674
Views
10
CrossRef citations to date
0
Altmetric
Reviews

Investigation of Thermoresponsive Microgel Polymer Swelling Theory

ORCID Icon &
Pages 648-670 | Received 05 Sep 2019, Accepted 24 Nov 2019, Published online: 14 Jan 2020

References

  • Ji, H.; Mourad, H.; Fried, E.; Dolbow, J. Kinetics of Thermally Induced Swelling of Hydrogels. Int. J. Solids Struct. 2006, 43, 1878–1907. DOI: 10.1016/j.ijsolstr.2005.03.031.
  • Meng, Z.; Smith, M. H.; Lyon, L. A. Temperature-Programmed Synthesis of Micron-Sized Multi-Responsive Microgels. Colloid Polym. Sci. 2009, 287, 277–285. DOI: 10.1007/s00396-008-1986-8.
  • Gulrez, S. K. H.; Al-Assaf, S.; Phillips, G. O. Hydrogels: Methods of Preparation, Characterisation and Applications. In T. Smiljanic (Ed.) Progress in Molecular and Environmental Bioengineering—From Analysis and Modeling to Technology Applications, Rijeka, Croatia: InTech, 2011; pp 117–150. DOI: 10.5772/24553.
  • Ahn, S.; Kasi, R. M.; Kim, S.; Sharma, N.; Zhou, Y. Stimuli-Responsive Polymer Gels. Soft Matter 2008, 4, 1151–1157. DOI: 10.1039/b714376a.
  • Mah, E.; Ghosh, R. Thermo-Responsive Hydrogels for Stimuli-Responsive Membranes. Processes 2013, 1, 238–262. DOI: 10.3390/pr1030238.
  • Yoshida, R.; Okano, T. Stimuli-Responsive Hydrogels and Their Application to Functional Materials. In R. M. Ottenbrite, K. Park, T. Okano (Ed.), Biomedical Applications of Hydrogels Handbook. Springer New York, 2010; pp 19–43. DOI: 10.1007/978-1-4419-5919-5_2.
  • Okay, O. General Properties of Hydrogels. In: G. Gerlach, K.-F. Arndt (Ed.) Hydrogel Sensors and Actuators. Springer-Verlag Berlin Heidelberg, 2009; pp 1–14. DOI: 10.1007/978-3-540-75645-3_1.
  • Sultana, T.; Rahman, M. M.; Nurunnabi, M.; Ahmad, H. A Review on the Preparation, Characterization and Application of Stimuli-Responsive Interpenetrating Polymer Network. J. Colloid Sci. Biotechnol. 2014, 3, 296–325. DOI: 10.1166/jcsb.2014.1103.
  • Shibayama, M.; Morimoto, M.; Nomura, S. Phase Separation Induced Mechanical Transition of Poly(N-Isopropylacrylamide)/Water Isochore Gels. Macromolecules 1994, 27, 5060–5066. DOI: 10.1021/ma00096a031.
  • Xue, S.; Wu, Y.; Wang, J.; Guo, M.; Liu, D.; Lei, W. Boron Nitride Nanosheets/PNIPAM Hydrogels with Improved Thermo-Responsive Performance. Materials 2018, 11, 1069. DOI: 10.3390/ma11071069.
  • Okajima, T.; Harada, I.; Nishio, K.; Hirotsu, S. Kinetics of Volume Phase Transition in Poly(N-Isopropylacrylamide) Gels. J. Chem. Phys. 2002, 116, 9068–9077. DOI: 10.1063/1.1473655.
  • Di Lorenzo, F.; Seiffert, S. Particulate and Continuum Mechanics of Microgel Pastes: Effect and Non-Effect of Compositional Heterogeneity. Colloid Polym. Sci. 2013, 291, 2927–2933. DOI: 10.1007/s00396-013-3032-8.
  • Ahmed, E. M. Hydrogel: Preparation, Characterization, and Applications: A Review. J. Adv. Res. 2015, 6, 105–121. DOI: 10.1016/j.jare.2013.07.006.
  • Gandhi, A.; Paul, A.; Sen, S. O.; Sen, K. K. Studies on Thermoresponsive Polymers: Phase Behaviour, Drug Delivery and Biomedical Applications. Asian J. Pharm. Sci. 2015, 10, 99–107. DOI: 10.1016/j.ajps.2014.08.010.
  • Islam, M. R.; Lu, Z.; Li, X.; Sarker, A. K.; Hu, L.; Choi, P.; Li, X.; Hakobyan, N.; Serpe, M. J. Responsive Polymers for Analytical Applications: A Review. Anal. Chim. Acta 2013, 789, 17–32. DOI: 10.1016/j.aca.2013.05.009.
  • Gil, E.; Hudson, S. M. Stimuli-Reponsive Polymers and Their Bioconjugates. Prog. Polym. Sci. 2004, 29, 1173–1222. DOI: 10.1016/j.progpolymsci.2004.08.003.
  • Mahinroosta, M.; Jomeh Farsangi, Z.; Allahverdi, A.; Shakoori, Z. Hydrogels as Intelligent Materials: A Brief Review of Synthesis, Properties and Applications. Mater. Today Chem. 2018, 8, 42–55. DOI: 10.1016/j.mtchem.2018.02.004.
  • Young, R. J.; Lovell, P. A. Introduction to Polymers; CRC Press, 2011. DOI: 10.1201/b10941-2.
  • Zhu, X.; Gu, X.; Zhang, L.; Kong, X. Z. Preparation and Characterization of Nanosized P(NIPAM-MBA) Hydrogel Particles and Adsorption of Bovine Serum Albumin on Their Surface. Nanoscale Res. Lett. 2012, 7, 519. DOI: 10.1186/1556-276X-7-519.
  • Li, S. K.; D’Emanuele, A. Effect of Thermal Cycling on the Properties of Thermoresponsive Poly(N-Isopropylacrylamide) Hydrogels. Int. J. Pharm. 2003, 267, 27–34. DOI: 10.1016/j.ijpharm.2003.07.009.
  • Taylor, M.; Tomlins, P.; Sahota, T. Thermoresponsive Gels. Gels 2017, 3, 4. DOI: 10.3390/gels3010004.
  • Wongsuwarn, S.; Vigolo, D.; Cerbino, R.; Howe, A. M.; Vailati, A.; Piazza, R.; Cicuta, P. Giant Thermophoresis of Poly(N-Isopropylacrylamide) Microgel Particles. Soft Matter 2012, 8, 5857–5863. DOI: 10.1039/c2sm25061f.
  • Harmon, M. E.; Kuckling, D.; Frank, C. W. Photo-Cross-Linkable PNIPAAm Copolymers. 5. Mechanical Properties of Hydrogel Layers. Langmuir 2003, 19, 10660–10665. DOI: 10.1021/la030232m.
  • Brunner, B. M. Untersuchungen zur inneren Struktur von Hydrogelen aus N-Isopropylacrylamid mittels statischer Lichtstreuung. Dissertation, Stuttgart, Germany, University of Stuttgart. 2005.
  • Deng, K.; Rohn, M.; Gerlach, G. Design, Simulation and Characterization of Hydrogel-Based Thermal Actuators. Sensors Actuators B Chem. 2016, 236, 900–908. DOI: 10.1016/j.snb.2016.03.060.
  • Tokuyama, H.; Ishihara, N.; Sakohara, S. Effects of Synthesis-Solvent on Swelling and Elastic Properties of Poly(N-Isopropylacrylamide) Hydrogels. Eur. Polym. J. 2007, 43, 4975–4982. DOI: 10.1016/j.eurpolymj.2007.09.016.
  • Dogu, Y.; Okay, O. Swelling-Deswelling Kinetics of Poly(N-Isopropylacrylamide) Hydrogels Formed in PEG Solutions. J. Appl. Polym. Sci. 2006, 99, 37–44. DOI: 10.1002/app.22140.
  • Xiao, X. C. Effect of the Initiator on Thermosensitive Rate of Poly(N-Isopropylacrylamide) Hydrogels. Express Polym. Lett. 2007, 1, 232–235. DOI: 10.3144/expresspolymlett.2007.35.
  • Lee, W. F.; Yen, S. Thermoreversible Hydrogels. XII. Effect of the Polymerization Conditions on the Swelling Behavior of the N-Isopropylacrylamide Gel. J. Appl. Polym. Sci. 2000, 78, 1604–1611. DOI: 10.1002/1097-4628(20001128)78:9 <1604::AID-APP50> 3.0.CO;2-V.
  • Obeso-Vera, C.; Cornejo-Bravo, J. M.; Serrano-Medina, A.; Licea-Claverie, A. Effect of Crosslinkers on Size and Temperature Sensitivity of Poly(N-Isopropylacrylamide) Microgels. Polym. Bull. 2013, 70, 653–664. DOI: 10.1007/s00289-012-0832-9.
  • Wu, C.; Zhou, S. Effects of Surfactants on the Phase Transition of Poly(N-Isopropylacrylamide) in Water. J. Polym. Sci. B Polym. Phys. 1996, 34, 1597–1604. DOI: 10.1002/(SICI)1099-0488(19960715)34:9<1597::AID-POLB8>3.0.CO;2-I.
  • Kojima, H.; Tanaka, F. Cooperative Hydration Induces Discontinuous Volume Phase Transition of Cross-Linked Poly(N -Isopropylacrylamide) Gels in Water. Macromolecules 2010, 43, 5103–5113. DOI: 10.1021/ma100588f.
  • Hirotsu, S.; Hirokawa, Y.; Tanaka, T. Volume-Phase Transitions of Ionized N-Isopropylacrylamide Gels. J. Chem. Phys. 1987, 87, 1392–1395. DOI: 10.1063/1.453267.
  • Xia, L. W.; Xie, R.; Ju, X. J.; Wang, W.; Chen, Q.; Chu, L. Y. Nano-Structured Smart Hydrogels with Rapid Response and High Elasticity. Nat. Commun. 2013, 4, 1–11. DOI: 10.1038/ncomms3226.
  • Pelton, R.; Hoare, T. Microgels and Their Synthesis an Introduction. 1st ed. Weinheim, Germany, Wiley-VCH, 2011.
  • Nie, J.; Du, B.; Oppermann, W. Influence of Formation Conditions on Spatial Inhomogeneities in Poly(N-Isopropylacrylamide) Hydrogels. Macromolecules 2004, 37, 6558–6564. DOI: 10.1021/ma049169d.
  • Chetty, A.; Kovács, J.; Sulyok, Z.; Mészáros, Á.; Fekete, J.; Domján, A.; Szilágyi, A.; Vargha, V. A Versatile Characterization of Poly(N-Isopropylacrylamide-co-N,N’-Methylene-Bisacrylamide) Hydrogels for Composition, Mechanical Strength, and Rheology. Express Polym. Lett. 2013, 7, 95–105. DOI: 10.3144/expresspolymlett.2013.9.
  • Hu, X.; Tong, Z.; Lyon, L. A. Control of Poly(N-Isopropylacrylamide) Microgel Network Structure by Precipitation Polymerization near the lower critical solution temperature. Langmuir 2011, 27, 4142–4148. DOI: 10.1021/la200114s.
  • Rey, M.; Hou, X.; Tang, J. S. J.; Vogel, N. Interfacial Arrangement and Phase Transitions of PNiPAm Microgels with Different Crosslinking Densities. Soft Matter 2017, 13, 8717–8727. DOI: 10.1039/C7SM01558E.
  • Pelton, R. Temperature-Sensitive Aqueous Microgels. Adv. Colloid Interface Sci. 2000, 85, 1–33. DOI: 10.1016/S0001-8686(99)00023-8.
  • Matzelle, T. R.; Geuskens, G.; Kruse, N. Elastic Properties of Poly(N-Isopropylacrylamide) and Poly(Acrylamide) Hydrogels Studied by Scanning Force Microscopy. Macromolecules 2003, 36, 2926–2931. DOI: 10.1021/ma021719p.
  • Djonlagić, J.; Petrović, Z. S. Semi-Interpenetrating Polymer Networks Composed of Poly(N-Isopropyl Acrylamide) and Polyacrylamide Hydrogels. J. Polym. Sci. Part B Polym. Phys. 2004, 42, 3987–3999. DOI: 10.1002/polb.20247.
  • ŽUgić, D.; Spasojević, P.; Petrović, Z.; Djonlagić, J. Semi-Interpenetrating Networks Based on Poly(N-Isopropyl Acrylamide) and Poly(N-Vinylpyrrolidone). J. Appl. Polym. Sci. 2009, 113, 1593–1603. DOI: 10.1002/app.30075.
  • Zhang, X. Z.; Wu, D.; Chu, C. Synthesis, Characterization and Controlled Drug Release of Thermosensitive IPN-PNIPAAm Hydrogels. Biomaterials 2004, 25, 3793–3805. DOI: 10.1016/j.biomaterials.2003.10.065.
  • Schild, H. G. Poly(N-Isopropylacrylamide): Experiment, Theory and Application. Prog. Polym. Sci. 1992, 17, 163–249. DOI: 10.1016/0079-6700(92)90023-R.
  • Fernandez, V. V. A.; Tepale, N.; Sánchez-Díaz, J. C.; Mendizábal, E.; Puig, J. E.; Soltero, J. F. A. Thermoresponsive Nanostructured Poly (N-Isopropylacrylamide) Hydrogels Made via Inverse Microemulsion Polymerization. Colloid Polym. Sci. 2006, 284, 387–395. DOI: 10.1007/s00396-005-1395-1.
  • Aufderhorst-Roberts, A.; Baker, D.; Foster, R. J.; Cayre, O.; Mattsson, J.; Connell, S. D. Nanoscale Mechanics of Microgel Particles. Nanoscale 2018, 10, 16050–16061. DOI: 10.1039/C8NR02911C.
  • Musial, W.; Pluta, J.; Michalek, J. Thermosensitive Microgels of Poly-N-Isopropylacrylamide for Drug Carriers—Practical Approach to Synthesis. Acta Pol. Pharam. Drug Res 2015, 72, 409–422.
  • Saunders, B. R.; Vincent, B. Microgel Particles as Model Colloids: Theory, Properties and Applications. Adv. Colloid Interface Sci. 1999, 80, 1–25. DOI: 10.1016/S0001-8686(98)00071-2.
  • Yuan, M.; Ju, X.; Xie, R.; Wang, W.; Chu, L. Micromechanical Properties of Poly(N-Isopropylacrylamide) Hydrogel Microspheres Determined Using a Simple Method. Particuology 2015, 19, 164–172. DOI: 10.1016/j.partic.2014.07.002.
  • Sierra-Martín, B.; Laporte, Y.; South, A. B.; Lyon, L. A.; Fernández-Nieves, A. Bulk Modulus of Poly(N-Isopropylacrylamide) Microgels through the Swelling Transition. Phys Rev E. 2011, 84, 1–4. DOI: 10.1103/PhysRevE.84.011406.
  • Lopez, C. G.; Richtering, W. Does Flory-Rehner Theory Quantitatively Describe the Swelling of Thermoresponsive Microgels? Soft Matter 2017, 13, 8271–8280. DOI: 10.1039/C7SM01274H.
  • Carr, D. A.; Peppas, N. A. Molecular Structure of Physiologically-Responsive Hydrogels Controls Diffusive Behavior. Macromol. Biosci. 2009, 9, 497–505. DOI: 10.1002/mabi.200800235.
  • Painter, P. C.; Shenoy, S. L. A Simple Model for the Swelling of Polymer Networks. J. Chem. Phys. 1993, 99, 1409–1418. DOI: 10.1063/1.465385.
  • Flory, P. J. Molecular Theory of Rubber Elasticity. Polym. J. 1985, 17, 1–12. DOI: 10.1295/polymj.17.1.
  • Rubinstein, M.; Panyukov, S. Elasticity of Polymer Networks. Macromolecules 2002, 35, 6670–6686. DOI: 10.1021/ma0203849.
  • Lou, Y.; Robisson, A.; Cai, S.; Suo, Z. Swellable Elastomers under Constraint. J. Appl. Phys. 2012, 112, 1–6. DOI: 10.1063/1.4745878.
  • Arleth, L.; Xia, X.; Hjelm, R. P.; Wu, J.; Hu, Z. Volume Transition and Internai Structures of Small Poly(N-Isopropylacrylamide) Microgels. J. Polym. Sci. B Polym. Phys. 2005, 43, 849–860. DOI: 10.1002/polb.20375.
  • Wei, J.; Li, Y.; Ngai, T. Tailor-Made Microgel Particles: Synthesis and Characterization. Colloids Surfaces A Physicochem. Eng. Asp. 2016, 489, 122–127. DOI: 10.1016/j.colsurfa.2015.10.042.
  • Still, T.; Chen, K.; Alsayed, A. M.; Aptowicz, K. B.; Yodh, A. G. Synthesis of Micrometer-Size Poly(N-Isopropylacrylamide) Microgel Particles with Homogeneous Crosslinker Density and Diameter Control. J. Colloid Interface Sci. 2013, 405, 96–102. DOI: 10.1016/j.jcis.2013.05.042.
  • Sierra-Martin, B.; Retama, J. R.; Laurenti, M.; Fernández Barbero, A.; López Cabarcos, E. López Cabarcos, E. Structure and Polymer Dynamics within PNIPAM-Based Microgel Particles. Adv. Colloid Interface Sci. 2014, 205, 113–123. DOI: 10.1016/j.cis.2013.11.001.
  • Destribats, M.; Eyharts, M.; Lapeyre, V.; Sellier, E.; Varga, I.; Ravaine, V.; Schmitt, V. Impact of pNIPAM Microgel Size on Its Ability to Stabilize Pickering Emulsions. Langmuir 2014, 30, 1768–1777. DOI: 10.1021/la4044396.
  • Flory, P. J. Principles of Polymer Chemistry. Ithaca, New York, Cornell University Press, 1953.
  • Fernandez-Nieves, A. Microgel Suspensions Fundamentals and Applications. Weinheim, Germany, Wiley-VCH, 2011.
  • Hirotsu, S. Stress Relaxation and Elastic Moduli in the Swollen and the Shrunken Phases of N-Isopropylacrylamide Gel. Macromolecules 2004, 37, 3415–3424. DOI: 10.1021/ma049964r.
  • Lietor-Santos, J. J.; Sierra-Martin, B.; Vavrin, R.; Hu, Z.; Gasser, U.; Fernandez-Nieves, A. Deswelling Microgel Particles Using Hydrostatic Pressure. Macromolecules 2009, 42, 6225–6230. DOI: 10.1021/ma9010654.
  • James, G.; Witten, D.; Hastie, T.; Tibshirani, R. An Introduction to Statistical Learning with Applications in R, New York, Springer-Verlag New York 2013.
  • Dogu, S. Influence of Temperature on Light Scattering of Poly-N-Isopropylacrylamide Hydrogels Synthesized by Two Different Cross-Linking Methods. 2013. Accessed 30th May 2019.
  • Blackburn, W. H.; Lyon, L. A. Size-Controlled Synthesis of Monodisperse Core/Shell Nanogels. Colloid Polym. Sci. 2008, 286, 563–569. DOI: 10.1007/s00396-007-1805-7.
  • Iizawa, T.; Taketa, H.; Maruta, M.; Ishido, T.; Gotoh, T.; Sakohara, S. Synthesis of Porous Poly(N-Isopropylacrylamide) Gel Beads by Sedimentation Polymerization and Their Morphology. J. Appl. Polym. Sci. 2007, 104, 842–850. DOI: 10.1002/app.25605.
  • Eck, D.; Ryan, J. The Chi Square Statistic. David Eck and Jim Ryan/Mathbeans Project, National Science Foundation http://math.hws.edu/javamath/ryan/ChiSquare.html. Accessed 05th January 2019.
  • Likelihood Ratio Test. Evolution and Genomics - Intensive and immersive training opportunities. http://evomics.org/resources/likelihood-ratio-test/.
  • Felsenstein, J. Evolutionary Trees from DNA Sequences: A Maximum Likelihood Approach. J. Mol. Evol. 1981, 17, 368–376. DOI: 10.1007/BF01734359.
  • Çaykara, T.; Kiper, S.; Demirel, G. Network Parameters and Volume Phase Transition Behavior of Poly(N-Isopropylacrylamide) Hydrogels. J. Appl. Polym. Sci. 2006, 101, 1756–1762. DOI: 10.1002/app.23513.
  • Gehrke, S. H.; Palasis, M.; Akhtar, M. K. Effect of Synthesis Conditions on Properties of Poly (N- Isopropylacrylamide) Gel. Polym. Int. 1992, 29, 29–36. DOI: 10.1002/bbpc.19981021114.
  • Peak, C. W.; Wilker, J. J.; Schmidt, G. A Review on Tough and Sticky Hydrogels. Colloid Polym. Sci. 2013, 291, 2031–2047. DOI: 10.1007/s00396-013-3021-y.
  • Zhang, X.; Zhuo, R.; Yang, Y. Using Mixed Solvent to Synthesize Temperature Sensitive Poly(N-Isopropylacrylamide) Gel with Rapid Dynamics Properties. Biomaterials 2002, 23, 1313–1318. DOI: 10.1016/S0142-9612(01)00249-6.
  • Zhang, X. Z.; Wu, D.; Chu, C. Effect of the Crosslinking Level on the Properties of Temperature-Sensitive Poly(N-Isopropylacrylamide) Hydrogels. J. Polym. Sci. B Polym. Phys. 2003, 41, 582–593. DOI: 10.1002/polb.10388.
  • László, K.; Kosik, K.; Geissler, E. High-Sensitivity Isothermal and Scanning Microcalorimetry in PNIPA Hydrogels around the Volume Phase Transition. Macromolecules 2004, 37, 10067–10072. DOI: 10.1021/ma048363x.
  • Strachotová, B.; Strachota, A.; Uchman, M.; Šlouf, M.; Brus, J.; Pleštil, J.; Matějka, L. Super Porous Organic-Inorganic Poly(N-Isopropylacrylamide)-Based Hydrogel with a Very Fast Temperature Response. Polymer 2007, 48, 1471–1482. DOI: 10.1016/j.polymer.2007.01.042.
  • Papilaya, E.; Ivandini, T. A.; Saptiama, I.; Awaluddin, R.; Poertaji, S. 2016 The Effect of the Crosslinker Variation towards the Low Critical Solution Temperature of Poly(N-Isopropylacrylamide) Polymer. In: AIP Conference Proceedings. Vol. 1729. Depok, Indonesia, American Institute of Physics Inc. DOI: 10.1063/1.4946929.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.