1,405
Views
62
CrossRef citations to date
0
Altmetric
Reviews

Designing Flexible and Porous Fibrous Membranes for Oil Water Separation—A Review of Recent Developments

, ORCID Icon, , , , & show all
Pages 671-716 | Received 04 Sep 2019, Accepted 31 Dec 2019, Published online: 28 Feb 2020

References

  • ITOPF. The International Tankers Owners Pollution Federation Limited Oil Tankers Spill Statistics 2018. https://www.itopf.org/knowledge-resources/documents-guides/document/oil-tanker-spill-statistics-2018/. Accessed 14th March 2019
  • Nelson, P. J. S. S.; Bulletin, T. Australia’s National Plan to Combat Pollution of the Sea by Oil and Other Noxious and Hazardous Substances—Overview and Current Issues. Spill Sci. Technol. Bull. 2000, 6, 3–11. DOI: 10.1016/S1353-2561(00)00072-4.
  • Cho, E.-C.; Chang-Jian, C.-W.; Chen, H.-C.; Chuang, K.-S.; Zheng, J.-H.; Hsiao, Y.-S.; Lee, K.-C.; Huang, J.-H. Robust Multifunctional Superhydrophobic Coatings with Enhanced Water/Oil Separation, Self-Cleaning, Anti-Corrosion, and Anti-Biological Adhesion. Chem. Eng. J. 2017, 314, 347–357. DOI: 10.1016/j.cej.2016.11.145.
  • Sarbatly, R.; Krishnaiah, D.; Kamin, Z. A Review of Polymer Nanofibres by Electrospinning and Their Application in Oil–Water Separation for Cleaning up Marine Oil Spills. Mar. Pollut. Bull. 2016, 106, 8–16. DOI: 10.1016/j.marpolbul.2016.03.037.
  • Hubbe, M. A.; Rojas, O. J.; Fingas, M.; Gupta, B. S. Cellulosic Substrates for Removal of Pollutants from Aqueous Systems: A Review. 3. Spilled Oil and Emulsified Organic Liquids. BioResources 2013, 8, 3038–3097. DOI: 10.15376/biores.8.2.3038-3097.
  • Kinner, N. E.; Belden, L.; Kinner, P. Unexpected Sink for Deepwater Horizon Oil May Influence Future Spill Response: Town Hall: Marine Oil Snow Sedimentation and Flocculent Accumulation (MOSSFA); Mobile, Alabama, 27 January 2014. Eos 2014, 95, 176–176. DOI: 10.1002/2014EO210005.
  • Prendergast, D. P.; Gschwend, P. M. Assessing the Performance and Cost of Oil Spill Remediation Technologies. J. Clean. Prod. 2014, 78, 233–242. DOI: 10.1016/j.jclepro.2014.04.054.
  • Pintor, A. M., Vilar, V. J., Botelho, C. M., & Boaventura, R. A., Oil and grease removal from wastewaters: sorption treatment as an alternative to state-of-the-art technologies. A critical review. 2016. 297: p. 229–255. DOI: 10.1016/j.cej.2016.03.121.
  • Roques, H.; Aurelle, Y. Oil-Water Separations Oil Recovery and Oily Wastewater Treatment. In edited by A. Turkman and O. Uslu (Eds.), New Developments in Industrial Wastewater Treatment; Dordrecht, Boston and London: Springer, 1991; pp 155–174.
  • Villarroel López, R.; Elmaleh, S.; Ghaffour, N. Corrigendum to “Cross-Flow Ultrafiltration of Hydrocarbon Emulsions” [J. Membr. Sci. 102 (1–3) (1995) 55–64]. J. Membr. Sci. 2010, 364, 389. DOI: 10.1016/j.memsci.2010.07.054.
  • Li, J.; Kang, R.; Tang, X.; She, H.; Yang, Y.; Zha, F. Superhydrophobic Meshes That Can Repel Hot Water and Strong Corrosive Liquids Used for Efficient Gravity-Driven Oil/Water Separation. Nanoscale 2016, 8, 7638–7645. DOI: 10.1039/C6NR01298A.
  • Park, E. J.; Kim, H. J.; Han, S. W.; Jeong, J. H.; Kim, I. H.; Seo, H. O.; Kim, Y. D. Assembly of PDMS/SiO2-PTFE and Activated Carbon Fibre as a Liquid Water–Resistant Gas Sorbent Structure. Chem. Eng. J. 2017, 325, 433–441. DOI: 10.1016/j.cej.2017.05.088.
  • Dickhout, J. M.; Moreno, J.; Biesheuvel, P. M.; Boels, L.; Lammertink, R. G. H.; de Vos, W. M. Produced Water Treatment by Membranes: A Review from a Colloidal Perspective. J. Colloid Interface Sci. 2017, 487, 523–534. DOI: 10.1016/j.jcis.2016.10.013.
  • Bayat, A., Aghamiri, S. F., Moheb, A., & Vakili‐Nezhaad, G. R., Oil Spill Cleanup from Sea Water by Sorbent Materials. Chemical Engineering & Technology, 2005. 28(12): p. 1525–1528. DOI: 10.1002/ceat.200407083.
  • Semino, R.; Moreton, J. C.; Ramsahye, N. A.; Cohen, S. M.; Maurin, G. Understanding the Origins of Metal–Organic Framework/Polymer Compatibility. Chem. Sci. 2018, 9, 315–324. DOI: 10.1039/C7SC04152G.
  • Divya, M.; Vaseeharan, B.; Abinaya, M.; Vijayakumar, S.; Govindarajan, M.; Alharbi, N. S.; Kadaikunnan, S.; Khaled, J. M.; Benelli, G. Biopolymer Gelatin-Coated Zinc Oxide Nanoparticles Showed High Antibacterial, Antibiofilm and anti-Angiogenic Activity. J. Photochem. Photobiol. B: Biology 2018, 178, 211–218. DOI: 10.1016/j.jphotobiol.2017.11.008.
  • Albadarin, A. B.; Collins, M. N.; Naushad, M.; Shirazian, S.; Walker, G.; Mangwandi, C. Activated Lignin-Chitosan Extruded Blends for Efficient Adsorption of Methylene Blue. Chem. Eng. J. 2017, 307, 264–272. DOI: 10.1016/j.cej.2016.08.089.
  • Wang, X.; Yu, J.; Sun, G.; Ding, B. Electrospun Nanofibrous Materials: A Versatile Medium for Effective Oil/Water Separation. Mater. Today 2016, 19, 403–414. DOI: 10.1016/j.mattod.2015.11.010.
  • Ge, J., Zong, D., Jin, Q., Yu, J., & Ding, B., Biomimetic and Superwettable Nanofibrous Skins for Highly Efficient Separation of Oil-in-Water Emulsions. 2018. 28: p.1705051. DOI: 10.1002/adfm.201705051.
  • Li, H.; Zhao, X.; Wu, P.; Zhang, S.; Geng, B. Facile Preparation of Superhydrophobic and Superoleophilic Porous Polymer Membranes for Oil/Water Separation from a Polyarylester Polydimethylsiloxane Block Copolymer. J. Mater. Sci. 2016, 51, 3211–3218. DOI: 10.1007/s10853-015-9632-6.
  • Li, J.-J.; Zhu, L.-T.; Luo, Z.-H. Electrospun Fibrous Membrane with Enhanced Swithchable Oil/Water Wettability for Oily Water Separation. Chem. Eng. J. 2016, 287, 474–481. DOI: 10.1016/j.cej.2015.11.057.
  • Li, X., Wang, C., Yang, Y., Wang, X., Zhu, M., & Hsiao, B. S., Dual-biomimetic superhydrophobic electrospun polystyrene nanofibrous membranes for membrane distillation. 2014. 6(4): p. 2423–2430. DOI: 10.1021/am4048128.
  • Chen, P.-Y.; Tung, S.-H. One-Step Electrospinning to Produce Nonsolvent-Induced Macroporous Fibers with Ultrahigh Oil Adsorption Capability. Macromolecules 2017, 50, 2528–2534. DOI: 10.1021/acs.macromol.6b02696.
  • Yang, H.-C.; Hou, J.; Chen, V.; Xu, Z.-K. Janus Membranes: Exploring Duality for Advanced Separation. Angew. Chem. Int. Ed. 2016, 55, 13398–13407. DOI: 10.1002/anie.201601589.
  • Wang, P.; Teoh, M. M.; Chung, T.-S. Morphological Architecture of Dual-Layer Hollow Fiber for Membrane Distillation with Higher Desalination Performance. Water Res. 2011, 45, 5489–5500. DOI: 10.1016/j.watres.2011.08.012.
  • Zhang, S.; Wang, P.; Fu, X.; Chung, T.-S. Sustainable Water Recovery from Oily Wastewater via Forward Osmosis-Membrane Distillation (FO-MD). Water Res. 2014, 52, 112–121. DOI: 10.1016/j.watres.2013.12.044.
  • Chen, K.; Xiao, C.; Liu, H.; Ling, H.; Chu, Z.; Hu, Z. Design of Robust Twisted Fiber Bundle-Reinforced Cellulose Triacetate Hollow Fiber Reverse Osmosis Membrane with Thin Separation Layer for Seawater Desalination. J. Membr. Sci. 2019, 578, 1–9. DOI: 10.1016/j.memsci.2019.01.038.
  • Xi, Z. Y., Xu, Y. Y., Zhu, L. P., Du, C. H., & Zhu, B. K., Effect of stretching on structure and properties of polyethylene hollow fiber membranes made by melt‐spinning and stretching process. Polymers for Advanced Technologies 19.11 (2008): 1616–1622. DOI: 10.1002/pat.1177.
  • Liu, H.; Xiao, C.; Hu, X.; Liu, M. Post-Treatment Effect on Morphology and Performance of Polyurethane-Based Hollow Fiber Membranes through Melt-Spinning Method. J. Membr. Sci. 2013, 427, 326–335. DOI: 10.1016/j.memsci.2012.10.002.
  • Wei, F.-J.; Shao, H.-J.; Wu, B.; Zhang, K.-Z.; Luo, D.-J.; Qin, S.-H.; Hao, Z. Effect of Spin-Draw Rate and Stretching Ratio on Polypropylene Hollow Fiber Membrane Made by Melt-Spinning and Stretching Method. Int. Polym. Process. 2018, 33, 13–19. DOI: 10.3139/217.3303.
  • Qin, J.-J.; Gu, J.; Chung, T.-S. Effect of Wet and Dry-Jet Wet Spinning on the Shear-Induced Orientation during the Formation of Ultrafiltration Hollow Fiber Membranes. J. Membr. Sci. 2001, 182, 57–75. DOI: 10.1016/S0376-7388(00)00552-4.
  • Tsai, H.-A.; Chen, Y.-L.; Huang, S.-H.; Hu, C.-C.; Hung, W.-S.; Lee, K.-R.; Lai, J.-Y. Preparation of Polyamide/Polyacrylonitrile Composite Hollow Fiber Membrane by Synchronous Procedure of Spinning and Interfacial Polymerization. J. Membr. Sci. 2018, 551, 261–272. DOI: 10.1016/j.memsci.2018.01.059.
  • Yuliwati, E.; Ismail, A. F.; Mohruni, A. S.; Mataram, A. Optimum Parameters for Treating Coolant Wastewater Using PVDF-Membrane. In MATEC Web of Conferences; EDP Sciences; 2018. DOI: 10.1051/matecconf/201815608011.
  • Khayet, M.; Essalhi, M.; Qtaishat, M. R.; Matsuura, T. Robust Surface Modified Polyetherimide Hollow Fiber Membrane for Long-Term Desalination by Membrane Distillation. Desalination 2019, 466, 107–117. DOI: 10.1016/j.desal.2019.05.008.
  • Li, X.; Teng, K.; Shi, J.; Wang, W.; Xu, Z.; Deng, H.; Lv, H.; Li, F. Electrospun Preparation of Polylactic Acid Nanoporous Fiber Membranes via Thermal-Nonsolvent Induced Phase Separation. J. Taiwan Inst. Chem. Eng. 2016, 60, 636–642. DOI: 10.1016/j.jtice.2015.11.012.
  • Zuo, J.-H.; Cheng, P.; Chen, X.-F.; Yan, X.; Guo, Y.-J.; Lang, W.-Z. Ultrahigh Flux of Polydopamine-Coated PVDF Membranes Quenched in Air via Thermally Induced Phase Separation for Oil/Water Emulsion Separation. Sep. Purif. Technol. 2018, 192, 348–359. DOI: 10.1016/j.seppur.2017.10.027.
  • Han, N., Yang, C., Zhang, Z., Wang, W., Zhang, W., Han, C., Zhang, X., Electrostatic Assembly of a Titanium Dioxide@Hydrophilic Poly(phenylene sulfide) Porous Membrane with Enhanced Wetting Selectivity for Separation of Strongly Corrosive Oil–Water Emulsions. ACS Applied Materials & Interfaces, 2019. 11(38): p. 35479–35487. DOI: 10.1021/acsami.9b12252.
  • Yang, C.; Han, N.; Wang, W.; Zhang, W.; Han, C.; Cui, Z.; Zhang, X. Fabrication of a PPS Microporous Membrane for Efficient Water-in-Oil Emulsion Separation. Langmuir 2018, 34, 10580–10590. DOI: 10.1021/acs.langmuir.8b02393.
  • Zuo, J.-H.; Li, Z.-K.; Wei, C.; Yan, X.; Chen, Y.; Lang, W.-Z. Fine Tuning the Pore Size and Permeation Performances of Thermally Induced Phase Separation (TIPS)-Prepared PVDF Membranes with Saline Water as Quenching Bath. J. Membr. Sci. 2019, 577, 79–90. DOI: 10.1016/j.memsci.2019.02.005.
  • Ghandashtani, M. B.; Zokaee Ashtiani, F.; Karimi, M.; Fouladitajar, A. A Novel Approach to Fabricate High Performance Nano-SiO2 Embedded PES Membranes for Microfiltration of Oil-in-Water Emulsion. Appl. Surf. Sci. 2015, 349, 393–402. DOI: 10.1016/j.apsusc.2015.05.037.
  • Kim, M.; Kim, G.; Kim, J.; Lee, D.; Lee, S.; Kwon, J.; Han, H. New Continuous Process Developed for Synthesizing Sponge-Type Polyimide Membrane and Its Pore Size Control Method via Non-Solvent Induced Phase Separation (NIPS). Microporous Mesoporous Mater. 2017, 242, 166–172. DOI: 10.1016/j.micromeso.2017.01.013.
  • Song, H.-M.; Chen, C.; Shui, X.-X.; Yang, H.; Zhu, L.-J.; Zeng, Z.-X.; Xue, Q.-J. Asymmetric Janus Membranes Based on in Situ Mussel-Inspired Chemistry for Efficient Oil/Water Separation. J. Membr. Sci. 2018, 573, 126–134. DOI: 10.1016/j.memsci.2018.11.063.
  • Hai, A.; Durrani, A. A.; Selvaraj, M.; Banat, F.; Haija, M. A. Oil-Water Emulsion Separation Using Intrinsically Superoleophilic and Superhydrophobic PVDF Membrane. Sep. Purif. Technol. 2019, 212, 388–395. DOI: 10.1016/j.seppur.2018.10.001.
  • Stevens, G. B.; Reda, T.; Raguse, B. Energy Storage by the Electrochemical Reduction of CO2 to CO at a Porous Au Film. J. Electroanal. Chem. 2002, 526, 125–133. DOI: 10.1016/S0022-0728(02)00688-5.
  • Fierens, J. J., Huesler, E., Zucker, A., Marcoux, E., Nicaise, P., & Dubois, S., Porous membranes for medical implants and methods of manufacture. 2010, Google Patents.
  • Khayet, M.; Mengual, J. I.; Matsuura, T. Porous Hydrophobic/Hydrophilic Composite Membranes: Application in Desalination Using Direct Contact Membrane Distillation. J. Membr. Sci. 2005, 252, 101–113. DOI: 10.1016/j.memsci.2004.11.022.
  • Kaur, S.; Sundarrajan, S.; Rana, D.; Matsuura, T.; Ramakrishna, S. Influence of Electrospun Fiber Size on the Separation Efficiency of Thin Film Nanofiltration Composite Membrane. J. Membr. Sci. 2012, 392–393, 101–111. DOI: 10.1016/j.memsci.2011.12.005.
  • Wu, J., Wang, N., Wang, L., Dong, H., Zhao, Y., & Jiang, L., Electrospun Porous Structure Fibrous Film with High Oil Adsorption Capacity. ACS Applied Materials & Interfaces, 2012. 4(6): p. 3207–3212. DOI: 10.1021/am300544d.
  • Vaseashta, A. Nanostructured Materials Based Next Generation Devices and Sensors. In A. K. Vaseashta, D. Dimova-Malinovska, J.M. Marshall (Eds.), Nanostructured and Advanced Materials for Applications in Sensor, Optoelectronic and Photovoltaic Technology; Dordrecht: Springer Netherlands; 2005, 131–136.
  • Khalf, A.; Madihally, S. V. Recent Advances in Multiaxial Electrospinning for Drug Delivery. Eur. J. Pharm. Biopharm. 2017, 112, 1–17. DOI: 10.1016/j.ejpb.2016.11.010.
  • Huang, L.-T.; Hsu, P.-S.; Kuo, C.-Y.; Chen, S.-C.; Lai, J.-Y. Pore Size Control of PTFE Membranes by Stretch Operation with Asymmetric Heating System. Desalination 2008, 233, 64–72. DOI: 10.1016/j.desal.2007.09.028.
  • Kitamura, T., Kurumada, K. I., Tanigaki, M., Ohshima, M., & Kanazawa, S. I., Formation mechanism of porous structure in polytetrafluoroethylene (PTFE) porous membrane through mechanical operations. Polymer Engineering & Science, 1999. 39(11): p. 2256–2263. DOI: 10.1002/pen.11613.
  • Chakraborty, S.; Liao, I.-C.; Adler, A.; Leong, K. W. Electrohydrodynamics: A Facile Technique to Fabricate Drug Delivery Systems. Adv. Drug Deliv. Rev. 2009, 61, 1043–1054. DOI: 10.1016/j.addr.2009.07.013.
  • Beachley, V.; Wen, X. Polymer Nanofibrous Structures: Fabrication, Biofunctionalization, and Cell Interactions. Prog. Polym. Sci. 2010, 35, 868–892. DOI: 10.1016/j.progpolymsci.2010.03.003.
  • Chou, S.; Shi, L.; Wang, R.; Tang, C. Y.; Qiu, C.; Fane, A. G. Characteristics and Potential Applications of a Novel Forward Osmosis Hollow Fiber Membrane. Desalination 2010, 261, 365–372. DOI: 10.1016/j.desal.2010.06.027.
  • Yeow, M.; Liu, Y.; Li, KJJoms. Preparation of Porous PVDF Hollow Fibre Membrane via a Phase Inversion Method Using Lithium Perchlorate (LiClO4) as an Additive. J. Membr. Sci. 2005, 258, 16–22. DOI: 10.1016/j.memsci.2005.01.015.
  • Tian, L; Huang, X; Tang, X. Study on Morphology Behavior of PVDF‐Based Electrolytes. J. Appl. Polym. Sci. 2004, 92, 3839–3842. DOI: 10.1002/app.20402.
  • Al-Majed, A. A.; Adebayo, A. R.; Hossain, M. E. A Sustainable Approach to Controlling Oil Spills. J. Environ. Manage. 2012, 113, 213–227. DOI: 10.1016/j.jenvman.2012.07.034.
  • Ahmadpour, A.; Eftekhari, N.; Ayati, A. Performance of MWCNTs and a Low-Cost Adsorbent for Chromium(VI) Ion Removal. J. Nanostruct. Chem. 2014, 4, 171–178. DOI: 10.1007/s40097-014-0119-9.
  • Iijima, S. Helical Microtubules of Graphitic Carbon. Nature 1991, 354, 56–58. DOI: 10.1038/354056a0.
  • De Volder, M. F. L.; Tawfick, S. H.; Baughman, R. H.; Hart, A. J. Carbon Nanotubes: Present and Future Commercial Applications. Science 2013, 339, 535–539. DOI: 10.1126/science.1222453.
  • Cano, M.; Khan, U.; Sainsbury, T.; O’Neill, A.; Wang, Z.; McGovern, I. T.; Maser, W. K.; Benito, A. M.; Coleman, J. N. Improving the Mechanical Properties of Graphene Oxide Based Materials by Covalent Attachment of Polymer Chains. Carbon 2013, 52, 363–371. DOI: 10.1016/j.carbon.2012.09.046.
  • El Achaby, M.; Qaiss, A. Processing and Properties of Polyethylene Reinforced by Graphene Nanosheets and Carbon Nanotubes. Mater. Des. 2013, 44, 81–89. DOI: 10.1016/j.matdes.2012.07.065.
  • Paiva, M. C.; Zhou, B.; Fernando, K. A. S.; Lin, Y.; Kennedy, J. M.; Sun, Y.-P. Mechanical and Morphological Characterization of Polymer–Carbon Nanocomposites from Functionalized Carbon Nanotubes. Carbon 2004, 42, 2849–2854. DOI: 10.1016/j.carbon.2004.06.031.
  • Punetha, V. D.; Rana, S.; Yoo, H. J.; Chaurasia, A.; McLeskey, J. T.; Ramasamy, M. S.; Sahoo, N. G.; Cho, J. W. Functionalization of Carbon Nanomaterials for Advanced Polymer Nanocomposites: A Comparison Study between CNT and Graphene. Prog. Polym. Sci. 2017, 67, 1–47. DOI: 10.1016/j.progpolymsci.2016.12.010.
  • Kayvani Fard, A.; Rhadfi, T.; Mckay, G.; Al-Marri, M.; Abdala, A.; Hilal, N.; Hussien, M. A. Enhancing Oil Removal from Water Using Ferric Oxide Nanoparticles Doped Carbon Nanotubes Adsorbents. Chem. Eng. J. 2016, 293, 90–101. DOI: 10.1016/j.cej.2016.02.040.
  • Septevani, A. A.; Evans, D. A. C.; Annamalai, P. K.; Martin, D. J. The Use of Cellulose Nanocrystals to Enhance the Thermal Insulation Properties and Sustainability of Rigid Polyurethane Foam. Ind. Crops Prod. 2017, 107, 114–121. DOI: 10.1016/j.indcrop.2017.05.039.
  • Suryanarayana, C.; Klassen, T.; Ivanov, E. Synthesis of Nanocomposites and Amorphous Alloys by Mechanical Alloying. J. Mater. Sci. 2011, 46, 6301–6315. DOI: 10.1007/s10853-011-5287-0.
  • Jang, J.-S.; Bouveret, B.; Suhr, J.; Gibson, R. F. Combined Numerical/Experimental Investigation of Particle Diameter and Interphase Effects on Coefficient of Thermal Expansion and Young’s Modulus of SiO2/Epoxy Nanocomposites. Polym. Compos. 2012, 33, 1415–1423. DOI: 10.1002/pc.22268.
  • Kratochvíla, J.; Boudenne, A.; Krupa, I. Effect of Filler Size on Thermophysical and Electrical Behavior of Nanocomposites Based on Expanded Graphite Nanoparticles Filled in Low‐Density Polyethylene Matrix. Polym. Compos. 2013, 34, 149–155. DOI: 10.1002/pc.22387.
  • Hadden, C. M.; Jensen, B. D.; Bandyopadhyay, A.; Odegard, G. M.; Koo, A.; Liang, R. Molecular Modeling of EPON-862/Graphite Composites: Interfacial Characteristics for Multiple Crosslink Densities. Compos. Sci. Technol. 2013, 76, 92–99. DOI: 10.1016/j.compscitech.2013.01.002.
  • Rinzler, A. G.; Hafner, J. H.; Nikolaev, P.; Nordlander, P.; Colbert, D. T.; Smalley, R. E.; Lou, L.; Kim, S. G.; Tomanek, D. Unraveling Nanotubes: Field Emission from an Atomic Wire. Science 1995, 269, 1550–1553. DOI: 10.1126/science.269.5230.1550.
  • Siochi, E. J.; Working, D. C.; Park, C.; Lillehei, P. T.; Rouse, J. H.; Topping, C. C.; Bhattacharyya, A. R.; Kumar, S. Melt Processing of SWCNT-Polyimide Nanocomposite Fibers. Composites Part B: Engineering 2004, 35, 439–446. DOI: 10.1016/j.compositesb.2003.09.007.
  • Gupta, P., Asmatulu, R., Claus, R., & Wilkes, G., Superparamagnetic flexible substrates based on submicron electrospun Estane® fibers containing MnZnFe Ni nanoparticles. 2006. 100(6): p. 4935–4942. DOI: 10.1002/app.23757.
  • Ramakrishna, S., An introduction to nanofibers. 2005, World Scientific Co., Pte. Ltd., Singapore.
  • Gogotsi, Y. Nanomaterials Handbook; CRC Press: Boca Raton, 2006.
  • Asmatulu, R., Khan, W., Nguyen, K. D., & Yildirim, M. B., Synthesizing magnetic nanocomposite fibers for undergraduate nanotechnology laboratory. 2010. 38(3): p. 196–203. DOI: 10.7227/IJMEE.38.3.2.
  • Sarkar, K., Hoos, P., & Urias, A., Numerical Simulation of Formation and Distortion of Taylor Cones. 2012. 3(4): p. 041001.
  • Reneker, D. H., Yarin, A. L., Fong, H., & Koombhongse, S., Bending instability of electrically charged liquid jets of polymer solutions in electrospinning. 2000. 87(9): p. 4531–4547. DOI: 10.1063/1.373532.
  • Burger, C.; Hsiao, B. S.; Chu, B. Nanofibrous Materials and Their Applications. Annu. Rev. Mater. Res. 2006, 36, 333–368. DOI: 10.1146/annurev.matsci.36.011205.123537.
  • Teo, W. E.; Ramakrishna, S. J. N. A Review on Electrospinning Design and Nanofibre Assemblies. Nanotechnology 2006, 17, R89. DOI: 10.1088/0957-4484/17/14/R01.
  • Li, D.; Xia, Y. Electrospinning of Nanofibers: Reinventing the Wheel? Adv. Mater. 2004, 16, 1151–1170. DOI: 10.1002/adma.200400719.
  • Koombhongse, S.; Liu, W.; Reneker, D. H. Flat Polymer Ribbons and Other Shapes by Electrospinning. J. Polym. Sci. B: Polym. Phys. 2001, 39, 2598–2606. DOI: 10.1002/polb.10015.
  • Mo, X. M., Xu, C. Y., Kotaki, M. E. A., & Ramakrishna, S., Electrospun P (LLA-CL) nanofiber: a biomimetic extracellular matrix for smooth muscle cell and endothelial cell proliferation. 2004. 25(10): p. 1883–1890. DOI: 10.1016/j.biomaterials.2003.08.042.
  • Ponnamma, D., Aljarod, O., Parangusan, H., & Al-Maadeed, M. A. A., Electrospun nanofibers of PVDF-HFP composites containing magnetic nickel ferrite for energy harvesting application. Materials Chemistry and Physics. 2019. P.122257 DOI: 10.1016/j.matchemphys.2019.122257.
  • Taylor, G. I. Disintegration of Water Drops in an Electric Field. Proc. R. Soc. Lond. Ser. A: Math. Phys. Sci. 1964, 280, 383–397.
  • Shin, Y. M., Hohman, M. M., Brenner, M. P., & Rutledge, G. C., Experimental characterization of electrospinning: the electrically forced jet and instabilities. 2001. 42(25): p. 09955–09967. DOI: 10.1016/S0032-3861(01)00540-7.
  • Lee, J. S., Choi, K. H., Ghim, H. D., Kim, S. S., Chun, D. H., Kim, H. Y., & Lyoo, W. S., Role of molecular weight of atactic poly (vinyl alcohol)(PVA) in the structure and properties of PVA nanofabric prepared by electrospinning. 2004. 93(4): p. 1638–1646. DOI: 10.1002/app.20602.
  • Megelski, S., Stephens, J. S., Chase, D. B., & Rabolt, J. F., Micro-and nanostructured surface morphology on electrospun polymer fibers. 2002. 35(22): p. 8456–8466. DOI: 10.1021/ma020444a.
  • Pawlowski, K. J., Belvin, H. L., Raney, D. L., Su, J., Harrison, J. S., & Siochi, E. J., Electrospinning of a micro-air vehicle wing skin. 2003. 44(4): p. 1309–1314. DOI: 10.1016/S0032-3861(02)00859-5.
  • Zong, X., Kim, K., Fang, D., Ran, S., Hsiao, B. S., & Chu, B., Structure and process relationship of electrospun bioabsorbable nanofiber membranes. 2002. 43(16): p. 4403–4412. DOI: 10.1016/S0032-3861(02)00275-6.
  • Demir, M. M., Yilgor, I., Yilgor, E. E. A., & Erman, B., Electrospinning of polyurethane fibers. 2002. 43(11): p. 3303–3309. DOI: 10.1016/S0032-3861(02)00136-2.
  • Krishnappa, R.; Desai, K.; Sung, C. Morphological Study of Electrospun Polycarbonates as a Function of the Solvent and Processing Voltage. J. Mater. Sci. 2003, 38, 2357–2365. DOI: 10.1023/A:1023984514389.
  • Zhao, S.; Wu, X.; Wang, L.; Huang, Y. Electrospinning of Ethyl–Cyanoethyl Cellulose/Tetrahydrofuran Solutions. J. Appl. Polym. Sci. 2004, 91, 242–246. DOI: 10.1002/app.13196.
  • Yang, Y., Liu, J., Jia, Z., Wang, L., & Guan, Z., Effect of solution rate on electrospinning. in 2007 Annual Report-Conference on Electrical Insulation and Dielectric Phenomena. 2007. IEEE.
  • Son, W. K., Youk, J. H., Lee, T. S., & Park, W. H., The effects of solution properties and polyelectrolyte on electrospinning of ultrafine poly (ethylene oxide) fibers. 2004. 45(9): p. 2959–2966. DOI: 10.1016/j.polymer.2004.03.006.
  • Yuan, X., Zhang, Y., Dong, C., & Sheng, J., Morphology of ultrafine polysulfone fibers prepared by electrospinning. 2004. 53(11): p. 1704–1710. DOI: 10.1002/pi.1538.
  • Jarusuwannapoom, T., Hongrojjanawiwat, W., Jitjaicham, S., Wannatong, L., Nithitanakul, M., Pattamaprom, C., & Supaphol, P., Effect of solvents on electro-spinnability of polystyrene solutions and morphological appearance of resulting electrospun polystyrene fibers. 2005. 41(3): p. 409–421. DOI: 10.1016/j.eurpolymj.2004.10.010.
  • Nair, L. S., Bhattacharyya, S., Bender, J. D., Greish, Y. E., Brown, P. W., Allcock, H. R., & Laurencin, C. T., Fabrication and optimization of methylphenoxy substituted polyphosphazene nanofibers for biomedical applications. 2004. 5(6): p. 2212–2220. DOI: 10.1021/bm049759j.
  • Biber, E., Gündüz, G., Mavis, B., & Colak, U., Effects of electrospinning process parameters on nanofibers obtained from Nylon 6 and poly (ethylene-n-butyl acrylate-maleic anhydride) elastomer blends using Johnson S B statistical distribution function. 2010. 99(2): p. 477–487. DOI: 10.1007/s00339-010-5559-6.
  • Macossay, J., Marruffo, A., Rincon, R., Eubanks, T., & Kuang, A., Effect of needle diameter on nanofiber diameter and thermal properties of electrospun poly (methyl methacrylate). 2007. 18(3): p. 180–183. DOI: 10.1002/pat.844.
  • Kim, S. J., Lee, C. K., & Kim, S. I., Effect of ionic salts on the processing of poly (2‐acrylamido‐2‐methyl‐1‐propane sulfonic acid) nanofibers. 2005. 96(4): p. 1388–1393. DOI: 10.1002/app.21567.
  • Lee, K. H., Kim, H. Y., Khil, M. S., Ra, Y. M., & Lee, D. R., Characterization of nano-structured poly (ε-caprolactone) nonwoven mats via electrospinning. 2003. 44(4): p. 1287–1294. DOI: 10.1016/S0032-3861(02)00820-0.
  • Fong, H.; Chun, I.; Reneker, D. H. Beaded Nanofibers Formed during Electrospinning. Polymer 1999, 40, 4585–4592. DOI: 10.1016/S0032-3861(99)00068-3.
  • Casper, C. L., Stephens, J. S., Tassi, N. G., Chase, D. B., & Rabolt, J. F., Controlling surface morphology of electrospun polystyrene fibers: effect of humidity and molecular weight in the electrospinning process. 2004. 37(2): p. 573–578. DOI: 10.1021/ma0351975.
  • Sagitha, P., Reshmi, C. R., Manaf, O., Sundaran, S. P., Juraij, K., & Sujith, A., Development of nanocomposite membranes by electrospun nanofibrous materials. Nanocomposite Membranes for Water and Gas Separation. 2019. P.199.
  • Gopi, S.; Kargl, R.; Kleinschek, K. S.; Pius, A.; Thomas, S. Chitin Nanowhisker–inspired Electrospun PVDF Membrane for Enhanced Oil-Water Separation. J. Environ. Manage. 2018, 228, 249–259. DOI: 10.1016/j.jenvman.2018.09.039.
  • Barroso-Solares, S.; Pinto, J.; Nanni, G.; Fragouli, D.; Athanassiou, A. Enhanced Oil Removal from Water in Oil Stable Emulsions Using Electrospun Nanocomposite Fiber Mats. RSC Adv. 2018, 8, 7641–7650. DOI: 10.1039/C7RA12646H.
  • Parangusan, H.; Ponnamma, D.; Hassan, M.; Adham, S.; Al-Maadeed, M. Designing Carbon Nanotube-Based Oil Absorbing Membranes from Gamma Irradiated and Electrospun Polystyrene Nanocomposites. Materials 2019, 12, 709. DOI: 10.3390/ma12050709.
  • Huang, Y.; Liu, H.; Xiao, C.; Wang, C.; Chen, D.; Sun, K. Robust Preparation and Multiple Pore Structure Design of Poly (Tetrafluoroethylene-co-Hexafluoropropylene) Hollow Fiber Membrane by Melt Spinning and Post-Treatment. J. Taiwan Inst. Chem. Eng. 2019, 97, 441–449. DOI: 10.1016/j.jtice.2019.02.010.
  • Vonka, M.; Nistor, A.; Rygl, A.; Toulec, M.; Kosek, J. Morphology Model for Polymer Foams Formed by Thermally Induced Phase Separation. Chem. Eng. J. 2016, 284, 357–371. DOI: 10.1016/j.cej.2015.08.105.
  • Cicero, J. A.; Dorgan, J. R. Physical Properties and Fiber Morphology of Poly (Lactic Acid) Obtained from Continuous Two-Step Melt Spinning. J. Polym. Environ. 2001, 9, 1–10.
  • Kim, J.-J.; Hwang, J. R.; Kim, U. Y.; Kim, S. S. Operation Parameters of Melt Spinning of Polypropylene Hollow Fiber Membranes. J. Membr. Sci. 1995, 108, 25–36. DOI: 10.1016/0376-7388(95)00148-7.
  • Cabasso, I.; Klein, E.; Smith, J. K. Polysulfone Hollow Fibers. I. Spinning and Properties. J. Appl. Polym. Sci. 1976, 20, 2377–2394. DOI: 10.1002/app.1976.070200908.
  • Park, S. R., Kim, J., Ali, A., Macedonio, F., & Drioli, E., A Novel Approach to Synthesize Helix Wave Hollow Fiber Membranes for Separation Applications. Journal of Membrane and Separation Technology, 2015. 4(1): p. 8–14. DOI: 10.6000/1929-6037.2015.04.01.2.
  • Li, S.-G.; Koops, G. H.; Mulder, M. H. V.; van den Boomgaard, T.; Smolders, C. A. Wet Spinning of Integrally Skinned Hollow Fiber Membranes by a Modified Dual-Bath Coagulation Method Using a Triple Orifice Spinneret. J. Membr. Sci. 1994, 94, 329–340. DOI: 10.1016/0376-7388(94)00076-X.
  • Ozipek, B.; Karakas, H. Wet Spinning of Synthetic Polymer Fibers. In edited by B.Ozipek and H. Karakas (Eds) Advances in Filament Yarn Spinning of Textiles and Polymers; Sawston, Cambridge: Elsevier, 2014; pp 174–186.
  • Liang, J.-W.; Prasad, G.; Wang, S.-C.; Wu, J.-L.; Lu, S.-G. Enhancement of the Oil Absorption Capacity of Poly (Lactic Acid) Nano Porous Fibrous Membranes Derived via a Facile Electrospinning Method. Appl. Sci. 2019, 9, 1014. DOI: 10.3390/app9051014.
  • Yaari, A., Schilt, Y., Tamburu, C., Raviv, U., & Shoseyov, O., Wet spinning and drawing of human recombinant collagen. ACS Biomaterials Science & Engineering, 2016. 2(3): p. 349–360. DOI: 10.1021/acsbiomaterials.5b00461.
  • He, Y.; Zhang, N.; Gong, Q.; Qiu, H.; Wang, W.; Liu, Y.; Gao, J. Alginate/Graphene Oxide Fibers with Enhanced Mechanical Strength Prepared by Wet Spinning. Carbohydr. Polym. 2012, 88, 1100–1108. DOI: 10.1016/j.carbpol.2012.01.071.
  • Wang, Y. X.; Wang, C. G.; Yu, M. J. Effects of Different Coagulation Conditions on Polyacrylonitrile Fibers Wet Spun in a System of Dimethylsulphoxide and Water. J. Appl. Polym. Sci. 2007, 104, 3723–3729. DOI: 10.1002/app.25723.
  • Wang, Y.; Cheng, R.; Liang, L.; Wang, Y. Study on the Preparation and Characterization of Ultra-High Molecular Weight Polyethylene–Carbon Nanotubes Composite Fiber. Compos. Sci. Technol. 2005, 65, 793–797. DOI: 10.1016/j.compscitech.2004.10.012.
  • Boom, R. M.; Wienk, I. M.; van den Boomgaard, T.; Smolders, C. A. Microstructures in Phase Inversion Membranes. Part 2. The Role of a Polymeric Additive. J. Membr. Sci. 1992, 73, 277–292. DOI: 10.1016/0376-7388(92)80135-7.
  • Bottino, A.; Camera-Roda, G.; Capannelli, G.; Munari, S. The Formation of Microporous Polyvinylidene Difluoride Membranes by Phase Separation. J. Membr. Sci. 1991, 57, 1–20. DOI: 10.1016/S0376-7388(00)81159-X.
  • Judd, S. The MBR Book: Principles and Applications of Membrane Bioreactors for Water and Wastewater Treatment; Oxford, Elsevier, 2010.
  • Peng, N.; Widjojo, N.; Sukitpaneenit, P.; Teoh, M. M.; Lipscomb, G. G.; Chung, T.-S.; Lai, J.-Y. Evolution of Polymeric Hollow Fibers as Sustainable Technologies: Past, Present, and Future. Prog. Polym. Sci. 2012, 37, 1401–1424. DOI: 10.1016/j.progpolymsci.2012.01.001.
  • Liu, T.; Zhang, D.; Xu, S.; Sourirajan, S. Solution-Spun Hollow Fiber Polysulfone and Polyethersulfone Ultrafiltration Membranes. Sep. Sci. Technol. 1992, 27, 161–172. DOI: 10.1080/01496399208018871.
  • Miao, X.; Sourirajan, S.; Zhang, H.; Lau, W. W. Y. Production of Polyethersulfone Hollow Fiber Ultrafiltration Membranes. I. Effects of Water (Internal Coagulant) Flow Rate (WFR) and Length of Air Gap (LAG). Sep. Sci. Technol. 1996, 31, 141–172. DOI: 10.1080/01496399608000687.
  • Ekiner, O.; Vassilatos, G. Polyaramide Hollow Fibers for Hydrogen/Methane Separation—Spinning and Properties. J. Membr. Sci. 1990, 53, 259–273. DOI: 10.1016/0376-7388(90)80018-H.
  • Chung, T. S.; Hu, X. Effect of Air‐Gap Distance on the Morphology and Thermal Properties of Polyethersulfone Hollow Fibers. J. Appl. Polym. Sci. 1997, 66, 1067–1077. DOI: 10.1002/(SICI)1097-4628(19971107)66:6<1067::AID-APP7>3.0.CO;2-G.
  • Teoh, M. M.; Chung, T.-S. Micelle-like Macrovoids in Mixed Matrix PVDF-PTFE Hollow Fiber Membranes. J. Membr. Sci. 2009, 338, 5–10. DOI: 10.1016/j.memsci.2009.04.028.
  • Koenhen, D. M.; Mulder, M. H. V.; Smolders, C. A. Phase Separation Phenomena during the Formation of Asymmetric Membranes. J. Appl. Polym. Sci. 1977, 21, 199–215. DOI: 10.1002/app.1977.070210118.
  • Strathmann, H.; Kock, K. The Formation Mechanism of Phase Inversion Membranes. Desalination 1977, 21, 241–255. DOI: 10.1016/S0011-9164(00)88244-2.
  • Guillen, G. R., Pan, Y., Li, M., & Hoek, E. M., Preparation and characterization of membranes formed by nonsolvent induced phase separation: a review. Industrial & Engineering Chemistry Research, 2011. 50(7): p. 3798–3817. DOI: 10.1021/ie101928r.
  • Soroko, I.; Lopes, M. P.; Livingston, A. The Effect of Membrane Formation Parameters on Performance of Polyimide Membranes for Organic Solvent Nanofiltration (OSN): Part A. Effect of Polymer/Solvent/Non-Solvent System Choice. J. Membr. Sci. 2011, 381, 152–162. DOI: 10.1016/j.memsci.2011.07.027.
  • Yeow, M.; Liu, Y.; Li, K. Morphological Study of Poly (Vinylidene Fluoride) Asymmetric Membranes: effects of the Solvent, Additive, and Dope Temperature. J. Appl. Polym. Sci. 2004, 92, 1782–1789. DOI: 10.1002/app.20141.
  • Liu, J.; Lu, X. L.; Wu, C. R. Effect of Annealing Conditions on Crystallization Behavior and Mechanical Properties of NIPS Poly (Vinylidene Fluoride) Hollow Fiber Membranes. J. Appl. Polym. Sci. 2013, 129, 1417–1425. DOI: 10.1002/app.38845.
  • Liu, Y.; Su, Y.; Li, Y.; Zhao, X.; Jiang, Z. Improved Antifouling Property of PVDF Membranes by Incorporating an Amphiphilic Block-like Copolymer for Oil/Water Emulsion Separation. RSC Adv. 2015, 5, 21349–21359. DOI: 10.1039/C4RA16290K.
  • Zhang, G.; Jiang, J.; Zhang, Q.; Zhan, X.; Chen, F. Amphiphilic Poly (Ether Sulfone) Membranes for Oil/Water Separation: Effect of Sequence Structure of the Modifier. AIChE J. 2017, 63, 739–750. DOI: 10.1002/aic.15365.
  • Caneba, G. T.; Soong, D. S. Polymer Membrane Formation through the Thermal-Inversion Process. 1. Experimental Study of Membrane Structure Formation. Macromolecules 1985, 18, 2538–2545. DOI: 10.1021/ma00154a031.
  • Lloyd, D. R.; Kinzer, K. E.; Tseng, H. S. Microporous Membrane Formation via Thermally Induced Phase Separation. I. Solid-Liquid Phase Separation. J. Membr. Sci. 1990, 52, 239–261. DOI: 10.1016/S0376-7388(00)85130-3.
  • Gu, M.; Zhang, J.; Wang, X.; Tao, H.; Ge, L. Formation of Poly(Vinylidene Fluoride) (PVDF) Membranes via Thermally Induced Phase Separation. Desalination 2006, 192, 160–167. DOI: 10.1016/j.desal.2005.10.015.
  • Tang, Y-h.; He, Y-d.; Wang, X-l. Investigation on the Membrane Formation Process of Polymer–Diluent System via Thermally Induced Phase Separation Accompanied with Mass Transfer across the Interface: Dissipative Particle Dynamics Simulation and Its Experimental Verification. J. Membr. Sci. 2015, 474, 196–206. DOI: 10.1016/j.memsci.2014.09.034.
  • Lee, J.; Park, B.; Kim, J.; Park, S. B. Effect of PVP, Lithium Chloride, and Glycerol Additives on PVDF Dual-Layer Hollow Fiber Membranes Fabricated Using Simultaneous Spinning of TIPS and NIPS. Macromol. Res. 2015, 23, 291–299. DOI: 10.1007/s13233-015-3037-x.
  • Ghasem, N.; Al-Marzouqi, M.; Duaidar, A. Effect of Quenching Temperature on the Performance of Poly(Vinylidene Fluoride) Microporous Hollow Fiber Membranes Fabricated via Thermally Induced Phase Separation Technique on the Removal of CO2 from CO2-Gas Mixture. Int. J. Greenh. Gas Control 2011, 5, 1550–1558. DOI: 10.1016/j.ijggc.2011.08.012.
  • Li, Z.-K.; Lang, W.-Z.; Miao, W.; Yan, X.; Guo, Y.-J. Preparation and Properties of PVDF/SiO2@GO Nanohybrid Membranes via Thermally Induced Phase Separation Method. J. Membr. Sci. 2016, 511, 151–161. DOI: 10.1016/j.memsci.2016.03.048.
  • Liu, F.; Tao, M-m.; Xue, L-x. PVDF Membranes with Inter-Connected Pores Prepared via a Nat-ips Process. Desalination 2012, 298, 99–105. DOI: 10.1016/j.desal.2012.05.016.
  • Lee, G. H.; Song, J.-C.; Yoon, K.-B. Controlled Wall Thickness and Porosity of Polymeric Hollow Nanofibers by Coaxial Electrospinning. Macromol. Res. 2010, 18, 571–576. DOI: 10.1007/s13233-010-0607-9.
  • Mishra, M. K.; Yu, H. L.; Molnar, J.; Baliga, V. Design of a Polymer Blend for One-Step Porous Fiber Fabrication. Des. Monomers Polym. 2009, 12, 273–278. DOI: 10.1163/156855509X436094.
  • Lipps, B. J., Jr. Process for the Fabrication of a Cellulose Hollow Fiber Separatory Cell. Google Patents, 1970.
  • Dennison, K. A., Kolcinski, B. E., Krishnan, S., & Russell, P. M., PVDF membranes with inter-connected pores prepared via a Nat-ips process. Desalination, 2012. 298: p. 99–105
  • Noor, N.; Koll, J.; Scharnagl, N.; Abetz, C.; Abetz, V. Hollow Fiber Membranes of Blends of Polyethersulfone and Sulfonated Polymers. Membranes 2018, 8, 54. DOI: 10.3390/membranes8030054.
  • Lafreniere, L. Y., Talbot, F. D., Matsuura, T., & Sourirajan, S., Design of a Polymer Blend for One-Step Porous Fiber Fabrication. Designed Monomers and Polymers, 2009. 12(3): p. 273–278.
  • Roesink, H. D. W.; Beerlage, M. A. M.; Potman, W.; van den Boomgaard, T.; Mulder, M. H. V.; Smolders, C. A. Characterization of New membrane materials by Means of Fouling Experiments Adsorption of BSA on Polyetherimide—Polyvinylpyrrolidone Membranes. Colloids Surf. 1991, 55, 231–243. DOI: 10.1016/0166-6622(91)80095-6.
  • Wienk, I. M.; Olde Scholtenhuis, F. H. A.; van den Boomgaard, T.; Smolders, C. A. Spinning of Hollow Fiber Ultrafiltration Membranes from a Polymer Blend. J. Membr. Sci. 1995, 106, 233–243. DOI: 10.1016/0376-7388(95)00088-T.
  • Wang, K. Y. The Effects of Flow Angle and Shear Rate within the Spinneret on the Separation Performance of Poly (Ethersulfone)(PES) Ultrafiltration Hollow Fiber Membranes. J. Membr. Sci. 2004, 240, 67–79. DOI: 10.1016/j.memsci.2004.04.012.
  • An, Z.; Xu, R.; Dai, F.; Xue, G.; He, X.; Zhao, Y.; Chen, L. PVDF/PVDF-g-PACMO Blend Hollow Fiber Membranes for Hemodialysis: Preparation, Characterization, and Performance. RSC Adv. 2017, 7, 26593–26600. DOI: 10.1039/C7RA03366D.
  • Gebreslase, G. A.; Bousquet, G.; Bouyer, D. Review on Membranes for the Filtration of Aqueous Based Solution: Oil in Water Emulsion. J. Membr. Sci. Technol. 2018, 8, DOI: 10.4172/2155-9589.1000188.
  • Anderson, G.; Saw, C.; Le, M. Oil/Water Separation with Surface Modified Membranes. Environ. Technol. 1987, 8, 121–132. DOI: 10.1080/09593338709384470.
  • Sun, C.; Feng, X. Enhancing the Performance of PVDF Membranes by Hydrophilic Surface Modification via Amine Treatment. Sep. Purif. Technol. 2017, 185, 94–102. DOI: 10.1016/j.seppur.2017.05.022.
  • Padaki, M.; Surya Murali, R.; Abdullah, M. S.; Misdan, N.; Moslehyani, A.; Kassim, M. A.; Hilal, N.; Ismail, A. F. Membrane Technology Enhancement in Oil–Water Separation. A Review. Desalination 2015, 357, 197–207. DOI: 10.1016/j.desal.2014.11.023.
  • Li, D.; Xia, Y. Direct Fabrication of Composite and Ceramic Hollow Nanofibers by Electrospinning. Nano Lett. 2004, 4, 933–938. DOI: 10.1021/nl049590f.
  • Kang, H., Cheng, Z., Lai, H., Ma, H., Liu, Y., Mai, X. & Guo, Z., Superlyophobic Anti-corrosive and Self-cleaning Titania Robust Mesh Membrane with Enhanced Oil/Water Separation. Vol. 201. 2018.
  • Research, G. V. Plastic Compounding Market Analysis by Product (Polyethylene, Polypropylene, TPV, TPO, PVC, Polystyrene, PET, PBT, Polyamide, Polycarbonate, ABS), by Application, and Segment Forecasts, 2018–2026, 2017; p 225.
  • Razmjou, A., Arifin, E., Dong, G., Mansouri, J., & Chen, V., Superhydrophobic modification of TiO2 nanocomposite PVDF membranes for applications in membrane distillation. Journal of membrane science, 2012. 415: p. 850–863. DOI: 10.1016/j.memsci.2012.06.004.
  • Shen, S. S.; Liu, K. P.; Yang, J. J.; Li, Y.; Bai, R. B.; Zhou, X. J. Application of a Triblock Copolymer Additive Modified Polyvinylidene Fluoride Membrane for Effective Oil/Water Separation. R. Soc. Open Sci. 2018, 5, 171979. DOI: 10.1098/rsos.171979.
  • Yalcinkaya, F.; Siekierka, A.; Bryjak, M. Surface Modification of Electrospun Nanofibrous Membranes for Oily Wastewater Separation. RSC Adv. 2017, 7, 56704–56712. DOI: 10.1039/C7RA11904F.
  • Brendolan, A., Bellomo, R., Tetta, C., Piccinni, P., Digito, A., Wratten, M. L., & Ronco, C., Coupled plasma filtration adsorption in the treatment of septic shock, in Blood Purification in Intensive Care. 2001, Karger Publishers. p. 383–390.
  • Cheng, B., Li, Z., Li, Q., Ju, J., Kang, W., & Naebe, M., Development of smart poly (vinylidene fluoride)-graft-poly (acrylic acid) tree-like nanofiber membrane for pH-responsive oil/water separation. 2017. 534: p. 1–8. DOI: 10.1016/j.memsci.2017.03.053.
  • Crick, C. R.; Ozkan, F. T.; Parkin, I. P. Fabrication of Optimized Oil–Water Separation Devices through the Targeted Treatment of Silica Meshes. Sci. Technol. Adv. Mater. 2015, 16, 055006. DOI: 10.1088/1468-6996/16/5/055006.
  • Zhang, L.; Zhang, Z.; Wang, P. Smart Surfaces with Switchable Superoleophilicity and Superoleophobicity in Aqueous Media: Toward Controllable Oil/Water Separation. NPG Asia Mater. 2012, 4, e8–e8. DOI: 10.1038/am.2012.14.
  • Ma, W.; Zhao, J.; Oderinde, O.; Han, J.; Liu, Z.; Gao, B.; Xiong, R.; Zhang, Q.; Jiang, S.; Huang, C.; et al. Durable Superhydrophobic and Superoleophilic Electrospun Nanofibrous Membrane for Oil-Water Emulsion Separation. J. Colloid Interface Sci. 2018, 532, 12–23. DOI: 10.1016/j.jcis.2018.06.067.
  • Zhou, Z.; Wu, X.-F. Electrospinning Superhydrophobic–Superoleophilic Fibrous PVDF Membranes for High-Efficiency Water–Oil Separation. Mater. Lett. 2015, 160, 423–427. DOI: 10.1016/j.matlet.2015.08.003.
  • Wang, Z.; Wang, Y.; Liu, G. Rapid and Efficient Separation of Oil from Oil‐in‐Water Emulsions Using a Janus Cotton Fabric. Angew. Chem. Int. Ed. 2016, 55, 1291–1294. DOI: 10.1002/anie.201507451.
  • Gu, J.; Xiao, P.; Chen, J.; Liu, F.; Huang, Y.; Li, G.; Zhang, J.; Chen, T. Robust Preparation of Superhydrophobic Polymer/Carbon Nanotube Hybrid Membranes for Highly Effective Removal of Oils and Separation of Water-in-Oil Emulsions. J. Mater. Chem. A 2014, 2, 15268–15272. DOI: 10.1039/C4TA01603C.
  • Digiano, F. A.; Roudman, A.; Arnold, M.; Freeman, B. Novel Block Copolymers as Nanofiltration Materials. Environ. Eng. Sci. 2002, 19, 497–511. DOI: 10.1089/109287502320963463.
  • Cai, Y.; Chen, D.; Li, N.; Xu, Q.; Li, H.; He, J.; Lu, J. A Smart Membrane with Antifouling Capability and Switchable Oil Wettability for High-Efficiency Oil/Water Emulsions Separation. J. Membr. Sci. 2018, 555, 69–77. DOI: 10.1016/j.memsci.2018.03.042.
  • Roy, S.; Bhalani, D. V.; Jewrajka, S. K. Surface Segregation of Segmented Amphiphilic Copolymer of Poly(Dimethylsiloxane) and Poly(Ethylene Glycol) on Poly(Vinylidene Fluoride) Blend Membrane for Oil–Water Emulsion Separation. Sep. Purif. Technol. 2020, 232, 115940. DOI: 10.1016/j.seppur.2019.115940.
  • Carvalho, M. S., Clarisse, M. D., Lucas, E. F., Barbosa, C. C. R., & Barbosa, L. C. F., Evaluation of the polymeric materials (DVB copolymers) for produced water treatment. in Abu Dhabi International Petroleum Exhibition and Conference. 2002. Society of Petroleum Engineers. DOI: 10.2118/78585-MS.
  • Jan, R.; Reed, T., Jr. New Caustic Process for Softening Produced Water for Steam Generation. SPE Prod. Eng. 1992, 7, 199–202. DOI: 10.2118/19759-PA.
  • García-Payo, M.; Essalhi, M.; Khayet, M. Effects of PVDF-HFP Concentration on Membrane Distillation Performance and Structural Morphology of Hollow Fiber Membranes. J. Membr. Sci. 2010, 347, 209–219. DOI: 10.1016/j.memsci.2009.10.026.
  • Stephan, A. M.; Teeters, D. Characterization of PVdF-HFP Polymer Membranes Prepared by Phase Inversion Techniques I. Morphology and Charge–Discharge Studies. Electrochim. Acta 2003, 48, 2143–2148. DOI: 10.1016/S0013-4686(03)00197-X.
  • Feng, C.; Wang, R.; Shi, B.; Li, G.; Wu, Y. Factors Affecting Pore Structure and Performance of Poly (Vinylidene Fluoride-co-Hexafluoro Propylene) Asymmetric Porous Membrane. J. Membr. Sci. 2006, 277, 55–64. DOI: 10.1016/j.memsci.2005.10.009.
  • Shi, L.; Wang, R.; Cao, Y.; Feng, C.; Liang, D. T.; Tay, J. H. Fabrication of Poly (Vinylidene Fluoride-co-Hexafluropropylene)(PVDF-HFP) Asymmetric Microporous Hollow Fiber Membranes. J. Membr. Sci. 2007, 305, 215–225. DOI: 10.1016/j.memsci.2007.08.012.
  • Wei, Z.; Lian, Y.; Wang, X.; Long, S.; Yang, J. A Novel High-Durability Oxidized Poly (Arylene Sulfide Sulfone) Electrospun Nanofibrous Membrane for Direct Water-Oil Separation. Sep. Purif. Technol. 2020, 234, 116012. DOI: 10.1016/j.seppur.2019.116012.
  • Jamalludin, M. R.; Hubadillah, S. K.; Harun, Z.; Othman, M. H. D.; Yunos, M. Z. Novel Superhydrophobic and Superoleophilic Sugarcane Green Ceramic Hollow Fibre Membrane as Hybrid Oil Sorbent-Separator of Real Oil and Water Mixture. Mater. Lett. 2019, 240, 136–139. DOI: 10.1016/j.matlet.2018.12.111.
  • Saththasivam, J.; Yiming, W.; Wang, K.; Jin, J.; Liu, Z. A Novel Architecture for Carbon Nanotube Membranes towards Fast and Efficient Oil/Water Separation. Sci. Rep. 2018, 8, 7418. DOI: 10.1038/s41598-018-25788-9.
  • Cho, I.; Lee, K.-W. Morphology of Latex Particles Formed by Poly(Methyl Methacrylate)-Seeded Emulsion Polymerization of Styrene. J. Appl. Polym. Sci. 1985, 30, 1903–1926. DOI: 10.1002/app.1985.070300510.
  • Jiang, Y.; Hou, J.; Xu, J.; Shan, B. Switchable Oil/Water Separation with Efficient and Robust Janus Nanofiber Membranes. Carbon 2017, 115, 477–485. DOI: 10.1016/j.carbon.2017.01.053.
  • Yang, C., Han, N., Han, C., Wang, M., Zhang, W., Wang, W., & Zhang, X., Design of a Janus F-TiO2@PPS Porous Membrane with Asymmetric Wettability for Switchable Oil/Water Separation. ACS Applied Materials & Interfaces, 2019. 11(25): p. 22408–22418. DOI: 10.1021/acsami.9b05191.
  • Tan, L.; Han, N.; Qian, Y.; Zhang, H.; Gao, H.; Zhang, L.; Zhang, X. Superhydrophilic and Underwater Superoleophobic Poly (Acrylonitrile-co-Methyl Acrylate) Membrane for Highly Efficient Separation of Oil-in-Water Emulsions. J. Membr. Sci. 2018, 564, 712–721. DOI: 10.1016/j.memsci.2018.06.051.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.