2,641
Views
70
CrossRef citations to date
0
Altmetric
Reviews

A Review on Polymeric-Based Phase Change Material for Thermo-Regulating Fabric Application

& ORCID Icon
Pages 389-419 | Received 18 Mar 2019, Accepted 09 Sep 2019, Published online: 22 Oct 2019

References

  • Maughan, R. J. Impact of Mild Dehydration on Wellness and on Exercise Performance. Eur. J. Clin. Nutr. 2003, 57, S19–S23. DOI: 10.1038/sj.ejcn.1601897.
  • Ye, S.; Zhang, Q.; Hu, D.; Feng, J. Core–Shell-Like Structured Graphene Aerogel Encapsulating Paraffin: Shape-Stable Phase Change Material for Thermal Energy Storage. J. Mater. Chem. A 2015, 3, 4018–4025. DOI: 10.1039/C4TA05448B.
  • Malekipirbazari, M.; Sadrameli, S. M.; Dorkoosh, F.; Sharifi, H. Synthetic and Physical Characterization of Phase Change Materials Microencapsulated by Complex Coacervation for Thermal Energy Storage Applications: Characterization of Phase Change Materials. Int. J. Energy Res. 2014, 38, 1492–1500. DOI: 10.1002/er.3153.
  • Hawlader, M. N. A.; Uddin, M. S.; Khin, M. M. Microencapsulated PCM Thermal-Energy Storage System. Appl. Energy 2003, 74, 195–202. DOI: 10.1016/S0306-2619(02)00146-0.
  • Sun, K.; Kou, Y.; Zheng, H.; Liu, X.; Tan, Z.; Shi, Q. Using Silicagel Industrial Wastes to Synthesize Polyethylene Glycol/Silica-Hydroxyl Form-Stable Phase Change Materials for Thermal Energy Storage Applications. Sol. Energy Mater. Sol. Cells 2018, 178, 139–145. DOI: 10.1016/j.solmat.2018.01.016.
  • Lu, S.; Shen, T.; Xing, J.; Song, Q.; Shao, J.; Zhang, J.; Xin, C. Preparation and Characterization of Cross-Linked Polyurethane Shell Microencapsulated Phase Change Materials by Interfacial Polymerization. Mater. Lett. 2018, 211, 36–39. DOI: 10.1016/j.matlet.2017.09.074.
  • Goitandia, A. M.; Beobide, G.; Vadillo, J.; del Val, I.; Aranzabe, E.; Aranzabe, A. Invigorating Polyurethane Foams with Phase Change Materials Supported in Inorganic Containers. Polym. Compos. 2018, 39, 1420–1432. DOI: 10.1002/pc.24082.
  • Iamphaojeen, Y.; Siriphannon, P. Adjustable Thermal Barrier of Cotton Fabric by Multilayer Immobilization of PCM Nanocapsules. Cellulose 2018, 25, 3649–3661. DOI: 10.1007/s10570-018-1804-5.
  • Iqbal, K.; Sun, D. Development of Thermo-Regulating Polypropylene Fibre Containing Microencapsulated Phase Change Materials. Renew. Energy 2014, 71, 473–479. DOI: 10.1016/j.renene.2014.05.063.
  • Shim, H.; McCullough, E. A.; Jones, B. W. Using Phase Change Materials in Clothing. Textile Res J 2001, 71, 495–502. DOI: 10.1177/004051750107100605.
  • Prajapati, D. G.; Kandasubramanian, B. Biodegradable Polymeric Solid Framework-Based Organic Phase-Change Materials for Thermal Energy Storage. Ind. Eng. Chem. Res. 2019, 58, 10652–10677. DOI: 10.1021/acs.iecr.9b01693.
  • Ghali, K.; Ghaddar, N.; Harathani, J.; Jones, B. Experimental and Numerical Investigation of the Effect of Phase Change Materials on Clothing During Periodic Ventilation. Textile Res. J. 2004, 74, 205–214. DOI: 10.1177/004051750407400304.
  • Saxena, R.; Biplab, K.; Rakshit, D. Quantitative Assessment of Phase Change Material Utilization for Building Cooling Load Abatement in Composite Climatic Condition. J. Sol. Energy Eng. 2018, 140, 011001. DOI: 10.1115/1.4038047.
  • Khanna, S.; Reddy, K. S.; Mallick, T. K. Climatic Behaviour of Solar Photovoltaic Integrated with Phase Change Material. Energy Convers. Manag. 2018, 166, 590–601. DOI: 10.1016/j.enconman.2018.04.056.
  • Kuzum, D.; Jeyasingh, R. G. D.; Lee, B.; Wong, H.-S. P. Nanoelectronic Programmable Synapses Based on Phase Change Materials for Brain-Inspired Computing. Nano Lett. 2012, 12, 2179–2186. DOI: 10.1021/nl201040y.
  • Prajapati, D. G.; Kandasubramanian, B. Progress in the Development of Intrinsically Conducting Polymer Composites as Biosensors. Macromol. Chem. Phys. 2019, 220, 1800561. DOI: 10.1002/macp.201800561.
  • Ianniciello, L.; Biwolé, P. H.; Achard, P. Electric Vehicles Batteries Thermal Management Systems Employing Phase Change Materials. J. Power Sources 2018, 378, 383–403. DOI: 10.1016/j.jpowsour.2017.12.071.
  • Lafdi, K.; Mesalhy, O.; Elgafy, A. Graphite Foams Infiltrated with Phase Change Materials as Alternative Materials for Space and Terrestrial Thermal Energy Storage Applications. Carbon 2008, 46, 159–168. DOI: 10.1016/j.carbon.2007.11.003.
  • Zalba, B.; Marı́n, J. M.; Cabeza, L. F.; Mehling, H. Review on Thermal Energy Storage with Phase Change: Materials, Heat Transfer Analysis and Applications. Appl. Therm. Eng. 2003, 23, 251–283. DOI: 10.1016/S1359-4311(02)00192-8.
  • Sharma, A.; Tyagi, V. V.; Chen, C. R.; Buddhi, D. Review on Thermal Energy Storage with Phase Change Materials and Applications. Renew. Sustain. Energy Rev. 2009, 13, 318–345. DOI: 10.1016/j.rser.2007.10.005.
  • Yuan, Y.; Zhang, N.; Tao, W.; Cao, X.; He, Y. Fatty Acids as Phase Change Materials: A Review. Renew. Sustain. Energy Rev. 2014, 29, 482–498. DOI: 10.1016/j.rser.2013.08.107.
  • Sundararajan, S.; Samui, A. B.; Kulkarni, P. S. Versatility of Polyethylene Glycol (PEG) in Designing Solid–Solid Phase Change Materials (PCMs) for Thermal Management and Their Application to Innovative Technologies. J. Mater. Chem. A 2017, 5, 18379–18396. DOI: 10.1039/c7ta04968d.
  • Wu, B.; Liu, Z.; Jiang, L.; Zhou, C.; Lei, J. Preparation and Characterization of Thermoplastic Poly(Urethane-Urea) Solid-Solid Phase-Change Materials for Thermal Energy Storage. Adv. Polym. Technol. 2018, 37, 2997. DOI: 10.1002/adv.21970.
  • Garg, H. P.; Mullick, S. C.; Bhargava, A. K. Solar Thermal Energy Storage; Springer Netherlands: Dordrecht, 1985.
  • Mu, B.; Li, M. Fabrication and Thermal Properties of Tetradecanol/Graphene Aerogel Form-Stable Composite Phase Change Materials. Sci. Rep. 2018, 8, 8878. DOI: 10.1038/s41598-018-27038-4.
  • Mondal, S. Phase Change Materials For Smart Textiles – An Overview. Appl. Therm. Eng. 2008, 28, 1536–1550. DOI: 10.1016/j.applthermaleng.2007.08.009.
  • Lee, E.; Han, S.; Lee, K.; Lee, J.; Cho, G. Thermal Properties of Combat Uniforms Treated with Microencapsulated Octadecane and Change in Clothing Microclimate via Thermal Manikin. J. Text. Inst. 2018, 109, 585–595. DOI: 10.1080/00405000.2017.1361581.
  • Yan, C.; Yu, Z.; Yang, B. Improvement of Thermoregulating Performance for Outlast/Silk Fabric by the Incorporation of Polyurethane Microcapsule Containing Paraffin. Fibers Polym. 2013, 14, 1290–1294. DOI: 10.1007/s12221-013-1290-1.
  • Jantang, S.; Chaiyasat, P. High Performance Poly(Methyl Methacrylate-Acrylic Acid-Divinylbenzene) Microcapsule Encapsulated Heat Storage Material for Thermoregulating Textiles. Fibers Polym. 2018, 19, 2039–2048. DOI: 10.1007/s12221-018-8402-x.
  • Pause, B. Development of Heat and Cold Insulating Membrane Structures with Phase Change Material. J. Coated Fabrics 1995, 25, 59–68. DOI: 10.1177/152808379502500107.
  • Tao, X. Handbook of Smart Textiles, Springer: Singapore; 2016.
  • Sarier, N.; Onder, E. Organic Phase Change Materials and Their Textile Applications: An Overview. Thermochim. Acta 2012, 540, 7–60. DOI: 10.1016/j.tca.2012.04.013.
  • Paul, R., Ed. Functional Finishes for Textiles: Improving Comfort, Performance and Protection; Woodhead Publishing series in textiles; WP, Woodhead Publ./Elsevier: Amsterdam, 2015.
  • Pause, B. Nonwoven Protective Garments with Thermo-Regulating Properties. J. Ind. Text. 2003, 33, 93–99. DOI: 10.1177/152808303038859.
  • Bryant, Y.; Colvin, D. Fiber with Reversible Enhanced Thermal Storage Properties and Fabrics Made Therefrom. U.S. Patent 4,756,958, July 12, 1988.
  • Tahalyani, J.; Rahangdale, K. K.; Aepuru, R.; Kandasubramanian, B.; Datar, S. Dielectric Investigation of a Conducting Fibrous Nonwoven Porous Mat Fabricated by a One-Step Facile Electrospinning Process. RSC Adv. 2016, 6, 36588–36598. DOI: 10.1039/C5RA23012H.
  • Tahalyani, J.; Datar, S.; Balasubramanian, K. Investigation of Dielectric Properties of Free Standing Electrospun Nonwoven Mat. J. Appl. Polym. Sci. 2018, 135, 46121. DOI: 10.1002/app.46121.
  • Badhe, Y.; Balasubramanian, K. Nanoencapsulated Core and Shell Electrospun Fibers of Resorcinol Formaldehyde. Ind. Eng. Chem. Res. 2015, 54, 7614–7622. DOI: 10.1021/acs.iecr.5b00929.
  • Balasubramanian, K.; Yadav, R.; Prajith, P. Antibacterial Nanofibers of Polyoxymethylene/Gold for Pro-Hygiene Applications. Int. J. Plast. Technol. 2015, 19, 363–367. DOI: 10.1007/s12588-015-9127-y.
  • Simon, S.; Malik, A.; Kandasubramanian, B. Hierarchical Electrospun Super-Hydrophobic Nanocomposites of Fluoroelastomer. Mater. Focus. 2018, 7, 194–206. DOI: 10.1166/mat.2018.1499.
  • Gore, P.; Khraisheh, M.; Kandasubramanian, B. Nanofibers of Resorcinol–Formaldehyde for Effective Adsorption of as (III) Ions from Mimicked Effluents. Environ. Sci. Pollut. Res. 2018, 25, 11729–11745. DOI: 10.1007/s11356-018-1304-z.
  • Sharma, S.; Balasubramanian, K. Molecularly Imprinted and Nanoengineered Camphor Soot Functionalized PAN-Nanofibers for Effluent Treatment. RSC Adv. 2015, 5, 31732–31741. DOI: 10.1039/C5RA02861B.
  • Gore, P. M.; Kandasubramanian, B. Heterogeneous Wettable Cotton Based Superhydrophobic Janus Biofabric Engineered with PLA/Functionalized-Organoclay Microfibers for Efficient Oil–Water Separation. J. Mater. Chem. A 2018, 6, 7457–7479. DOI: 10.1039/C7TA11260B.
  • Magisetty, R.; Kumar, P.; Gore, P. M.; Ganivada, M.; Shukla, A.; Kandasubramanian, B.; Shunmugam, R. Electronic Properties of Poly(1,6-Heptadiynes) Electrospun Fibrous Non-Woven Mat. Mater. Chem. Phys. 2019, 223, 343–352. DOI: 10.1016/j.matchemphys.2018.11.020.
  • Ke, H.; Ghulam, M.; Uddin, H.; Li, Y.; Wang, J.; Peng, B.; Cai, Y.; Wei, Q. Ag-Coated Polyurethane Fibers Membranes Absorbed with Quinary Fatty Acid Eutectics Solid-Liquid Phase Change Materials for Storage and Retrieval of Thermal Energy. Renew. Energy 2016, 99, 1–9. DOI: 10.1016/j.renene.2016.06.033.
  • Ke, H.; Li, Y. A Series of Electrospun Fatty Acid Ester/Polyacrylonitrile Phase Change Composite Nanofibers as Novel Form-Stable Phase Change Materials for Storage and Retrieval of Thermal Energy. Textile Res. J. 2017, 87, 2314–2322. DOI: 10.1177/0040517516669078.
  • Cai, Y.; Ke, H.; Dong, J.; Wei, Q.; Lin, J.; Zhao, Y.; Song, L.; Hu, Y.; Huang, F.; Gao, W.; et al. Effects of Nano-SiO2 on Morphology, Thermal Energy Storage, Thermal Stability, and Combustion Properties Of Electrospun Lauric Acid/PET Ultrafine Composite Fibers as Form-Stable Phase Change Materials. Appl. Energy 2011, 88, 2106–2112. DOI: 10.1016/j.apenergy.2010.12.071.
  • Chen, W.; Ni, S.; Weng, W.; Fu, M. The Preparation and Characterization of Ultrafine Fatty Acid Ester/Poly(Meta-Phenylene Isophthalamide) Phase Change Fibers Designed for Thermo-Regulating Protective Clothing. Fibers Polym. 2018, 19, 498–506. DOI: 10.1007/s12221-018-7180-9.
  • Golestaneh, S. I.; Karimi, G.; Babapoor, A.; Torabi, F. Thermal Performance of Co-Electrospun Fatty Acid Nanofiber Composites in the Presence Of Nanoparticles. Appl. Energy 2018, 212, 552–564. DOI: 10.1016/j.apenergy.2017.12.055.
  • Chen, W.; Weng, W. Ultrafine Lauric–Myristic Acid Eutectic/Poly (Meta-Phenylene Isophthalamide) Form-Stable Phase Change Fibers for Thermal Energy Storage by Electrospinning. Appl. Energy 2016, 173, 168–176. DOI: 10.1016/j.apenergy.2016.04.061.
  • Lu, P.; Chen, W.; Zhu, M.; Murray, S. Embedding Lauric Acid into Polystyrene Nanofibers to Make High-Capacity Membranes for Efficient Thermal Energy Storage. ACS Sustain. Chem. Eng. 2017, 5, 7249–7259. DOI: 10.1021/acssuschemeng.7b01476.
  • Mu, S.; Guo, J.; Zhang, B.; Qi, S.; Yang, L.; Wang, D.; Zhang, S.; Yu, Y. On Preparation and Characterization of the Phase Change Nanofibers from the Copolymer Of Poly(Styrene-Co-Acrylonitrile) and Lauric Acid. J. Macromol. Sci. Part A 2015, 52, 699–706. DOI: 10.1080/10601325.2015.1063863.
  • Ke, G.; Wang, X.; Pei, J. Fabrication and Properties of Electrospun PAN/LA–SA/TiO 2 Composite Phase Change Fiber. Polym. Plast. Technol. Eng. 2018, 57, 958–964. DOI: 10.1080/03602559.2017.1370101.
  • Zhang, J.; Yang, Q.; Cai, Y.; Song, X.; Qiao, H.; Zhang, J.; Wei, Q. Fabrication and Characterization of Electrospun Porous Cellulose Acetate Nanofibrous Mats Incorporated with Capric Acid as Form-Stable Phase Change Materials for Storing/Retrieving Thermal Energy. Int. J. Green Energy 2017, 14, 1011–1019. DOI: 10.1080/15435075.2017.1354298.
  • Oktay, B.; Baştürk, E.; Kahraman, M. V.; Apohan, N. K. Thiol-Yne Photo-Clickable Electrospun Phase Change Materials for Thermal Energy Storage. React. Funct. Polym. 2018, 127, 10–19. DOI: 10.1016/j.reactfunctpolym.2018.03.018.
  • Cai, Y.; Gao, C.; Xu, X.; Fu, Z.; Fei, X.; Zhao, Y.; Chen, Q.; Liu, X.; Wei, Q.; He, G.; et al. Electrospun Ultrafine Composite Fibers Consisting of Lauric Acid and Polyamide 6 as Form-Stable Phase Change Materials for Storage and Retrieval of Solar Thermal Energy. Sol. Energy Mater. Sol. Cells 2012, 103, 53–61. DOI: 10.1016/j.solmat.2012.04.031.
  • Chen, C.; Wang, L.; Huang, Y. Morphology and Thermal Properties of Electrospun Fatty Acids/Polyethylene Terephthalate Composite Fibers as Novel Form-Stable Phase Change Materials. Sol. Energy Mater. Sol. Cells 2008, 92, 1382–1387. DOI: 10.1016/j.solmat.2008.05.013.
  • Ke, H. Electrospun Methyl Stearate/Pet Form-Stable Phase Change Composite Nanofibres for Storage and Retrieval of Thermal Energy. Mater. Res. Innov. 2018, 22, 150–158. DOI: 10.1080/14328917.2016.1266203.
  • Chen, W.; Weng, W.; Fu, M. Hydroxypropyl Cellulose-Based Esters for Thermal Energy Storage by Grafting with Palmitic-Stearic Binary Acids. J. Appl. Polym. Sci. 2017, 134, 44949–44960. DOI: 10.1002/app.44949.
  • Gupta, R.; Kedia, S.; Saurakhiya, N.; Sharma, A.; Ranjan, A. Composite Nanofibrous Sheets of Fatty Acids and Polymers as Thermo-Regulating Enclosures. Sol. Energy Mater. Sol. Cells 2016, 157, 676–685. DOI: 10.1016/j.solmat.2016.07.033.
  • Chen, C.; Wang, L.; Huang, Y. Electrospun Phase Change Fibers Based on Polyethylene Glycol/Cellulose Acetate Blends. Appl. Energy 2011, 88, 3133–3139. DOI: 10.1016/j.apenergy.2011.02.026.
  • Babapoor, A.; Karimi, G.; Khorram, M. Fabrication and Characterization of Nanofiber-Nanoparticle-Composites with Phase Change Materials by Electrospinning. Appl. Therm. Eng. 2016, 99, 1225–1235. DOI: 10.1016/j.applthermaleng.2016.02.026.
  • Esmaeilzadeh, Z.; Rezaei, B.; Mousavi Shoushtari, A.; Mojtahedi, M. R. M. Enhancing the Thermal Characteristics of Shape-Stabilized Phase Change Nanocomposite Nanofibers by Incorporation of Multiwalled Carbon Nanotubes within the Nanofibrous Structure. Adv. Polym. Technol. 2018, 37, 185–193. DOI: 10.1002/adv.21655.
  • Shi, Q.; Liu, Z.; Jin, X.; Shen, Y.; Liu, Y. Electrospun Fibers Based on Polyvinyl Pyrrolidone/Eu-Polyethylene Glycol as Phase Change Luminescence Materials. Mater. Lett. 2015, 147, 113–115. DOI: 10.1016/j.matlet.2015.02.040.
  • Dang, T. T.; Nguyen, T. T. T.; Chung, O. H.; Park, J. S. Fabrication of Form-Stable Poly(Ethylene Glycol)-Loaded Poly(Vinylidene Fluoride) Nanofibers via Single and Coaxial Electrospinning. Macromol. Res. 2015, 23, 819–829. DOI: 10.1007/s13233-015-3109-y.
  • Sarier, N.; Arat, R.; Menceloglu, Y.; Onder, E.; Boz, E. C.; Oguz, O. Production of PEG Grafted PAN Copolymers and Their Electrospun Nanowebs as Novel Thermal Energy Storage Materials. Thermochim. Acta 2016, 643, 83–93. DOI: 10.1016/j.tca.2016.10.002.
  • Babapoor, A.; Karimi, G.; Golestaneh, S. I.; Mezjin, M. A. Coaxial Electro-Spun PEG/PA6 Composite Fibers: Fabrication and Characterization. Appl. Therm. Eng. 2017, 118, 398–407. DOI: 10.1016/j.applthermaleng.2017.02.119.
  • Noyan, E. C. B.; Onder, E.; Sarier, N.; Arat, R. Development of Heat Storing Poly(Acrylonitrile) Nanofibers by Coaxial Electrospinning. Thermochim. Acta 2018, 662, 135–148. DOI: 10.1016/j.tca.2018.02.008.
  • Rezaei, B.; Ghani, M.; Askari, M.; Shoushtari, A. M.; Malek, R. M. A. Fabrication of Thermal Intelligent Core/Shell Nanofibers by the Solution Coaxial Electrospinning Process. Adv. Polym. Technol. 2016, 35, 21534. DOI: 10.1002/adv.21534.
  • Zhang, Z.; Zhang, X.; Shi, H.; Li, W.; Meng, J. Thermo-Regulated Sheath/Core Submicron Fiber with Poly(Diethylene Glycol Hexadecyl Ether Acrylate) as a Core. Text. Res. J. 2016, 86, 493–501. DOI: 10.1177/0040517515592815.
  • Zhao, L.; Luo, J.; Li, Y.; Wang, H.; Song, G.; Tang, G. Emulsion-Electrospinning n-Octadecane/Silk Composite Fiber as Environmental-Friendly Form-Stable Phase Change Materials. J. Appl. Polym. Sci. 2017, 134, 45538. DOI: 10.1002/app.45538.
  • Semnani Rahbar, R.; Maleki, H.; Kalantari, B. Fabrication of Electrospun Nanofibre Yarn Based on Nylon 6/Microencapsulated Phase Change Materials. J. Exp. Nanosci. 2016, 11, 1402–1415. DOI: 10.1080/17458080.2016.1233582.
  • Chalco-Sandoval, W.; Fabra, M. J.; López-Rubio, A.; Lagaron, J. M. Development of an Encapsulated Phase Change Material via Emulsion and Coaxial Electrospinning. J. Appl. Polym. Sci. 2016, 133, 43903. DOI: 10.1002/app.43903.
  • Haghighat, F.; Hosseini Ravandi, S. A.; Nasr Esfahany, M.; Valipouri, A. A Comprehensive Study on Optimizing and Thermoregulating Properties of Core–Shell Fibrous Structures through Coaxial Electrospinning. J. Mater. Sci. 2018, 53, 4665–4682. DOI: 10.1007/s10853-017-1856-1.
  • Rahimi, M.; Mokhtari, J. Fabrication of Thermo-Regulating Hexadecane-Polyurethane Core-Shell Composite Nanofibrous Mat as Advanced Technical Layer: Effect of Coaxial Nozzle Geometry. J. Ind. Text. 2018, 47, 1134–1151. DOI: 10.1177/1528083716676816.
  • Lu, Y.; Xiao, X.; Zhan, Y.; Huan, C.; Qi, S.; Cheng, H.; Xu, G. Core-Sheath Paraffin-Wax-Loaded Nanofibers by Electrospinning for Heat Storage. ACS Appl. Mater. Interfaces 2018, 10, 12759–12767. DOI: 10.1021/acsami.8b02057.
  • Mishra, N.; Kandasubramanian, B. Biomimetic Design of Artificial Materials Inspired by Iridescent Nacre Structure and Its Growth Mechanism. Polym. Plast. Technol. Eng. 2018, 57, 1592–1606. DOI: 10.1080/03602559.2017.1326139.
  • Yadav, R.; Naebe, M.; Wang, X.; Kandasubramanian, B. Review on 3D Prototyping of Damage Tolerant Interdigitating Brick Arrays of Nacre. Ind. Eng. Chem. Res. 2017, 56, 10516–10525. DOI: 10.1021/acs.iecr.7b01679.
  • Korde, J. M.; Shaikh, M.; Kandasubramanian, B. Bionic Prototyping of Honeycomb Patterned Polymer Composite and Its Engineering Application. Polym. Plast. Technol. Eng. 2018, 57, 1828–1844. DOI: 10.1080/03602559.2018.1434667.
  • Yadav, R.; Goud, R.; Dutta, A.; Wang, X.; Naebe, M.; Kandasubramanian, B. Biomimicking of Hierarchal Molluscan Shell Structure via Layer by Layer 3d Printing. Ind. Eng. Chem. Res. 2018, 57, 10832–10840. DOI: 10.1021/acs.iecr.8b01738.
  • Sun, S.-X.; Xie, R.; Wang, X.-X.; Wen, G.-Q.; Liu, Z.; Wang, W.; Ju, X.-J.; Chu, L.-Y. Fabrication of Nanofibers with Phase-Change Core and Hydrophobic Shell, via Coaxial Electrospinning using Nontoxic Solvent. J. Mater. Sci. 2015, 50, 5729–5738. DOI: 10.1007/s10853-015-9118-6.
  • Lu, Y.; Xiao, X.; Fu, J.; Huan, C.; Qi, S.; Zhan, Y.; Zhu, Y.; Xu, G. Novel Smart Textile with Phase Change Materials Encapsulated Core-Sheath Structure Fabricated by Coaxial Electrospinning. Chem. Eng. J. 2019, 355, 532–539. DOI: 10.1016/j.cej.2018.08.189.
  • Lu, Y.; Xiao, X.; Mo, J.; Huan, C.; Qi, S.; Zhan, Y.; Zhu, Y.; Xu, G. Green Nano-Encapsulation Technique for Preparation of Phase Change Nanofibers Mats with Core-Sheath Structure. Colloids Surf. A: Physicochem. Eng. Asp. 2018, 555, 501–506. DOI: 10.1016/j.colsurfa.2018.07.030.
  • Zhang, X.; Xie, R.; Hu, W.-X.; Faraj, Y.; Zhao, Q.; Fan, X.-X.; Wang, W.; Ju, X.-J.; Liu, Z.; Chu, L.-Y. Microfluidic Fabrication of Core–Sheath Composite Phase Change Microfibers with Enhanced Thermal Conductive Property. J. Mater. Sci. 2018, 53, 15769–15783. DOI: 10.1007/s10853-018-2677-6.
  • Gordon, S.; Horne, S. Ginning and Fibre Quality Series: Moisture in Cotton-the Fundamentals. Aust. Cottongrower 2009, 30, 32.
  • Iqbal, K.; Sun, D. Synthesis of Nanoencapsulated Glauber’s Salt using PMMA Shell and Its Application on Cotton for Thermoregulating Effect. Cellulose 2018, 25, 2103–2113. DOI: 10.1007/s10570-018-1692-8.
  • Benmoussa, D.; Molnar, K.; Hannache, H.; Cherkaoui, O. Novel Thermo-Regulating Comfort Textile Based on Poly(Allyl Ethylene Diamine)/n-Hexadecane Microcapsules Grafted onto Cotton Fabric. Adv. Polym. Technol. 2018, 37, 419–428. DOI: 10.1002/adv.21682.
  • Kazemi, Z.; Mortazavi, S. M. A New Method of Application of Hydrated Salts on Textiles to Achieve Thermoregulating Properties. Thermochim. Acta 2014, 589, 56–62. DOI: 10.1016/j.tca.2014.05.015.
  • Alay, S.; Göde, F.; Alkan, C. Synthesis and Thermal Properties of Poly(n-Butyl Acrylate)/n-Hexadecane Microcapsules using Different Cross-Linkers and Their Application to Textile Fabrics. J. Appl. Polym. Sci. 2011, 120, 2821–2829. DOI: 10.1002/app.33266.
  • Hassabo, A. G.; Mohamed, A. L. Enhancement the Thermo-Regulating Property of celluLosic Fabric using Encapsulated Paraffins in Modified Pectin. Carbohydr. Polym. 2017, 165, 421–428. DOI: 10.1016/j.carbpol.2017.02.074.
  • Tözüm, M. S.; Alay Aksoy, S. Investigation of Tactile Comfort Properties of the Fabrics Treated with Microcapsules Containing Phase Change Materials (PCMs Microcapsules). J. Text. Inst. 2016, 107, 1203–1212. DOI: 10.1080/00405000.2015.1099374.
  • Han, X.; Yuan, L.; Li, Y.; Zhang, H.; Xiao, L.; Zhang, G. Experimental Studies on Phase Change and Temperature-Adjusting Performance of Phase Change Fabric Clothing. Adv. Mech. Eng. 2017, 9, 168781401770390. DOI: 10.1177/1687814017703902.
  • Alay Aksoy, S.; Alkan, C.; Tözüm, M. S.; Demirbağ, S.; Altun Anayurt, R.; Ulcay, Y. Preparation and Textile Application of Poly(Methyl Methacrylate-co-Methacrylic Acid)/n-Octadecane and n-Eicosane Microcapsules. J. Text. Inst. 2017, 108, 30–41. DOI: 10.1080/00405000.2015.1133128.
  • Demirbağ, S.; Aksoy, S. A. Encapsulation of Phase Change Materials by Complex Coacervation to Improve Thermal Performances and Flame Retardant Properties of the Cotton Fabrics. Fibers Polym. 2016, 17, 408–417. DOI: 10.1007/s12221-016-5113-z.
  • Ebru, G.; Alay Aksoy, S. Fabrication of Microencapsulated PCMS with Nanoclay Doped Chitosan Shell and Their Application to Cotton Fabric. J. Text. Apparel 2016, 26, 180–188.
  • Khan, A.; Nahid Pervez, M.; Khan, I. A.; Khan, S. A.; Masood, R.; Hussain, T.; Telegin, F. New Approach of Phase Change Material Encapsulation through In Situ Polymerization to Improve Thermo-Regulating Property Of Cellulose. Asian J. Chem. 2016, 28, 1191–1196. DOI: 10.14233/ajchem.2016.19612.
  • Nejman, A.; Cieślak, M.; Gajdzicki, B.; Goetzendorf-Grabowska, B.; Karaszewska, A. Methods of PCM Microcapsules Application and the Thermal Properties of Modified Knitted Fabric. Thermochim. Acta 2014, 589, 158–163. DOI: 10.1016/j.tca.2014.05.037.
  • Nejman, A.; Cieślak, M. The Impact of the Heating/Cooling Rate on the Thermoregulating Properties of Textile Materials Modified with PCM Microcapsules. Appl. Therm. Eng. 2017, 127, 212–223. DOI: 10.1016/j.applthermaleng.2017.08.037.
  • Kim, I.; Lee, K.; Cho, G. Heat Storage/Release Characteristics and Mechanical Properties of Combat Uniform Fabrics Treated with Microcapsules Containing Octadecane as Phase Change Materials. Fibers Polym. 2016, 17, 1726–1734. DOI: 10.1007/s12221-016-6796-x.
  • Yazdanirad, S.; Dehghan, H. Designing of the Cooling Vest from Paraffin Compounds and Evaluation of Its Impact under Laboratory Hot Conditions. Int. J. Prev. Med. 2016, 7, 47. DOI: 10.4103/2008-7802.177890.
  • Shin, Y.; Yoo, D.-I.; Son, K. Development of Thermoregulating Textile Materials with Microencapsulated Phase Change Materials (PCM). IV. Performance Properties and Hand of Fabrics Treated with PCM Microcapsules. J. Appl. Polym. Sci. 2005, 97, 910–915. DOI: 10.1002/app.21846.
  • Rezaie, A. B.; Montazer, M. One-Step Fabrication of Fatty Acids/Nano Copper/Polyester Shape-Stable Composite Phase Change Material for Thermal Energy Management and Storage. Appl. Energy 2018, 228, 1911–1920. DOI: 10.1016/j.apenergy.2018.07.041.
  • Rezaie, A. B.; Montazer, M. In Situ Incorporation and Loading of Copper Nanoparticles into a Palmitic-Lauric Phase-Change Material on Polyester Fibers. J. Appl. Polym. Sci. 2019, 136, 46951. DOI: 10.1002/app.46951.
  • Alay, S.; Alkan, C.; Göde, F. Synthesis and Characterization of Poly(Methyl Methacrylate)/n-Hexadecane Microcapsules using Different Cross-Linkers and Their Application to Some Fabrics. Thermochim. Acta 2011, 518, 1–8. DOI: 10.1016/j.tca.2011.01.014.
  • Kim, J.; Cho, G. Thermal Storage/Release, Durability, and Temperature Sensing Properties of Therostatic Fabrics Treated with Octadecane-Containing Microcapsules. Text. Res. J. 2002, 72, 1093–1098. DOI: 10.1177/004051750207201209.
  • Carter, J. M.; Rayson, M. P.; Wilkinson, D. M.; Richmond, V.; Blacker, S. Strategies to Combat Heat Strain During and After Firefighting. J. Therm. Biol. 2007, 32, 109–116. DOI: 10.1016/j.jtherbio.2006.12.001.
  • Gao, C.; Kuklane, K.; Holmér, I. Cooling Vests with Phase Change Material Packs: The Effects of Temperature Gradient, Mass and Covering Area. Ergonomics 2010, 53, 716–723. DOI: 10.1080/00140130903581649.
  • Gao, C.; Kuklane, K.; Holmér, I. Cooling Effect of a PCM Vest on a Thermal Manikin and on Humans Exposed to. Environmental Ergonomics, biomed d.o.o: Ljubljana, Slovenia 2007, Vol. 5.
  • Kim, D.-H.; Bae, G.-T.; Lee, J.-Y. A Novel Vest with Dual Functions for Firefighters: Combined Effects of Body Cooling and Cold Fluid Ingestion on the Alleviation Of Heat Strain. Ind. Health 2019. Article ID: 2018-0205, DOI: 10.2486/indhealth.2018-0205
  • Ghaddar, N.; Ghali, K.; Chehaitly, S. Assessing Thermal Comfort of Active People in Transitional Spaces in Presence of Air Movement. Energy Build. 2011, 43, 2832–2842. DOI: 10.1016/j.enbuild.2011.06.040.
  • Itani, M.; Bachnak, R.; Ghaddar, N.; Ghali, K. Evaluating Performance of Hybrid PCM-Fan and Hybrid PCM-Desiccant Vests in Moderate and Hot Climates. J. Build. Eng. 2019, 22, 383–396. DOI: 10.1016/j.jobe.2019.01.003.
  • Hamdan, H.; Ghaddar, N.; Ouahrani, D.; Ghali, K.; Itani, M. PCM Cooling Vest for Improving Thermal Comfort in Hot Environment. Int. J. Therm. Sci. 2016, 102, 154–167. DOI: 10.1016/j.ijthermalsci.2015.12.001.
  • Revaiah, R. G.; Kotresh, T. M.; Kandasubramanian, B. Technical Textiles for Military Applications. J. Text. Inst. 2019, 1–36. DOI: 10.1080/00405000.2019.1627987.
  • Harter, K. L.; Spivak, S. M.; Yeh, K.; Vigo, T. L. Applications of the Trace Gas Technique in Clothing Comfort. Text. Res. J. 1981, 51, 345–355. DOI: 10.1177/004051758105100506.
  • Ghali, K.; Ghaddar, N.; Jones, B. Study of Convective Heat and Moisture Transport within Porous Cotton Fibrous Medium. In 2000 National Heat Transfer Conference, Pittsburgh, PA, 2000.
  • Ghali, K.; Jones, B. Multilayer Three-Node Model of Convective Transport within Cotton Fibrous Medium. J. Porous Media 2002, 5, 18. DOI: 10.1615/JPorMedia.v5.i1.20.
  • Lai, D.; Wei, F.; Lu, Y.; Wang, F. Evaluation of a Hybrid Personal Cooling System using a Manikin Operated in Constant Temperature Mode and Thermoregulatory Model Control Mode in Warm Conditions. Text. Res. J. 2017, 87, 46–56. DOI: 10.1177/0040517515622152.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.