1,984
Views
22
CrossRef citations to date
0
Altmetric
Reviews

Design and Fabrication of Highly Stretchable and Tough Hydrogels

, , , & ORCID Icon
Pages 420-441 | Received 25 Jul 2019, Accepted 07 Nov 2019, Published online: 25 Nov 2019

References

  • Nicolson, P. C.; Vogt, J. Soft Contact Lens Polymers: An Evolution. Biomaterials 2001, 22, 3273–3283. DOI: 10.1016/S0142-9612(01)00165-X.
  • Ta, H. T.; Dass, C. R.; Larson, I.; Choong, P. F. M.; Dunstan, D. E. A Chitosan Hydrogel Delivery System for Osteosarcoma Gene Therapy with Pigment Epithelium-Derived Factor Combined with Chemotherapy. Biomaterials 2009, 30, 4815–4823. DOI: 10.1016/j.biomaterials.2009.05.035.
  • Jen, A. C.; Wake, M. C.; Mikos, A. G. Review: Hydrogels for Cell Immobilization. Biotechnol. Bioeng. 2000, 50, 357–364. DOI: 10.1002/(SICI)1097-0290(19960520)50:4<357::AID-BIT2>3.3.CO;2-F.
  • Yoshida, R.; Uchida, K.; Kaneko, Y.; Sakai, K.; Kikuchi, A.; Sakurai, Y.; Okano, T. Comb-Type Grafted Hydrogels with Rapid Deswelling Response to Temperature Changes. Nature 1995, 374, 240–242. DOI: 10.1038/374240a0.
  • Irie, M.; Misumi, Y.; Tanaka, T. Stimuli-Responsive Polymers: Chemical Induced Reversible Phase Separation of an Aqueous Solution of Poly(N-Isopropylacrylamide) with Pendent Crown Ether Groups. Polymer 1993, 34, 4531–4535. DOI: 10.1016/0032-3861(93)90160-C.
  • Lee, K. K.; Cussler, E. L.; Marchetti, M.; McHugh, M. A. Pressure-Dependent Phase Transitions in Hydrogels. Chem. Eng. Sci. 1990, 45, 766–767. DOI: 10.1016/0009-2509(90)87019-O.
  • Bohon, K.; Krause, S. An Electrorheological Fluid and Siloxane Gel Based Electromechanical Actuator: Working toward an Artificial Muscle. J. Polym. Sci. B Polym. Phys. 1998, 36, 1091–1094. DOI: 10.1002/(SICI)1099-0488(19980430)36:6<1091::AID-POLB16>3.0.CO;2-1.
  • Horkay, F.; Tasaki, I.; Basser, P. J. Osmotic Swelling of Polyacrylate Hydrogels in Physiological Salt Solutions. Biomacromolecules 2000, 1, 84–90. DOI: 10.1021/bm9905031.
  • Gupta, K. M.; Barnes, S. R.; Tangaro, R. A.; Roberts, M. C.; Owen, D. H.; Katz, D. F.; Kiser, P. F. Temperature and pH Sensitive Hydrogels: An Approach towards Smart Semen-Triggered Vaginal Microbicidal Vehicles. J. Pharmaceut. Sci. 2007, 96, 670–681. DOI: 10.1002/jps.20752.
  • Hong, W.; Hu, X.; Zhao, B.; Zhang, F.; Zhang, D. Tunable Photonic Polyelectrolyte Colorimetric Sensing for Anions, Cations and Zwitterions. Adv. Mater. 2010, 22, 5043–5047. DOI: 10.1002/adma.201002512.
  • Caló, E.; Khutoryanskiy, V. V. Biomedical Applications of Hydrogels: A Review of Patents and Commercial Products. Eur. Polym. J. 2015, 65, 252–267. DOI: 10.1016/j.eurpolymj.2014.11.024.
  • Debord, J. D.; Eustis, S.; Byul Debord, S.; Lofye, M. T.; Lyon, L. A. Color-Tunable Colloidal Crystals from Soft Hydrogel Nanoparticles. Adv. Mater. 2002, 14, 658–662. DOI: 10.1002/1521-4095(20020503)14:9<658::AID-ADMA658>3.0.CO;2-3.
  • Zhou, M.; Smith, A. M.; Das, A. K.; Hodson, N. W.; Collins, R. F.; Ulijn, R. V.; Gough, J. E. Self-Assembled Peptide-Based Hydrogels as Scaffolds for Anchorage-Dependent Cells. Biomaterials 2009, 30, 2523–2530. DOI: 10.1016/j.biomaterials.2009.01.010.
  • Sidorenko, A.; Krupenkin, T.; Taylor, A.; Fratzl, P.; Aizenberg, J. Reversible Switching of Hydrogel-Actuated Nanostructures into Complex Micropatterns. Science 2007, 315, 487. DOI: 10.1126/science.1135516.
  • Maeda, S.; Hara, Y.; Sakai, T.; Yoshida, R.; Hashimoto, S. Self-Walking Gel. Adv. Mater. 2007, 19, 3480–3484. DOI: 10.1002/adma.200700625.
  • Liao, I. C.; Moutos, F. T.; Estes, B. T.; Zhao, X.; Guilak, F. Composite Three-Dimensional Woven Scaffolds with Interpenetrating Network Hydrogels to Create Functional Synthetic Articular Cartilage. Adv. Funct. Mater. 2013, 23, 5833–5839. DOI: 10.1002/adfm.201300483.
  • Jing, X.; Mi, H.-Y.; Lin, Y.-J.; Enriquez, E.; Peng, X.-F.; Turng, L.-S. Highly Stretchable and Biocompatible Strain Sensors Based on Mussel-Inspired Super-Adhesive Self-Healing Hydrogels for Human Motion Monitoring. ACS Appl. Mater. Interfaces 2018, 10, 20897–20909. DOI: 10.1021/acsami.8b06475.
  • Gong, J. P.; Katsuyama, Y.; Kurokawa, T.; Osada, Y. Double-Network Hydrogels with Extremely High Mechanical Strength. Adv. Mater. 2003, 15, 1155–1158. DOI: 10.1002/adma.200304907.
  • Sun, J.-Y.; Zhao, X.; Illeperuma, W. R. K.; Chaudhuri, O.; Oh, K. H.; Mooney, D. J.; Vlassak, J. J.; Suo, Z. Highly Stretchable and Tough Hydrogels. Nature 2012, 489, 133–136. DOI: 10.1038/nature11409.
  • Sanabria-DeLong, N.; Crosby, A. J.; Tew, G. N. Photo-Cross-Linked PLA-PEO-PLA Hydrogels from Self-Assembled Physical Networks: Mechanical Properties and Influence of Assumed Constitutive Relationships. Biomacromolecules 2008, 9, 2784–2791. DOI: 10.1021/bm800557r.
  • Han, L.; Yan, L.; Wang, K.; Fang, L.; Zhang, H.; Tang, Y.; Ding, Y.; Weng, L.-T.; Xu, J.; Weng, J.; et al. Tough, Self-Healable and Tissue-Adhesive Hydrogel with Tunable Multifunctionality. Npg Asia Mater. 2017, 9, e372. DOI: 10.1038/am.2017.33.
  • Branco, M. C.; Nettesheim, F.; Pochan, D. J.; Schneider, J. P.; Wagner, N. J. Fast Dynamics of Semiflexible Chain Networks of Self-Assembled Peptides. Biomacromolecules 2009, 10, 1374–1380. DOI: 10.1021/bm801396e.
  • Xu, Y.; Sheng, K.; Li, C.; Shi, G. Self-Assembled Graphene Hydrogel via a One-Step Hydrothermal Process. ACS Nano 2010, 4, 4324–4330. DOI: 10.1021/nn101187z.
  • Zhu, F.; Lin, X. Y.; Wu, Z. L.; Cheng, L.; Yin, J.; Song, Y.; Qian, J.; Zheng, Q. Processing Tough Supramolecular Hydrogels with Tunable Strength of Polyion Complex. Polymer 2016, 95, 9–17. DOI: 10.1016/j.polymer.2016.04.043.
  • Chen, H.; Liu, Y.; Ren, B.; Zhang, Y.; Ma, J.; Xu, L.; Chen, Q.; Zheng, J. Super Bulk and Interfacial Toughness of Physically Crosslinked Double-Network Hydrogels. Adv. Funct. Mater. 2017, 27, 1703086. DOI: 10.1002/adfm.201703086.
  • Hur, J.; Im, K.; Kim, S. W.; Kim, J.; Chung, D.-Y.; Kim, T.-H.; Jo, K. H.; Hahn, J. H.; Bao, Z.; Hwang, S.; Park, N. Polypyrrole/Agarose-Based Electronically Conductive and Reversibly Restorable Hydrogel. ACS Nano 2014, 8, 10066–10076. DOI: 10.1021/nn502704g.
  • Lin, S.; Yuk, H.; Zhang, T.; Parada, G. A.; Koo, H.; Yu, C.; Zhao, X. Stretchable Hydrogel Electronics and Devices. Adv. Mater. 2016, 28, 4497–4505. DOI: 10.1002/adma.201504152.
  • Darabi, M. A.; Khosrozadeh, A.; Mbeleck, R.; Liu, Y.; Chang, Q.; Jiang, J.; Cai, J.; Wang, Q.; Luo, G.; Xing, M. Skin-Inspired Multifunctional Autonomic-Intrinsic Conductive Self-Healing Hydrogels with Pressure Sensitivity, Stretchability, and 3D Printability. Adv. Mater. 2017, 29, 1700533. DOI: 10.1002/adma.201700533.
  • Liu, S. L. L. Ultrastretchable and Self-Healing Double-Network Hydrogel for 3D Printing and Strain Sensor. ACS Appl. Mater. Interfaces 2017, 9, 26429–26437. DOI: 10.1021/acsami.7b07445.
  • Wang, M. X.; Chen, Y. M.; Gao, Y.; Hu, C.; Hu, J.; Tan, L.; Yang, Z. Rapid Self-Recoverable Hydrogels with High Toughness and Excellent Conductivity. ACS Appl. Mater. Interfaces 2018, 10, 26610–26617. DOI: 10.1021/acsami.8b06567.
  • Yang, B.; Yuan, W. Highly Stretchable and Transparent Double-Network Hydrogel Ionic Conductors as Flexible Thermal–Mechanical Dual Sensors and Electroluminescent Devices. ACS Appl. Mater. Interfaces 2019, 11, 16765–16775. DOI: 10.1021/acsami.9b01989.
  • Bin Imran, A.; Esaki, K.; Gotoh, H.; Seki, T.; Ito, K.; Sakai, Y.; Takeoka, Y. Extremely Stretchable Thermosensitive Hydrogels by Introducing Slide-Ring Polyrotaxane Cross-Linkers and Ionic Groups into the Polymer Network. Nat. Commun. 2014, 5, 5124. DOI: 10.1038/ncomms6124.
  • Wang, Q.; Pan, X.; Lin, C.; Lin, D.; Ni, Y.; Chen, L.; Huang, L.; Cao, S.; Ma, X. Biocompatible, Self-Wrinkled, Antifreezing and Stretchable Hydrogel-Based Wearable Sensor with PEDOT:sulfonated Lignin as Conductive Materials. Chem. Eng. J. 2019, 370, 1039–1047. DOI: 10.1016/j.cej.2019.03.287.
  • Gonzalez, M. A.; Simon, J. R.; Ghoorchian, A.; Scholl, Z.; Lin, S.; Rubinstein, M.; Marszalek, P.; Chilkoti, A.; López, G. P.; Zhao, X. Strong, Tough, Stretchable, and Self-Adhesive Hydrogels from Intrinsically Unstructured Proteins. Adv. Mater. 2017, 29, 1604743. DOI: 10.1002/adma.201604743.
  • Ge, G.; Zhang, Y.; Shao, J.; Wang, W.; Si, W.; Huang, W.; Dong, X. Stretchable, Transparent, and Self-Patterned Hydrogel-Based Pressure Sensor for Human Motions Detection. Adv. Funct. Mater. 2018, 28, 1802576. DOI: 10.1002/adfm.201802576.
  • Wang, T.; Zhang, Y.; Liu, Q.; Cheng, W.; Wang, X.; Pan, L.; Xu, B.; Xu, H. A Self-Healable, Highly Stretchable, and Solution Processable Conductive Polymer Composite for Ultrasensitive Strain and Pressure Sensing. Adv. Funct. Mater. 2018, 28, 1705551. DOI: 10.1002/adfm.201705551.
  • Lai, J.; Zhou, H.; Wang, M.; Chen, Y.; Jin, Z.; Li, S.; Yang, J.; Jin, X.; Liu, H.; Zhao, W. Recyclable, Stretchable and Conductive Double Network Hydrogels towards Flexible Strain Sensors. J. Mater. Chem. C 2018, 6, 13316–13324. DOI: 10.1039/C8TC04958K.
  • Bai, T.; Zhang, P.; Han, Y.; Liu, Y.; Liu, W.; Zhao, X.; Lu, W. Construction of an Ultrahigh Strength Hydrogel with Excellent Fatigue Resistance Based on Strong Dipole–Dipole Interaction. Soft Matter 2011, 7, 2825–2831. DOI: 10.1039/c0sm01108h.
  • Hu, X.; Vatankhah-Varnoosfaderani, M.; Zhou, J.; Li, Q.; Sheiko, S. S. Weak Hydrogen Bonding Enables Hard, Strong, Tough, and Elastic Hydrogels. Adv. Mater. 2015, 27, 6899–6905. DOI: 10.1002/adma.201503724.
  • Sun, T. L.; Kurokawa, T.; Kuroda, S.; Ihsan, A. B.; Akasaki, T.; Sato, K.; Haque, M. A.; Nakajima, T.; Gong, J. P. Physical Hydrogels Composed of Polyampholytes Demonstrate High Toughness and Viscoelasticity. Nature Mater. 2013, 12, 932. DOI: 10.1038/nmat3713.
  • Matsuda, T.; Kawakami, R.; Namba, R.; Nakajima, T.; Gong, J. P. Mechanoresponsive Self-Growing Hydrogels Inspired by Muscle Training. Science 2019, 363, 504. DOI: 10.1126/science.aau9533.
  • Zhang, H. J.; Sun, T. L.; Zhang, A. K.; Ikura, Y.; Nakajima, T.; Nonoyama, T.; Kurokawa, T.; Ito, O.; Ishitobi, H.; Gong, J. P. Tough Physical Double-Network Hydrogels Based on Amphiphilic Triblock Copolymers. Adv. Mater. 2016, 28, 4884–4890. DOI: 10.1002/adma.201600466.
  • Wang, Y. J.; Zhang, X. N.; Song, Y.; Zhao, Y.; Chen, L.; Su, F.; Li, L.; Wu, Z. L.; Zheng, Q. Ultrastiff and Tough Supramolecular Hydrogels with a Dense and Robust Hydrogen Bond Network. Chem. Mater. 2019, 31, 1430–1440. DOI: 10.1021/acs.chemmater.8b05262.
  • Yu, H. C.; Li, C. Y.; Du, M.; Song, Y.; Wu, Z. L.; Zheng, Q. Improved Toughness and Stability of κ-Carrageenan/Polyacrylamide Double-Network Hydrogels by Dual Cross-Linking of the First Network. Macromolecules 2019, 52, 629–638. DOI: 10.1021/acs.macromol.8b02269.
  • Zhang, X. N.; Wang, Y. J.; Sun, S.; Hou, L.; Wu, P.; Wu, Z. L.; Zheng, Q. A Tough and Stiff Hydrogel with Tunable Water Content and Mechanical Properties Based on the Synergistic Effect of Hydrogen Bonding and Hydrophobic Interaction. Macromolecules 2018, 51, 8136–8146. DOI: 10.1021/acs.macromol.8b01496.
  • Tian, Y.; Wei, X.; Wang, Z. J.; Pan, P.; Li, F.; Ling, D.; Wu, Z. L.; Zheng, Q. A Facile Approach to Prepare Tough and Responsive Ultrathin Physical Hydrogel Films as Artificial Muscles. ACS Appl. Mater. Interfaces 2017, 9, 34349–34355. DOI: 10.1021/acsami.7b10652.
  • Zheng, S. Y.; Ding, H.; Qian, J.; Yin, J.; Wu, Z. L.; Song, Y.; Zheng, Q. Metal-Coordination Complexes Mediated Physical Hydrogels with High Toughness, Stick–Slip Tearing Behavior, and Good Processability. Macromolecules 2016, 49, 9637–9646. DOI: 10.1021/acs.macromol.6b02150.
  • Sun, Y.; Liu, S.; Du, G.; Gao, G.; Fu, J. Multi-Responsive and Tough Hydrogels Based on Triblock Copolymer Micelles as Multi-Functional Macro-Crosslinkers. Chem. Commun. 2015, 51, 8512–8515. DOI: 10.1039/C4CC10094H.
  • Gulyuz, U.; Okay, O. Self-Healing Poly(Acrylic Acid) Hydrogels with Shape Memory Behavior of High Mechanical Strength. Macromolecules 2014, 47, 6889–6899. DOI: 10.1021/ma5015116.
  • Sun, Y-n.; Gao, G-r.; Du, G-l.; Cheng, Y-j.; Fu, J. Super Tough, Ultrastretchable, and Thermoresponsive Hydrogels with Functionalized Triblock Copolymer Micelles as Macro-Cross-Linkers. ACS Macro Lett. 2014, 3, 496–500. DOI: 10.1021/mz500221j.
  • Zhang, Y.; Hu, C.; Xiang, X.; Diao, Y.; Li, B.; Shi, L.; Ran, R. Self-Healable, Tough and Highly Stretchable Hydrophobic Association/Ionic Dual Physically Cross-Linked Hydrogels. RSC Adv. 2017, 7, 12063–12073. DOI: 10.1039/C7RA00055C.
  • Li, Y.; Sun, Y.; Xiao, Y.; Gao, G.; Liu, S.; Zhang, J.; Fu, J. Electric Field Actuation of Tough Electroactive Hydrogels Cross-Linked by Functional Triblock Copolymer Micelles. ACS Appl. Mater. Interfaces 2016, 8, 26326–26331. DOI: 10.1021/acsami.6b08841.
  • Xu, J.; Fan, Z.; Duan, L.; Gao, G. A Tough, Stretchable, and Extensively Sticky Hydrogel Driven by Milk Protein. Polym. Chem. 2018, 9, 2617–2624. DOI: 10.1039/C8PY00319J.
  • Jing, X.; Mi, H.-Y.; Peng, X.-F.; Turng, L.-S. Biocompatible, Self-Healing, Highly Stretchable Polyacrylic Acid/Reduced Graphene Oxide Nanocomposite Hydrogel Sensors via Mussel-Inspired Chemistry. Carbon 2018, 136, 63–72. DOI: 10.1016/j.carbon.2018.04.065.
  • Cai, G.; Wang, J.; Qian, K.; Chen, J.; Li, S.; Lee, P. S. Extremely Stretchable Strain Sensors Based on Conductive Self-Healing Dynamic Cross-Links Hydrogels for Human-Motion Detection. Adv. Sci. 2016, 4, 1600190–1600190. DOI: 10.1002/advs.201600190.
  • Liu, Y.-J.; Cao, W.-T.; Ma, M.-G.; Wan, P. Ultrasensitive Wearable Soft Strain Sensors of Conductive, Self-Healing, and Elastic Hydrogels with Synergistic “Soft and Hard” Hybrid Networks. ACS Appl. Mater. Interfaces 2017, 9, 25559–25570. DOI: 10.1021/acsami.7b07639.
  • Zhang, Y. Z.; Lee, K. H.; Anjum, D. H.; Sougrat, R.; Jiang, Q.; Kim, H.; Alshareef, H. N. MXenes Stretch Hydrogel Sensor Performance to New Limits. Sci. Adv. 2018, 4, eaat0098. DOI: 10.1126/sciadv.aat0098.
  • Jing, X.; Wang, X.-Y.; Mi, H.-Y.; Turng, L.-S. Stretchable Gelatin/Silver Nanowires Composite Hydrogels for Detecting Human Motion. Mater. Lett. 2019, 237, 53–56. DOI: 10.1016/j.matlet.2018.11.078.
  • Zhong, M.; Liu, X.-Y.; Shi, F.-K.; Zhang, L.-Q.; Wang, X.-P.; Cheetham, A. G.; Cui, H.; Xie, X.-M. Self-Healable, Tough and Highly Stretchable Ionic Nanocomposite Physical Hydrogels. Soft Matter 2015, 11, 4235–4241. DOI: 10.1039/C5SM00493D.
  • Shi, F.-K.; Wang, X.-P.; Guo, R.-H.; Zhong, M.; Xie, X.-M. Highly Stretchable and Super Tough Nanocomposite Physical Hydrogels Facilitated by the Coupling of Intermolecular Hydrogen Bonds and Analogous Chemical Crosslinking of Nanoparticles. J. Mater. Chem. B 2015, 3, 1187–1192. DOI: 10.1039/C4TB01654H.
  • Wu, C.-J.; Gaharwar, A. K.; Chan, B. K.; Schmidt, G. Mechanically Tough Pluronic F127/Laponite Nanocomposite Hydrogels from Covalently and Physically Cross-Linked Networks. Macromolecules 2011, 44, 8215–8224. DOI: 10.1021/ma200562k.
  • Zhang, Y.; Chen, Q.; Ge, J.; Liu, Z. Controlled Display of Enzyme Activity with a Stretchable Hydrogel. Chem. Commun. 2013, 49, 9815–9817. DOI: 10.1039/c3cc45837g.
  • González-Domínguez, J. M.; Martín, C.; Durá, Ó. J.; Merino, S.; Vázquez, E. Smart Hybrid Graphene Hydrogels: A Study of the Different Responses to Mechanical Stretching Stimulus. ACS Appl. Mater. Interfaces 2018, 10, 1987–1995. DOI: 10.1021/acsami.7b14404.
  • Han, L.; Lu, X.; Liu, K.; Wang, K.; Fang, L.; Weng, L.-T.; Zhang, H.; Tang, Y.; Ren, F.; Zhao, C.; et al. Mussel-Inspired Adhesive and Tough Hydrogel Based on Nanoclay Confined Dopamine Polymerization. ACS Nano 2017, 11, 2561–2574. DOI: 10.1021/acsnano.6b05318.
  • Liu, S.; Gao, G.; Xiao, Y.; Fu, J. Tough and Responsive Oppositely Charged Nanocomposite Hydrogels for Use as Bilayer Actuators Assembled through Interfacial Electrostatic Attraction. J. Mater. Chem. B 2016, 4, 3239–3246. DOI: 10.1039/C6TB00583G.
  • Shao, C.; Wang, M.; Meng, L.; Chang, H.; Wang, B.; Xu, F.; Yang, J.; Wan, P. Mussel-Inspired Cellulose Nanocomposite Tough Hydrogels with Synergistic Self-Healing, Adhesive, and Strain-Sensitive Properties. Chem. Mater. 2018, 30, 3110–3121. DOI: 10.1021/acs.chemmater.8b01172.
  • Fukao, K.; Nonoyama, T.; Kiyama, R.; Furusawa, K.; Kurokawa, T.; Nakajima, T.; Gong, J. P. Anisotropic Growth of Hydroxyapatite in Stretched Double Network Hydrogel. ACS Nano 2017, 11, 12103–12110. DOI: 10.1021/acsnano.7b04942.
  • Gaharwar, A. K.; Rivera, C. P.; Wu, C.-J.; Schmidt, G. Transparent, Elastomeric and Tough Hydrogels from Poly(Ethylene Glycol) and Silicate Nanoparticles. Acta Biomaterialia 2011, 7, 4139–4148. DOI: 10.1016/j.actbio.2011.07.023.
  • Cao, S.; Tong, X.; Dai, K.; Xu, Q. A Super-Stretchable and Tough Functionalized Boron Nitride/PEDOT:PSS/Poly(N-Isopropylacrylamide) Hydrogel with Self-Healing, Adhesion, Conductive and Photothermal Activity. J. Mater. Chem. A 2019, 7, 8204–8209. DOI: 10.1039/C9TA00618D.
  • Fang, J.; Mehlich, A.; Koga, N.; Huang, J.; Koga, R.; Gao, X.; Hu, C.; Jin, C.; Rief, M.; Kast, J.; et al. Forced Protein Unfolding Leads to Highly Elastic and Tough Protein Hydrogels. Nat. Commun. 2013, 4, 2974. DOI: 10.1038/ncomms3974.
  • Dai, X.; Zhang, Y.; Gao, L.; Bai, T.; Wang, W.; Cui, Y.; Liu, W. A Mechanically Strong, Highly Stable, Thermoplastic, and Self-Healable Supramolecular Polymer Hydrogel. Adv. Mater. 2015, 27, 3566–3571. DOI: 10.1002/adma.201500534.
  • Sakai, S.; Tsumura, M.; Inoue, M.; Koga, Y.; Fukano, K.; Taya, M. Polyvinyl Alcohol-Based Hydrogel Dressing Gellable on-Wound via a co-Enzymatic Reaction Triggered by Glucose in the Wound Exudate. J. Mater. Chem. B. 2013, 1, 5067–5075. DOI: 10.1039/c3tb20780c.
  • Zhou, H.; Zheng, S.; Qu, C.; Wang, D.; Liu, C.; Wang, Y.; Fan, X.; Xiao, W.; Li, H.; Zhao, D.; et al. Simple and Environmentally Friendly Approach for Preparing High-Performance Polyimide Precursor Hydrogel with Fully Aromatic Structures for Strain Sensor. Eur. Polym. J. 2019, 114, 346–352. DOI: 10.1016/j.eurpolymj.2019.01.043.
  • Ballance, W. C.; Seo, Y.; Baek, K.; Chalifoux, M.; Kim, D.; Kong, H. Stretchable, anti-Bacterial Hydrogel Activated by Large Mechanical Deformation. J. Control. Release. 2018, 275, 1–11. DOI: 10.1016/j.jconrel.2018.02.009.
  • Guo, H.; Nakajima, T.; Hourdet, D.; Marcellan, A.; Creton, C.; Hong, W.; Kurokawa, T.; Gong, J. P. Hydrophobic Hydrogels with Fruit-Like Structure and Functions. Adv. Mater. 2019, 0, 1900702. DOI: 10.1002/adma.201900702.
  • Sileika, T. S.; Barrett, D. G.; Zhang, R.; Lau, K. H. A.; Messersmith, P. B. Colorless Multifunctional Coatings Inspired by Polyphenols Found in Tea. Angew. Chem. Int. Ed. Engl 2013, 52, 10766–10770.
  • Shukla, A.; Fang, J. C.; Puranam, S.; Jensen, F. R.; Hammond, P. T. Hemostatic Multilayer Coatings. Adv. Mater. Weinheim. 2012, 24, 492–496. DOI: 10.1002/adma.201103794.
  • Isenburg, J. C.; Simionescu, D. T.; Vyavahare, N. R. Elastin Stabilization in Cardiovascular Implants: improved Resistance to Enzymatic Degradation by Treatment with Tannic Acid. Biomaterials 2004, 25, 3293–3302. DOI: 10.1016/j.biomaterials.2003.10.001.
  • Myint, K. B.; Sing, L. C.; Wei, Z. Tannic Acid as Phytochemical Potentiator for Antibiotic Resistance Adaptation. APCBEE Proc. 2013, 7, 175–181. DOI: 10.1016/j.apcbee.2013.08.030.
  • Liu, X.; Tang, T.-C.; Tham, E.; Yuk, H.; Lin, S.; Lu, T. K.; Zhao, X. Stretchable Living Materials and Devices with Hydrogel–Elastomer Hybrids Hosting Programmed Cells. Proc. Natl. Acad. Sci. USA. 2017, 114, 2200. DOI: 10.1073/pnas.1618307114.
  • Guo, J.; Liu, X.; Jiang, N.; Yetisen, A. K.; Yuk, H.; Yang, C.; Khademhosseini, A.; Zhao, X.; Yun, S.-H. Highly Stretchable, Strain Sensing Hydrogel Optical Fibers. Adv. Mater. 2016, 28, 10244–10249. DOI: 10.1002/adma.201603160.
  • Morelle, X. P.; Illeperuma, W. R.; Tian, K.; Bai, R.; Suo, Z.; Vlassak, J. J. Highly Stretchable and Tough Hydrogels below Water Freezing Temperature. Adv. Mater. 2018, 30, 1801541. DOI: 10.1002/adma.201801541.
  • Bai, R.; Yang, Q.; Tang, J.; Morelle, X. P.; Vlassak, J.; Suo, Z. Fatigue Fracture of Tough Hydrogels. Extreme Mechanics Letters 2017, 15, 91–96. DOI: 10.1016/j.eml.2017.07.002.
  • Zhang, W.; Liu, X.; Wang, J.; Tang, J.; Hu, J.; Lu, T.; Suo, Z. Fatigue of Double-Network Hydrogels. Eng. Fract. Mech. 2018, 187, 74–93. DOI: 10.1016/j.engfracmech.2017.10.018.
  • Tian, K.; Bae, J.; Bakarich, S. E.; Yang, C.; Gately, R. D.; Spinks, G. M.; In Het Panhuis, M.; Suo, Z.; Vlassak, J. J. 3D Printing of Transparent and Conductive Heterogeneous Hydrogel–Elastomer Systems. Adv. Mater. 2017, 29, 1604827. DOI: 10.1002/adma.201604827.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.