3,778
Views
65
CrossRef citations to date
0
Altmetric
Reviews

Fabrication of porous fibers via electrospinning: strategies and applications

& ORCID Icon
Pages 595-647 | Received 08 May 2019, Accepted 22 Oct 2019, Published online: 15 Nov 2019

References

  • Huang, Z. M.; Zhang, Y. Z.; Kotaki, M.; Ramakrishna, S. A Review on Polymer Nanofibers by Electrospinning and Their Applications in Nanocomposites. Compos. Sci. Technol. 2003, 63, 2223–2253. DOI: 10.1016/S0266-3538(03)00178-7.
  • Teo, W. E.; Ramakrishna, S. A Review on Electrospinning Design and Nanofibre Assemblies. Nanotechnology 2006, 17, R89–R106. DOI: 10.1088/0957-4484/17/14/R01.
  • Formhals, A. Process and Apparatus for Preparing Artificial Threads. Us 1975594 1934, 1–7.
  • Paul, D. R.; Robeson, L. M. Polymer Nanotechnology: Nanocomposites. Polymer (Guildf) 2008, 49, 3187–3204. DOI: 10.1016/j.polymer.2008.04.017.
  • Subbiah, T.; Bhat, G. S.; Tock, R. W.; Parameswaran, S.; Ramkumar, S. S. Electrospinning of Nanofibers. J. Appl. Polym. Sci. 2005, 96, 557–569. DOI: 10.1002/app.21481.
  • Mondal, K.; Sharma, A. Recent Advances in Electrospun Metal-Oxide Nanofiber Based Interfaces for Electrochemical Biosensing. RSC Adv. 2016, 6, 94595–94616. DOI: 10.1039/C6RA21477K.
  • Mondal, K. Recent Advances in the Synthesis of Metal Oxide Nanofibers and Their Environmental Remediation Applications. Inventions 2017, 2, 9. DOI: 10.3390/inventions2020009.
  • Kenry; Lim, C. T. Nanofiber Technology: Current Status and Emerging Developments. Prog. Polym. Sci. 2017, 70, 1–17.
  • Xue, J.; Xie, J.; Liu, W.; Xia, Y. Electrospun Nanofibers: New Concepts, Materials, and Applications. Acc. Chem. Res. 2017, 50, 1976–1987. DOI: 10.1021/acs.accounts.7b00218.
  • Greiner, A.; Wendorff, J. H. Electrospinning: A Fascinating Method for the Preparation of Ultrathin Fibers. Angew. Chem. Int. Ed. Engl. 2007, 46, 5670–5703. DOI: 10.1002/anie.200604646.
  • Yang, F.; Murugan, R.; Wang, S.; Ramakrishna, S. Electrospinning of Nano/Micro Scale Poly(l-Lactic Acid) Aligned Fibers and Their Potential in Neural Tissue Engineering. Biomaterials 2005, 26, 2603–2610. DOI: 10.1016/j.biomaterials.2004.06.051.
  • Mitchell, G. R. Ed. Electrospinning: Principles, Practice and Possibilities Polymer Chemistry Series. Royal Society of Chemistry: Cambridge, 2015.
  • Doshi, J.; Reneker, D. H. Electrospinning Process and Applications of Electrospun Fibers. Ind. Appl. Soc. Annu. Meet. 1993., Conf. Rec. 1993 IEEE 1993, 3, 1698–1703.
  • Reneker, D. H.; Chun, I. Nanometre Diameter Fibres of Polymer, Produced by Electrospinning. Nanotechnology 1996, 7, 216–223. DOI: 10.1088/0957-4484/7/3/009.
  • Li, D.; Xia, Y. Electrospinning of Nanofibers: Reinventing the Wheel?. Adv. Mater. 2004, 16, 1151–1170. DOI: 10.1002/adma.200400719.
  • Ramakrishna, S.; Fujihara, K.; Teo, W. E.; Yong, T.; Ma, Z.; Ramaseshan, R. Electrospun Nanofibers: Solving Global Issues. Mater. Today 2006, 9, 40–50. DOI: 10.1016/S1369-7021(06)71389-X.
  • Doshi, J.; Reneker, D. H. Electrospinning Process and Applications of Electrospun Fibers. J. Electrostat 1995, 35, 151–160. DOI: 10.1016/0304-3886(95)00041-8.
  • Huang, C.; Thomas, N. L. Fabricating Porous Poly(Lactic Acid) Fibres via Electrospinning. Eur. Polym. J. 2018, 99, 464–476. DOI: 10.1016/j.eurpolymj.2017.12.025.
  • Yang, Y.; Jia, Z.; Li, Q.; Guan, Z. Experimental Investigation of the Governing Parameters in the Electrospinning of Polyethylene Oxide Solutions. IEEE Trans. Dielectr. Electr. Insul. 2006, 13, 580–584.
  • Agarwal, S.; Greiner, A.; Wendorff, J. H. Functional Materials by Electrospinning of Polymers. Prog. Polym. Sci. 2013, 38, 963–991. DOI: 10.1016/j.progpolymsci.2013.02.001.
  • Khajavi, R.; Abbasipour, M. Electrospinning as a Versatile Method for Fabricating Coreshell, Hollow and Porous Nanofibers. Sci. Iran 2012, 19, 2029–2034.
  • Zander, N. E. Hierarchically Structured Electrospun Fibers. Polymers (Basel). 2013, 5, 19–44.
  • McCann, J. T.; Li, D.; Xia, Y. Electrospinning of Nanofibers with Core-Sheath, Hollow, or Porous Structures. J. Mater. Chem. 2005, 15, 735.
  • Moghe, A. K.; Gupta, B. S. Co-Axial Electrospinning for Nanofiber Structures: Preparation and Applications. Polym. Rev. 2008, 48, 353–377.
  • Gibson, P.; Schreuder-Gibson, H.; Rivin, D. Transport Properties of Porous Membranes Based on Electrospun Nanofibers. Colloids Surfaces A Physicochem. Eng. Asp. 2001, 187–188, 469–481. DOI: 10.1016/S0927-7757(01)00616-1.
  • Bognitzki, M.; Czado, W.; Frese, T.; Schaper, A.; Hellwig, M.; Steinhart, M.; Greiner, A.; Wendorff, J. H. Nanostructured Fibers via Electrospinning. Adv. Mater. 2001, 13, 70–72.
  • Tan, S. H.; Inai, R.; Kotaki, M.; Ramakrishna, S. Systematic Parameter Study for Ultra-Fine Fiber Fabrication via Electrospinning Process. Polymer (Guildf). 2005, 46, 6128–6134.
  • Casasola, R.; Thomas, N. L.; Trybala, A.; Georgiadou, S. Electrospun Poly Lactic Acid (PLA) Fibres: Effect of Different Solvent Systems on Fibre Morphology and Diameter. Polym. (United Kingdom) 2014, 55, 4728–4737. DOI: 10.1016/j.polymer.2014.06.032.
  • Li, L.; Hashaikeh, R.; Arafat, H. A. Development of Eco-Efficient Micro-Porous Membranes via Electrospinning and Annealing of Poly (Lactic Acid). J. Memb. Sci. 2013, 436, 57–67. DOI: 10.1016/j.memsci.2013.02.037.
  • Branciforti, M. C.; Custodio, T. A.; Guerrini, L. M.; Averous, L.; Bretas, R. E. S. Characterization of Nano-Structured Poly(D,L-Lactic Acid) Nonwoven Mats Obtained from Different Solutions by Electrospinning. J. Macromol. Sci. Part B Phys. 2009, 48, 1222–1240. DOI: 10.1080/10408390903060970.
  • Inoue, T.; Ougizawa, T.; Yasuda, O.; Miyasaka, K. Development of Modulated Structure during Solution Casting of Polymer Blends. Macromolecules 1985, 18, 57–63. DOI: 10.1021/ma00143a009.
  • van de Witte, P.; Dijkstra, P. J. J.; van den Berg, J. W. a W. a.; Feijen, J. Phase Separation Processes in Polymer Solutions in Relation to Membrane Formation. J. Memb. Sci. 1996, 117, 1–31. DOI: 10.1016/0376-7388(96)00088-9.
  • Laity, P. R.; Glover, P. M.; Hay, J. N. Composition and Phase Changes Observed by Magnetic Resonance Imaging during Non-Solvent Induced Coagulation of Cellulose. Polymer (Guildf) 2002, 43, 5827–5837. DOI: 10.1016/S0032-3861(02)00531-1.
  • Bunz, U. H. F. Breath Figures as a Dynamic Templating Method for Polymers and Nanomaterials. Adv. Mater. 2006, 18, 973–989. DOI: 10.1002/adma.200501131.
  • Zhang, A.; Bai, H.; Li, L. Breath Figure: A Nature-Inspired Preparation Method for Ordered Porous Films. Chem. Rev. 2015, 115, 9801–9868. DOI: 10.1021/acs.chemrev.5b00069.
  • Zhao, B.; Li, C.; Lu, Y.; Wang, X.; Liu, Z.; Zhang, J. Formation of Ordered Macroporous Membranes from Random Copolymers by the Breath Figure Method. Polymer (Guildf) 2005, 46, 9508–9513. DOI: 10.1016/j.polymer.2005.07.035.
  • Peng, J.; Han, Y.; Yang, Y.; Li, B. The Influencing Factors on the Macroporous Formation in Polymer Films by Water Droplet Templating. Polymer (Guildf) 2004, 45, 447–452. DOI: 10.1016/j.polymer.2003.11.019.
  • Leong, M. F.; Chian, K. S.; Mhaisalkar, P. S.; Ong, W. F.; Ratner, B. D. Effect of Electrospun Poly(D,L-Lactide) Fibrous Scaffold with Nanoporous Surface on Attachment of Porcine Esophageal Epithelial Cells and Protein Adsorption. J. Biomed. Mater. Res. Part A 2009, 89, 1040–1048. DOI: 10.1002/jbm.a.32061.
  • Ma, M.; Gupta, M.; Li, Z.; Zhai, L.; Gleason, K. K.; Cohen, R. E.; Rubner, M. F.; Rutledge, G. C. Decorated Electrospun Fibers Exhibiting Superhydrophobicity. Adv. Mater. 2007, 19, 255–259. DOI: 10.1002/adma.200601449.
  • Zheng, J.; Zhang, H.; Zhao, Z.; Han, C. C. Construction of Hierarchical Structures by Electrospinning or Electrospraying. Polymer (Guildf) 2012, 53, 546–554. DOI: 10.1016/j.polymer.2011.12.018.
  • Lu, P.; Xia, Y. Maneuvering the Internal Porosity and Surface Morphology of Electrospun Polystyrene Yarns by Controlling the Solvent and Relative Humidity. Langmuir 2013, 29, 7070–7078. DOI: 10.1021/la400747y.
  • Thomas, V.; Zhang, X.; Catledge, S. a.; Vohra, Y. K. Functionally Graded Electrospun Scaffolds with Tunable Mechanical Properties for Vascular Tissue Regeneration. Biomed. Mater. 2007, 2, 224–232. DOI: 10.1088/1748-6041/2/4/004.
  • Demir, M. M.; Horzum, N.; Taşdemirci, A.; Turan, K.; Güden, M. Mechanical Interlocking between Porous Electrospun Polystyrene Fibers and an Epoxy Matrix. ACS Appl. Mater. Interfaces 2014, 6, 21901–21905. DOI: 10.1021/am507029c.
  • Reneker, D. H.; Yarin, A. L. Electrospinning Jets and Polymer Nanofibers. Polymer (Guildf) 2008, 49, 2387–2425. DOI: 10.1016/j.polymer.2008.02.002.
  • Megelski, S.; Stephens, J. S.; Bruce Chase, D.; Rabolt, J. F. Micro- and Nanostructured Surface Morphology on Electrospun Polymer Fibers. Macromolecules 2002, 35, 8456–8466. DOI: 10.1021/ma020444a.
  • Fashandi, H.; Karimi, M. Pore Formation in Polystyrene Fiber by Superimposing Temperature and Relative Humidity of Electrospinning Atmosphere. Polymer (Guildf) 2012, 53, 5832–5849. DOI: 10.1016/j.polymer.2012.10.003.
  • Li, L.; Jiang, Z.; Li, M.; Li, R.; Fang, T. Hierarchically Structured PMMA Fibers Fabricated by Electrospinning. RSC Adv. 2014, 4, 52973–52985. DOI: 10.1039/C4RA05385K.
  • Natarajan, L.; New, J.; Dasari, A.; Yu, S.; Manan, M. A. Surface Morphology of Electrospun PLA Fibers: Mechanisms of Pore Formation. RSC Adv. 2014, 4, 44082–44088. DOI: 10.1039/C4RA06215A.
  • Ding, J.; Zhang, A.; Bai, H.; Li, L.; Li, J.; Ma, Z. Breath Figure in Non-Aqueous Vapor. Soft Matter 2013, 9, 506–514. DOI: 10.1039/C2SM27093E.
  • Demir, M. M. Investigation on Glassy Skin Formation of Porous Polystyrene Fibers Electrospun from DMF. Express Polym. Lett. 2010, 4, 2–8. DOI: 10.3144/expresspolymlett.2010.2.
  • Pai, C. L.; Boyce, M. C.; Rutledge, G. C. Morphology of Porous and Wrinkled Fibers of Polystyrene Electrospun from Dimethylformamide. Macromolecules 2009, 42, 2102–2114. DOI: 10.1021/ma802529h.
  • Yilmaz, L.; Mchugh, A. J. Analysis of Nonsolvent-Solvent-Polymer Phase Diagrams and Their Relevance to Membrane Formation Modeling. J. Appl. Polym. Sci. 1986, 31, 997–1018. DOI: 10.1002/app.1986.070310404.
  • Dong, Y.; Kong, J.; Phua, S. L.; Zhao, C.; Thomas, N. L.; Lu, X. Tailoring Surface Hydrophilicity of Porous Electrospun Nanofibers to Enhance Capillary and Push-Pull Effects for Moisture Wicking. ACS Appl. Mater. Interfaces 2014, 6, 14087–14095. DOI: 10.1021/am503417w.
  • Tian, L.; Gu, J.; Lei, X.; Lv, Z.; Qiao, M.; Yin, C.; Zhang, Q. Fabrication and Characterization of Electrospun Dopants/PS Composite Fibers with Porous and Hollow-Porous Structures. Macromol. Mater. Eng. 2016, 301, 625–635. DOI: 10.1002/mame.201600013.
  • Lin, J.; Ding, B.; Jianyong, Y.; Hsieh, Y. Direct Fabrication of Highly Nanoporous Polystyrene Fibers via Electrospinning. ACS Appl. Mater. Interfaces 2010, 2, 521–528. DOI: 10.1021/am900736h.
  • Wang, B.; Wang, Y.; Lei, Y.; Wu, N.; Gou, Y.; Han, C. Tailoring of Porous Structure in Macro-Meso-Microporous SiC Ultrathin Fibers via Electrospinning Combined with Polymer-Derived Ceramics Route. Mater. Manuf. Process 2016, 31, 1357–1365. DOI: 10.1080/10426914.2015.1090601.
  • Rezabeigi, E.; Demarquette, N. R. Ultraporous Membranes Electrospun from Nonsolvent-Induced Phase-Separated Ternary Systems. Macromol. Rapid Commun. 2019, 40, 1800811–1800880. DOI: 10.1002/marc.201800880.
  • Rezabeigi, E.; Sta, M.; Swain, M.; McDonald, J.; Demarquette, N. R.; Drew, R. A. L.; Wood-Adams, P. M. Electrospinning of Porous Polylactic Acid Fibers during Nonsolvent Induced Phase Separation. J. Appl. Polym. Sci. 2017, 134, 1–8. DOI: 10.1002/app.44862.
  • Qi, Z.; Yu, H.; Chen, Y.; Zhu, M. Highly Porous Fibers Prepared by Electrospinning a Ternary System of Nonsolvent/Solvent/Poly(l-Lactic Acid). Mater. Lett. 2009, 63, 415–418. DOI: 10.1016/j.matlet.2008.10.059.
  • Zhang, K.; Wang, X.; Jing, D.; Yang, Y.; Zhu, M. Bionic Electrospun Ultrafine Fibrous Poly(L-Lactic Acid) Scaffolds with a Multi-Scale Structure. Biomed. Mater. 2009, 4, 035004. DOI: 10.1088/1748-6041/4/3/035004.
  • Stodolak-Zych, E.; Dzierzkowska, E.; Matwally, S.; Mikołajczyk, M.; Gajek, M.; Rapacz-Kmita, A. Multifunctional Porous Membranes with Antibacterial Properties. Int. J. Polym. Mater. Polym. Biomater. 2019, 68, 19–26. DOI: 10.1080/00914037.2018.1525719.
  • Nguyen, T. T. T.; Ghosh, C.; Hwang, S. G.; Chanunpanich, N.; Park, J. S. Porous Core/Sheath Composite Nanofibers Fabricated by Coaxial Electrospinning as a Potential Mat for Drug Release System. Int. J. Pharm. 2012, 439, 296–306. DOI: 10.1016/j.ijpharm.2012.09.019.
  • Abadi, F. J. H.; Tehran, M. A.; Zamani, F.; Nematollahi, M.; Mobarakeh, L. G.; Nasr-Esfahani, M. H. Effect of Nanoporous Fibers on Growth and Proliferation of Cells on Electrospun Poly (ε-Caprolactone) Scaffolds. Int. J. Polym. Mater. Polym. Biomater. 2014, 63, 57–64. DOI: 10.1080/00914037.2013.769248.
  • Katsogiannis, K. A. G.; Vladisavljević, G. T.; Georgiadou, S. Porous Electrospun Polycaprolactone (PCL) Fibres by Phase Separation. Eur. Polym. J. 2015, 69, 284–295. DOI: 10.1016/j.eurpolymj.2015.01.028.
  • Kouparitsas, I. K.; Mele, E.; Ronca, S. Synthesis and Electrospinning of Polycaprolactone from an Aluminium-Based Catalyst: Influence of the Ancillary Ligand and Initiators on Catalytic Efficiency and Fibre Structure. Polymers (Basel) 2019, 11, 611–677. DOI: 10.3390/polym11040677.
  • Chen, P. Y.; Tung, S. H. One-Step Electrospinning to Produce Nonsolvent-Induced Macroporous Fibers with Ultrahigh Oil Adsorption Capability. Macromolecules 2017, 50, 2528–2534. DOI: 10.1021/acs.macromol.6b02696.
  • Luo, C. J.; Nangrejo, M.; Edirisinghe, M. A Novel Method of Selecting Solvents for Polymer Electrospinning. Polymer (Guildf) 2010, 51, 1654–1662. DOI: 10.1016/j.polymer.2010.01.031.
  • Yu, X.; Xiang, H.; Long, Y.; Zhao, N.; Zhang, X.; Xu, J. Preparation of Porous Polyacrylonitrile Fibers by Electrospinning a Ternary System of PAN/DMF/H2O. Mater. Lett 2010, 64, 2407–2409. DOI: 10.1016/j.matlet.2010.08.006.
  • Yang, Y.; Centrone, A.; Chen, L.; Simeon, F.; Alan Hatton, T.; Rutledge, G. C. Highly Porous Electrospun Polyvinylidene Fluoride (PVDF)-Based Carbon Fiber. Carbon N. Y. 2011, 49, 3395–3403. DOI: 10.1016/j.carbon.2011.04.015.
  • Zhang, W.; Mele, E. Phase Separation Events Induce the Coexistence of Distinct Nanofeatures in Electrospun Fibres of Poly(Ethyl Cyanoacrylate) and Polycaprolactone. Mater. Today Commun. 2018, 16, 135–141.
  • Li, X. H.; Shao, C. L.; Liu, Y. C. A Simple Method for Controllable Preparation of Polymer Nanotubes via a Single Capillary Electrospinning. Langmuir 2007, 23, 10920–10923. DOI: 10.1021/la701806f.
  • Bazilevsky, A. V.; Yarin, A. L.; Megaridis, C. M. Co-Electrospinning of Core-Shell Fibers Using a Single-Nozzle Technique. Langmuir 2007, 23, 2311–2314. DOI: 10.1021/la063194q.
  • Seo, Y. A.; Pant, H. R.; Nirmala, R.; Lee, J. H.; Song, K. G.; Kim, H. Y. Fabrication of Highly Porous Poly (ε-Caprolactone) Microfibers via Electrospinning. J. Porous Mater. 2012, 19, 217–223.
  • Nayani, K.; Katepalli, H.; Sharma, C. S.; Sharma, A.; Patil, S.; Venkataraghavan, R. Electrospinning Combined with Nonsolvent-Induced Phase Separation to Fabricate Highly Porous and Hollow Submicrometer Polymer Fibers. Ind. Eng. Chem. Res. 2012, 51, 1761–1766. DOI: 10.1021/ie2009229.
  • Tian, R.; Zhang, P.; Lv, R.; Na, B.; Liu, Q.; Ju, Y. Formation of Highly Porous Structure in the Electrospun Polylactide Fibers by Swelling-Crystallization in Poor Solvents. RSC Adv. 2015, 5, 37539–37544. DOI: 10.1039/C5RA05738H.
  • McCann, J. T.; Marquez, M.; Xia, Y. Highly Porous Fibers by Electrospinning into a Cryogenic Liquid. J. Am. Chem. Soc. 2006, 128, 1436–1437. DOI: 10.1021/ja056810y.
  • Li, W.; Shi, L.; Zhou, K.; Zhang, X.; Ullah, I.; Ou, H.; Zhang, W.; Wu, T. Facile Fabrication of Porous Polymer Fibers via Cryogenic Electrospinning System. J. Mater. Process. Technol. 2019, 266, (June 2018), 551–557. DOI: 10.1016/j.jmatprotec.2018.11.035.
  • Leong, M. F.; Rasheed, M. Z.; Lim, T. C.; Chian, K. S. In Vitro Cell Infiltration and in Vivo Cell Infiltration and Vascularization in a Fibrous, Highly Porous Poly(D,L-Lactide) Scaffold Fabricated by Cryogenic Electrospinning Technique. J. Biomed. Mater. Res. Part A 2009, 91, 231–240. DOI: 10.1002/jbm.a.32208.
  • Ye, X.-Y.; Lin, F.-W.; Huang, X.-J.; Liang, H.-Q.; Xu, Z.-K. Polymer Fibers with Hierarchically Porous Structure: Combination of High Temperature Electrospinning and Thermally Induced Phase Separation. RSC Adv. 2013, 3, 13851. DOI: 10.1039/c3ra41315b.
  • Honarbakhsh, S.; Pourdeyhimi, B. Scaffolds for Drug Delivery, Part I: Electrospun Porous Poly(Lactic Acid) and Poly(Lactic Acid)/Poly(Ethylene Oxide) Hybrid Scaffolds. J. Mater. Sci. 2011, 46, 2874–2881. DOI: 10.1007/s10853-010-5161-5.
  • Dayal, P.; Liu, J.; Kumar, S.; Kyu, T. Experimental and Theoretical Investigations of Porous Structure Formation in Electrospun Fibers. Macromolecules 2007, 40, 7689–7694. DOI: 10.1021/ma071418l.
  • Cui, W.; Li, X.; Zhou, S.; Weng, J. Degradation Patterns and Surface Wettability of Electrospun Fibrous Mats. Polym. Degrad. Stab. 2008, 93, 731–738. DOI: 10.1016/j.polymdegradstab.2007.12.002.
  • Gupta, A.; Saquing, C. D.; Afshari, M.; Tonelli, A. E.; Khan, S. A.; Kotek, R. Porous Nylon-6 Fibers via a Novel Salt-Induced Electrospinning Method. Macromolecules 2009, 42, 709–715. DOI: 10.1021/ma801918c.
  • Wang, Y.; Wang, B.; Wang, G.; Yin, T.; Yu, Q. A Novel Method for Preparing Electrospun Fibers with Nano-/Micro-Scale Porous Structures. Polym. Bull. 2009, 63, 259–265. DOI: 10.1007/s00289-009-0078-3.
  • Ji, L.; Saquing, C.; Khan, S. A.; Zhang, X. Preparation and Characterization of Silica Nanoparticulate- Polyacrylonitrile Composite and Porous Nanofibers. Nanotechnology 2008, 19, 085605. DOI: 10.1088/0957-4484/19/8/085605.
  • Gao, J. F.; Hu, M. J.; Li, W.; Wong, J. S. P.; Li, R. K. Y. Morphological Evolution from Porous Nanofibers to Rice like Nanobeans. Mater. Lett. 2014, 128, 110–113. DOI: 10.1016/j.matlet.2014.04.107.
  • Zhang, L.; Hsieh, Y. L. Nanoporous Ultrahigh Specific Surface Polyacrylonitrile Fibres. Nanotechnology 2006, 17, 4416–4423. DOI: 10.1088/0957-4484/17/17/022.
  • Ning, J.; Zhang, X.; Yang, H.; Xu, Z. L.; Wei, Y. M. Preparation of Porous PVDF Nanofiber Coated with Ag NPs for Photocatalysis Application. Fibers Polym. 2016, 17, 21–29. DOI: 10.1007/s12221-016-5705-7.
  • Zhang, Z.; Li, X.; Wang, C.; Fu, S.; Liu, Y.; Shao, C. Polyacrylonitrile and Carbon Nanofibers with Controllable Nanoporous Structures by Electrospinning. Macromol. Mater. Eng. 2009, 294, 673–678. DOI: 10.1002/mame.200900076.
  • Wang, Z. G.; Wang, J. Q.; Xu, Z. K. Immobilization of Lipase from Candida Rugosa on Electrospun Polysulfone Nanofibrous Membranes by Adsorption. J. Mol. Catal. B Enzym. 2006, 42, 45–51. DOI: 10.1016/j.molcatb.2006.06.004.
  • Bognitzki, M.; Frese, T.; Steinhart, M.; Greiner, A.; Wendorff, J. H.; Schaper, A.; Hellwig, M. Preparation of Fibers with Nanoscaled Morphologies: Electrospinning of Polymer Blends. Polym. Eng. Sci. 2001, 41, 982–989. DOI: 10.1002/pen.10799.
  • Guan, J.; Li, J.; Li, Y. Electrospun Nanofibers with Both Surface Nanopores and Internal Interpenetrated Nanochannels for Oil Absorption. RSC Adv. 2016, 6, 33781–33788. DOI: 10.1039/C6RA00678G.
  • Liang, Y.; Lin, C.; Guan, J.; Li, Y. Silver Nanoparticle-Immobilized Porous POM/PLLA Nanofibrous Membranes: Efficient Catalysts for Reduction of 4-Nitroaniline. RSC Adv. 2017, 7, 7460–7468. DOI: 10.1039/C6RA28167B.
  • You, Y.; Youk, J. H.; Lee, S. W.; Min, B. M.; Lee, S. J.; Park, W. H. Preparation of Porous Ultrafine PGA Fibers via Selective Dissolution of Electrospun PGA/PLA Blend Fibers. Mater. Lett. 2006, 60, 757–760. DOI: 10.1016/j.matlet.2005.10.007.
  • Moon, S.; Choi, J.; Farris, R. J. Highly Porous Polyacrylonitrile/Polystyrene Nanofibers by Electrospinning. Fibers Polym. 2008, 9, 276–280. DOI: 10.1007/s12221-008-0044-y.
  • Lyoo, W. S.; Youk, J. H.; Lee, S. W.; Park, W. H. Preparation of Porous Ultra-Fine Poly(Vinyl Cinnamate) Fibers. Mater. Lett. 2005, 59, 3558–3562. DOI: 10.1016/j.matlet.2005.06.027.
  • Han, S. O.; Son, W. K.; Cho, D.; Youk, J. H.; Park, W. H. Preparation of Porous Ultra-Fine Fibres via Selective Thermal Degradation of Electrospun Polyetherimide/Poly(3-Hydroxybutyrate-Co-3-Hydroxyvalerate) Fibres. Polym. Degrad. Stab. 2004, 86, 257–262. DOI: 10.1016/j.polymdegradstab.2004.04.015.
  • Chen, J. T.; Chen, W. L.; Fan, P. W. Hierarchical Structures by Wetting Porous Templates with Electrospun Polymer Fibers. ACS Macro Lett. 2012, 1, 41–46.
  • Yusof, N.; Ismail, A. F. Post Spinning and Pyrolysis Processes of Polyacrylonitrile (PAN)-Based Carbon Fiber and Activated Carbon Fiber: A Review. J. Anal. Appl. Pyrolysis 2012, 93, 1–13. DOI: 10.1016/j.jaap.2011.10.001.
  • Nataraj, S. K.; Yang, K. S.; Aminabhavi, T. M. Polyacrylonitrile-Based Nanofibers - A State-of-the-Art Review. Prog. Polym. Sci. 2012, 37, 487–513.
  • Zussman, E.; Chen, X.; Ding, W.; Calabri, L.; Dikin, D. A.; Quintana, J. P.; Ruoff, R. S. Mechanical and Structural Characterization of Electrospun PAN-Derived Carbon Nanofibers. Carbon N. Y. 2005, 43, 2175–2185.
  • Arshad, S. N.; Naraghi, M.; Chasiotis, I. Strong Carbon Nanofibers from Electrospun Polyacrylonitrile. Carbon N. Y. 2011, 49, 1710–1719.
  • Zhou, Z.; Lai, C.; Zhang, L.; Qian, Y.; Hou, H.; Reneker, D. H.; Fong, H. Development of Carbon Nanofibers from Aligned Electrospun Polyacrylonitrile Nanofiber Bundles and Characterization of Their Microstructural, Electrical, and Mechanical Properties. Polymer (Guildf). 2009, 50, 2999–3006.
  • Ji, L.; Lin, Z.; Medford, A. J.; Zhang, X. Porous Carbon Nanofibers from Electrospun Polyacrylonitrile/SiO2 Composites as an Energy Storage Material. Carbon N. Y. 2009, 47, 3346–3354.
  • Ji, L.; Zhang, X. Fabrication of Porous Carbon Nanofibers and Their Application as Anode Materials for Rechargeable Lithium-Ion Batteries. Nanotechnology 2009, 20, 155705. DOI: 10.1088/0957-4484/20/15/155705.
  • Ji, L.; Rao, M.; Aloni, S.; Wang, L.; Cairns, E. J.; Zhang, Y. Porous Carbon Nanofiber–Sulfur Composite Electrodes for Lithium/Sulfur Cells. Energy Environ. Sci. 2011, 4, 5053. DOI: 10.1039/c1ee02256c.
  • Park, S. H.; Kim, B. K.; Lee, W. J. Electrospun Activated Carbon Nanofibers with Hollow Core/Highly Mesoporous Shell Structure as Counter Electrodes for Dye-Sensitized Solar Cells. J. Power Sources 2013, 239, 122–127. DOI: 10.1016/j.jpowsour.2013.03.079.
  • Peng, M.; Li, D.; Shen, L.; Chen, Y.; Zheng, Q.; Wang, H. Nanoporous Structured Submicrometer Carbon Fibers Prepared via Solution Electrospinning of Polymer Blends. Langmuir 2006, 22, 9368–9374. DOI: 10.1021/la061154g.
  • Nagamine, S.; Matsumoto, T.; Hikima, Y.; Ohshima, M. Fabrication of Porous Carbon Nanofibers by Phosphate-Assisted Carbonization of Electrospun Poly(Vinyl Alcohol) Nanofibers. Mater. Res. Bull. 2016, 79, 8–13. DOI: 10.1016/j.materresbull.2016.01.009.
  • Liang, Y.; Wu, D.; Fu, R. Carbon Microfibers with Hierarchical Porous Structure from Electrospun Fiber-Like Natural Biopolymer. Sci. Rep. 2013, 3, 1119.
  • Yu, Y.; Gu, L.; Zhu, C.; Van Aken, P. A.; Maier, J. Tin Nanoparticles Encapsulated in Porous Multichannel Carbon Microtubes: Preparation by Single-Nozzle Electrospinning and Application as Anode Material for High-Performance Li-Based Batteries. J. Am. Chem. Soc. 2009, 131, 15984–15985. DOI: 10.1021/ja906261c.
  • Liu, Y.; Yan, X.; Yu, Y.; Yang, X. Eco-Friendly Fabricated Porous Carbon Nanofibers Decorated with Nanosized SnOx as High-Performance Lithium-Ion Battery Anodes. ACS Sustainable Chem. Eng. 2016, 4, 2951–2959. DOI: 10.1021/acssuschemeng.5b01236.
  • Ji, L.; Zhang, X. Manganese Oxide Nanoparticle-Loaded Porous Carbon Nanofibers as Anode Materials for High-Performance Lithium-Ion Batteries. Electrochem. Commun. 2009, 11, 795–798. DOI: 10.1016/j.elecom.2009.01.039.
  • Ji, L.; Medford, A. J.; Zhang, X. Porous Carbon Nanofibers Loaded with Manganese Oxide Particles: Formation Mechanism and Electrochemical Performance as Energy-Storage Materials. J. Mater. Chem. 2009, 19, 5593. DOI: 10.1039/b905755b.
  • Park, S.-K.; Park, J.-S.; Kang, Y. C. Selenium-Infiltrated Metal–Organic Framework-Derived Porous Carbon Nanofibers Comprising Interconnected Bimodal Pores for Li–Se Batteries with High Capacity and Rate Performance. J. Mater. Chem. A 2018, 6, 1028–1036. DOI: 10.1039/C7TA09676C.
  • Yahya, M. A.; Al-Qodah, Z.; Ngah, C. W. Z. Agricultural Bio-Waste Materials as Potential Sustainable Precursors Used for Activated Carbon Production: A Review. Renew. Sustain. Energy Rev. 2015, 46, 218–235. DOI: 10.1016/j.rser.2015.02.051.
  • Li, D.; Xia, Y. Fabrication of Titania Nanofibers by Electrospinning. Nano Lett. 2003, 3, 555–560. DOI: 10.1021/nl034039o.
  • Kim, I. D.; Rothschild, A.; Lee, B. H.; Kim, D. Y.; Jo, S. M.; Tuller, H. L. Ultrasensitive Chemiresistors Based on Electrospun TiO2 Nanofibers. Nano Lett. 2006, 6, 2009–2013. DOI: 10.1021/nl061197h.
  • Zhang, W.; Zhu, R.; Ke, L.; Liu, X.; Liu, B.; Ramakrishna, S. Anatase Mesoporous TiO2 Nanofibers with High Surface Area for Solid-State Dye-Sensitized Solar Cells. Small 2010, 6, 2176–2182. DOI: 10.1002/smll.201000759.
  • Madhugiri, S.; Sun, B.; Smirniotis, P. G.; Ferraris, J. P.; Balkus, K. J. Electrospun Mesoporous Titanium Dioxide Fibers. Microporous Mesoporous Mater. 2004, 69, 77–83. DOI: 10.1016/j.micromeso.2003.12.023.
  • Wessel, C.; Ostermann, R. Supporting Information for Formation of Inorganic Nanofibers from Preformed TiO2 Nanoparticles via Electrospinning. J. Phys. Chem. C 2011, 115, 362–372
  • Adhikari, S. P.; Pant, H. R.; Mousa, H. M.; Lee, J.; Kim, H. J.; Park, C. H.; Kim, C. S. Synthesis of High Porous Electrospun Hollow TiO2 Nanofibers for Bone Tissue Engineering Application. J. Ind. Eng. Chem. 2016, 35, 75–82. DOI: 10.1016/j.jiec.2015.12.004.
  • Cho, Y. S.; Roh, S. H. Sol–Gel Synthesis of Porous Titania Fibers by Electro-Spinning for Water Purification. J. Dispers. Sci. Technol. 2018, 39, 33–44. DOI: 10.1080/01932691.2017.1292461.
  • Lin, Y. P.; Chen, Y. Y.; Lee, Y. C.; Chen-Yang, Y. W. Effect of Wormhole-like Mesoporous Anatase TiO2 Nanofiber Prepared by Electrospinning with Ionic Liquid on Dye-Sensitized Solar Cells. J. Phys. Chem. C 2012, 116, 13003–13012. DOI: 10.1021/jp212146p.
  • Ryu, M. H.; Jung, K. N.; Shin, K. H.; Han, K. S.; Yoon, S. High Performance N-Doped Mesoporous Carbon Decorated TiO2 Nanofibers as Anode Materials for Lithium-Ion Batteries. J. Phys. Chem. C 2013, 117, 8092–8098. DOI: 10.1021/jp400757s.
  • Hou, H.; Wang, L.; Gao, F.; Wei, G.; Tang, B.; Yang, W.; Wu, T. General Strategy for Fabricating Thoroughly Mesoporous Nanofibers. J. Am. Chem. Soc. 2014, 136, 16716–16719. DOI: 10.1021/ja508840c.
  • Chen, H.; Di, J.; Wang, N.; Dong, H.; Wu, J.; Zhao, Y.; Yu, J.; Jiang, L. Fabrication of Hierarchically Porous Inorganic Nanofibers by a General Microemulsion Electrospinning Approach. Small 2011, 7, 1779–1783. DOI: 10.1002/smll.201002376.
  • Zuniga, L.; Agubra, V.; Flores, D.; Campos, H.; Villareal, J.; Alcoutlabi, M. Multichannel Hollow Structure for Improved Electrochemical Performance of TiO2/Carbon Composite Nanofibers as Anodes for Lithium Ion Batteries. J. Alloys Compd. 2016, 686, 733–743. DOI: 10.1016/j.jallcom.2016.06.089.
  • Lu, B.; Zhu, C.; Zhang, Z.; Lan, W.; Xie, E. Preparation of Highly Porous TiO2 Nanotubes and Their Catalytic Applications. J. Mater. Chem. 2012, 22, 1375–1379. DOI: 10.1039/C1JM15242D.
  • Singh, N.; Salam, Z.; Subasri, A.; Sivasankar, N.; Subramania, A. Development of Porous TiO2 Nanofibers by Solvosonication Process for High Performance Quantum Dot Sensitized Solar Cell. Sol. Energy Mater. Sol. Cells 2018, 179, 417–426. DOI: 10.1016/j.solmat.2018.01.042.
  • Yang, Y.; Wang, H.; Zhou, Q.; Kong, M.; Ye, H.; Yang, G. Improved Lithium Storage Properties of Electrospun TiO2 with Tunable Morphology: From Porous Anatase to Necklace Rutile. Nanoscale 2013, 5, 10267. DOI: 10.1039/c3nr02819d.
  • Kanehata, M.; Ding, B.; Shiratori, S. Nanoporous Ultra-High Specific Surface Inorganic Fibres. Nanotechnology 2007, 18, 315602. DOI: 10.1088/0957-4484/18/31/315602.
  • Peng, M.; Sun, Q.; Ma, Q.; Li, P. Mesoporous Silica Fibers Prepared by Electroblowing of a Poly(Methyl Methacrylate)/Tetraethoxysilane Mixture in N,N-Dimethylformamide. Microporous Mesoporous Mater. 2008, 115, 562–567. DOI: 10.1016/j.micromeso.2008.02.035.
  • Patel, A. C.; Li, S.; Wang, C.; Zhang, W.; Wei, Y. Electrospinning of Porous Silica Nanofibers Containing Silver Nanoparticles for Catalytic Applications. Chem. Mater. 2007, 19, 1231–1238. DOI: 10.1021/cm061331z.
  • Guan, H.; Chao, C.; Kong, W.; Hu, Z.; Zhao, Y.; Yuan, S.; Zhang, B. Magnetic Porous PtNi/SiO2 Nanofibers for Catalytic Hydrogenation of p-Nitrophenol. J. Nanoparticle Res. 2017, 19, 187
  • Hou, Z.; Li, C.; Ma, P.; Li, G.; Cheng, Z.; Peng, C.; Yang, D.; Yang, P.; Lin, J. Electrospinning Preparation and Drug-Delivery Properties of an up-Conversion Luminescent Porous NaYF4:Yb3+, Er3+@Silica Fiber Nanocomposite. Adv. Funct. Mater. 2011, 21, 2356–2365.
  • Yang, A.; Tao, X.; Pang, G. K. H.; Siu, K. G. G. Preparation of Porous Tin Oxide Nanobelts Using the Electrospinning Technique. J. Am. Ceram. Soc. 2007, 91, 257–262.
  • Li, L.; Yin, X.; Liu, S.; Wang, Y.; Chen, L.; Wang, T. Electrospun Porous SnO2 Nanotubes as High Capacity Anode Materials for Lithium Ion Batteries. Electrochem. Commun. 2010, 12, 1383–1386.
  • Xia, X.; Dong, X. J.; Wei, Q. F.; Cai, Y. B.; Lu, K. Y. Formation Mechanism of Porous Hollow SnO2 Nanofibers Prepared by One-Step Electrospinning. Express Polym. Lett. 2012, 6, 169–176.
  • Fan, H. J.; Knez, M.; Scholz, R.; Hesse, D.; Nielsch, K.; Zacharias, M.; Gösele, U. Influence of Surface Diffusion on the Formation of Hollow Nanostructures Induced by the Kirkendall Effect: The Basic Concept. Nano Lett. 2007, 7, 993–997.
  • Wang, W.; Dahl, M.; Yin, Y. Hollow Nanocrystals through the Nanoscale Kirkendall Effect. Chem. Mater. 2013, 25, 1179–1189.
  • Zhang, Y.; Li, J.; An, G.; He, X. Highly Porous SnO2 Fibers by Electrospinning and Oxygen Plasma Etching and Its Ethanol-Sensing Properties. Sensors Actuators, B Chem 2010, 144, 43–48.
  • Shi, H.; Zhou, M.; Song, D.; Pan, X.; Fu, J.; Zhou, J.; Ma, S.; Wang, T. Highly Porous SnO2/TiO2 Electrospun Nanofibers with High Photocatalytic Activities. Ceram. Int. 2014, 40, 10383–10393.
  • Cherian, C. T.; Sundaramurthy, J.; Kalaivani, M.; Ragupathy, P.; Kumar, P. S.; Thavasi, V.; Reddy, M. V.; Sow, C. H.; Mhaisalkar, S. G.; Ramakrishna, S.; Chowdari, B. V. R. Electrospun α-Fe2O3 Nanorods as a Stable, High Capacity Anode Material for Li-Ion Batteries. J. Mater. Chem. 2012, 22, 12198.
  • Wang, H. G.; Zhou, Y.; Shen, Y.; Li, Y.; Zuo, Q.; Duan, Q. Fabrication, Formation Mechanism and the Application in Lithium-Ion Battery of Porous Fe2O3 Nanotubes via Single-Spinneret Electrospinning. Electrochim. Acta 2015, 158, 105–112. DOI: 10.1016/j.electacta.2015.01.149.
  • Lang, L.; Xu, Z. Controllable Synthesis of Porous α-Fe2O3 Microtube and Tube-in-Tube by Non-Coaxial Electrospinning. Chem. Lett. 2013, 42, 750–752.
  • Zhu, J.; Lu, Y.; Chen, C.; Ge, Y.; Jasper, S.; Leary, J. D.; Li, D.; Jiang, M.; Zhang, X. Porous One-Dimensional Carbon/Iron Oxide Composite for Rechargeable Lithium-Ion Batteries with High and Stable Capacity. J. Alloys Compd. 2016, 672, 79–85.
  • Shi, R.; Zhang, Y.; Wang, X.; Ma, Q.; Zhang, A.; Yang, P. Electrospun ZnFe2O4 Nanotubes and Nanobelts: Morphology Evolution, Formation Mechanism and Fenton-like Photocatalytic Activities. Mater. Chem. Phys. 2018, 207, 114–122.
  • Wang, C.; Tan, X.; Yan, J.; Chai, B.; Li, J.; Chen, S. Electrospinning Direct Synthesis of Magnetic ZnFe2O4/ZnO Multi-Porous Nanotubes with Enhanced Photocatalytic Activity. Appl. Surf. Sci. 2017, 396, 780–790.
  • Lim, S. K.; Hwang, S. H.; Chang, D.; Kim, S. Preparation of Mesoporous In2O3 Nanofibers by Electrospinning and Their Application as a CO Gas Sensor. Sensors Actuators, B Chem. 2010, 149, 28–33.
  • Xu, L.; Dong, B.; Wang, Y.; Bai, X.; Liu, Q.; Song, H. Electrospinning Preparation and Room Temperature Gas Sensing Properties of Porous In2O3 Nanotubes and Nanowires. Sensors Actuators, B Chem. 2010, 147, 531–538.
  • Liang, X.; Jin, G.; Liu, F.; Zhang, X.; An, S.; Ma, J.; Lu, G. Synthesis of In2O3 Hollow Nanofibers and Their Application in Highly Sensitive Detection of Acetone. Ceram. Int. 2015, 41, 13780–13787.
  • Xu, L.; Dong, B.; Wang, Y.; Bai, X.; Chen, J.; Liu, Q.; Song, H. Porous In2O3 :RE (RE = Gd, Tb, Dy, Ho, Er, Tm, Yb) Nanotubes: Electrospinning Preparation and Room Gas-Sensing Properties. J. Phys. Chem. C 2010, 114, 9089–9095. DOI: 10.1021/jp101115v.
  • Xu, L.; Song, H.; Dong, B.; Wang, Y.; Chen, J.; Bai, X. Preparation and Bifunctional Gas Sensing Properties of Porous In2O3−CeO2 Binary Oxide Nanotubes. Inorg. Chem. 2010, 49, 10590–10597. DOI: 10.1021/ic101602a.
  • Duan, H.; Wang, Y.; Li, S.; Li, H.; Liu, L.; Du, L.; Cheng, Y. Controllable Synthesis of Ho-Doped In2O3 Porous Nanotubes by Electrospinning and Their Application as an Ethanol Gas Sensor. J. Mater. Sci. 2018, 53, 3267–3279. DOI: 10.1007/s10853-017-1796-9.
  • Wei, S.; Zhao, G.; Du, W.; Tian, Q. Synthesis and Excellent Acetone Sensing Properties of Porous WO3 Nanofibers. Vacuum 2016, 124, 32–39. DOI: 10.1016/j.vacuum.2015.11.010.
  • Choi, S. J.; Choi, C.; Kim, S. J.; Cho, H. J.; Hakim, M.; Jeon, S.; Kim, I. D. Highly Efficient Electronic Sensitization of Non-Oxidized Graphene Flakes on Controlled Pore-Loaded WO3 Nanofibers for Selective Detection of H2S Molecules. Sci. Rep. 2015, 5, 1–9.
  • Choi, S.-J.; Kim, S.-J.; Koo, W.-T.; Cho, H.-J.; Kim, I.-D. Catalyst-Loaded Porous WO3 Nanofibers Using Catalyst-Decorated Polystyrene Colloid Templates for Detection of Biomarker Molecules. Chem. Commun. 2015, 51, 2609–2612. DOI: 10.1039/C4CC09725D.
  • Kim, D. H.; Jang, J. S.; Koo, W. T.; Choi, S. J.; Kim, S. J.; Kim, I. D. Hierarchically Interconnected Porosity Control of Catalyst-Loaded WO3 Nanofiber Scaffold: Superior Acetone Sensing Layers for Exhaled Breath Analysis. Sensors Actuators, B Chem. 2018, 259, 616–625.
  • Choi, S. J.; Fuchs, F.; Demadrille, R.; Grévin, B.; Jang, B. H.; Lee, S. J.; Lee, J. H.; Tuller, H. L.; Kim, I. D. Fast Responding Exhaled-Breath Sensors Using WO3 Hemitubes Functionalized by Graphene-Based Electronic Sensitizers for Diagnosis of Diseases. ACS Appl. Mater. Interfaces 2014, 6, 9061–9070. pp DOI: 10.1021/am501394r.
  • Ozgur, Ü.; Hofstetter, D.; Morkoç, H. ZnO Devices and Applications: A Review of Current Status and Future Prospects. Proc. IEEE 2010, 98, 1255–1268. DOI: 10.1109/JPROC.2010.2044550.
  • Mu, J.; Shao, C.; Guo, Z.; Zhang, Z.; Zhang, M.; Zhang, P.; Chen, B.; Liu, Y. High Photocatalytic Activity of ZnO-Carbon Nanofiber Heteroarchitectures. ACS Appl. Mater. Interfaces 2011, 3, 590–596. DOI: 10.1021/am101171a.
  • Zhang, Z.; Shao, C.; Li, X.; Wang, C.; Zhang, M.; Liu, Y. Electrospun Nanofibers of p -Type NiO/n -Type ZnO Heterojunctions with Enhanced Photocatalytic Activity. ACS Appl. Mater. Interfaces 2010, 2, 2915–2923. DOI: 10.1021/am100618h.
  • Singh, P.; Mondal, K.; Sharma, A. Reusable Electrospun Mesoporous ZnO Nanofiber Mats for Photocatalytic Degradation of Polycyclic Aromatic Hydrocarbon Dyes in Wastewater. J. Colloid Interface Sci. 2013, 394, 208–215. DOI: 10.1016/j.jcis.2012.12.006.
  • Ali, M. A.; Mondal, K.; Singh, C.; Dhar Malhotra, B.; Sharma, A. Anti-Epidermal Growth Factor Receptor Conjugated Mesoporous Zinc Oxide Nanofibers for Breast Cancer Diagnostics. Nanoscale 2015, 7, 7234–7245. DOI: 10.1039/C5NR00194C.
  • Wang, B.; Cheng, J. L.; Wu, Y. P.; Wang, D.; He, D. N. Porous NiO Fibers Prepared by Electrospinning as High Performance Anode Materials for Lithium Ion Batteries. Electrochem. Commun. 2012, 23, 5–8. DOI: 10.1016/j.elecom.2012.07.003.
  • Qiu, Y.; Yu, J.; Zhou, X.; Tan, C.; Yin, J. Synthesis of Porous NiO and ZnO Submicro- and Nanofibers from Electrospun Polymer Fiber Templates. Nanoscale Res. Lett. 2009, 4, 173–177. DOI: 10.1007/s11671-008-9221-6.
  • Qiao, L.; Wang, X.; Qiao, L.; Sun, X.; Li, X.; Zheng, Y.; He, D. Single Electrospun Porous NiO–ZnO Hybrid Nanofibers as Anode Materials for Advanced Lithium-Ion Batteries. Nanoscale 2013, 5, 3037. DOI: 10.1039/c3nr34103h.
  • Li, L.; Peng, S.; Cheah, Y.; Teh, P.; Wang, J.; Wee, G.; Ko, Y.; Wong, C.; Srinivasan, M. Electrospun Porous NiCo2O4 Nanotubes as Advanced Electrodes for Electrochemical Capacitors. Chem. Eur. J. 2013, 19, 5892–5898. DOI: 10.1002/chem.201204153.
  • Li, L.; Peng, S.; Wang, J.; Cheah, Y. L.; Teh, P. F.; Ko, Y.; Wong, C.; Srinivasan, M. A Facile Approach to Prepare Porous CaSnO3 Nanotubes via a Single Spinneret Electrospinning Technique as Anodes for Lithium Ion Batteries. ACS Appl. Mater. Interfaces 2012, 4, 6005–6012
  • Li, L.; Peng, S.; Cheah, Y. L.; Wang, J.; Teh, P.; Ko, Y.; Wong, C.; Srinivasan, M. Electrospun Eggroll-like CaSnO3 Nanotubes with High Lithium Storage Performance. Nanoscale 2013, 5, 134–138. DOI: 10.1039/C2NR32766J.
  • Yu, D.; Chen, C.; Xie, S.; Liu, Y.; Park, K.; Zhou, X.; Zhang, Q.; Li, J.; Cao, G. Mesoporous Vanadium Pentoxide Nanofibers with Significantly Enhanced Li-Ion Storage Properties by Electrospinning. Energy Environ. Sci. 2011, 4, 858–861.
  • Li, Z.; Liu, G.; Guo, M.; Ding, L. X.; Wang, S.; Wang, H. Electrospun Porous Vanadium Pentoxide Nanotubes as a High-Performance Cathode Material for Lithium-Ion Batteries. Electrochim. Acta 2015, 173, 131–138. DOI: 10.1016/j.electacta.2015.05.057.
  • Cheah, Y. L.; Aravindan, V.; Madhavi, S. Improved Elevated Temperature Performance of Al-Intercalated V2O5 Electrospun Nanofibers for Lithium-Ion Batteries. ACS Appl. Mater. Interfaces 2012, 4, 3270–3277. DOI: 10.1021/am300616k.
  • Cheng, Y.; Chen, J.; Yan, X.; Zheng, Z.; Xue, Q. Preparation of Porous BiVO4 Fibers by Electrospinning and Their Photocatalytic Performance under Visible Light. RSC Adv. 2013, 3, 20606. 20606.
  • Liu, H.; Hou, H.; Gao, F.; Yao, X.; Yang, W. Tailored Fabrication of Thoroughly Mesoporous BiVO4 Nanofibers and Their Visible-Light Photocatalytic Activities. ACS Appl. Mater. Interfaces 2016, 8, 1929–1936. DOI: 10.1021/acsami.5b10086.
  • Dong, X.; Wang, J.; Cui, Q.; Liu, G.; Yu, W. Preparation of LaFeO3 Porous Hollow Nanofibers by Electrospinning. Int. J. Chem. 2009, 1, P13.
  • Peng, C.; Zhang, J.; Xiong, Z.; Zhao, B.; Liu, P. Fabrication of Porous Hollow γ-Al2O3 Nanofibers by Facile Electrospinning and Its Application for Water Remediation. Microporous Mesoporous Mater 2015, 215, 133–142.
  • Ren, B.; Fan, M.; Tan, L.; Li, R.; Song, D.; Liu, Q.; Wang, J.; Zhang, B.; Jing, X. Electrospinning Synthesis of Porous Al2O3 Nano Fi Bers by Pluronic P123 Triblock Copolymer Surfactant and Properties of Uranium (VI) -Sorption. Mater. Chem. Phys. 2016, 177, 190–197. DOI: 10.1016/j.matchemphys.2016.04.017.
  • Wang, X.; Ding, B.; Li, B. Biomimetic Electrospun Nanofibrous Structures for Tissue Engineering. Mater. Today 2013, 16, 229–241. DOI: 10.1016/j.mattod.2013.06.005.
  • Pant, H. R.; Neupane, M. P.; Pant, B.; Panthi, G.; Oh, H. J.; Lee, M. H.; Kim, H. Y. Fabrication of Highly Porous Poly (ε-Caprolactone) Fibers for Novel Tissue Scaffold via Water-Bath Electrospinning. Colloids Surf. B 2011, 88, 587–592. DOI: 10.1016/j.colsurfb.2011.07.045.
  • Jiang, L.; Wang, L.; Wang, N.; Gong, S.; Wang, L.; Li, Q.; Shen, C.; Turng, L. S. Fabrication of Polycaprolactone Electrospun Fibers with Different Hierarchical Structures Mimicking Collagen Fibrils for Tissue Engineering Scaffolds. Appl. Surf. Sci. 2018, 427, 311–325. DOI: 10.1016/j.apsusc.2017.08.005.
  • Zhou, Q.; Xie, J.; Bao, M.; Yuan, H.; Ye, Z.; Lou, X.; Zhang, Y. Engineering Aligned Electrospun PLLA Microfibers with Nano-Porous Surface Nanotopography for Modulating the Responses of Vascular Smooth Muscle Cells. J. Mater. Chem. B 2015, 3, 4439–4450. DOI: 10.1039/C5TB00051C.
  • Ghasemi-Mobarakeh, L.; Prabhakaran, M. P.; Morshed, M.; Nasr-Esfahani, M. H.; Ramakrishna, S. Electrospun Poly(ε-Caprolactone)/Gelatin Nanofibrous Scaffolds for Nerve Tissue Engineering. Biomaterials 2008, 29, 4532–4539. DOI: 10.1016/j.biomaterials.2008.08.007.
  • Zamani, F.; Amani-Tehran, M.; Latifi, M.; Shokrgozar, M. A. The Influence of Surface Nanoroughness of Electrospun PLGA Nanofibrous Scaffold on Nerve Cell Adhesion and Proliferation. J. Mater. Sci. Mater. Med. 2013, 24, 1551–1560. DOI: 10.1007/s10856-013-4905-6.
  • Moroni, L.; Licht, R.; de Boer, J.; de Wijn, J. R.; van Blitterswijk, C. A. Fiber Diameter and Texture of Electrospun PEOT/PBT Scaffolds Influence Human Mesenchymal Stem Cell Proliferation and Morphology, and the Release of Incorporated Compounds. Biomaterials 2006, 27, 4911–4922. DOI: 10.1016/j.biomaterials.2006.05.027.
  • Chen, H.; Huang, X.; Zhang, M.; Damanik, F.; Baker, M. B.; Leferink, A.; Yuan, H.; Truckenmüller, R.; van Blitterswijk, C.; Moroni, L. Tailoring Surface Nanoroughness of Electrospun Scaffolds for Skeletal Tissue Engineering. Acta Biomater. 2017, 59, 82–93.
  • Hu, X.; Liu, S.; Zhou, G.; Huang, Y.; Xie, Z.; Jing, X. Electrospinning of Polymeric Nanofibers for Drug Delivery Applications. J. Control. Release 2014, 185, 12–21. DOI: 10.1016/j.jconrel.2014.04.018.
  • Kim, K.; Luu, Y. K.; Chang, C.; Fang, D.; Hsiao, B. S.; Chu, B.; Hadjiargyrou, M. Incorporation and Controlled Release of a Hydrophilic Antibiotic Using Poly (Lactide-Co-Glycolide) -Based Electrospun Nanofibrous Scaffolds. J. Controlled Release 2004, 98, 47–56. DOI: 10.1016/j.jconrel.2004.04.009.
  • Wu, S.; Wang, B.; Ahmad, Z.; Huang, J.; Chang, M. W.; Li, J. S. Surface Modified Electrospun Porous Magnetic Hollow Fibers Using Secondary Downstream Collection Solvent Contouring. Mater. Lett. 2017, 204, 73–76.
  • Banerjee, S.; Vaidya, V. Spill in East China Sea Raises Big Questions. Nature 2018, 544, 17–18.
  • Wang, X.; Yu, J.; Sun, G.; Ding, B. Electrospun Nanofibrous Materials: A Versatile Medium for Effective Oil/Water Separation. Mater. Today 2016, 19, 403–414. DOI: 10.1016/j.mattod.2015.11.010.
  • Wang, B.; Liang, W.; Guo, Z.; Liu, W. Biomimetic Super-Lyophobic and Super-Lyophilic Materials Applied for Oil/Water Separation: A New Strategy beyond Nature. Chem. Soc. Rev. 2015, 44, 336–361. DOI: 10.1039/C4CS00220B.
  • Gupta, R. K.; Dunderdale, G. J.; England, M. W.; Hozumi, A. Oil/Water Separation Techniques: A Review of Recent Progresses and Future Directions. J. Mater. Chem. A 2017, 5, 16025–16058. DOI: 10.1039/C7TA02070H.
  • Sarbatly, R.; Krishnaiah, D.; Kamin, Z. A Review of Polymer Nanofibres by Electrospinning and Their Application in Oil-Water Separation for Cleaning up Marine Oil Spills. Mar. Pollut. Bull. 2016, 106, 8–16.
  • Gao, J.; Song, X.; Huang, X.; Wang, L.; Li, B.; Xue, H. Facile Preparation of Polymer Microspheres and Fibers with a Hollow Core and Porous Shell for Oil Adsorption and Oil/Water Separation. Appl. Surf. Sci. 2018, 439, 394–404.
  • Jing, W.; Wang, N.; Li, W.; Hua, D.; Yong, Z.; Lei, J. Electrospun Porous Structure Fibrous Film with High Oil Adsorption Capacity. ACS Appl. Mater. Interfaces 2012, 4, 3207–3212. DOI: 10.1021/am300544d.
  • Lin, J.; Shang, Y.; Ding, B.; Yang, J.; Yu, J.; Al-Deyab, S. S. Nanoporous Polystyrene Fibers for Oil Spill Cleanup. Mar. Pollut. Bull. 2012, 64, 347–352.
  • Shu, D.; Xi, P.; Li, S.; Li, C.; Wang, X.; Cheng, B. Morphologies and Properties of PET Nano Porous Luminescence Fiber: Oil Absorption and Fluorescence-Indicating Functions. ACS Appl. Mater. Interfaces 2018, 10, 2828–2836. DOI: 10.1021/acsami.7b16655.
  • Gupta , V. K. Suhas, Application of Low-Cost Adsorbents for Dye Removal - A Review. J. Environ. Manage. 2009, 90, 2313–2342.
  • Yagub, M. T.; Sen, T. K.; Afroze, S.; Ang, H. M. Dye and Its Removal from Aqueous Solution by Adsorption: A Review. Adv. Colloid Interface Sci. 2014, 209, 172–184. DOI: 10.1016/j.cis.2014.04.002.
  • Holkar, C. R.; Jadhav, A. J.; Pinjari, D. V.; Mahamuni, N. M.; Pandit, A. B. A Critical Review on Textile Wastewater Treatments: Possible Approaches. J. Environ. Manage. 2016, 182, 351–366.
  • Si, Y.; Ren, T.; Li, Y.; Ding, B.; Yu, J. Fabrication of Magnetic Polybenzoxazine-Based Carbon Nanofibers with Fe3O4 Inclusions with a Hierarchical Porous Structure for Water Treatment. Carbon N. Y. 2012, 50, 5176–5185.
  • Wen, Q.; Di, J.; Zhao, Y.; Wang, Y.; Jiang, L.; Yu, J. Flexible Inorganic Nanofibrous Membranes with Hierarchical Porosity for Efficient Water Purification. Chem. Sci. 2013, 4, 4378.
  • Gumpu, M. B.; Sethuraman, S.; Krishnan, U. M.; Rayappan, J. B. B. A Review on Detection of Heavy Metal Ions in Water - An Electrochemical Approach. Sensors Actuators B Chem. 2015, 213, 515–533.
  • Fu, F.; Wang, Q. Removal of Heavy Metal Ions from Wastewaters: A Review. J. Environ. Manage. 2011, 92, 407–418. DOI: 10.1016/j.jenvman.2010.11.011.
  • Wu, Y. N.; Li, F.; Wu, Y.; Jia, W.; Hannam, P.; Qiao, J.; Li, G. Formation of Silica Nanofibers with Hierarchical Structure via Electrospinning. Colloid Polym. Sci. 2011, 289, 1253–1260. DOI: 10.1007/s00396-011-2455-3.
  • Lin, Y.; Cai, W.; Tian, X.; Liu, X.; Wang, G.; Liang, C. Polyacrylonitrile/Ferrous Chloride Composite Porous Nanofibers and Their Strong Cr-Removal Performance. J. Mater. Chem. 2011, 21, 991–997.
  • Phillips, M.; Herrera, J.; Krishnan, S.; Zain, M.; Greenberg, J.; Cataneo, R. N. Variation in Volatile Organic Compounds in the Breath of Normal Humans. J. Chromatogr. B Biomed. Sci. Appl. 1999, 729, 75–88. DOI: 10.1016/S0378-4347(99)00127-9.
  • Lourenço, C.; Turner, C. Breath Analysis in Disease Diagnosis: Methodological Considerations and Applications. Metabolites 2014, 4, 465–498. DOI: 10.3390/metabo4020465.
  • Righettoni, M.; Amann, A.; Pratsinis, S. E. Breath Analysis by Nanostructured Metal Oxides as Chemo-Resistive Gas Sensors. Mater. Today 2015, 18, 163–171. DOI: 10.1016/j.mattod.2014.08.017.
  • Yan, C.; Lu, H.; Gao, J.; Zhu, G.; Yin, F.; Yang, Z.; Liu, Q.; Li, G. Synthesis of Porous NiO-In2O3 Composite Nanofibers by Electrospinning and Their Highly Enhanced Gas Sensing Properties. J. Alloys Compd. 2017, 699, 567–574. DOI: 10.1016/j.jallcom.2016.12.307.
  • Wang, X.; Cui, F.; Lin, J.; Ding, B.; Yu, J.; Al-Deyab, S. S. Functionalized Nanoporous TiO2 Fibers on Quartz Crystal Microbalance Platform for Formaldehyde Sensor. Sensors Actuators, B Chem. 2012, 171–172, 658–665. DOI: 10.1016/j.snb.2012.05.050.
  • Bhatkhande, D. S.; Pangarkar, V. G.; Beenackers, A. A. Photocatalytic Degradation for Environmental Applications - a Review. J. Chem. Technol. Biotechnol. 2002, 77, 102–116.
  • Gaya, U. I.; Abdullah, A. H. Heterogeneous Photocatalytic Degradation of Organic Contaminants over Titanium Dioxide: A Review of Fundamentals, Progress and Problems. J. Photochem. Photobiol. C Photochem. Rev 2008, 9, 1–12. DOI: 10.1016/j.jphotochemrev.2007.12.003.
  • Daghrir, R.; Drogui, P.; Robert, D. Modified TiO2 for Environmental Photocatalytic Applications: A Review. Ind. Eng. Chem. Res. 2013, 52, 3581–3599. pp DOI: 10.1021/ie303468t.
  • Li, Q.; Sun, D.; Kim, H. Fabrication of Porous TiO2 Nanofiber and Its Photocatalytic Activity. Mater. Res. Bull. 2011, 46, 2094–2099. DOI: 10.1016/j.materresbull.2011.06.034.
  • Wang, X.; Choi, J.; Mitchell, D. R. G.; Truong, Y. B.; Kyratzis, I. L.; Caruso, R. A. Enhanced Photocatalytic Activity: Macroporous Electrospun Mats of Mesoporous Au/TiO2 Nanofibers. ChemCatChem 2013, 5, 2646–2654. DOI: 10.1002/cctc.201300180.
  • Lu, B.; Li, X.; Wang, T.; Xie, E.; Xu, Z. WO3 Nanoparticles Decorated on Both Sidewalls of Highly Porous TiO2 Nanotubes to Improve UV and Visible-Light Photocatalysis. J. Mater. Chem. A 2013, 1, 3900. DOI: 10.1039/c3ta01444d.
  • Lavanya, T.; Satheesh, K.; Dutta, M.; Victor Jaya, N.; Fukata, N. Superior Photocatalytic Performance of Reduced Graphene Oxide Wrapped Electrospun Anatase Mesoporous TiO2 Nanofibers. J. Alloys Compd. 2014, 615, 643–650. DOI: 10.1016/j.jallcom.2014.05.088.
  • Tang, Q.; Meng, X.; Wang, Z.; Zhou, J.; Tang, H. One-Step Electrospinning Synthesis of TiO2/g-C3N4 Nanofibers with Enhanced Photocatalytic Properties. Appl. Surf. Sci. 2018, 430, 253–262. DOI: 10.1016/j.apsusc.2017.07.288.
  • Thyssen, J. P.; White, J. M. L. European Society of Contact Dermatitis. Epidemiological Data on Consumer Allergy to p -Phenylenediamine. Contact Dermatitis 2008, 59, 327–343. DOI: 10.1111/j.1600-0536.2008.01427.x.
  • He, T.; Zhou, Z.; Xu, W.; Ren, F.; Ma, H.; Wang, J. Preparation and Photocatalysis of TiO2-Fluoropolymer Electrospun Fiber Nanocomposites. Polymer (Guildf) 2009, 50, 3031–3036. DOI: 10.1016/j.polymer.2009.04.015.
  • Qin, D.; Lu, W.; Zhu, Z.; Li, N.; Xu, T.; Wang, G.; Chen, W. Free Channel Formation around Graphitic Carbon Nitride Embedded in Porous Polyethylene Terephthalate Nanofibers with Excellent Reusability for Eliminating Antibiotics under Solar Irradiation. Ind. Eng. Chem. Res. 2017, 56, 11151–11160. DOI: 10.1021/acs.iecr.7b02800.
  • Li, Z.; Zhang, J.; Wei; Yu, L. g.; Zhang, J. w. Electrospun Porous Nanofibers for Electrochemical Energy Storage. J. Mater. Sci. 2017, 52, 6173–6195. DOI: 10.1007/s10853-017-0794-2.
  • Zhang, B.; Kang, F.; Tarascon, J. M.; Kim, J. K. Recent Advances in Electrospun Carbon Nanofibers and Their Application in Electrochemical Energy Storage. Prog. Mater. Sci. 2016, 76, 319–380. DOI: 10.1016/j.pmatsci.2015.08.002.
  • Kim, C.; Yang, K. S.; Kojima, M.; Yoshida, K.; Kim, Y. J.; Kim, Y. A.; Endo, M. Fabrication of Electrospinning-Derived Carbon Nanofiber Webs for the Anode Material of Lithium-Ion Secondary Batteries. Adv. Funct. Mater. 2006, 16, 2393–2397. DOI: 10.1002/adfm.200500911.
  • Zou, L.; Gan, L.; Lv, R.; Wang, M.; Huang, Z. H.; Kang, F.; Shen, W. A Film of Porous Carbon Nanofibers That Contain Sn/SnOx Nanoparticles in the Pores and Its Electrochemical Performance as an Anode Material for Lithium Ion Batteries. Carbon N. Y. 2011, 49, 89–95. DOI: 10.1016/j.carbon.2010.08.046.
  • Wang, X.; Tang, Y.; Shi, P.; Fan, J.; Xu, Q.; Min, Y. Self-Evaporating from inside to outside to Construct Cobalt Oxide Nanoparticles-Embedded Nitrogen-Doped Porous Carbon Nanofibers for High-Performance Lithium Ion Batteries. Chem. Eng. J. 2018, 334), 1642–1649.
  • Goriparti, S.; Miele, E.; De Angelis, F.; Di Fabrizio, E.; Proietti Zaccaria, R.; Capiglia, C. Review on Recent Progress of Nanostructured Anode Materials for Li-Ion Batteries. J. Power Sources 2014, 257, 421–443. DOI: 10.1016/j.jpowsour.2013.11.103.
  • Chen, X.; Huang, Y.; Zhang, K.; Feng, X.; Wang, M. Porous TiO2 Nanobelts Coated with Mixed Transition-Metal Oxides Sn3O4 Nanosheets Core-Shell Composites as High-Performance Anode Materials of Lithium Ion Batteries. Electrochim. Acta 2018, 259, 131–142. DOI: 10.1016/j.electacta.2017.10.180.
  • Lei, D.; Qu, B.; Lin, H. T.; Wang, T. Facile Approach to Prepare Porous GeO2/SnO2 Nanofibers via a Single Spinneret Electrospinning Technique as Anodes for Lithium-Ion Batteries. Ceram. Int. 2015, 41, 10308–10313. DOI: 10.1016/j.ceramint.2015.04.085.
  • Liang, K.; Li, L.; Yang, Y. Inorganic Porous Films for Renewable Energy Storage. ACS Energy Lett. 2017, 2, 373–390. DOI: 10.1021/acsenergylett.6b00666.
  • Liu, C.; Neale, Z. G.; Cao, G. Understanding Electrochemical Potentials of Cathode Materials in Rechargeable Batteries. Mater. Today 2016, 19, 109–123. DOI: 10.1016/j.mattod.2015.10.009.
  • Chernova, N. A.; Roppolo, M.; Dillon, A. C.; Whittingham, M. S. Layered Vanadium and Molybdenum Oxides: Batteries and Electrochromics. J. Mater. Chem. 2009, 19, 2526–2552.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.