754
Views
31
CrossRef citations to date
0
Altmetric
Review

ROMP and MCP as Versatile and Forceful Tools to Fabricate Dendronized Polymers for Functional Applications

, , & ORCID Icon
Pages 1-53 | Received 26 Sep 2019, Accepted 08 Jan 2020, Published online: 12 Feb 2020

References

  • Ren, J. M.; McKenzie, T. G.; Fu, Q.; Wong, E. H. H.; Xu, J. T.; An, Z. S.; Shanmugam, S.; Davis, T. P.; Boyer, C.; Qiao, G. G. Star Polymers. Chem. Rev. 2016, 116, 6743–6836. DOI: 10.1021/acs.chemrev.6b00008.
  • Wu, W.; Wang, W. G.; Li, J. S. Star Polymers: Advances in Biomedical Applications. Prog. Polym. Sci. 2015, 46, 55–85. DOI: 10.1016/j.progpolymsci.2015.02.002.
  • Inoue, K. Functional Dendrimers, Hyperbranched and Star Polymers. Prog. Polym. Sci. 2000, 25, 453–571. DOI: 10.1016/S0079-6700(00)00011-3.
  • Lapienis, G. Star-Shaped Polymers Having PEO Arms. Prog. Polym. Sci. 2009, 34, 852–892. DOI: 10.1016/j.progpolymsci.2009.04.006.
  • Michalsk, i. A.; Brzezinski, M.; Lapienis, G.; Biela, T. Star-Shaped and Branched Polylactides: Synthesis, Characterization, and Properties. Prog. Polym. Sci. 2019, 89, 159–212. DOI: 10.1016/j.progpolymsci.2018.10.004.
  • Gao, H. F.; Matyjaszewski, K. Synthesis of Functional Polymers with Controlled Architecture by CRP of Monomers in the Presence of Cross-Linkers: From Stars to Gels. Prog. Polym. Sci. 2009, 34, 317–350. DOI: 10.1016/j.progpolymsci.2009.01.001.
  • Laurent, B. A.; Grayson, S. M. Synthetic Approaches for the Preparation of Cyclic Polymers. Chem. Soc. Rev. 2009, 38, 2202–2213. DOI: 10.1039/b809916m.
  • Kricheldorf, H. R. Cyclic Polymers: Synthetic Strategies and Physical Properties. J. Polym. Sci. A Polym. Chem. 2010, 48, 251–284. DOI: 10.1002/pola.23755.
  • Hoskins, J. N.; Grayson, S. M. Cyclic Polyesters: synthetic Approaches and Potential Applications. Polym. Chem. 2011, 2, 289–299. DOI: 10.1039/C0PY00102C.
  • Lin, Y. J.; Zhang, Y. D.; Wang, Z.; Craig, S. L. Dynamic Memory Effects in the Mechanochemistry of Cyclic Polymers. J. Am. Chem. Soc. 2019, 141, 10943–10947. DOI: 10.1021/jacs.9b03564.
  • Jiang, W. F.; Zhou, Y. F.; Yan, D. Y. Hyperbranched Polymer Vesicles: From Self-Assembly, Characterization, Mechanisms, and Properties to Applications. Chem. Soc. Rev. 2015, 44, 3874–3889. DOI: 10.1039/C4CS00274A.
  • Chen, S. F.; Xu, Z. J.; Zhang, D. H. Synthesis and Application of Epoxy-Ended Hyperbranched Polymers. Chem. Eng. J. 2018, 343, 283–302. DOI: 10.1016/j.cej.2018.03.014.
  • Wu, W. B.; Tang, R. L.; Li, Q. Q.; Li, Z. Functional Hyperbranched Polymers with Advanced Optical, Electrical and Magnetic Properties. Chem. Soc. Rev. 2015, 44, 3997–4022. DOI: 10.1039/C4CS00224E.
  • Wang, D. L.; Zhao, T. Y.; Zhu, X. Y.; Yan, D. Y.; Wang, W. X. Bioapplications of Hyperbranched Polymers. Chem. Soc. Rev. 2015, 44, 4023–4071. DOI: 10.1039/c4cs00229f.
  • Zheng, Y. C.; Li, S. P.; Weng, Z. L.; Gao, C. Hyperbranched Polymers: advances from Synthesis to Applications. Chem. Soc. Rev. 2015, 44, 4091–4130. DOI: 10.1039/c4cs00528g.
  • Voit, B. I.; Lederer, A. Hyperbranched and Highly Branched Polymer Architectures-Synthetic Strategies and Major Characterization Aspects. Chem. Rev. 2009, 109, 5924–5973. DOI: 10.1021/cr900068q.
  • Astruc, D. Electron-Transfer Processes in Dendrimers and Their Implication in Biology, Catalysis, Sensing and Nanotechnology. Nat. Chem. 2012, 4, 255–267. DOI: 10.1038/nchem.1304.
  • Kesharwani, P.; Jain, K.; Jain, N. K. Dendrimer as Nanocarrier for Drug Delivery. Prog. Polym. Sci. 2014, 39, 268–307. DOI: 10.1016/j.progpolymsci.2013.07.005.
  • Kainz, Q. M.; Reiser, O. Polymer- and Dendrimer-Coated Magnetic Nanoparticles as Versatile Supports for Catalysts, Scavengers, and Reagents. Acc. Chem. Res. 2014, 47, 667–677. DOI: 10.1021/ar400236y.
  • Mintzer, M. A.; Grinstaff, M. W. Biomedical Applications of Dendrimers: A Tutorial. Chem. Soc. Rev. 2011, 40, 173–190. DOI: 10.1039/b901839p.
  • Wang, H.; Rempel, G. L. Bimetallic Dendrimer-Encapsulated Nanoparticle Catalysts. Polym. Rev. 2016, 56, 486–511. DOI: 10.1080/15583724.2015.1110167.
  • Franc, G.; Kakkar, A. K. Click'' Methodologies: efficient, Simple and Greener Routes to Design Dendrimers. Chem. Soc. Rev. 2010, 39, 1536–1544. DOI: 10.1039/b913281n.
  • Minko, S. Responsive Polymer Brushes. Polym. Rev. 2006, 46, 397–420. DOI: 10.1080/15583720600945402.
  • Chen, T.; Ferris, R.; Zhang, J. M.; Ducker, R.; Zauscher, S. Stimulus-Responsive Polymer Brushes on Surfaces: Transduction Mechanisms and Applications. Prog. Polym. Sci. 2010, 35, 94–112. DOI: 10.1016/j.progpolymsci.2009.11.004.
  • Chen, W. L.; Cordero, R.; Tran, H.; Ober, C. K. 50th Anniversary Perspective: Polymer Brushes: Novel Surfaces for Future Materials. Macromolecules 2017, 50, 4089–4113. DOI: 10.1021/acs.macromol.7b00450.
  • Barbey, R.; Lavanant, L.; Paripovic, D.; SchüWer, N.; Sugnaux, C.; Tugulu, S.;.; Klok, H.-A. Polymer Brushes via Surface-Initiated Controlled Radical Polymerization: Synthesis, Characterization, Properties, and Applications. Chem. Rev. 2009, 109, 5437–5527.
  • Zeng, H. X.; Little, H. C.; Tiambeng, T. N.; Williams, G. A.; Guan, Z. B. Multifunctional Dendronized Peptide Polymer Platform for Safe and Effective siRNA Delivery. J. Am. Chem. Soc. 2013, 135, 4962–4965. DOI: 10.1021/ja400986u.
  • Junk, M. J. N.; Li, W.; Schluter, A. D.; Wegner, G.; Spiess, H. W.; Zhang, A.; Hinderberger, D. EPR Spectroscopic Characterization of Local Nanoscopic Heterogeneities during the Thermal Collapse of Thermoresponsive Dendronized Polymers. Angew. Chem.-Int. Ed. 2010, 49, 5683–5687. DOI: 10.1002/anie.201001469.
  • Junk, M. J. N.; Li, W.; Schluter, A. D.; Wegner, G.; Spiess, H. W.; Zhang, A.; Hinderberger, D. Formation of a Mesoscopic Skin Barrier in Mesoglobules of Thermoresponsive Polymers. J. Am. Chem. Soc. 2011, 133, 10832–10838. DOI: 10.1021/ja201217d.
  • Fuhrmann, G.; Grotzky, A.; Lukic, R.; Matoori, S.; Luciani, P.; Yu, H.; Zhang, B. Z.; Walde, P.; Schluter, A. D.; Gauthier, M. A.; Leroux, J. C. Sustained Gastrointestinal Activity of Dendronized Polymer-Enzyme Conjugates. Nature Chem. 2013, 5, 582–589. DOI: 10.1038/nchem.1675.
  • Lyu, Y.; Cui, D.; Sun, H.; Miao, Y. S.; Duan, H. W.; Pu, K. Y. Dendronized Semiconducting Polymer as Photothermal Nanocarrier for Remote Activation of Gene Expression. Angew. Chem. Int. Ed. 2017, 56, 9155–9159. DOI: 10.1002/anie.201705543.
  • Schluter, A. D.; Rabe, J. P. Dendronized Polymers: Synthesis, Characterization, Assembly at Interfaces, and Manipulation. Angew. Chem. Int. Ed. 2000, 39, 864–883. DOI: 10.1002/(SICI)1521-3773(20000303)39:5<864::AID-ANIE864>3.0.CO;2-E.
  • Frauenrath, H. Dendronized Polymers—Building a New Bridge from Molecules to Nanoscopic Objects. Prog. Polym. Sci. 2005, 30, 325–384. DOI: 10.1016/j.progpolymsci.2005.01.011.
  • Zhang, A. F.; Shu, L. j.; Bo, Z. S.; Schluter, A. D. Dendronized Polymers: Recent Progress in Synthesis. Macromol. Chem. Phys. 2003, 204, 328–339. DOI: 10.1002/macp.200290086.
  • Chen, Y. M.; Xiong, X. Q. Tailoring Dendronized Polymers. Chem. Commun. 2010, 46, 5049–5060. DOI: 10.1039/b922777f.
  • Yan, J. T.; Li, W.; Zhang, A. Dendronized Supramolecular Polymers. Chem. Commun. 2014, 50, 12221–12233. DOI: 10.1039/C4CC03119A.
  • Laurent, B. A.; Grayson, S. M. Synthesis of Cyclic Dendronized Polymers via Divergent "Graft-from" and Convergent Click "Graft-to" Routes: Preparation of Modular Toroidal Macromolecules. J. Am. Chem. Soc. 2011, 133, 13421–13429. DOI: 10.1021/ja2024355.
  • Hawker, C. J.; Frechet, J. M. J. The Synthesis and Polymerization of a Hyperbranched Polyether Macromonomer. Polymer 1992, 33, 1507–1511. DOI: 10.1016/0032-3861(92)90128-J.
  • Kasemi, E.; Zhuang, W.; Rabe, J. P.; Fischer, K.; Schmidt, M.; Colussi, M.; Keul, H.; Yi, D.; Colfen, H.; Schluter, A. D. Synthesis of an Anionically Chargeable, High-Molar-Mass, Second-Generation Dendronized Polymer and the Observation of Branching by Scanning Force Microscopy. J. Am. Chem. Soc. 2006, 128, 5091–5099. DOI: 10.1021/ja057964g.
  • Malkoch, M.; Carlmark, A.; Woldegiorgis, A.; Hult, A.; Malmström, E. E. Dendronized Aliphatic Polymers by a Combination of ATRP and Divergent Growth. Macromolecules 2004, 37, 322–329. DOI: 10.1021/ma0347464.
  • Mynar, J. L.; Choi, T. L.; Yoshida, M.; Kim, V.; Hawker, C. J.; Frechet, J. M. J. Doubly-Dendronized Linear Polymers. Chem. Commun. 2005, 41, 5169–5171. DOI: 10.1039/b509398h.
  • Helms, B.; Mynar, J. L.; Hawker, C. J.; Frechet, J. M. J. Dendronized Linear Polymers via "Click Chemistry. J. Am. Chem. Soc. 2004, 126, 15020–15021. DOI: 10.1021/ja044744e.
  • Schluter, A. D.; Halperin, A.; Kroger, M.; Vlassopoulos, D.; Wegner, G.; Zhang, B. Z. Dendronized Polymers: Molecular Objects between Conventional Linear Polymers and Colloidal Particles. ACS Macro Lett. 2014, 3, 991–998. DOI: 10.1021/mz500376e.
  • Xie, D.; Jiang, M.; Zhang, G. Z.; Chen, D. Y. Hydrogen-Bonded Dendronized Polymers and Their Self-Assembly in Solution. Chem. Eur. J. 2007, 13, 3346–3353. DOI: 10.1002/chem.200601361.
  • Li, C.; Schluüter, A. D.; Zhang, A.; Mezzenga, R. A New Level of Hierarchical Structure Control by Use of Supramolecular Self-Assembled Dendronized Block Copolymers. Adv. Mater. 2008, 20, 4530–4534. DOI: 10.1002/adma.200802086.
  • Leung, K. C. F.; Mendes, R. M.; Magonov, S. N.; Northrop, B. H.; Kim, S.; Patel, K.; Flood, A. H.; Tseng, H. R.; Stoddart, J. F. Supramolecular Self-Assembly of Dendronized Polymers: Reversible Control of the Polymer Architectures through Acid-Base Reactions. J. Am. Chem. Soc. 2006, 128, 10707–10715. DOI: 10.1021/ja058151v.
  • Neubert, I.; Schluter, A. D. Dendronized Polystyrenes with Hydroxy and Amino Groups in the Periphery. Macromolecules 1998, 31, 9372–9378. DOI: 10.1021/ma981195m.
  • Costanzo, S.; Scherz, L. F.; Schweizer, T.; Kroger, M.; Floudas, G.; Schluter, A. D.; Vlassopoulos, D. Rheology and Packing of Dendronized Polymers. Macromolecules 2016, 49, 7054–7068. DOI: 10.1021/acs.macromol.6b01311.
  • Percec, V.; Heck, J.; Tomazos, D.; Falkenberg, F.; Blackwell, H.; Ungar, G. Self-Assembly of Taper-Shaped Monoesters of Oligo(Ethylene Oxide) with 3,4,5-Tris(p-Dodecyloxybenzyloxy)Benzoic Acid and of Their Polymethacrylates into Tubular Supramolecular Architectures Displaying a Columnar Mesophase. J. Chem. Soc. Perkin Trans. 1 1993, 22, 2799–2811. DOI: 10.1039/p19930002799.
  • Percec, V.; Ahn, C. H.; Barboiu, B. Self-Encapsulation, Acceleration and Control in the Radical Polymerization of Monodendritic Monomers via Self-Assembly. J. Am. Chem. Soc. 1997, 119, 12978–12979. DOI: 10.1021/ja9727878.
  • Li, W.; Zhang, A.; Schluter, A. D. Thermoresponsive Dendronized Polymers with Tunable Lower Critical Solution Temperatures. Chem. Commun. 2008, 43, 5523–5525. DOI: 10.1039/b811464a.
  • Li, W.; Wu, D. L.; Schluter, A. D.; Zhang, A. F. Synthesis of an Oligo(Ethylene Glycol)-Based Third-Generation Thermoresponsive Dendronized Polymer. J. Polym. Sci. A Polym. Chem. 2009, 47, 6630–6640. DOI: 10.1002/pola.23705.
  • Percec, V.; Imam, M. R.; Peterca, M.; Leowanawat, P. Self-Organizable Vesicular Columns Assembled from Polymers Dendronized with Semifluorinated Janus Dendrimers Act as Reverse Thermal Actuators. J. Am. Chem. Soc. 2012, 134, 4408–4420. DOI: 10.1021/ja2118267.
  • Jin, H.; Xu, Y. D.; Shen, Z. H.; Zou, D. C.; Wang, D.; Zhang, N.; Fan, X. H.; Zhou, Q. F. Jacketed Polymers with Dendritic Carbazole Side Groups and Their Applications in Blue Light-Emitting Diodes. Macromolecules 2010, 43, 8468–8478. DOI: 10.1021/ma101814m.
  • Costa, L. I.; Storti, G.; Morbidelli, M.; Zhang, X.; Zhang, B.; KasëMi, E.; Schlüter, A. D. Kinetics of Free Radical Polymerization of Spacerless Dendronized Macromonomers in Supercritical Carbon Dioxide. Macromolecules 2011, 44, 4038–4048. DOI: 10.1021/ma2002189.
  • Gao, M.; Jia, X. R.; Li, Y.; Liang, D. H.; Wei, Y. Synthesis and Thermo-/pH- Dual Responsive Properties of Poly(Amidoamine) Dendronized Poly(2-Hydroxyethyl) Methacrylate. Macromolecules 2010, 43, 4314–4323. DOI: 10.1021/ma1000783.
  • Sun, X. Y.; Lindner, J. P.; Bruchmann, B.; Schluter, A. D. Synthesis of Neutral, Water-Soluble Oligo-Ethylene Glycol-Containing Dendronized Homo- and Copolymers of Generations 1, 1.5, 2, and 3. Macromolecules 2014, 47, 7337–7346. DOI: 10.1021/ma5017192.
  • Liu, L. X.; Li, W.; Liu, K.; Yan, J. T.; Hu, G. X.; Zhang, A. F. Comb like Thermoresponsive Polymers with Sharp Transitions: Synthesis, Characterization, and Their Use as Sensitive Colorimetric Sensors. Macromolecules 2011, 44, 8614–8621. DOI: 10.1021/ma201874c.
  • Feng, X. Q.; Liu, J.; Xu, G.; Zhang, X. C.; Su, X. Y.; Li, W.; Zhang, A. F. Thermoresponsive Double Network Cryogels from Dendronized Copolymers Showing Tunable Encapsulation and Release of Proteins. J. Mater. Chem. B 2018, 6, 1903–1911. DOI: 10.1039/C7TB03352D.
  • Zhang, X. C.; Yin, Y.; Yan, J. T.; Li, W.; Zhang, A. F. Thermo- and Redox-Responsive Dendronized Polymer Hydrogels. Polym. Chem. 2018, 9, 712–721. DOI: 10.1039/C7PY01284E.
  • Liu, J.; Zhang, X. C.; Chen, X.; Qu, L. L.; Zhang, L. Y.; Wen, L. A.; Zhang, A. F. Stimuli-Responsive Dendronized Polymeric Hydrogels through Schiff-Base Chemistry Showing Remarkable Topological Effects. Polym. Chem. 2018, 9, 378–387. DOI: 10.1039/C7PY01865G.
  • Barrett, A. G. M.; Hopkins, B. T.; Kobberling, J. ROMPgel Reagents in Parallel Synthesis. Chem. Rev. 2002, 102, 3301–3323. DOI: 10.1021/cr0103423.
  • Buchmeiser, M. R. Homogeneous Metathesis Polymerization by Well-Defined Group VI and Group VIII Transition-Metal Alkylidenes: Fundamentals and Applications in the Preparation of Advanced Materials. Chem. Rev. 2000, 100, 1565–1604. DOI: 10.1021/cr990248a.
  • Bielawski, C. W.; Grubbs, R. H. Living Ring-Opening Metathesis Polymerization. Prog. Polym. Sci. 2007, 32, 1–29. DOI: 10.1016/j.progpolymsci.2006.08.006.
  • Choi, T. L.; Grubbs, R. H. Controlled Living Ring-Opening-Metathesis Polymerization by a Fast-Initiating Ruthenium Catalyst. Angew. Chem. Int. Ed. 2003, 42, 1743–1746. DOI: 10.1002/anie.200250632.
  • Leitgeb, A.; Wappel, J.; Slugovc, C. The ROMP Toolbox Upgraded. Polymer 2010, 51, 2927–2946. DOI: 10.1016/j.polymer.2010.05.002.
  • Smith, D.; Pentzer, E. B.; Nguyen, S. T. Bioactive and Therapeutic ROMP Polymers. Polymer Revs. 2007, 47, 419–459. DOI: 10.1080/15583720701455186.
  • Gu, H. B.; Ciganda, R.; Castel, P.; Ruiz, J.; Astruc, D. Living ROMP Synthesis and Redox Properties of Triblock Metallocopolymers Containing Side-Chain Iron and Cobalt Sandwich Complexes. Macromol. Chem. Phys. 2018, 219, 1800384. DOI: 10.1002/macp.201800384.
  • Ciganda, R.; Gu, H. B.; Castel, P.; Zhao, P.; Ruiz, J.; Hernández, R.; Astruc, D. Living ROMP Synthesis and Redox Properties of Diblock Ferrocene/Cobalticenium Copolymers. Macromol. Rapid Commun. 2016, 37, 105–111. DOI: 10.1002/marc.201500566.
  • Gu, H. B.; Ciganda, R.; Castel, P.; Vax, A.; Gregurec, D.; Irigoyen, J.; Moya, S.; Salmon, L.; Zhao, P.; Ruiz, J.; et al. Redox-Robust Pentamethylferrocene Polymers and Supramolecular Polymers and Controlled Self-Assembly of Pentamethylferricenium Polymer-Embedded Ag, AgI and Au Nanoparticles. Chem. Eur. J. 2015, 21, 18177–18186. DOI: 10.1002/chem.201503248.
  • Gu, H. B.; Ciganda, R.; Hernandez, R.; Castel, P.; Zhao, P.; Ruiz, J.; Astruc, D. ROMP Synthesis and Redox Properties of Polycationic Metallopolymers Containing the Electron-Reservoir Complex [Fe(η5-C5H5)(η6-C6Me6)][PF6]. Macromolecules 2015, 48, 6071–6076. DOI: 10.1021/acs.macromol.5b01603.
  • Qiu, G. R.; Liu, X.; Wang, B. R.; Gu, H. B.; Wang, W. X. Ferrocene-Containing Amphiphilic Polynorbornenes as Biocompatible Drug Carriers. Polym. Chem. 2019, 10, 2527–2539. DOI: 10.1039/C9PY00332K.
  • Mu, S. D.; Liu, W. T.; Zhao, L.; Long, Y. R.; Gu, H. B. Antimicrobial AgNPs Composites of Gelatin Hydrogels Crosslinked by Ferrocene-Containing Tetrablock Terpolymer. Polymer 2019, 169, 80–94. DOI: 10.1016/j.polymer.2019.02.047.
  • Zhang, L.; Qiu, G. R.; Liu, F. F.; Liu, X.; Mu, S. D.; Long, Y. R.; Zhao, Q. X.; Liu, Y.; Gu, H. B. Controlled ROMP Synthesis of Side-Chain Ferrocene and Adamantane-Containing Diblock Copolymer for the Construction of Redox-Responsive Micellar Carriers. React. Funct. Polym. 2018, 132, 60–73. DOI: 10.1016/j.reactfunctpolym.2018.09.003.
  • Rapakousiou, A.; Deraedt, C.; Gu, H.; Salmon, L.; Belin, C.; Ruiz, J.; Astruc, D. Mixed-Valent Click Intertwined Polymer Units Containing Biferrocenium Chloride Side Chains Form Nanosnakes That Encapsulate Gold Nanoparticles. J. Am. Chem. Soc. 2014, 136, 13995–13998. DOI: 10.1021/ja5079267.
  • Gu, H. B.; Ciganda, R.; Castel, P.; Ruiz, J.; Astruc, D. Living ROMP Syntheses and Redox Properties of Triblock Metallocopolymer Redox Cascades. Macromolecules 2016, 49, 4763–4773. DOI: 10.1021/acs.macromol.6b01046.
  • Gu, H. B.; Ciganda, R.; Hernández, R.; Castel, P.; Vax, A.; Zhao, P.; Ruiz, J.; Astruc, D. Diblock Metallocopolymers Containing Various Iron Sandwich Complexes: Living ROMP Synthesis and Selective Reversible Oxidation. Polym. Chem. 2016, 7, 2358–2371. DOI: 10.1039/C6PY00202A.
  • Gu, H. B.; Ciganda, R.; Hernandez, R.; Castel, P.; Zhao, P.; Ruiz, J.; Astruc, D. Diblock Polyelectrolytic Copolymers Containing Cationic Iron and Cobalt Sandwich Complexes: Living ROMP Synthesis and Redox Properties. Macromol. Rapid Commun. 2016, 37, 630–636. DOI: 10.1002/marc.201500679.
  • Nomura, K.; Abdellatif, M. M. Precise Synthesis of Polymers Containing Functional End Groups by Living Ring-Opening Metathesis Polymerization (ROMP): Efficient Tools for Synthesis of Block/Graft Copolymers. Polymer 2010, 51, 1861–1881. DOI: 10.1016/j.polymer.2010.02.028.
  • Dragutan, V.; Dragutan, I.; Fischer, H. Synthesis of Metal-Containing Polymers via Ring Opening Metathesis Polymerization (ROMP). Part I. Polymers Containing Main Group Metals. J. Inorg. Organomet. Polym. Mater. 2008, 18, 18–31. DOI: 10.1007/s10904-007-9185-5.
  • Ogba, O. M.; Warner, N. C.; O’Leary, D. J.; Grubbs, R. H. Recent Advances in Ruthenium-Based Olefin Metathesis. Chem. Soc. Rev. 2018, 47, 4510–4544. DOI: 10.1039/C8CS00027A.
  • Martinez, H.; Ren, N.; Matta, M. E.; Hillmyer, M. A. Ring-Opening Metathesis Polymerization of 8-Membered Cyclic Olefins. Polym. Chem. 2014, 5, 3507–3532. DOI: 10.1039/c3py01787g.
  • Bielawski, C. W.; Grubbs, R. H. Highly Efficient Ring-Opening Metathesis Polymerization (ROMP) Using New Ruthenium Catalysts Containing N-Heterocyclic Carbene Ligands. Angew. Chem. Int. Ed. 2000, 39, 2903–2906. DOI: 10.1002/1521-3773(20000818)39:16<2903::AID-ANIE2903>3.0.CO;2-Q.
  • Lienkamp, K.; Madkour, A. E.; Musante, A.; Nelson, C. F.; Nusslein, K.; Tew, G. N. Antimicrobial Polymers Prepared by ROMP with Unprecedented Selectivity: A Molecular Construction Kit Approach. J. Am. Chem. Soc. 2008, 130, 9836–9843. DOI: 10.1021/ja801662y.
  • Verduzco, R.; Li, X.; Pesek, S. L.; Stein, G. E. Structure, Function, Self-Assembly, and Applications of Bottlebrush Copolymers. Chem. Soc. Rev. 2015, 44, 2405–2420. DOI: 10.1039/C4CS00329B.
  • Zou, J.; Jafr, G.; Themistou, E.; Yap, Y.; Wintrob, Z. A. P.; Alexandridis, P.; Ceacareanu, A. C.; Cheng, C. pH-Sensitive Brush Polymer-Drug Conjugates by Ring-Opening Metathesis Copolymerization. Chem. Commun. 2011, 47, 4493–4495. DOI: 10.1039/c0cc05531j.
  • Radzinski, S. C.; Foster, J. C.; Chapleski, R. C.; Troya, D.; Matson, J. B. Bottlebrush Polymer Synthesis by Ring-Opening Metathesis Polymerization: The Significance of the Anchor Group. J. Am. Chem. Soc. 2016, 138, 6998–7004. DOI: 10.1021/jacs.5b13317.
  • Johnson, J. A.; Lu, Y. Y.; Burts, A. O.; Lim, Y. H.; Finn, M. G.; Koberstein, J. T.; Turro, N. J.; Tirrell, D. A.; Grubbs, R. H. Core-Clickable PEG-Branch-Azide Bivalent-Bottle-Brush Polymers by ROMP: Grafting-Through and Clicking-To. J. Am. Chem. Soc. 2011, 133, 559–566. DOI: 10.1021/ja108441d.
  • Liao, L. Y.; Liu, J.; Dreaden, E. C.; Morton, S. W.; Shopsowitz, K. E.; Hammond, P. T.; Johnson, J. A. A Convergent Synthetic Platform for Single-Nanoparticle Combination Cancer Therapy: Ratiometric Loading and Controlled Release of Cisplatin, Doxorubicin, and Camptothecin. J. Am. Chem. Soc. 2014, 136, 5896–5899. DOI: 10.1021/ja502011g.
  • Liu, F. F.; Long, Y. R.; Zhao, Q. X.; Liu, X.; Qiu, G. R.; Zhang, L.; Ling, Q. J.; Gu, H. B. Gallol-Containing Homopolymers and Block Copolymers: ROMP Synthesis and Gelation Properties by Metal-Coordination and Oxidation. Polymer 2018, 143, 212–227. DOI: 10.1016/j.polymer.2018.04.016.
  • Zhang, K.; Cui, J.; Lackey, M.; Tew, G. N. Hydrogels Based on Living Ring-Opening Metathesis Polymerization. Macromolecules 2010, 43, 10246–10252. DOI: 10.1021/ma101950f.
  • Zha, Y. P.; Thaker, H. D.; Maddikeri, R. R.; Gido, S. P.; Tuominen, M. T.; Tew, G. N. Nanostructured Block-Random Copolymers with Tunable Magnetic Properties. J. Am. Chem. Soc. 2012, 134, 14534–14541. DOI: 10.1021/ja305249b.
  • Sgolastra, F.; Minter, L. M.; Osborne, B. A.; Tew, G. N. Importance of Sequence Specific Hydrophobicity in Synthetic Protein Transduction Domain Mimics. Biomacromolecules 2014, 15, 812–820. DOI: 10.1021/bm401634r.
  • Liu, X.; Lin, W.; Astruc, D.; Gu, H. Syntheses and Applications of Dendronized Polymers. Prog. Polym. Sci. 2019, 96, 43–105. DOI: 10.1016/j.progpolymsci.2019.06.002.
  • Fox, H. H.; Schrock, R. R. Living Cyclopoiymerizatlon of Diethyl Dlpropargylmalonate by Mo(CH-t-Bu)(NAr)[OCMe(CF2)2]2 in Dimethoxyethane. Organometallics 1992, 11, 2763–2765. DOI: 10.1021/om00044a012.
  • Fox, H. H.; Wolf, M. O.; O'Dell, R.; Lin, B. L.; Schrock, R. R.; Wrighton, M. S. Living Cyclopolymerization of 1,6-Heptadiyne Derivatives Using Well-Defined Alkylidene Complexes: Polymerization Mechanism, Polymer Structure, and Polymer Properties. J. Am. Chem. Soc. 1994, 116, 2827–2843. DOI: 10.1021/ja00086a016.
  • Vygodskii, Y. S.; Shaplov, A. S.; Lozinskaya, E. I.; Vlasov, P. S.; Malyshkina, I. A.; Gavrilova, N. D.; Kumar, P. S.; Buchmeiser, M. R. Cyclopolymerization of N,N-Dipropargylamines and NN-Dipropargyl Ammonium Salts. Macromolecules 2008, 41, 1919–1928. DOI: 10.1021/ma7022777.
  • Kumar, P. S.; Wurst, K.; Buchmeiser, M. R. Factors Relevant for the Regioselective Cyclopolymerization of 1,6-Heptadiynes, N,N-Dipropargylamines, N,N-Dipropargylammonium Salts, and Dipropargyl Ethers by Ru-IV-Alkylidene-Based Metathesis Initiators. J. Am. Chem. Soc. 2009, 131, 387–395. DOI: 10.1021/ja804563t.
  • Kang, E. H.; Lee, I. H.; Choi, T. L. Brush Polymers Containing Semiconducting Polyene Backbones: Graft-Through Synthesis via Cyclopolymerization and Conformational Analysis on the Coil-to-Rod Transition. ACS Macro Lett. 2012, 1, 1098–1102. DOI: 10.1021/mz3002897.
  • Kim, J.; Kang, E. H.; Choi, T. L. Cyclopolymerization to Synthesize Conjugated Polymers Containing Meldrum's Acid as a Precursor for Ketene Functionality. ACS Macro Lett. 2012, 1, 1090–1093. DOI: 10.1021/mz300250b.
  • Song, W.; Han, H. J.; Wu, J. H.; Xie, M. R. Ladder-like Polyacetylene with Excellent Optoelectronic Properties and Regular Architecture. Chem. Commun. 2014, 50, 12899–12902. DOI: 10.1039/C4CC05524A.
  • Lee, J. H.; Kang, S. J.; Kim, H. K.; Cho, H. N.; Park, J. T.; Choi, S. K. Synthesis and Characterization of Novel Side-Chain Nonlinear Optical Polymers Based on Poly(1,6-Heptadiyne) Derivatives. Macromolecules 1995, 28, 4638–4643. DOI: 10.1021/ma00117a039.
  • Yoon, K. Y.; Lee, I. H.; Kim, K. O.; Jang, J.; Lee, E.; Choi, T. L. One-Pot in Situ Fabrication of Stable Nanocaterpillars Directly from Polyacetylene Diblock Copolymers Synthesized by Mild Ring-Opening Metathesis Polymerization. J. Am. Chem. Soc. 2012, 134, 14291–14294. DOI: 10.1021/ja305150c.
  • Song, W.; Han, H. J.; Liao, X. J.; Sun, R. Y.; Wu, J. H.; Xie, M. R. Metathesis Cyclopolymerization of Imidazolium-Functionalized 1,6-Heptadiyne toward Polyacetylene Ionomer. Macromolecules 2014, 47, 6181–6188. DOI: 10.1021/ma501217b.
  • Kang, E. H.; Yu, S. Y.; Lee, I. S.; Park, S. E.; Choi, T. L. Strategies to Enhance Cyclopolymerization Using Third-Generation Grubbs Catalyst. J. Am. Chem. Soc. 2014, 136, 10508–10514. DOI: 10.1021/ja505471u.
  • Pasini, D.; Takeuchi, D. Cyclopolymerizations: Synthetic Tools for the Precision Synthesis of Macromolecular Architectures. Chem. Rev. 2018, 118, 8983–9057. DOI: 10.1021/acs.chemrev.8b00286.
  • Jung, K.; Kang, E. H.; Sohn, J. H.; Choi, T. L. Highly beta-Selective Cyclopolymerization of 1,6-Heptadiynes and Ring-Closing Enyne Metathesis Reaction Using Grubbs Z-Selective Catalyst: Unprecedented Regioselectivity for Ru-Based Catalysts. J. Am. Chem. Soc. 2016, 138, 11227–11233. DOI: 10.1021/jacs.6b05572.
  • Kang, C.; Kwon, S.; Sung, J. C.; Kim, J.; Baik, M. H.; Choi, T. L. Living Metathesis and Metallotropy Polymerization Gives Conjugated Polyenynes from Multialkynes: How to Design Sequence-Specific Cascades for Polymers. J. Am. Chem. Soc. 2018, 140, 16320–16329. DOI: 10.1021/jacs.8b10269.
  • Jung, K.; Kim, K.; Sung, J. C.; Ahmed, T. S.; Hong, S. H.; Grubbs, R. H.; Choi, T. L. Toward Perfect Regiocontrol for beta-Selective Cyclopolymerization Using a Ru-Based Olefin Metathesis Catalyst. Macromolecules 2018, 51, 4564–4571. DOI: 10.1021/acs.macromol.8b00969.
  • Masuda, T. Substituted Polyacetylenes: Synthesis, Properties, and Functions. Polym. Rev. 2017, 57, 1–14. DOI: 10.1080/15583724.2016.1170701.
  • Sedlacek, J.; Balcar, H. Substituted Polyacetylenes Prepared with Rh Catalysts: From Linear to Network-Type Conjugated Polymers. Polym. Rev. 2017, 57, 31–51. DOI: 10.1080/15583724.2016.1144207.
  • Buchmeiser, M. R. Recent Advances in the Regio- and Stereospecific Cyclopolymerization of,-Diynes by Tailored Ruthenium Alkylidenes and Molybdenum Imido Alkylidene N-Heterocyclic Carbene Complexes. Polym. Rev. 2017, 57, 15–30. DOI: 10.1080/15583724.2015.1136643.
  • Percec, V.; Schlueter, D.; Ronda, J. C.; Johansson, G.; Ungar, G.; Zhou, J. P. Tubular Architectures from Polymers with Tapered Side Groups. Assembly of Side Groups via a Rigid Helical Chain Conformation and Flexible Helical Chain Conformation Induced via Assembly of Side Groups. Macromolecules 1996, 29, 1464–1472. DOI: 10.1021/ma951244k.
  • Percec, V.; Schlueter, D. Mechanistic Investigations on the Formation of Supramolecular Cylindrical Shaped Oligomers and Polymers by Living Ring Opening Metathesis Polymerization of a 7-Oxanorbornene Monomer Substituted with Two Tapered Monodendrons. Macromolecules 1997, 30, 5783–5790. DOI: 10.1021/ma970157k.
  • Percec, V.; Holerca, M. N. Detecting the Shape Change of Complex Macromolecules during Their Synthesis with the Aid of Kinetics. A New Lesson from Biology. Biomacromolecules 2000, 1, 6–16. DOI: 10.1021/bm005507g.
  • Buchowicz, W.; Holerca, M. N.; Percec, V. Self-Inhibition of Propagating Carbenes in ROMP of 7-Oxa-Bicyclo[2.2,1]Hept-2-Ene-5,6-Dicarboxylic Acid Dendritic Diesters Initiated with Ru(=CHPh)Cl-2(PCy3)( 1,3-Dimesityl-4,5-Dihydroimidazol-2-Ylidene). Macromolecules 2001, 34, 3842–3848. DOI: 10.1021/ma0021500.
  • Barkley, D. A.; Koga, T.; Rudick, J. G. Homeotropically Aligned Self-Organizing Dendronized Polymer. Macromolecules 2015, 48, 2849–2854. DOI: 10.1021/ma502522s.
  • Kim, D. Y.; Kang, D. G.; Shin, S.; Choi, T. L.; Jeong, K. U. Hierarchical Superstructures of Norbornene-Based Polymers Depending on Dendronized Side-Chains. Polym. Chem. 2016, 7, 5304–5311. DOI: 10.1039/C6PY01286H.
  • Kim, D. Y.; Shin, S.; Yoon, W. J.; Choi, Y. J.; Hwang, J. K.; Kim, J. S.; Lee, C. R.; Choi, T. L.; Jeong, K. U. From Smart Denpols to Remote-Controllable Actuators: Hierarchical Superstructures of Azobenzene-Based Polynorbornenes. Adv. Funct. Mater. 2017, 27, 1606294. DOI: 10.1002/adfm.201606294.
  • Guzman, P. E.; Piunova, V. A.; Miyake, G. M.; Grubbs, R. H. Synthesis and Ring-Opening Metathesis Polymerization of Second-Generation Dendronized Poly(Ether) Monomers Initiated by Ruthenium Carbenes. Oil Gas Sci. Technol. – Rev. Ifp Energies Nouvelles 2016, 71, 18. DOI: 10.2516/ogst/2015042.
  • Liu, X.; Mu, S. D.; Qiu, G. R.; Long, Y. R.; Ling, Q. J.; He, J. L.; Gu, H. B. ROMP Synthesis of 1,2,3-Triazolyl Dendronized Polymers with Triethylene Glycol Branches as Recyclable Nanoreactors for Cu(I) "Click" Catalysis Reaction in Water. Polymer 2018, 146, 275–290. DOI: 10.1016/j.polymer.2018.05.057.
  • Qiu, G. R.; Zhao, L.; Liu, X.; Zhao, Q. X.; Liu, F. F.; Liu, Y.; Liu, Y. W.; Gu, H. B. ROMP Synthesis of Benzaldehyde-Containing Amphiphilic Block Polynorbornenes Used to Conjugate Drugs for pH-Responsive Release. React. Funct. Polym. 2018, 128, 1–15. DOI: 10.1016/j.reactfunctpolym.2018.03.010.
  • Fiset, E.; Morin, J. F. Synthesis, Characterization and Modification of Azide-Containing Dendronized Diblock Copolymers. Polymer 2009, 50, 1369–1377. DOI: 10.1016/j.polymer.2009.01.053.
  • Feng, K.; Xie, N.; Chen, B.; Zhang, L. P.; Tung, C. H.; Wu, L. Z. Reversible Light-Triggered Transition of Amphiphilic Random Copolymers. Macromolecules 2012, 45, 5596–5603. DOI: 10.1021/ma300734z.
  • Piunova, V. A.; Miyake, G. M.; Daeffler, C. S.; Weitekamp, R. A.; Grubbs, R. H. Highly Ordered Dielectric Mirrors via the Self-Assembly of Dendronized Block Copolymers. J. Am. Chem. Soc. 2013, 135, 15609–15616. DOI: 10.1021/ja4081502.
  • Zhang, T. Z.; Yang, J. X.; Yu, X. L.; Li, Y. S.; Yuan, X. Y.; Zhao, Y. H.; Lyu, D.; Men, Y. F.; Zhang, K.; Ren, L. X. Handwritable One-Dimensional Photonic Crystals Prepared from Dendronized Brush Block Copolymers. Polym. Chem. 2019, 10, 1519–1525. DOI: 10.1039/C9PY00038K.
  • Zhao, Y. D.; Guo, T. T.; Yang, J. X.; Li, Y. S.; Yuan, X. Y.; Zhao, Y. H.; Ren, L. X. Alcohols Responsive Photonic Crystals Prepared by Self-Assembly of Dendronized Block Copolymers. React. Funct. Polym. 2019, 139, 162–169. DOI: 10.1016/j.reactfunctpolym.2019.04.001.
  • Derry, M. J.; Fielding, L. A.; Armes, S. P. Polymerization-Induced Self-Assembly of Block Copolymer Nanoparticles via RAFT Non-Aqueous Dispersion Polymerization. Prog. Polym. Sci. 2016, 52, 1–18. DOI: 10.1016/j.progpolymsci.2015.10.002.
  • Canning, S. L.; Smith, G. N.; Armes, S. P. A Critical Appraisal of RAFT-Mediated Polymerization-Induced Self Assembly. Macromolecules 2016, 49, 1985–2001. DOI: 10.1021/acs.macromol.5b02602.
  • Blackman, L. D.; Varlas, S.; Arno, M. C.; Houston, Z. H.; Fletcher, N. L.; Thurecht, K. J.; Hasan, M.; Gibson, M. I.; O’Reilly, R. K. Confinement of Therapeutic Enzymes in Selectively Permeable Polymer Vesicles by Polymerization-Induced Self-Assembly (PISA) Reduces Antibody Binding and Proteolytic Susceptibility. ACS Cent. Sci. 2018, 4, 718–723. DOI: 10.1021/acscentsci.8b00168.
  • Yeow, J.; Boyer, C. Photoinitiated Polymerization-Induced Self-Assembly (Photo-PISA): New Insights and Opportunities. Adv. Sci. 2017, 4, 1700137. DOI: 10.1002/advs.201700137.
  • Khor, S. Y.; Quinn, J. F.; Whittaker, M. R.; Truong, N. P.; Davis, T. P. Controlling Nanomaterial Size and Shape for Biomedical Applications via Polymerization-Induced Self-Assembly. Macromol. Rapid Commun. 2019, 40, 1800438. DOI: 10.1002/marc.201800438.
  • Mellot, G.; Beaunier, P.; Guigner, J. M.; Bouteiller, L.; Rieger, J.; Stoffelbach, F. Beyond Simple AB Diblock Copolymers: Application of Bifunctional and Trifunctional RAFT Agents to PISA in Water. Macromol. Rapid Commun. 2019, 40, 1800315. DOI: 10.1002/marc.201800315.
  • Wang, X.; An, Z. S. New Insights into RAFT Dispersion Polymerization-Induced Self-Assembly: From Monomer Library, Morphological Control, and Stability to Driving Forces. Macromol. Rapid Commun. 2019, 40, 1800325. DOI: 10.1002/marc.201800325.
  • Wright, D. B.; Thompson, M. P.; Touve, M. A.; Carlini, A. S.; Gianneschi, N. C. Enzyme-Responsive Polymer Nanoparticles via Ring-Opening Metathesis Polymerization-Induced Self-Assembly. Macromol. Rapid Commun. 2019, 40, 1800467. DOI: 10.1002/marc.201800467.
  • Zhang, W. J.; Hong, C. Y.; Pan, C. Y. Polymerization-Induced Self-Assembly of Functionalized Block Copolymer Nanoparticles and Their Application in Drug Delivery. Macromol. Rapid Commun. 2019, 40, 1800279. DOI: 10.1002/marc.201800279.
  • Qian, Z. Y.; Koh, Y. P.; Pallaka, M. R.; Chang, A. B.; Lin, T. P.; Guzman, P. E.; Grubbs, R. H.; Simon, S. L.; McKenna, G. B. Linear Rheology of a Series of Second-Generation Dendronized Wedge Polymers. Macromolecules 2019, 52, 2063–2074. DOI: 10.1021/acs.macromol.8b02122.
  • Liu, X.; Mu, S. D.; Long, Y. R.; Qiu, G. R.; Ling, Q. J.; Gu, H. B.; Lin, W. Gold Nanoparticles Stabilized by 1,2,3-Triazolyl Dendronized Polymers as Highly Eicient Nanoreactors for the Reduction of 4-Nitrophenol. Catal. Lett. 2019, 149, 544–551.
  • Nystrom, A.; Malkoch, M.; Furo, I.; Nystrom, D.; Unal, K.; Antoni, P.; Vamvounis, G.; Hawker, C. J.; Wooley, K.; Malmstrom, E.; Hult, A. Characterization of Poly(Norbornene) Dendronized Polymers Prepared by Ring-Opening Metathesis Polymerization of Dendron Bearing Monomers. Macromolecules 2006, 39, 7241–7249. DOI: 10.1021/ma061147z.
  • Kim, K. O.; Choi, T. L. Synthesis of Rod-Like Dendronized Polymers Containing G4 and G5 Ester Dendrons via Macromonomer Approach by Living ROMP. ACS Macro Lett. 2012, 1, 445–448. DOI: 10.1021/mz300032w.
  • Dutertre, F.; Bang, K. T.; Vereroudakis, E.; Loppinet, B.; Yang, S.; Kang, S. Y.; Fytas, G.; Choi, T. L. Conformation of Tunable Nanocylinders: Up to Sixth-Generation Dendronized Polymers via Graft-Through Approach by ROMP. Macromolecules 2019, 52, 3342–3350. DOI: 10.1021/acs.macromol.9b00457.
  • Kim, K. O.; Choi, T. L. Synthesis of Dendronized Polymers via Macromonomer Approach by Living ROMP and Their Characterization: From Rod-Like Homopolymers to Block and Gradient Copolymers. Macromolecules 2013, 46, 5905–5914. DOI: 10.1021/ma401132u.
  • Kim, K. O.; Shin, S.; Kim, J.; Choi, T. L. Living Polymerization of Monomers Containing endo-Tricyclo[4.2.2.0(2,5)]Deca-3,9-Diene Using Second Generation Grubbs and Hoveyda-Grubbs Catalysts: Approach to Synthesis of Well-Defined Star Polymers. Macromolecules 2014, 47, 1351–1359. DOI: 10.1021/ma5000333.
  • Hou, P. P.; Zhang, Z. Y.; Wang, Q.; Zhang, M. Y.; Shen, Z. H.; Fan, X. H. Hierarchical Structures in a Main-Chain/Side-Chain Combined Liquid Crystalline Polymer with a Polynorbornene Backbone and Multi Benzene Side-Chain Mesogens. Macromolecules 2016, 49, 7238–7245. DOI: 10.1021/acs.macromol.6b01524.
  • Zheng, J. F.; Tang, T.; Ding, L. L.; Xu, P.; Zhang, R.; Peng, D. L.; Yang, S.; Chen, E. Q. Phase Behavior of Phasmidic Mesogen-Jacketed Liquid Crystalline Polymers Displaying Chain Bundling. Macromolecules 2019, 52, 5389–5398. DOI: 10.1021/acs.macromol.9b00687.
  • Kim, J.; Kim, J.; Lee, J.; Song, H. K.; Yang, C. Synthesis of a Redox- Active Denpol as a Potential Electrode in Rechargeable Organic Batteries. Chemelectrochem. 2014, 1, 1618–1622. DOI: 10.1002/celc.201402174.
  • Boydston, A. J.; Holcombe, T. W.; Unruh, D. A.; Fréchet, J. M. J.;.; Grubbs, R. H. A Direct Route to Cyclic Organic Nanostructures via Ring-Expansion Metathesis Polymerization of a Dendronized Macromonomer. J. Am. Chem. Soc. 2009, 131, 5388–5389. DOI: 10.1021/ja901658c.
  • Liu, M.; Burford, R. P.; Lowe, A. B. Thiol-Michael Coupling and Ring-Opening Metathesis Polymerization: facile Access to Functional Exo-7-Oxanorbornene Dendron Macromonomers. Polym. Int. 2014, 63, 1174–1183. DOI: 10.1002/pi.4664.
  • Grebikova, L.; Kozhuharov, S.; Maroni, P.; Mikhaylov, A.; Dietler, G.; Schluter, A. D.; Ullner, M.; Borkovec, M. The Persistence Length of Adsorbed Dendronized Polymers. Nanoscale 2016, 8, 13498–13506. DOI: 10.1039/C6NR02665F.
  • Förster, S.; Neubert, I.; Schlüter, A. D.; Lindner, P. How Dendrons Stiffen Polymer Chains: A SANS Study. Macromolecules 1999, 32, 4043–4049. DOI: 10.1021/ma9817929.
  • Roeser, J.; Moingeon, F.; Heinrich, B.; Masson, P.; Arnaud-Neu, F.; Rawiso, M.; Mery, S. Dendronized Polymers with Peripheral Oligo(Ethylene Oxide) Chains: Thermoresponsive Behavior and Shape Anisotropy in Solution. Macromolecules 2011, 44, 8925–8935. DOI: 10.1021/ma2016776.
  • Boyle, B. M.; Heinz, O.; Miyake, G. M.; Ding, Y. F. Impact of the Pendant Group on the Chain Conformation and Bulk Properties of Norbornene Imide-Based Polymers. Macromolecules 2019, 52, 3426–3434. DOI: 10.1021/acs.macromol.9b00020.
  • Rajaram, S.; Choi, T. L.; Rolandi, M.; Frechet, J. M. J. Synthesis of Dendronized Diblock Copolymers via Ring-Opening Metathesis Polymerization and Their Visualization Using Atomic Force Microscopy. J. Am. Chem. Soc. 2007, 129, 9619–9621. DOI: 10.1021/ja0741980.
  • Stewart, G. M.; Fox, M. A. Dendrimer-Linear Polymer Hybrids through ROMP. Chem. Mater. 1998, 10, 860–863. DOI: 10.1021/cm970624c.
  • Sill, K.; Emrick, T. Bis-Dendritic Polyethylene Prepared by Ring-Opening Metathesis Polymerization in the Presence of Bis-Dendritic Chain Transfer Agents. J. Polym. Sci. A Polym. Chem. 2005, 43, 5429–5439. DOI: 10.1002/pola.20995.
  • Liang, X. L.; Sen, M. K.; Jee, J. A.; Gelman, O.; Marine, J. E.; Kan, K.; Endoh, M. K.; Barkley, D. A.; Koga, T.; Rudick, J. G. Poly(Oxanorbornenedicarboximide)s Dendronized with Amphiphilic Poly(Alkyl Ether) Dendrons. J. Polym. Sci. Part A: Polym. Chem. 2014, 52, 3221–3239. DOI: 10.1002/pola.27385.
  • Li, Y.; Bai, Y. G.; Zheng, N.; Liu, Y.; Vincil, G. A.; Pedretti, B. J.; Cheng, J. J.; Zimmerman, S. C. Crosslinked Dendronized Polyols as a General Approach to Brighter and More Stable Fluorophores. Chem. Commun. 2016, 52, 3781–3784. DOI: 10.1039/C5CC09430E.
  • Li, Y.; Huth, K.; Garcia, E. S.; Pedretti, B. J.; Bai, Y. G.; Vincil, G. A.; Haag, R.; Zimmerman, S. C. Linear Dendronized Polyols as a Multifunctional Platform for a Versatile and Efficient Fluorophore Design. Polym. Chem. 2018, 9, 2040–2047. DOI: 10.1039/C8PY00193F.
  • Shaheen, S. E.; Brabec, C. J.; Sariciftci, N. S.; Padinger, F.; Fromherz, T.; Hummelen, J. C. 2.5% Efficient Organic Plastic Solar Cells. Appl. Phys. Lett. 2001, 78, 841–843. DOI: 10.1063/1.1345834.
  • Eo, M.; Lee, S.; Park, M. H.; Lee, M. H.; Yoo, S.; Do, Y. Vinyl-Type Polynorbornenes with Pendant PCBM: A Novel Acceptor for Organic Solar Cells. Macromol. Rapid Commun. 2012, 33, 1119–1125. DOI: 10.1002/marc.201200023.
  • Steinmetz, N. F.; Hong, V.; Spoerke, E. D.; Lu, P.; Breitenkamp, K.; Finn, M. G.; Manchester, M. Buckyballs Meet Viral Nanoparticles: Candidates for Biomedicine. J. Am. Chem. Soc. 2009, 131, 17093–17095. DOI: 10.1021/ja902293w.
  • Gunes, S.; Neugebauer, H.; Sariciftci, N. S. Conjugated Polymer-Based Organic Solar Cells. Chem. Rev. 2007, 107, 1324–1338. DOI: 10.1021/cr050149z.
  • Akaike, K.; Kumai, T.; Nakano, K.; Abdullah, S.; Ouchi, S.; Uemura, Y.; Ito, Y.; Onishi, A.; Yoshida, H.; Tajima, K.; Kanai, K. Effects of Molecular Orientation of a Fullerene Derivative at the Donor/Acceptor Interface on the Device Performance of Organic Photovoltaics. Chem. Mater. 2018, 30, 8233–8243. DOI: 10.1021/acs.chemmater.8b03659.
  • Montellano, A.; Da Ros, T.; Bianco, A.; Prato, M. Fullerene C-60 as a Multifunctional System for Drug and Gene Delivery. Nanoscale 2011, 3, 4035–4041. DOI: 10.1039/c1nr10783f.
  • Thompson, B. C.; Frechet, J. M. J. Organic photovoltaics - Polymer-Fullerene Composite Solar Cells. Angew. Chem. Int. Ed. 2008, 47, 58–77. DOI: 10.1002/anie.200702506.
  • He, Y. j.; Chen, H. Y.; Hou, J. H.; Li, Y. F. Indene-C(60) bisadduct: a new acceptor for high-performance polymer solar cells . J. Am. Chem. Soc. 2010, 132, 1377–1382. DOI: 10.1021/ja908602j.
  • Kim, J.; Yun, M. H.; Lee, J.; Kim, J. Y.; Wudl, F.; Yang, C. A Synthetic Approach to a Fullerene-Rich Dendron and Its Linear Polymer via Ring-Opening Metathesis Polymerization. Chem. Commun. 2011, 47, 3078–3080. DOI: 10.1039/c0cc05470d.
  • Ball, Z. T.; Sivula, K.; Frechet, J. M. J. Well-Defined Fullerene-Containing Homopolymers and Diblock Copolymers with High Fullerene Content and Their Use for Solution-Phase and Bulk Organization. Macromolecules 2006, 39, 70–72. DOI: 10.1021/ma052325b.
  • Sivula, K.; Ball, Z. T.; Watanabe, N.; Frechet, J. M. J. Amphiphilic Diblock Copolymer Compatibilizers and Their Effect on the Morphology and Performance of Polythiophene: Fullerene Solar Cells. Adv. Mater. 2006, 18, 206–210. DOI: 10.1002/adma.200501787.
  • de la Escosura, A.; Martinez-Diaz, M. V.; Torres, T.; Grubbs, R. H.; Guldi, D. M.; Neugebauer, H.; Winder, C.; Drees, M.; Sariciftci, N. S. New Donor-Acceptor Materials Based on Random Polynorbornenes Bearing Pendant Phthalocyanine and Fullerene Units. Chem. Asian J. 2006, 1, 148–154. DOI: 10.1002/asia.200600090.
  • Zhao, L.; Liu, X.; Zhang, L.; Qiu, G. R.; Astruc, D.; Gu, H. B. Metallomacromolecules Containing Cobalt Sandwich Complexes: Synthesis and Functional Materials Properties. Coord. Chem. Rev. 2017, 337, 34–79. DOI: 10.1016/j.ccr.2017.02.009.
  • Gu, H. B.; Mu, S. D.; Qiu, G. R.; Liu, X.; Zhang, L.; Yuan, Y. F.; Astruc, D. Redox-Stimuli-Responsive Drug Delivery Systems with Supramolecular Ferrocenyl-Containing Polymers for Controlled Release. Coord. Chem. Rev. 2018, 364, 51–85. DOI: 10.1016/j.ccr.2018.03.013.
  • Gu, H. B.; Ciganda, R.; Castel, P.; Moya, S.; Hernandez, R.; Ruiz, J.; Astruc, D. Tetrablock Metallopolymer Electrochromes. Angew. Chem. Int. Ed. 2018, 57, 2204–2208. DOI: 10.1002/anie.201712945.
  • Zhu, T. Y.; Xu, S. C.; Rahman, A.; Dogdibegovic, E.; Yang, P.; Pageni, P.; Kabir, M. P.; Zhou, X. D.; Tang, C. B. Cationic Metallo-Polyelectrolytes for Robust Alkaline Anion-Exchange Membranes. Angew. Chem. Int. Ed. 2018, 57, 2388–2392. DOI: 10.1002/anie.201712387.
  • Dong, Q. C.; Meng, Z. G.; Ho, C. L.; Guo, H. G.; Yang, W. Y.; Manners, I.; Xu, L. L.; Wong, W. Y. A Molecular Approach to Magnetic Metallic Nanostructures from Metallopolymer Precursors. Chem. Soc. Rev. 2018, 47, 4934–4953. DOI: 10.1039/C7CS00599G.
  • Zhu, T. Y.; Sha, Y.; Yan, J.; Pageni, P.; Rahman, M. A.; Yan, Y.; Tang, C. B. Metallo-Polyelectrolytes as a Class of Ionic Macromolecules for Functional Materials. Nat. Commun. 2018, 9, 4329. DOI: 10.1038/s41467-018-06475-9.
  • Wong, W. Y.; Ho, C. L. Organometallic Photovoltaics: A New and Versatile Approach for Harvesting Solar Energy Using Conjugated Polymetallaynes. Acc. Chem. Res. 2010, 43, 1246–1256. DOI: 10.1021/ar1000378.
  • Astruc, D.; Ornelas, C.; Ruiz, J. Metallocenyl Dendrimers and Their Applications in Molecular Electronics, Sensing, and Catalysis. Acc. Chem. Res. 2008, 41, 841–856. DOI: 10.1021/ar8000074.
  • Lai, W.-Y.; Balfour, M. N.; Levell, J. W.; Bansal, A. K.; Burn, P. L.; Lo, S.-C.; Samuel, I. D. W. Poly(Dendrimers) with Phosphorescent Iridium(III) Complex-Based Side Chains Prepared via Ring-Opening Metathesis Polymerization. Macromolecules 2012, 45, 2963–2971. DOI: 10.1021/ma300306d.
  • Liu, X.; Ling, Q. J.; Zhao, L.; Qiu, G. R.; Wang, Y. H.; Song, L. X.; Zhang, Y.; Ruiz, J.; Astruc, D.; Gu, H. B. New ROMP Synthesis of Ferrocenyl Dendronized Polymers. Macromol. Rapid Commun. 2017, 38, 1700448. DOI: 10.1002/marc.201700448.
  • Liu, X.; Qiu, G. R.; Zhang, L.; Liu, F. F.; Mu, S. D.; Long, Y. R.; Zhao, Q. X.; Liu, Y.; Gu, H. B. Controlled ROMP Synthesis of Ferrocene-Containing Amphiphilic Dendronized Diblock Copolymers as Redox-Controlled Polymer Carriers. Macromol. Chem. Phys. 2018, 219, 1800273. DOI: 10.1002/macp.201800273.
  • Liu, X.; Liu, F.; Astruc, D.; Lin, W.; Gu, H. Highly-Branched Amphiphilic Organometallic Dendronized Diblock Copolymer: ROMP Synthesis, Self-Assembly and Long-Term Au and Ag Nanoparticle Stabilizer for High-Efficiency Catalysis. Polymer 2019, 173, 1–10. DOI: 10.1016/j.polymer.2019.04.021.
  • Liu, X.; Liu, F. F.; Wang, Y. L.; Gu, H. B. Ferrocene-Containing Amphiphilic Dendronized Random Copolymer as Efficient Stabilizer for Reusable Gold Nanoparticles in Catalysis. React. Funct. Polym. 2019, 143, 104325. DOI: 10.1016/j.reactfunctpolym.2019.104325.
  • Liu, F. F.; Liu, X.; Astruc, D.; Gu, H. B. Dendronized Triazolyl-Containing Ferrocenyl Polymers as Stabilizers of Gold Nanoparticles for Recyclable Two-Phase Reduction of 4-Nitrophenol. J. Colloid Interface Sci. 2019, 533, 161–170. DOI: 10.1016/j.jcis.2018.08.062.
  • Weck, M.; Mohr, B.; Maughon, B. R.; Grubbs, R. H. Synthesis of Discotic Columnar Side-Chain Liquid Crystalline Polymers by Ring-Opening Metathesis Polymerization (ROMP). Macromolecules 1997, 30, 6430–6437. DOI: 10.1021/ma970292x.
  • Liu, Z.; Zhu, L.; Shen, Z. H.; Zhou, W. S.; Cheng, S. Z. D.; Percec, V.; Ungar, G. Interrelationships of Nanometer and Subnanometer Structures in a Polynorbornene Containing Second Generation Liquid-Crystalline Monodendrons as Side Groups. Macromolecules 2002, 35, 9426–9433. DOI: 10.1021/ma0209895.
  • Lian, W. R.; Wang, K. L.; Jiang, J. C.; Liaw, D. J.; Lee, K. R.; Lai, J. Y. Preparation of Neutrally Colorless, Transparent Polynorbornenes with Multiple Redox-Active Chromophores via Ring-Opening Metathesis Polymerization toward Electrochromic Applications. J. Polym. Sci. A Polym. Chem. 2011, 49, 3248–3259. DOI: 10.1002/pola.24760.
  • Jiang, G. Q.; Ponnapati, R.; Pernites, R.; Grande, C. D.; Felipe, M. J.; Foster, E.; Advincula, R. Nanoparticle Formation and Ultrathin Film Electrodeposition of Carbazole Dendronized Polynorbornenes Prepared by Ring-Opening Metathesis Polymerization. Langmuir 2010, 26, 17629–17639. DOI: 10.1021/la103441f.
  • Jung, H.; Carberry, T. P.; Weck, M. Synthesis of First- and Second-Generation Poly(Amide)-Dendronized Polymers via Ring-Opening Metathesis Polymerization. Macromolecules 2011, 44, 9075–9083. DOI: 10.1021/ma2016375.
  • Allais, F.; Lancelot, A.; Pion, F.; Mazeau, K.; Mery, S.; Ducrot, P. H. Synthesis, Molecular Modeling and Characterization of Polyphenolic Dendronized Polymers via ROMP. Abstr. Pap. Am. Chem. Soc. 2011, 242, 66.
  • Zhao, Y. M.; Zhang, K. Thermoresponsive Polymers Based on Ring-Opening Metathesis Polymerization. Polym. Chem. 2016, 7, 4081–4089. DOI: 10.1039/C6PY00711B.
  • Dhawan, S.; Bijesh, M. B.; Haridas, V. Polymersomes from Hybrid Peptide-Based Bottlebrush Homopolymers. Polymer 2018, 138, 218–228. DOI: 10.1016/j.polymer.2018.01.065.
  • Meng, C. S.; Yan, Y. K.; Wang, W. Multi-POSS Cluster-Wrapped Polymers and Their Block Copolymers with a PEO Bottlebrush Polymer: synthesis and Aggregation. Polym. Chem. 2017, 8, 6824–6833. DOI: 10.1039/C7PY01344B.
  • Peterson, G. I.; Bang, K. T.; Choi, T. L. Mechanochemical Degradation of Denpols: Synthesis and Ultrasound-Induced Chain Scission of Polyphenylene-Based Dendronized Polymers. J. Am. Chem. Soc. 2018, 140, 8599–8608. DOI: 10.1021/jacs.8b05110.
  • Choi, S. K.; Gal, Y. S.; Jin, S. H.; Kim, H. K. Poly(1,6-Heptadiyne)-Based Materials by Metathesis Polymerization. Chem. Rev. 2000, 100, 1645–1681. DOI: 10.1021/cr960080i.
  • Kang, E. H.; Kang, C.; Yang, S.; Oks, E.; Choi, T. L. Mechanistic Investigations on the Competition between the Cyclopolymerization and [2 + 2+2] Cycloaddition of 1,6-Heptadiyne Derivatives Using Second-Generation Grubbs Catalysts. Macromolecules 2016, 49, 6240–6250. DOI: 10.1021/acs.macromol.6b01110.
  • Jung, H.; Jung, K.; Hong, M.; Kwon, S.; Kim, K.; Hong, S. H.; Choi, T. L.; Baik, M. H. Understanding the Origin of the Regioselectivity in Cyclopolymerizations of Diynes and How to Completely Switch It. J. Am. Chem. Soc. 2018, 140, 834–841. DOI: 10.1021/jacs.7b11968.
  • Kang, C.; Park, H.; Lee, J. K.; Choi, T. L. Cascade Polymerization via Controlled Tandem Olefin Metathesis/Metallotropic 1,3-Shift Reactions for the Synthesis of Fully Conjugated Polyenynes. J. Am. Chem. Soc. 2017, 139, 11309–11312. DOI: 10.1021/jacs.7b04913.
  • Kang, E. H.; Lee, I. S.; Choi, T. L. Ultrafast Cyclopolymerization for Polyene Synthesis: Living Polymerization to Dendronized Polymers. J. Am. Chem. Soc. 2011, 133, 11904–11907. DOI: 10.1021/ja204309d.
  • Park, H.; Lee, H. K.; Kang, E. H.; Choi, T. L. Controlled Cyclopolymerization of 4,5-Disubstituted 1,7-Octadiynes and Its Application to the Synthesis of a Dendronized Polymer Using Grubbs Catalyst. J. Polym. Sci. Part A: Polym. Chem. 2015, 53, 274–279. DOI: 10.1002/pola.27317.
  • Park, H.; Kang, E. H.; Muller, L.; Choi, T. L. Versatile Tandem Ring-Opening/Ring-Closing Metathesis Polymerization: Strategies for Successful Polymerization of Challenging Monomers and Their Mechanistic Studies. J. Am. Chem. Soc. 2016, 138, 2244–2251. DOI: 10.1021/jacs.5b12223.
  • Guo, M. F.; Sun, R. Y.; Han, H. J.; Wu, J. H.; Xie, M. R.; Liao, X. J. Metathesis Cyclopolymerization of 1,6-Heptadiyne Derivative toward Triphenylamine-Functionalized Polyacetylene with Excellent Optoelectronic Properties and Nanocylinder Morphology. Macromolecules 2015, 48, 2378–2387. DOI: 10.1021/acs.macromol.5b00379.
  • Wang, J. F.; Li, H. F.; Liao, X. J.; Xie, M. R.; Sun, R. Y. Synthesis of Triazole-Dendronized Polyacetylenes by Metathesis Cyclopolymerization and Their Conductivity. Polym. Chem. 2016, 7, 4912–4923. DOI: 10.1039/C6PY00724D.
  • Wu, J. H.; Li, H. F.; Zhou, D. D.; Liao, X. J.; Xie, M. R.; Sun, R. Y. Metathesis Cyclopolymerization of Substituted 1,6-Heptadiyne and Dual Conductivity of Doped Polyacetylene Bearing Branched Triazole Pendants. J. Polym. Sci. Part A: Polym. Chem. 2017, 55, 485–494. DOI: 10.1002/pola.28430.
  • Li, H. F.; Wang, J. F.; Han, H. J.; Wu, J. H.; Xie, M. R. Dual Conductivity of Ionic Polyacetylene by the Metathesis Cyclopolymerization of Dendronized Triazolium-Functionalized 1,6-Heptadiyne. React. Funct. Polym. 2018, 127, 20–28. DOI: 10.1016/j.reactfunctpolym.2018.03.012.
  • Wu, J. H.; Wang, C. F.; Zhou, D. D.; Liao, X. J.; Xie, M. R.; Sun, R. Y. Branched 1,2,3-Triazolium-Functionalized Polyacetylene with Enhanced Conductivity. Macromol. Rapid Commun. 2016, 37, 2017–2022. DOI: 10.1002/marc.201600498.
  • Zhulina, E. B.; Sheiko, S. S.; Borisov, O. V. Solution and Melts of Barbwire Bottlebrushes: Hierarchical Structure and Scale-Dependent Elasticity. Macromolecules 2019, 52, 1671–1684. DOI: 10.1021/acs.macromol.8b02358.
  • Walsh, D. J.; Dutta, S.; Sing, C. E.; Guironnet, D. Engineering of Molecular Geometry in Bottlebrush Polymers. Macromolecules 2019, 52, 4847–4857. DOI: 10.1021/acs.macromol.9b00845.
  • Yang, W. J.; Neoh, K. G.; Kang, E. T.; Teo, S. L. M.; Rittschof, D. Polymer Brush Coatings for Combating Marine Biofouling. Prog. Polym. Sci 2014, 39, 1017–1042. DOI: 10.1016/j.progpolymsci.2014.02.002.
  • Abbasi, M.; Faust, L.; Wilhelm, M. Comb and Bottlebrush Polymers with Superior Rheological and Mechanical Properties. Adv. Mater. 2019, 31, 1806484. DOI: 10.1002/adma.201806484.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.