1,262
Views
9
CrossRef citations to date
0
Altmetric
Reviews

Current Intelligent Injectable Hydrogels for In Situ Articular Cartilage Regeneration

, , , , , , , , & show all
Pages 203-225 | Received 09 May 2019, Accepted 13 Oct 2019, Published online: 28 Oct 2019

References

  • Mow, V. C.; R, A.; Robin Poole, A. Cartilage and Diarthrodial Joints as Paradigms for Hierarchical Materials and Structures. Biomaterials 1992, 13, 67–97. DOI: 10.1016/0142-9612(92)90001-5.
  • Haasper, C.; Zeichen, J.; Meister, R.; Krettek, C.; Jagodzinski, M. Tissue Engineering of Osteochondral Constructs in Vitro Using Bioreactors. Injury 2008, 39, 66–76. DOI: 10.1016/j.injury.2008.01.037.
  • Francis, S. L.; Di Bella, C.; Wallace, G. G.; Choong, P. F. M. Cartilage Tissue Engineering Using Stem Cells and Bioprinting Technology—Barriers to Clinical Translation. Front. Surg. 2018, 5. DOI: 10.3389/fsurg.2018.00070.
  • Drury, J. L.; Mooney, D. J. Hydrogels for Tissue Engineering: Scaffold Design Variables and Applications. Biomaterials 2003, 24, 4337–4351. DOI: 10.1016/S0142-9612(03)00340-5.
  • Liu, M.; Zeng, X.; Ma, C.; Yi, H.; Ali, Z.; Mou, X.; Li, S.; Deng, Y.; He, N. Injectable Hydrogels for Cartilage and Bone Tissue Engineering. Bone Res. 2017, 5. DOI: 10.1038/boneres.2017.14.
  • Pascual-Garrido, C.; Rodriguez-Fontan, F.; Aisenbrey, E. A.; Payne, K. A.; Chahla, J.; Goodrich, L. R.; Bryant, S. J. Current and Novel Injectable Hydrogels to Treat Focal Chondral Lesions: Properties and Applicability. J. Orthop. Res. 2017, 36, 64–75. DOI: 10.1002/jor.23760.
  • Bao, C.; Xie, Z.; Lin, Q.; Zhu, L.; Chuah, Y. J. Hydrogel Based Cartilaginous Tissue Regeneration: recent Insights and Technologies. Biomater. Sci. 2017, 5, 613–631. DOI: 10.1039/C6BM00863A.
  • Jeznach, O.; Kołbuk, D.; Sajkiewicz, P. Injectable Hydrogels and Nanocomposite Hydrogels for Cartilage Regeneration. J. Biomed. Mater. Res. 2018, 106, 2762–2776. DOI: 10.1002/jbm.a.36449.
  • Flegeau, K.; Pace, R.; Gautier, H.; Rethore, G.; Guicheux, J.; Le Visage, C.; Weiss, P. Toward the Development of Biomimetic Injectable and Macroporous Biohydrogels for Regenerative Medicine. Cell Tissue Bank 2017, 247, 589–609. DOI: 10.1016/j.cis.2017.07.012.
  • Eslahi, N.; Abdorahim, M.; Simchi, A. Smart Polymeric Hydrogels for Cartilage Tissue Engineering: A Review on the Chemistry and Biological Functions. Biomacromol. 2016, 17, 3441–3463. DOI: 10.1021/acs.biomac.6b01235.
  • Yang, J.; Zhang, Y. S.; Yue, K.; Khademhosseini, A. Cell-Laden Hydrogels for Osteochondral and Cartilage Tissue Engineering. Acta Biomater. 2017, 57, 1–25. DOI: 10.1016/j.actbio.2017.01.036.
  • Zhang, W. J.; Li, B. G.; Zhang, C.; Xie, X. H.; Tang, T. T. Biocompatibility and Membrane Strength of C3H10T1/2 Cell-Loaded Alginate-Based Microcapsules. Cytother. 2008, 10, 90–97. DOI: 10.1080/14653240701762372.
  • Darnell, M. C.; Sun, J. Y.; Mehta, M.; Johnson, C.; Arany, P. R.; Suo, Z.; Mooney, D. J. Performance and Biocompatibility of Extremely Tough Alginate/Polyacrylamide Hydrogels. Biomater. 2013, 34, 8042–8048. DOI: 10.1016/j.biomaterials.2013.06.061.
  • Häuselmann, H. J.; Fernandes, R. J.; Mok, S. S.; Schmid, T. M.; Block, J. A.; Aydelotte, M. B.; Kuettner, K. E.; Thonar, E. J.-M. Phenotypic Stability of Bovine Articular Chondrocytes after Long-Term Culture in Alginate Beads. J. Cell Sci. 1994, 107, 17–27.
  • Stilhano, R. S.; Madrigal, J. L.; Wong, K.; Williams, P. A.; Martin, P. K.; Yamaguchi, F. S.; Samoto, V. Y.; Han, S. W.; Silva, E. A. Injectable Alginate Hydrogel for Enhanced Spatiotemporal Control of Lentivector Delivery in Murine Skeletal Muscle. J. Control Release. 2016, 237, 42–49. DOI: 10.1016/j.jconrel.2016.06.047.
  • Gansau, J.; Kelly, L.; Buckley, C. T. Influence of Key Processing Parameters and Seeding Density Effects of Microencapsulated Chondrocytes Fabricated Using Electrohydrodynamic Spraying. Biofabrication 2018, 10, 035011. DOI: 10.1088/1758-5090/aacb95.
  • Park, H.; Kang, S. W.; Kim, B. S.; Mooney, D. J.; Lee, K. Y. Shear-Reversibly Crosslinked Alginate Hydrogels for Tissue Engineering. Macromol. Biosci. 2009, 9, 895–901. DOI: 10.1002/mabi.200800376.
  • Zhao, Y.; Li, M.; Liu, B.; Xiang, J.; Cui, Z.; Qu, X.; Qiu, D.; Tian, Y.; Yang, Z. Ultra-Tough Injectable Cytocompatible Hydrogel for 3D Cell Culture and Cartilage Repair. J. Mater. Chem. B. 2018, 6, 1351–1358. DOI: 10.1039/C7TB03177G.
  • Li, Y.; Cao, J.; Han, S.; Liang, Y.; Zhang, T.; Zhao, H.; Wang, L.; Sun, Y. ECM Based Injectable Thermo-Sensitive Hydrogel on the Recovery of Injured Cartilage Induced by Osteoarthritis. Artif. Cells Nanomed. Biotechnol. 2018, 46, 152–160. DOI: 10.1080/21691401.2018.1452752.
  • Zhu, Y.; Kong, L.; Farhadi, F.; Xia, W.; Chang, J.; He, Y.; Li, H. An Injectable Continuous Stratified Structurally and Functionally Biomimetic Construct for Enhancing Osteochondral Regeneration. Biomater. 2018, 192, 149–158. DOI: 10.1016/j.
  • Fu, T. S.; Wei, Y. H.; Cheng, P. Y.; Chu, I. M.; Chen, W. C. A Novel Biodegradable and Thermosensitive Poly(Ester-Amide) Hydrogel for Cartilage Tissue Engineering. Biomed. Res. Int. 2018, 2018, 1. DOI: 10.1155/2018/2710892.
  • Jeong, B.; Lee, K. M.; Gutowska, A.; An, Y. H. Thermogelling Biodegradable Copolymer Aqueous Solutions for Injectable Protein Delivery and Tissue Engineering. Biomacromol. 2002, 3, 865–868. DOI: 10.1021/bm025536m.
  • Wang, C. Z.; Eswaramoorthy, R.; Lin, T. H.; Chen, C. H.; Fu, Y. C.; Wang, C. K.; Wu, S. C.; Wang, G. J.; Chang, J. K.; Ho, M. L. Enhancement of Chondrogenesis of Adipose-Derived Stem Cells in HA-PNIPAAm-CL Hydrogel for Cartilage Regeneration in Rabbits. Sci. Rep. 2018, 8, 10526. DOI: 10.1038/s41598-018-28893-x.
  • Choi, B. G.; Park, M. H.; Cho, S.-H.; Joo, M. K.; Oh, H. J.; Kim, E. H.; Park, K.; Han, D. K.; Jeong, B. Thermal Gelling Polyalanine-Poloxamine-Polyalanine Aqueous Solution for Chondrocytes 3D Culture: Initial Concentration Effect. Soft Matter. 2011, 7, 456–462. DOI: 10.1039/C0SM00611D.
  • Zhang, X. Z.; Wu, D. Q.; Chu, C. C. Synthesis, Characterization and Controlled Drug Release of Thermosensitive IPN-PNIPAAm Hydrogels. Biomater. 2004, 25, 3793–3805. DOI: 10.1016/j.biomaterials.2003.10.065.
  • Lee, J. H. Injectable Hydrogels Delivering Therapeutic Agents for Disease Treatment and Tissue Engineering. Biomater. Res. 2018, 22, 27. DOI: 0.1186/s40824-018-0138-6 DOI: 10.1186/s40824-018-0138-6.
  • Zhao, X.; Li, P.; Guo, B.; Ma, P. X. Antibacterial and Conductive Injectable Hydrogels Based on Quaternized Chitosan-Graft-Polyaniline/Oxidized Dextran for Tissue Engineering. Acta Biomater. 2015, 26, 236–248. DOI: 10.1016/j.actbio.2015.08.006.
  • Yamada, Y.; Schneider, J. P. Fragmentation of Injectable Bioadhesive Hydrogels Affords Chemotherapeutic Macromolecules. Biomacromol. 2016, 17, 2634–2641. DOI: 10.1021/acs.biomac.6b00701.
  • Li, D.; Ye, Y.; Li, D.; Li, X.; Mu, C. Biological Properties of Dialdehyde Carboxymethyl Cellulose Crosslinked gelatin-PEG Composite Hydrogel Fibers for Wound Dressings. Carbohydr Polym. 2016, 137, 508–514. DOI: 10.1016/j.carbpol.2015.11.024.
  • Wang, X.; Wang, Y.; Li, L.; Gu, Z.; Yu, X. Feasibility Study of the Naturally Occurring Dialdehyde Carboxymethyl Cellulose for Biological Tissue Fixation. Carbohydr. Polym. 2015, 115, 54–61. DOI: 10.1016/j.carbpol.2014.08.051.
  • Li, L.; Wang, N.; Jin, X.; Deng, R.; Nie, S.; Sun, L.; Wu, Q.; Wei, Y.; Gong, C. Biodegradable and Injectable in Situ Cross-Linking Chitosan-Hyaluronic Acid Based Hydrogels for Postoperative Adhesion Prevention. Biomater. 2014, 35, 3903–3917. DOI: 10.1016/j.biomaterials.2014.01.050.
  • Balakrishnan, B.; Joshi, N.; Jayakrishnan, A.; Banerjee, R. Self-Crosslinked Oxidized Alginate/Gelatin Hydrogel as Injectable, Adhesive Biomimetic Scaffolds for Cartilage Regeneration. Acta. Biomater. 2014, 10, 3650–3663. DOI: 10.1016/j.actbio.2014.04.031.
  • Zehnder, T.; Sarker, B.; Boccaccini, A. R.; Detsch, R. Evaluation of an Alginate-Gelatine Crosslinked Hydrogel for Bioplotting. Biofabrication 2015, 7, 0025001. DOI: 10.1088/1758-5090/7/2/025001.
  • Tan, H.; Chu, C. R.; Payne, K. A.; Marra, K. G. Injectable in Situ Forming Biodegradable Chitosan-Hyaluronic Acid Based Hydrogels for Cartilage Tissue Engineering. Biomater. 2009, 30, 2499–2506. DOI: 10.1016/j.biomaterials.2008.12.080.
  • Hozumi, T.; Kageyama, T.; Ohta, S.; Fukuda, J.; Ito, T. Injectable Hydrogel with Slow Degradability Composed of Gelatin and Hyaluronic Acid Cross-Linked by Schiff's Base Formation. Biomacromol. 2018, 19, 288–297. DOI: 10.1021/acs.biomac.7b01133.
  • Ye, M.; Jiang, R.; Zhao, J.; Zhang, J.; Yuan, X.; Yuan, X. In Situ Formation of Adhesive Hydrogels Based on PL with Laterally Grafted Catechol Groups and Their Bonding Efficacy to Wet Organic Substrates. J. Mater. Sci. Mater. Med. 2015, 26, 273. DOI: 10.1007/s10856-015-5608-y.
  • Giano, M. C.; Ibrahim, Z.; Medina, S. H.; Sarhane, K. A.; Christensen, J. M.; Yamada, Y.; Brandacher, G.; Schneider, J. P. Injectable Bioadhesive Hydrogels with Innate Antibacterial Properties. Nat. Commun. 2014, 5, 4095. DOI: 10.1038/ncomms5095.
  • Bouhadir, K. H.; Hausman, D. S.; Mooney, D. J. Synthesis of Cross-Linked Poly(Aldehyde Guluronate) Hydrogels. Polymer. 1999, 40, 3575–3584. DOI: 10.1016/S0032-3861(98)00550-3.
  • Sui, X.; van Ingen, L.; Hempenius, M. A.; Vancso, G. J. Preparation of a Rapidly Forming Poly(Ferrocenylsilane)-Poly(Ethylene Glycol)-Based Hydrogel by a Thiol-Michael Addition Click Reaction. Macromol. Rapid Commun. 2010, 31, 2059–2063. DOI: 10.1002/marc.201000420.
  • Williams, S. R.; Miller, K. M.; Long, T. E. Michael Addition Reaction Kinetics of Acetoacetates and Acrylates for the Formation of Polymeric Networks. Progress Reaction Kinet. Mech. 2007, 32, 165–194. DOI: 10.3184/146867807X247730.
  • Wang, J.; He, H.; Cooper, R. C.; Yang, H. In Situ-Forming Polyamidoamine Dendrimer Hydrogels with Tunable Properties Prepared via Aza-Michael Addition Reaction. ACS Appl. Mater. Interfaces 2017, 9, 10494–10503. DOI: 10.1021/acsami.7b00221.
  • Wang, H.; Cheng, F.; He, W.; Zhu, J.; Cheng, G.; Qu, J. Poly(Ethylene) Glycol Hydrogel Based on oxa-Michael Reaction: Precursor Synthesis and Hydrogel Formation. Biointerphases 2017, 12, 02C414. DOI: 10.1116/1.4984305].
  • Mather, B. D.; Viswanathan, K.; Miller, K. M.; Long, T. E. Michael Addition Reactions in Macromolecular Design for Emerging Technologies. Prog. Polym. Sci. 2006, 31, 487–531. DOI: 10.1016/j.progpolymsci.2006.03.001.
  • Gopinathan, J.; Noh, I. Click Chemistry-Based Injectable Hydrogels and Bioprinting Inks for Tissue Engineering Applications. Tissue Eng. Regen. Med. 2018, 15, 531–546. DOI: 10.1007/s13770-018-0152-8.
  • Wang, X.; Li, Z.; Shi, T.; Zhao, P.; An, K.; Lin, C.; Liu, H. Injectable Dextran Hydrogels Fabricated by Metal-Free Click Chemistry for Cartilage Tissue Engineering. Mater. Sci. Eng. C. Mater. Biol. Appl. 2017, 73, 21–30. DOI: 10.1016/j.msec.2016.12.053.
  • Maturavongsadit, P.; Luckanagul, J. A.; Metavarayuth, K.; Zhao, X.; Chen, L.; Lin, Y.; Wang, Q. Promotion of in Vitro Chondrogenesis of Mesenchymal Stem Cells Using in Situ Hyaluronic Hydrogel Functionalized with Rod-Like Viral Nanoparticles. Biomacromol. 2016, 17, 1930–1938. DOI: 10.1021/acs.biomac.5b01577.
  • Hardy, J. G.; Lin, P.; Schmidt, C. E. Biodegradable Hydrogels Composed of Oxime Crosslinked Poly(Ethylene Glycol), Hyaluronic Acid and Collagen: A Tunable Platform for Soft Tissue Engineering. J. Biomater. Sci. Polym. Ed. 2015, 26, 143–161. DOI: 10.1080/09205063.2014.975393.
  • Shih, H.; Lin, C. C. Cross-Linking and Degradation of Step-Growth Hydrogels Formed by Thiol-Ene Photoclick Chemistry. Biomacromol. 2012, 13, 2003–2012. DOI: 10.1021/bm300752j.
  • Jin, R.; Moreira Teixeira, L. S.; Krouwels, A.; Dijkstra, P. J.; van Blitterswijk, C. A.; Karperien, M.; Feijen, J. Synthesis and Characterization of Hyaluronic Acid-Poly(Ethylene Glycol) Hydrogels via Michael Addition: An Injectable Biomaterial for Cartilage Repair. Acta. Biomater. 2010, 6, 1968–1977. DOI: 10.1016/j.actbio.2009.12.024.
  • Kim, D. Y.; Park, H.; Kim, S. W.; Lee, J. W.; Lee, K. Y. Injectable Hydrogels Prepared from Partially Oxidized Hyaluronate and Glycol Chitosan for Chondrocyte Encapsulation. Carbohydr. Polym. 2017, 157, 1281–1287. DOI: 10.1016/j.carbpol.2016.11.002.
  • Sokolsky-Papkov, M.; Domb, A. J.; Golenser, J. Impact of Aldehyde Content on Amphotericin B-Dextran Imine Conjugate Toxicity. Biomacromol. 2006, 7, 1529–1535. DOI: 10.1021/bm050747n.
  • Fan, M.; Ma, Y.; Mao, J.; Zhang, Z.; Tan, H. Cytocompatible in Situ Forming Chitosan/Hyaluronan Hydrogels via a Metal-Free Click Chemistry for Soft Tissue Engineering. Acta Biomater. 2015, 20, 60–68. DOI: 10.1016/j.actbio.2015.03.033.
  • Söntjens, S. H. M.; Nettles, D. L.; Carnahan, M. A.; Setton, L. A.; Grinstaff, M. W. Biodendrimer-Based Hydrogel Scaffolds for Cartilage Tissue Repair. Biomacromol. 2006, 7, 310. DOI: 10.1021/bm050663e.
  • Suo, H.; Xu, K.; Zheng, X. Using Glucosamine to Improve the Properties of Photocrosslinked Gelatin Scaffolds. J. Biomater. Appl. 2015, 29, 977–987. DOI: 10.1177/0885328214551009.
  • Lin, C. C.; Ki, C. S.; Shih, H. Thiol-Norbornene Photo-Click Hydrogels for Tissue Engineering Applications. J Appl Polym Sci. 2015, 132, n/a. DOI: 10.1002/app.41563.
  • Neumann, A. J.; Quinn, T.; Bryant, S. J. Nondestructive Evaluation of a New Hydrolytically Degradable and Photo-Clickable PEG Hydrogel for Cartilage Tissue Engineering. Acta. Biomater. 2016, 39, 1–11. DOI: 10.1016/j.actbio.2016.05.015.
  • Hu, J.; Hou, Y.; Park, H.; Choi, B.; Hou, S.; Chung, A.; Lee, M. Visible Light Crosslinkable Chitosan Hydrogels for Tissue Engineering. Acta. Biomater. 2012, 8, 1730–1738. DOI: 10.1016/j.actbio.2012.01.029.
  • Qi, C.; Liu, J.; Jin, Y.; Xu, L.; Wang, G.; Wang, Z.; Wang, L. Photo-Crosslinkable, Injectable Sericin Hydrogel as 3D Biomimetic Extracellular Matrix for Minimally Invasive Repairing Cartilage. Biomater. 2018, 163, 89–104. DOI: 10.1016/j.biomaterials.2018.02.016.
  • Qin, X. H.; Wang, X.; Rottmar, M.; Nelson, B. J.; Maniura-Weber, K. Near-Infrared Light-Sensitive Polyvinyl Alcohol Hydrogel Photoresist for Spatiotemporal Control of Cell-Instructive 3D Microenvironments. Adv. Mater. 2018, 30, 1705564. DOI: 10.1002/adma.201705564.
  • Li, F.; Truong, V. X.; Thissen, H.; Frith, J. E.; Forsythe, J. S. Microfluidic Encapsulation of Human Mesenchymal Stem Cells for Articular Cartilage Tissue Regeneration. ACS Appl. Mater. Interfaces 2017, 9, 8589–8601. DOI: 10.1021/acsami.7b00728.
  • Lee, H.; Chung, S.; Kim, M. G.; Lee, L. P.; Lee, J. Y. Near-Infrared-Light-Assisted Photothermal Polymerization for Transdermal Hydrogelation and Cell Delivery. Adv. Healthcare Mater. 2016, 5, 1638–1645. DOI: 10.1002/adhm.201600048.
  • Nguyen, K. T.; Wes, J. L. Photopolymerizable Hydrogels for Tissue Engineering Applications. Biomater. 2002, 23, 4307–4314. DOI: 10.1016/S0142-9612(02)00175-8.
  • Roberts, J. J.; Bryant, S. J. Comparison of Photopolymerizable Thiol-Ene PEG and Acrylate-Based PEG Hydrogels for Cartilage Development. Biomater. 2013, 34, 9969–9979. DOI: 10.1016/j.biomaterials.2013.09.020.
  • Morita, K.; Miyamoto, T.; Fujita, N.; Kubota, Y.; Ito, K.; Takubo, K.; Miyamoto, K.; Ninomiya, K.; Suzuki, T.; Iwasaki, R.; et al. Reactive Oxygen Species Induce Chondrocyte Hypertrophy in Endochondral Ossification. J. Exp. Med. 2007, 204, 1613. DOI: 10.1084/jem.20062525.
  • Salucci, S.; Burattini, S.; Battistelli, M.; Baldassarri, V.; Maltarello, M. C.; Falcieri, E. Ultraviolet B (UVB) Irradiation-Induced Apoptosis in Various Cell Lineages in Vitro. Int. J. Mol. Sci. 2013, 14, 532–546. DOI: 10.3390/ijms14010532.
  • Bingzhao Xia, Z. J.; Debroy, D.; Li, D. Cytocompatible Cell Encapsulation via Hydrogel Photopolymerization in Microfluidic Emulsion Droplets. Biomictofluidics 2017, 11, 044102. DOI: 10.1063/1.4993122].
  • Fu, A.; Gwon, K.; Kim, M.; Tae, G.; Kornfield, J. A. Visible-Light-Initiated Thiol-Acrylate Photopolymerization of Heparin-Based Hydrogels. Biomacromolecules 2015, 16, 497–506. DOI: 10.1021/bm501543a.
  • Lee, S.; Tong, X.; Yang, F. The Effects of Varying Poly(Ethylene Glycol) Hydrogel Crosslinking Density and the Crosslinking Mechanism on Protein Accumulation in Three-Dimensional Hydrogels. Acta Biomater. 2014, 10, 4167–4174. DOI: 10.1016/j.actbio.2014.05.023.
  • Hribar, K. C.; Soman, P.; Warner, J.; Chung, P.; Chen, S. Light-Assisted Direct-Write of 3D Functional Biomaterials. Lab Chip. 2014, 14, 268–275. DOI: 10.1039/C3LC50634G.
  • Zhu, W.; Li, J.; Leong, Y. J.; Rozen, I.; Qu, X.; Dong, R.; Wu, Z.; Gao, W.; Chung, P. H.; Wang, J.; Chen, S. 3D-Printed Artificial Microfish. Adv. Mater. 2015, 27, 4411–4417. DOI: 10.1002/adma.201501372.
  • Koffler, J.; Zhu, W.; Qu, X.; Platoshyn, O.; Dulin, J. N.; Brock, J.; Graham, L.; Lu, P.; Sakamoto, J.; Marsala, M.; et al. Biomimetic 3D-Printed Scaffolds for Spinal Cord Injury Repair. Nat. Med. 2019, 25, 263–269. DOI: 10.1038/s41591-018-0296-z.
  • Ma, X.; Qu, X.; Zhu, W.; Li, Y. S.; Yuan, S.; Zhang, H.; Liu, J.; Wang, P.; Lai, C. S.; Zanella, F.; et al. Deterministically Patterned Biomimetic Human iPSC-Derived Hepatic Model via Rapid 3D Bioprinting. Proc. Natl. Acad. Sci. USA. 2016, 113, 2206–2211. DOI: 10.1073/pnas.1524510113.
  • Lim, K. S.; Levato, R.; Costa, P. F.; Castilho, M. D.; Alcala-Orozco, C. R.; van Dorenmalen, K. M. A.; Melchels, F. P. W.; Gawlitta, D.; Hooper, G. J.; Malda, J.; Woodfield, T. B. F. Bio-Resin for High Resolution Lithography-Based Biofabrication of Complex Cell-Laden Constructs. Biofabrication 2018, 10, 034101. DOI: 10.1088/1758-5090/aac00c.
  • Kim, S. H.; Yeon, Y. K.; Lee, J. M.; Chao, J. R.; Lee, Y. J.; Seo, Y. B.; Sultan, M. T.; Lee, O. J.; Lee, J. S.; Yoon, S. I.; et al. Precisely Printable and Biocompatible Silk Fibroin Bioink for Digital Light Processing 3D Printing. Nat. Commun. 2018, 9, 1620. DOI: 10.1038/s41467-018-03759-y.
  • Maiolo, A. S.; Amado, M. N.; Gonzalez, J. S.; Alvarez, V. A. Development and Characterization of Poly (Vinyl Alcohol) Based Hydrogels for Potential Use as an Articular Cartilage Replacement. Mater. Sci. Eng. C. Mater. Biol. Appl. 2012, 32, 1490–1495. DOI: 10.1016/j.msec.2012.04.030.
  • Feng, Q.; Lin, S.; Zhang, K.; Dong, C.; Wu, T.; Huang, H.; Yan, X.; Zhang, L.; Li, G.; Bian, L. Sulfated Hyaluronic Acid Hydrogels with Retarded Degradation and Enhanced Growth Factor Retention Promote hMSC Chondrogenesis and Articular Cartilage Integrity with Reduced Hypertrophy. Acta Biomater. 2017, 53, 329–342. DOI: 10.1016/j.actbio.2017.02.015.
  • Pescador, D.; Ibanez-Fonseca, A.; Sanchez-Guijo, F.; Brinon, J. G.; Arias, F. J.; Muntion, S.; Hernandez, C.; Girotti, A.; Alonso, M.; Del Canizo, M. C.; et al. Regeneration of Hyaline Cartilage Promoted by Xenogeneic Mesenchymal Stromal Cells Embedded within Elastin-like Recombinamer-Based Bioactive Hydrogels. J. Mater. Sci. Mater. Med. 2017, 28, 115. DOI: 10.1007/s10856-017-5928-1.
  • Wang, J.; Zhang, F.; Tsang, W. P.; Wan, C.; Wu, C. Fabrication of Injectable High Strength Hydrogel Based on 4-Arm Star PEG for Cartilage Tissue Engineering. Biomater. 2017, 120, 11–21. DOI: 10.1016/j.biomaterials.2016.12.015.
  • Fan, M.; Ma, Y.; Tan, H.; Jia, Y.; Zou, S.; Guo, S.; Zhao, M.; Huang, H.; Ling, Z.; Chen, Y.; Hu, X. Covalent and Injectable Chitosan-Chondroitin Sulfate Hydrogels Embedded with Chitosan Microspheres for Drug Delivery and Tissue Engineering. Mater. Sci. Eng. C. Mater. Biol. Appl. 2017, 71, 67–74. DOI: 10.1016/j.msec.2016.09.068.
  • Comblain, F.; Rocasalbas, G.; Gauthier, S.; Henrotin, Y. Chitosan: A Promising Polymer for Cartilage Repair and Viscosupplementation. Biomed. Mater. Eng. 2017, 28, S209–s215. DOI: 10.3233/BME-171643.
  • Zhu, D.; Wang, H.; Trinh, P.; Heilshorn, S. C.; Yang, F. Elastin-like Protein-Hyaluronic Acid (ELP-HA) Hydrogels with Decoupled Mechanical and Biochemical Cues for Cartilage Regeneration. Biomater. 2017, 127, 132–140. DOI: 10.1016/j.biomaterials.2017.02.010.
  • Chen, F.; Ni, Y.; Liu, B.; Zhou, T.; Yu, C.; Su, Y.; Zhu, X.; Yu, X.; Zhou, Y. Self-Crosslinking and Injectable Hyaluronic Acid/RGD-Functionalized Pectin Hydrogel for Cartilage Tissue Engineering. Carbohydr. Polym. 2017, 166, 31–44. DOI: 10.1016/j.carbpol.2017.02.059.
  • Snyder, T. N.; Madhavan, K.; Intrator, M.; Dregalla, R. C.; Park, D. A Fibrin/Hyaluronic Acid Hydrogel for the Delivery of Mesenchymal Stem Cells and Potential for Articular Cartilage Repair. J. Biol. Eng. 2014, 8, 10. DOI: 10.1186/1754-1611-8-10.
  • Park, H.; Choi, B.; Hu, J.; Lee, M. Injectable Chitosan Hyaluronic Acid Hydrogels for Cartilage Tissue Engineering. Acta Biomater. 2013, 9, 4779–4786. DOI: 10.1016/j.actbio.2012.08.033.
  • Radhakrishnan, J.; Subramanian, A.; Sethuraman, S. Injectable Glycosaminoglycan-Protein Nano-Complex in Semi-Interpenetrating Networks: A Biphasic Hydrogel for Hyaline Cartilage Regeneration. Carbohydr. Polym. 2017, 175, 63–74. DOI: 10.1016/j.carbpol.2017.07.063.
  • ZhouHong, F. Y.; Zhang, X.; Yang, L.; Li, J.; Jiang, D.; Bunpetch, V.; Hu, Y.; Ouyang, H.; Zhang, S. Tough Hydrogel with Enhanced Tissue Integration and in Situ Forming Capability for Osteochondral Defect Repair. Appl. Mater. Today 2018, 13, 32–44. DOI: 10.1016/j.apmt.2018.08.005.
  • Kontturi, L. S.; Jarvinen, E.; Muhonen, V.; Collin, E. C.; Pandit, A. S.; Kiviranta, I.; Yliperttula, M.; Urtti, A. An Injectable, in Situ Forming Type II Collagen/Hyaluronic Acid Hydrogel Vehicle for Chondrocyte Delivery in Cartilage Tissue Engineering. Drug Deliv. Transl. Res. 2014, 4, 149–158. DOI: 10.1007/s13346-013-0188-1.
  • Pereira, R. C.; Scaranari, M.; Castagnola, P.; Grandizio, M.; Azevedo, H. S.; Reis, R. L.; Cancedda, R.; Gentili, C. Novel Injectable Gel (System) as a Vehicle for Human Articular Chondrocytes in Cartilage Tissue Regeneration. J. Tissue Eng. Regen. Med. 2009, 3, 97–106. DOI: 10.1002/term.145.
  • Chen, W.; Li, C.; Peng, M.; Xie, B.; Zhang, L.; Tang, X. Autologous Nasal Chondrocytes Delivered by Injectable Hydrogel for in Vivo Articular Cartilage Regeneration. Cell Tissue Banking. 2017, 19, 5–46. DOI: 10.1007/s10561-017-9649-y.
  • Vinatier, C.; Gauthier, O.; Fatimi, A.; Merceron, C.; Masson, M.; Moreau, A.; Moreau, F.; Fellah, B.; Weiss, P.; Guicheux, J. An Injectable Cellulose-Based Hydrogel for the Transfer of Autologous Nasal Chondrocytes in Articular Cartilage Defects. Biotechnol. Bioeng. 2009, 102, 1259–1267. DOI: 10.1002/bit.22137.
  • Popa, E. G.; Caridade, S. G.; Mano, J. F.; Reis, R. L.; Gomes, M. E. Chondrogenic Potential of Injectable Kappa-Carrageenan Hydrogel with Encapsulated Adipose Stem Cells for Cartilage Tissue-Engineering Applications. J. Tissue Eng. Regen. Med. 2015, 9, 550–563. DOI: 10.1002/term.1683.
  • Lee, S. S.; Choi, G. E.; Lee, H. J.; Kim, Y.; Choy, J. H.; Jeong, B. Layered Double Hydroxide and Polypeptide Thermogel Nanocomposite System for Chondrogenic Differentiation of Stem Cells. ACS Appl. Mater. Interfaces 2017, 9, 42668–42675. DOI: 10.1021/acsami.7b17173.
  • Kim, J.; Lin, B.; Kim, S.; Choi, B.; Evseenko, D.; Lee, M. TGF-beta1 Conjugated Chitosan Collagen Hydrogels Induce Chondrogenic Differentiation of Human Synovium-Derived Stem Cells. J. Biol. Eng. 2015, 9, 12. DOI: 10.1186/1754-1611-9-1.
  • Shi, D.; Xu, X.; Ye, Y.; Song, K.; Cheng, Y.; Di, J.; Hu, Q.; Li, J.; Ju, H.; Jiang, Q.; Gu, Z. Photo-Cross-Linked Scaffold with Kartogenin-Encapsulated Nanoparticles for Cartilage Regeneration. ACS Nano. 2016, 10, 1292–1299. DOI: 10.1021/acsnano.5b06663.
  • Holland, T. A.; Tabata, Y.; Mikos, A. G. Dual Growth Factor Delivery from Degradable Oligo(Poly(Ethylene Glycol) Fumarate) Hydrogel Scaffolds for Cartilage Tissue Engineering. J. Control Release 2005, 101, 111–125. DOI: 10.1016/j.jconrel.2004.07.004.
  • Cui, X.; Breitenkamp, K.; Lotz, M.; D'Lima, D. Synergistic Action of Fibroblast Growth Factor-2 and Transforming Growth Factor-beta1 Enhances Bioprinted Human Neocartilage Formation. Biotechnol. Bioeng. 2012, 109, 2357–2368. DOI: 10.1002/bit.24488.
  • Na, K.; Kim, S.; Woo, D. G.; Sun, B. K.; Yang, H. N.; Chung, H. M.; Park, K. H. Combination Material Delivery of Dexamethasone and Growth Factor in Hydrogel Blended with Hyaluronic Acid Constructs for Neocartilage Formation. J. Biomed. Mater. Res. 2007, 83, 779–786. DOI: 10.1002/jbm.a.31374.
  • Huebsch, N.; Arany, P. R.; Mao, A. S.; Shvartsman, D.; Ali, O. A.; Bencherif, S. A.; Rivera-Feliciano, J.; Mooney, D. J. Harnessing Traction-Mediated Manipulation of the Cell/Matrix Interface to Control Stem-Cell Fate. Nature Mater. 2010, 9, 518–526. DOI: 10.1038/nmat2732.
  • Chaudhuri, O.; Gu, L.; Klumpers, D.; Darnell, M.; Bencherif, S. A.; Weaver, J. C.; Huebsch, N.; Lee, H. P.; Lippens, E.; Duda, G. N.; Mooney, D. J. Hydrogels with Tunable Stress Relaxation Regulate Stem Cell Fate and Activity. Nature Mater. 2016, 15, 326–334. DOI: 10.1038/nmat4489.
  • Guilak, F.; Cohen, D. M.; Estes, B. T.; Gimble, J. M.; Liedtke, W.; Chen, C. S. Control of Stem Cell Fate by Physical Interactions with the Extracellular Matrix. Cell Stem Cell. 2009, 5, 17–26. DOI: 10.1016/j.stem.2009.06.016.
  • Mow, V. C.; Guo, X. E. Mechano-Electrochemical Properties of Articular Cartilage: their Inhomogeneities and Anisotropies. Annu. Rev. Biomed. Eng. 2002, 4, 175–209. DOI: 10.1146/annurev.bioeng.4.110701.120309.
  • Eyrich, D.; Brandl, F.; Appel, B.; Wiese, H.; Maier, G.; Wenzel, M.; Staudenmaier, R.; Goepferich, A.; Blunk, T. Long-Term Stable Fibrin Gels for Cartilage Engineering. Biomater. 2007, 28, 55–65. DOI: 10.1016/j.biomaterials.2006.08.027.
  • Jin, R.; Moreira Teixeira, L. S.; Dijkstra, P. J.; Zhong, Z.; van Blitterswijk, C. A.; Karperien, M.; Feijen, J. Enzymatically Crosslinked Dextran-Tyramine Hydrogels as Injectable Scaffolds for Cartilage Tissue Engineering. Tissue Eng. Part A. 2010, 16, 2429–2440. DOI: 10.1089/ten.tea.2009.0764.
  • Srinivasan, P. P.; McCoy, S. Y.; Jha, A. K.; Yang, W.; Jia, X.; Farach-Carson, M. C.; Kirn-Safran, C. B. Injectable Perlecan Domain 1-Hyaluronan Microgels Potentiate the Cartilage Repair Effect of BMP2 in a Murine Model of Early Osteoarthritis. Biomed. Mater. 2012, 7, 024109. DOI: 10.1088/1748-6041/7/2/024109.
  • Liao, I. C.; Moutos, F. T.; Estes, B. T.; Zhao, X.; Guilak, F. Composite Three-Dimensional Woven Scaffolds with Interpenetrating Network Hydrogels to Create Functional Synthetic Articular Cartilage. Adv. Funct. Mater. 2013, 23, 5833–5839. DOI: 10.1002/adfm.201300483.
  • Yan, Y.; Li, M.; Yang, D.; Wang, Q.; Liang, F.; Qu, X.; Qiu, D.; Yang, Z. Construction of Injectable Double-Network Hydrogels for Cell Delivery. Biomacromol. 2017, 18, 2128–2138. DOI: 10.1021/acs.biomac.7b00452.
  • Sun, J. Y.; Zhao, X.; Illeperuma, W. R.; Chaudhuri, O.; Oh, K. H.; Mooney, D. J.; Vlassak, J. J.; Suo, Z. Highly Stretchable and Tough Hydrogels. Nature. 2012, 489, 133–136. DOI: 10.1038/nature11409.
  • Kheirabadi, M.; Shi, L.; Bagheri, R.; Kabiri, K.; Hilborn, J.; Ossipov, D. A. In Situ Forming Interpenetrating Hydrogels of Hyaluronic Acid Hybridized with Iron Oxide Nanoparticles. Biomater. Sci. 2015, 3, 1466–1474. DOI: 10.1039/C5BM00150A.
  • Nguyen, L. H.; Kudva, A. K.; Saxena, N. S.; Roy, K. Engineering Articular Cartilage with Spatially-Varying Matrix Composition and Mechanical Properties from a Single Stem Cell Population Using a Multi-Layered Hydrogel. Biomater. 2011, 32, 6946–6952. DOI: 10.1016/j.biomaterials.2011.06.014.
  • Klein, T. J.; Malda, J.; Sah, R. L.; Hutmacher, D. W. Tissue Engineering of Articular Cartilage with Biomimetic Zones. Tissue Eng. Part B. 2009, 15, 143–157. DOI: 10.1089/ten.teb.2008.0563.
  • Klein, T. J.; Rizzi, S. C.; Reichert, J. C.; Georgi, N.; Malda, J.; Schuurman, W.; Crawford, R. W.; Hutmacher, D. W. Strategies for Zonal Cartilage Repair Using Hydrogels. Macromol. Biosci. 2009, 9, 1049–1058. DOI: 10.1002/mabi.200900176.
  • Ren, X.; Wang, F.; Chen, C.; Gong, X.; Yin, L.; Yang, L. Engineering Zonal Cartilage through Bioprinting Collagen Type II Hydrogel Constructs with Biomimetic Chondrocyte Density Gradient. BMC Musculoskelet. Disord. 2016, 17, 301. DOI: 10.1186/s12891-016-1130-8.
  • Sharma, B.; Williams, C. G.; Kim, T. K.; Sun, D.; Malik, A.; Khan, M.; Leong, K.; Elisseeff, J. H. Designing Zonal Organization into Tissue-Engineered Cartilage. Tissue Eng. 2007, 13, 405–414. DOI: 10.1089/ten.2006.0068.
  • Nguyen, L. H.; Kudva, A. K.; Guckert, N. L.; Linse, K. D.; Roy, K. Unique Biomaterial Compositions Direct Bone Marrow Stem Cells into Specific Chondrocytic Phenotypes Corresponding to the Various Zones of Articular Cartilage. Biomater. 2011, 32, 1327–1338. DOI: 10.1016/j.biomaterials.2010.10.009.
  • Ng, K. W.; Ateshian, G. A.; Hung, C. T. Zonal Chondrocytes Seeded in a Layered Agarose Hydrogel Create Engineered Cartilage with Depth-Dependent Cellular and Mechanical Inhomogeneity. Tissue Eng. Part A. 2009, 15, 2315–2324. DOI: 10.1089/ten.tea.2008.0391.
  • Ng, K. W.; Wang, C. C.-B.; Mauck, R. L.; Kelly, T.-A. N.; Chahine, N. O.; Costa, K. D.; Ateshian, G. A.; Hung, C. T. A Layered Agarose Approach to Fabricate Depth-Dependent Inhomogeneity in Chondrocyte-Seeded Constructs. J. Orthop. Res. 2005, 23, 134–141. DOI: 10.1016/j.orthres.2004.05.015.
  • Bryant, S. J.; Anseth, K. S. Controlling the Spatial Distribution of ECM Components in Degradable PEG Hydrogels for Tissue Engineering Cartilage. J. Biomed. Mater. Res. 2003, 64A, 70–79. DOI: 10.1002/jbm.a.10319.
  • Woodfield, T. B. F.; VAN Blitterswijk, C.; DE Wijn, A. J.; Sims, T. J.; Hollander, A.; Riesle, P. J. Polymer Scaffolds Fabricated with Pore-Size Gradients as a Model for Studying the Zonal Organization within Tissue-Engineered Cartilage Constructs. Tissue Eng. 2005, 11, 1297–1311. DOI: 10.1089/ten.2005.11.1297.
  • Hwang, N. S.; Varghese, S.; Lee, H. J.; Theprungsirikul, P.; Canver, A.; Sharma, B.; Elisseeff, J. Response of Zonal Chondrocytes to Extracellular Matrix-Hydrogels. FEBS Lett. 2007, 581, 4172–4178. DOI: 10.1016/j.febslet.2007.07.049.
  • Chen, J. P.; Cheng, T. H. Thermo-Responsive Chitosan-Graft-Poly(N-Isopropylacrylamide) Injectable Hydrogel for Cultivation of Chondrocytes and Meniscus Cells. Macromol. Biosci. 2006, 6, 1026–1039. DOI: 10.1002/mabi.200600142.
  • Vinatier, C.; Magne, D.; Weiss, P.; Trojani, C.; Rochet, N.; Carle, G. F.; Vignes-Colombeix, C.; Chadjichristos, C.; Galera, P.; Daculsi, G.; Guicheux, J. A Silanized Hydroxypropyl Methylcellulose Hydrogel for the Three-Dimensional Culture of Chondrocytes. Biomater. 2005, 26, 6643–6651. DOI: 10.1016/j.biomaterials.2005.04.057.
  • Dey, P.; Schneider, T.; Chiappisi, L.; Gradzielski, M.; Schulze-Tanzil, G.; Haag, R. Mimicking of Chondrocyte Microenvironment Using in Situ Forming Dendritic Polyglycerol Sulfate-Based Synthetic Polyanionic Hydrogels. Macromol. Biosci. 2016, 16, 580–590. DOI: 10.1002/mabi.201500377.
  • Petit, A.; Redout, E. M.; van de Lest, C. H.; de Grauw, J. C.; Muller, B.; Meyboom, R.; van Midwoud, P.; Vermonden, T.; Hennink, W. E.; Rene van Weeren, P. Sustained Intra-Articular Release of Celecoxib from in Situ Forming Gels Made of Acetyl-Capped PCLA-PEG-PCLA Triblock Copolymers in Horses. Biomater. 2015, 53, 426–436. DOI: 10.1016/j.biomaterials.2015.02.109.
  • Liu, X.; Yang, Y.; Niu, X.; Lin, Q.; Zhao, B.; Wang, Y.; Zhu, L. An in Situ Photocrosslinkable Platelet Rich plasma - Complexed Hydrogel Glue with Growth Factor Controlled Release Ability to Promote Cartilage Defect Repair. Acta Biomater. 2017, 62, 179–187. DOI: 10.1016/j.actbio.2017.05.023.
  • Holland, T. A.; Tessmar, J. K.; Tabata, Y.; Mikos, A. G. Transforming Growth Factor-Beta 1 Release from Oligo(Poly(Ethylene Glycol) Fumarate) Hydrogels in Conditions That Model the Cartilage Wound Healing Environment. J. Control Release 2004, 94, 101–114. DOI: 10.1016/j.jconrel.2003.09.007.
  • Park, H.; Temenoff, J. S.; Holland, T. A.; Tabata, Y.; Mikos, A. G. Delivery of TGF-beta1 and Chondrocytes via Injectable, Biodegradable Hydrogels for Cartilage Tissue Engineering Applications. Biomater. 2005, 26, 7095–7103. DOI: 10.1016/j.biomaterials.2005.05.083.
  • Park, H.; Temenoff, J. S.; Tabata, Y.; Caplan, A. I.; Mikos, A. G. Injectable Biodegradable Hydrogel Composites for Rabbit Marrow Mesenchymal Stem Cell and Growth Factor Delivery for Cartilage Tissue Engineering. Biomater. 2007, 28, 3217–3227. DOI: 10.1016/j.biomaterials.2007.03.030.
  • Boyer, C.; Figueiredo, L.; Pace, R.; Lesoeur, J.; Rouillon, T.; Visage, C. L.; Tassin, J. F.; Weiss, P.; Guicheux, J.; Rethore, G. Laponite Nanoparticle-Associated Silated Hydroxypropylmethyl Cellulose as an Injectable Reinforced Interpenetrating Network Hydrogel for Cartilage Tissue Engineering. ACS Appl. Mater. Interfaces 2018, 65, 112–122. DOI: 10.1016/j.actbio.2017.11.027.
  • Zhou, T.; Li, X.; Li, G.; Tian, T.; Lin, S.; Shi, S.; Liao, J.; Cai, X.; Lin, Y. Injectable and Thermosensitive TGF-beta1-Loaded PCEC Hydrogel System for in Vivo Cartilage Repair. Sci. Rep. 2017, 7, 10553. DOI: 10.1038/s41598-017-11322-w.
  • Brand, R. A. M. D. Joint Contact Stres: A Reasonable Surrogate for Biological Processes? Iowa Orthop. J. 2005, 25, 82.
  • Huey, D. J.; Hu, J. C.; Athanasiou, K. A. Unlike Bone, Cartilage Regeneration Remains Elusive. Science 2012, 338, 917. DOI: 10.1126/science.1222454.
  • Hong, Y.; Zhou, F.; Hua, Y.; Zhang, X.; Ni, C.; Pan, D.; Zhang, Y.; Jiang, D.; Yang, L.; Lin, Q.; et al. A Strongly Adhesive Hemostatic Hydrogel for the Repair of Arterial and Heart Bleeds. Nat. Commun. 2019, 10, 2060. DOI: 10.1038/s41467-019-10004-7.
  • Blum, M. M.; Ovaert, T. C. Low Friction Hydrogel for Articular Cartilage Repair: evaluation of Mechanical and Tribological Properties in Comparison with Natural Cartilage Tissue. Mater. Sci. Eng. C. Mater. Biol. Appl. 2013, 33, 4377–4383. DOI: 10.1016/j.msec.2013.06.035.
  • Zhao, H.; Sun, Q.; Deng, X.; Cui, J. Earthworm-Inspired Rough Polymer Coatings with Self-Replenishing Lubrication for Adaptive Friction-Reduction and Antifouling Surfaces. Adv. Mater. 2018, e1802141. DOI: 10.1002/adma.201802141.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.