotubes on Mode I and Mode II Interlaminar Fracture Toughness of Carbon Fiber/Epoxy Composites. Adv. Compos. Mater. 2018, 3046, 1–18. DOI: 10.1080/09243046.2018.1458510.
  • Karapappas, P.; Vavouliotis, A.; Tsotra, P.; Kostopoulos, V.; Paipetis, A. Enhanced Fracture Properties of Carbon Reinforced Composites by the Addition of Multi-Wall Carbon Nanotubes. J. Compos. Mater. 2009, 43, 977–985. DOI: 10.1177/0021998308097735.
  • Pan, J.; Bian, L. Influence of Agglomeration Parameters on Carbon Nanotube Composites. Acta Mech. 2017, 228, 2207–2217. DOI: 10.1007/s00707-017-1820-9.
  • Zhu, F.; Park, C.; Jin Yun, G. An Extended Mori-Tanaka Micromechanics Model for Wavy CNT Nanocomposites with Interface Damage. Mech. Adv. Mater. Struct. 2019, 1–13. DOI: 10.1080/15376494.2018.1562135.
  • Cividanes, L. D. S.; Simonetti, E. A. N.; de Oliveira, J. I. S.; Serra, A. A.; Carlos de Souza Barboza, J.; Thim, G. P. The Sonication Effect on CNT-Epoxy Composites Finally Clarified. Polym. Compos. 2017, 38, 1964–1973. DOI: 10.1002/pc.23767.
  • Inam, F.; Peijs, T. Transmission Light Microscopy of Carbon Nanotubes-Epoxy Nanocomposites Involving Different Dispersion Methods. Adv. Compos. Lett. 2006, 15, 7–13.
  • Joshi, S. C.; Dikshit, V. Enhancing Interlaminar Fracture Characteristics of Woven CFRP Prepreg Composites through CNT Dispersion. J. Compos. Mater. 2012, 46, 665–675. DOI: 10.1177/0021998311410472.
  • Thakre, P. R.; Lagoudas, D. C.; Riddick, J. C.; Gates, T. S.; Frankland, S. J. V.; Ratcliffe, J. G.; Zhu, J.; Barrera, E. V. Investigation of the Effect of Single Wall Carbon Nanotubes on Interlaminar Fracture Toughness of Woven Carbon Fiber-Epoxy Composites. J. Compos. Mater. 2011, 45, 1091–1107.
  • Medina, C.; Fernandez, E.; Salas, A.; Naya, F.; Molina-Aldereguiá, J.; Melendrez, M. F.; Flores, P. Multiscale Characterization of Nanoengineered Fiber-Reinforced Composites: Effect of Carbon Nanotubes on the out-of-Plane Mechanical Behavior. J. Nanomater. 2017, 2017, 9809702. DOI: 10.1155/2017/9809702.
  • Saboori, B.; Ayatollahi, M. R. Experimental Fracture Study of MWCNT/Epoxy Nanocomposites under the Combined out-of-Plane Shear and Tensile Loading. Polym. Test 2017, 59, 193–202. DOI: 10.1016/j.polymertesting.2017.01.028.
  • Inam, F.; Wong, D. W. Y.; Kuwata, M.; Peijs, T. Multiscale Hybrid Micro-Nanocomposites Based on Carbon Nanotubes and Carbon Fibers. J. Nanomater. 2010, 2010, 1–12. DOI: 10.1155/2010/453420.
  • Garg, M.; Sharma, S.; Mehta, R. Pristine and Amino Functionalized Carbon Nanotubes Reinforced Glass Fiber Epoxy Composites. Compos. Part A Appl. Sci. Manuf. 2015, 76, 92–101. DOI: 10.1016/j.compositesa.2015.05.012.
  • Li, M.; Gu, Y.; Liu, Y.; Li, Y.; Zhang, Z. Interfacial Improvement of Carbon Fiber/Epoxy Composites Using a Simple Process for Depositing Commercially Functionalized Carbon Nanotubes on the Fibers. Carbon 2013, 52, 109–121. DOI: 10.1016/j.carbon.2012.09.011.
  • Kermansaravi, M.; Pol, M. H. Experimental Investigation on the Effects of Carbon Nanotubes on Mode I Interlaminar Fracture Toughness of Laminated Composites. Polym. Compos. 2018, 39, E797–E806. DOI: 10.1002/pc.24246.
  • Ashrafi, B.; Guan, J.; Mirjalili, V.; Zhang, Y.; Chun, L.; Hubert, P.; Simard, B.; Kingston, C. T.; Bourne, O.; Johnston, A. Enhancement of Mechanical Performance of Epoxy/Carbon Fiber Laminate Composites Using Single-Walled Carbon Nanotubes. Compos. Sci. Technol. 2011, 71, 1569–1578. DOI: 10.1016/j.compscitech.2011.06.015.
  • Mathur, R. B.; Chatterjee, S.; Singh, B. P. Growth of Carbon Nanotubes on Carbon Fibre Substrates to Produce Hybrid/Phenolic Composites with Improved Mechanical Properties. Compos. Sci. Technol. 2008, 68, 1608–1615. DOI: 10.1016/j.compscitech.2008.02.020.
  • Kepple, K. L.; Sanborn, G. P.; Lacasse, P. A.; Gruenberg, K. M.; Ready, W. J. Improved Fracture Toughness of Carbon Fiber Composite Functionalized with Multi Walled Carbon Nanotubes. Carbon 2008, 46, 2026–2033. DOI: 10.1016/j.carbon.2008.08.010.
  • Peng, Q.; He, X.; Li, Y.; Wang, C.; Wang, R.; Hu, P.; Yan, Y.; Sritharan, T. Chemically and Uniformly Grafting Carbon Nanotubes onto Carbon Fibers by Poly(Amidoamine) for Enhancing Interfacial Strength in Carbon Fiber Composites. J. Mater. Chem. 2012, 22, 5928–5931. DOI: 10.1039/c2jm16723a.
  • Falzon, B. G.; Hawkins, S. C.; Huynh, C. P.; Radjef, R.; Brown, C. An Investigation of Mode I and Mode II Fracture Toughness Enhancement Using Aligned Carbon Nanotubes Forests at the Crack Interface. Compos. Struct. 2013, 106, 65–73. DOI: 10.1016/j.compstruct.2013.05.051.
  • Garcia, E. J.; Wardle, B. L.; John Hart, A. Joining Prepreg Composite Interfaces with Aligned Carbon Nanotubes. Compos. Part A Appl. Sci. Manuf. 2008, 39, 1065–1070. DOI: 10.1016/j.compositesa.2008.03.011.
  • Boroujeni, A. Y.; Al-Haik, M. S. Interlaminar Fracture Toughness of Hybrid Carbon Fiber-Carbon Nanotubes-Reinforced Polymer Composites. Polym. Compos. 2018, 1–9. DOI: 10.1002/pc.25054.
  • Du, X.; Liu, H.; Xu, F.; Zeng, Y.; Mai, Y. Flame Synthesis of Carbon Nanotubes onto Carbon Fiber Woven Fabric and Improvement of Interlaminar Toughness of Composite Laminates. Compos. Sci. Technol. 2014, 101, 159–166. DOI: 10.1016/j.compscitech.2014.07.011.
  • Abot, J. L.; Song, Y.; Schulz, M. J.; Shanov, V. N. Novel Carbon Nanotube Array-Reinforced Laminated Composite Materials with Higher Interlaminar Elastic Properties. Compos. Sci. Technol. 2008, 68, 2755–2760. DOI: 10.1016/j.compscitech.2008.05.023.
  • Veedu, V. P.; Cao, A.; Li, X.; Ma, K.; Soldano, C.; Kar, S.; Ajayan, P. M.; Ghasemi-Nejhad, M. N. Multifunctional Composites Using Reinforced Laminae with Carbon-Nanotube Forests. Nat. Mater. 2006, 5, 457–462. DOI: 10.1038/nmat1650.
  • Yasaee, M.; Bond, I. P.; Trask, R. S.; Greenhalgh, E. S. Mode II Interfacial Toughening through Discontinuous Interleaves for Damage Suppression and Control. Compos. Part A Appl. Sci. Manuf. 2012, 43, 121–128. DOI: 10.1016/j.compositesa.2011.09.026.
  • Lee, S. H.; Kim, H.; Hang, S.; Cheong, S. K. Interlaminar Fracture Toughness of Composite Laminates with CNT-Enhanced Nonwoven Carbon Tissue Interleave. Compos. Sci. Technol 2012, 73, 1–8. DOI: 10.1016/j.compscitech.2012.09.011.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.