6,629
Views
107
CrossRef citations to date
0
Altmetric
Review

MXene/Polymer Nanocomposites: Preparation, Properties, and Applications

, , , , , , , , & show all
Pages 80-115 | Received 27 Sep 2019, Accepted 03 Feb 2020, Published online: 28 Feb 2020

References

  • Zhu, J.; Ha, E.; Zhao, G.; Zhou, Y.; Huang, D.; Yue, G.; Hu, L.; Sun, N.; Wang, Y.; Lee, L. Y. S.; et al. Recent Advance in MXenes: A Promising 2D Material for Catalysis, Sensor and Chemical Adsorption. Coord. Chem. Rev. 2017, 352, 306–327. DOI: 10.1016/j.ccr.2017.09.012.
  • Huo, C.; Yan, Z.; Song, X.; Zeng, H. 2D Materials via Liquid Exfoliation: A Review on Fabrication and Applications. Sci. Bull. 2015, 60, 1994–2008. DOI: 10.1007/s11434-015-0936-3.
  • Nicolosi, V.; Chhowalla, M.; Kanatzidis, M. G.; Strano, M. S.; Coleman, J. N. Liquid Exfoliation of Layered Materials. Science 2013, 340, 1226419–1221424. DOI: 10.1126/science.1226419.
  • Chhowalla, M.; Shin, H. S.; Eda, G.; Li, L. J.; Loh, K. P.; Hua, Z. The Chemistry of Two-Dimensional Layered Transition Metal Dichalcogenide Nanosheets. Nature Chem. 2013, 5, 263–275. DOI: 10.1038/nchem.1589.
  • Naguib, M.; Kurtoglu, M.; Presser, V.; Lu, J.; Niu, J.; Heon, M.; Hultman, H.; Gogotsi, Y.; Barsoum, M. W. Two-Dimensional Nanocrystals Produced by Exfoliation of Ti3AlC2. Adv. Mater. 2011, 23, 4248–4253. DOI: 10.1002/adma.201102306.
  • Sarycheva, A.; Polemi, A.; Liu, Y.; Dandekar, K.; Anasori, B.; Gogotsi, Y. 2D Titanium Carbide (MXene) for Wireless Communication. Sci. Adv. 2018, 4, eaau0920. DOI: 10.1126/sciadv.aau0920.
  • Shahzad, F.; Alhabeb, M.; Hatter, C. B.; Anasori, B.; Hong, S. M.; Koo, C. M.; Gogotsi, Y. Electromagnetic Interference Shielding with 2D Transition Metal Carbides (MXenes). Science 2016, 353, 1137–1140. DOI: 10.1126/science.aag2421.
  • Jun, B.-M.; Kim, S.; Heo, J.; Park, C. M.; Her, N.; Jang, M.; Huang, Y.; Han, J.; Yoon, Y. Review of MXenes as New Nanomaterials for Energy Storage/Delivery and Selected Environmental Applications. Nano Res. 2019, 12, 471–487. DOI: 10.1007/s12274-018-2225-3.
  • Verger, L.; Natu, V.; Carey, M.; Barsoum, M. W. MXenes: An Introduction of Their Synthesis, Select Properties, and Applications. Trends Chem. in press. DOI: 10.1016/j.trechm.2019.04.006.
  • Khazaei, M.; Mishra, A.; Venkataramanan, N. S.; Singh, A. K.; Yunoki, S. Recent Advances in MXenes: From Fundamentals to Applications. Curr. Opin. Solid State Mater. Sci. 2019, 23, 164–178. DOI: 10.1016/j.cossms.2019.01.002.
  • Mariano, M.; Mashtalir, O.; Antonio, F. Q.; Ryu, W.-H.; Deng, B.; Xia, F.; Gogotsi, Y.; Taylor, A. D. Solution-Processed Titanium Carbide MXene Films Examined as Highly Transparent Conductors. Nanoscale 2016, 8, 16371–16378. DOI: 10.1039/C6NR03682A.
  • Hu, M.; Zhang, N.; Shan, G.; Gao, J.; Liu, J.; Li, R. K. Two-Dimensional Materials: Emerging Toolkit for Construction of Ultrathin High-Efficiency Microwave Shield and Absorber. Front. Phys. 2018, 13, 138113. DOI: 10.1007/s11467-018-0809-8.
  • Lukatskaya, M. R.; Mashtalir, O.; Ren, C. E.; Dall'Agnese, Y.; Rozier, P.; Taberna, P. L.; Naguib, M.; Simon, P.; Barsoum, M. W.; Gogotsi, Y. Cation Intercalation and High Volumetric Capacitance of Two-Dimensional Titanium Carbide. Science 2013, 341, 1502–1505. DOI: 10.1126/science.1241488.
  • Ling, Z.; Ren, C. E.; Zhao, M.-Q.; Yang, J.; Giammarco, J. M.; Qiu, J.; Barsoum, M. W.; Gogotsi, Y. Flexible and Conductive MXene Films and Nanocomposites with High Capacitance. Proc. Natl. Acad. Sci. USA. 2014, 111, 16676–16681. DOI: 10.1073/pnas.1414215111.
  • Boota, M.; Anasori, B.; Voigt, C.; Zhao, M.-Q.; Barsoum, M. W.; Gogotsi, Y. Pseudocapacitive Electrodes Produced by Oxidant-Free Polymerization of Pyrrole between the Layers of 2D Titanium Carbide (MXene). Adv. Mater. 2016, 28, 1517–1522. DOI: 10.1002/adma.201504705.
  • Xu, H.; Yin, X.; Li, X.; Li, M.; Liang, S.; Zhang, L.; Cheng, L. Lightweight Ti2CTX MXene/Poly (Vinyl Alcohol) Composite Foams for Electromagnetic Wave Shielding with Absorption-Dominated Feature. ACS Appl. Mater. Interfaces 2019, 11, 10198–10207. DOI: 10.1021/acsami.8b21671.
  • Liu, T. The Birth of MXene. 2017. https://materials.typepad.com/materialsconnect/2019/03/the-birth-of-mxenes.html. Accessed 22nd September 2019
  • Jacoby, M. Mxenes Keep Getting Better. Chem. Eng. News 2015, 93, 23–24.
  • University D. Material Witnesses—Researchers Around the World Are Delving Into Drexel’s 2D MXene. 2017. https://drexel.edu/engineering/news-events/news/archive/2017/February/material-witnesses–mxenes/. Accessed 22nd September 2019
  • Naguib, M.; Mochalin, V. N.; Barsoum, M. W.; Gogotsi, Y. 25th Anniversary Article: MXenes: A New Family of Two‐Dimensional Materials. Adv. Mater. 2014, 26, 992–1005. DOI: 10.1002/adma.201304138.
  • Wang, C.; Xie, H.; Chen, S.; Ge, B.; Liu, D.; Wu, C.; Xu, W.; Chu, W.; Babu, G.; Ajayan, P. M.; Song, L. Atomic Cobalt Covalently Engineered Interlayers for Superior Lithium‐Ion Storage. Adv. Mater. 2018, 30, 1802525. DOI: 10.1002/adma.201802525.
  • Soleymaniha, M.; Shahbazi, M.-A.; Rafieerad, A. R.; Maleki, A.; Amiri, A. Promoting Role of MXene Nanosheets in Biomedical Sciences: Therapeutic and Biosensing Innovations. Adv. Healthcare Mater. 2019, 8, 1801137. DOI: 10.1002/adhm.201801137.
  • Anasori, B.; Lukatskaya, M. R.; Gogotsi, Y. 2D Metal Carbides and Nitrides (MXenes) for Energy Storage. Nat. Rev. Mater. 2017, 2, 16098. DOI: 10.1038/natrevmats.2016.98.
  • Sun, W.; Shah, S.; Chen, Y.; Tan, Z.; Gao, H.; Habib, T.; Radovic, M.; Green, M. Electrochemical Etching of Ti2AlC to Ti2CTx (MXene) in Low-Concentration Hydrochloric Acid Solution. J. Mater. Chem. A 2017, 5, 21663–21668. DOI: 10.1039/C7TA05574A.
  • He, Y.; Wang, L.; Wang X.; Wu, M.; Lian W.; Zhou, A. Research Progress on Synthesis, Properties and Applications of Two-dimensional Crystal MXenes. J. Synthetic Cryst. 2019, 48(5), 787–793 + 808. DOI: 10.16553/j.cnki.issn1000-985x.2019.05.002.(in Chinese)
  • Chakraborty, P.; Das, T.; Saha-Dasgupta, T. MXene: a New Trend in 2D Materials Science. in Comprehensive Nanoscience and Nanotechnology, David, A., Thomas, N., Robert, T., David, B., Academic Press, London, 2018, p. 319–330. DOI: 10.1016/B978-0-12-803581-8.10414-X.
  • Urbankowski, P. Synthesis of Two-Dimensional Transition Metal Nitrides., Ph.D. Dissertation, Drexel University, Philadelphia, PA, 2019.
  • Sun, D.-D.; Hu, Q.-K.; Li, Z.-Y.; Wang, L.-B.; Zhou, A.-G.; Wu, Q.-H. Research Progress of New Two-Dimensional MXene Crytals. J. Synth. Cryst. 2014, 43, 2950–2956. DOI: 10.16553/j.cnki.issn1000-985x.2014.11.034.(in Chinese)
  • Kurtoglu, M.; Naguib, M.; Gogotsi, Y.; Barsoum, M. W. First Principles Study of Two-Dimensional Early Transition Metal Carbides. MRS Commun. 2012, 2, 133–137. DOI: 10.1557/mrc.2012.25.
  • Fu, Z.; Zhang, H.; Si, C.; Legut, D.; Germann, T. C.; Zhang, Q.; Du, S.; Francisco, J. S.; Zhang, R. Mechanistic Quantification of Thermodynamic Stability and Mechanical Strength for Two-Dimensional Transition-Metal Carbides. J. Phys. Chem. C 2018, 122, 4710–4722. DOI: 10.1021/acs.jpcc.8b00142.
  • Borysiuk, V. N.; Mochalin, V. N.; Gogotsi, Y. Bending Rigidity of Two-Dimensional Titanium Carbide (MXene) Nanoribbons: A Molecular Dynamics Study. Comput. Mater. Sci. 2018, 143, 418–424. DOI: 10.1016/j.commatsci.2017.11.028.
  • Lei, J.-C.; Zhang, X.; Zhou, Z. Recent Advances in MXene: Preparation, Properties, and Applications. Front. Phys. 2015, 10, 276–286. DOI: 10.1007/s11467-015-0493-x.
  • Naguib, M.; Mashtalir, O.; Carle, J.; Presser, V.; Lu, J.; Hultman, L.; Gogotsi, Y.; Barsoum, M. W. Two-Dimensional Transition Metal Carbides. ACS Nano 2012, 6, 1322–1331. DOI: 10.1021/nn204153h.
  • Mashtalir, O.; Naguib, M.; Mochalin, V. N.; Dall’Agnese, Y.; Heon, M.; Barsoum, M. W.; Gogotsi, Y. Intercalation and Delamination of Layered Carbides and Carbonitrides. Nat. Commun. 2013, 4, 1716. DOI: 10.1038/ncomms2664.
  • Qin, L.; Tao, Q.; Ghazaly, A. E.; Fernandez‐Rodriguez, J.; Persson, P. O. Å.; Rosen, J.; Zhang, F. High‐Performance Ultrathin Flexible Solid‐State Supercapacitors Based on Solution Processable Mo1. 33C MXene and PEDOT: PSS. Adv. Funct. Mater. 2018, 28, 1703808. DOI: 10.1002/adfm.201703808.
  • Liu, J.; Zhang, H. B.; Xie, X.; Yang, R.; Liu, Z.; Liu, Y.; Yu, Z. Z. Multifunctional, Superelastic, and Lightweight MXene/Polyimide Aerogels. Small 2018, 14, 1802479. DOI: 10.1002/smll.201802479.
  • Cao, W.-T.; Chen, F.-F.; Zhu, Y.-J.; Zhang, Y.-G.; Jiang, Y.-Y.; Ma, M.-G.; Chen, F. Binary Strengthening and Toughening of MXene/Cellulose Nanofiber Composite Paper with Nacre-Inspired Structure and Superior Electromagnetic Interference Shielding Properties. Acs Nano 2018, 12, 4583–4593. DOI: 10.1021/acsnano.8b00997.
  • Xing, C.; Chen, S.; Liang, X.; Liu, Q.; Qu, M.; Zou, Q.; Li, J.; Tan, H.; Liu, L.; Fan, D.; Zhang, H. Two-Dimensional MXene (Ti3C2)-Integrated Cellulose Hydrogels: Toward Smart Three-Dimensional Network Nanoplatforms Exhibiting Light-Induced Swelling and Bimodal Photothermal/Chemotherapy Anticancer Activity. ACS Appl. Mater. Interfaces 2018, 10, 27631–27643. DOI: 10.1021/acsami.8b08314.
  • Khazaei, M.; Arai, M.; Sasaki, T.; Chung, C. Y.; Venkataramanan, N. S.; Estili, M.; Sakka, Y.; Kawazoe, Y. Novel Electronic and Magnetic Properties of Two‐Dimensional Transition Metal Carbides and Nitrides. Adv. Funct. Mater. 2013, 23, 2185–2192. DOI: 10.1002/adfm.201202502.
  • Miranda, A.; Halim, J.; Barsoum, M.; Lorke, A. Electronic Properties of Freestanding Ti3C2Tx MXene Monolayers. Appl. Phys. Lett. 2016, 108, 033102. DOI: 10.1063/1.4939971.
  • Ghidiu, M.; Lukatskaya, M. R.; Zhao, M.-Q.; Gogotsi, Y.; Barsoum, M. W. Conductive Two-Dimensional Titanium Carbide ‘Clay’ with High Volumetric Capacitance. Nature 2014, 516, 78–81. DOI: 10.1038/nature13970.
  • Hantanasirisakul, K.; Zhao, M.-Q.; Urbankowski, P.; Halim, J.; Anasori, B.; Kota, S.; Ren, C. E.; Barsoum, M. W.; Gogotsi, Y. Fabrication of Ti3C2Tx MXene Transparent Thin Films with Tunable Optoelectronic Properties. Adv. Electron. Mater. 2016, 2, 1600050. DOI: 10.1002/aelm.201600050.
  • Halim, J.; Lukatskaya, M. R.; Cook, K. M.; Lu, J.; Smith, C. R.; Näslund, L.-Å.; May, S. J.; Hultman, L.; Gogotsi, Y.; Eklund, P.; Barsoum, M. W. Transparent Conductive Two-Dimensional Titanium Carbide Epitaxial Thin Films. Chem. Mater. 2014, 26, 2374–2381. DOI: 10.1021/cm500641a.
  • Zhang, C.; Nicolosi, V. Graphene and MXene-Based Transparent Conductive Electrodes and Supercapacitors. Energy Storage Mater. 2019, 16, 102–125. DOI: 10.1016/j.ensm.2018.05.003.
  • Zhao, S.; Kang, W.; Xue, J. Manipulation of Electronic and Magnetic Properties of M2C (M = Hf, Nb, Sc, Ta, Ti, V, Zr) Monolayer by Applying Mechanical Strains. Appl. Phys. Lett. 2014, 104, 133106. DOI: 10.1063/1.4870515.
  • Khazaei, M.; Ranjbar, A.; Arai, M.; Sasaki, T.; Yunoki, S. Electronic Properties and Applications of MXenes: A Theoretical Review. J. Mater. Chem. C 2017, 5, 2488–2503. DOI: 10.1039/C7TC00140A.
  • Zhang, Y.; Wang, L.; Zhang, N.; Zhou, Z. Adsorptive Environmental Applications of MXene Nanomaterials: A Review. RSC Adv. 2018, 8, 19895–19905. DOI: 10.1039/C8RA03077D.
  • Pang, J.; Mendes, R. G.; Bachmatiuk, A.; Zhao, L.; Ta, H. Q.; Gemming, T.; Liu, H.; Liu, Z.; Rummeli, M. H. Applications of 2D MXenes in Energy Conversion and Storage Systems. Chem. Soc. Rev. 2019, 48, 72–133. DOI: 10.1039/C8CS00324F.
  • Ng, V. M. H.; Huang, H.; Zhou, K.; Lee, P. S.; Que, W.; Xu, J. Z.; Kong, L. B. Recent Progress in Layered Transition Metal Carbides and/or Nitrides (MXenes) and Their Composites: Synthesis and Applications. J. Mater. Chem. A 2017, 5, 3039–3068. DOI: 10.1039/C6TA06772G.
  • Verger, L.; Xu, C.; Natu, V.; Cheng, H.-M.; Ren, W.; Barsoum, M. W. Overview of the Synthesis of MXenes and Other Ultrathin 2D Transition Metal Carbides and Nitrides. Curr. Opin. Solid State. Mater. Sci 2019, 23, 149–163. DOI: 10.1016/j.cossms.2019.02.001.
  • Xiong, D.; Li, X.; Bai, Z.; Lu, S. Recent Advances in Layered Ti3C2Tx MXene for Electrochemical Energy Storage. Small 2018, 14, 1703419. DOI: 10.1002/smll.201703419.
  • Huang, K.; Li, Z.; Lin, J.; Han, G.; Huang, P. Two-Dimensional Transition Metal Carbides and Nitrides (MXenes) for Biomedical Applications. Chem. Soc. Rev. 2018, 47, 5109–5124. DOI: 10.1039/C7CS00838D.
  • Sun, Y.; Chen, D.; Liang, Z. Two-Dimensional MXenes for Energy Storage and Conversion Applications. Mater. Today Energy 2017, 5, 22–36. DOI: 10.1016/j.mtener.2017.04.008.
  • Wang, L.; Zhang, H.; Bo, W.; Shen, C.; Zhang, C.; Hu, Q.; Zhou, A.; Liu, B. Synthesis and Electrochemical Performance of Ti3C2Tx with Hydrothermal Process. Electron. Mater. Lett. 2016, 12, 702–709. DOI: 10.1007/s13391-016-6088-z.
  • Li, T.; Yao, L.; Liu, Q.; Gu, J.; Luo, R.; Li, J.; Yan, X.; Wang, W.; Liu, P.; Chen, B.; et al. Fluorine‐Free Synthesis of High‐Purity Ti3C2Tx (T = OH, O) via Alkali Treatment. Angew. Chem. Int. Ed. 2018, 57, 6115–6119. DOI: 10.1002/anie.201800887.
  • Naguib, M.; Presser, V.; Tallman, D.; Lu, J.; Hultman, L.; Gogotsi, Y.; Barsoum, M. W. On the Topotactic Transformation of Ti2AlC into a Ti–C–O–F Cubic Phase by Heating in Molten Lithium Fluoride in Air. J. Am. Ceram. Soc. 2011, 94, 4556–4561. DOI: 10.1111/j.1551-2916.2011.04896.x.
  • Jie, X.; Wang, X.; Li, A.; Li, F.; Zhou, Y. Corrosion Behavior of Selected Mn +1AXn Phases in Hot Concentrated HCl Solution: Effect of a Element and MX Layer. Corros. Sci. 2012, 60, 129–135. DOI: 10.1016/j.corsci.2012.03.047.
  • Peng, J.; Chen, X.; Ong, W.-J.; Zhao, X.; Li, N. Surface and Heterointerface Engineering of 2D MXenes and Their Nanocomposites: Insights into Electro- and Photocatalysis. Chem 2019, 5, 18–50. DOI: 10.1016/j.chempr.2018.08.037.
  • Yang, H.; Dai, J.; Liu, X.; Lin, Y.; Wang, J.; Wang, L.; Wang, F. Layered PVB/Ba3Co2Fe24O41/Ti3C2 Mxene Composite: Enhanced Electromagnetic Wave Absorption Properties with High Impedance Match in a Wide Frequency Range. Mater. Chem. Phys. 2017, 200, 179–186. DOI: 10.1016/j.matchemphys.2017.05.057.
  • An, H.; Habib, T.; Shah, S.; Gao, H.; Patel, A.; Echols, I.; Zhao, X.; Radovic, M.; Green, M. J.; Lutkenhaus, J. L. Water Sorption in MXene/Polyelectrolyte Multilayers for Ultrafast Humidity Sensing. ACS Appl. Nano Mater. 2019, 2, 948–955. DOI: 10.1021/acsanm.8b02265.
  • Guo, Y.; Zhong, M.; Fang, Z.; Wan, P.; Yu, G. A Wearable Transient Pressure Sensor Made with MXene Nanosheets for Sensitive Broad-Range Human–Machine Interfacing. Nano Lett. 2019, 19, 1143–1150. DOI: 10.1021/acs.nanolett.8b04514.
  • Hao, L.; Zhang, H.; Wu, X.; Zhang, J.; Wang, J.; Li, Y. Novel Thin-Film Nanocomposite Membranes Filled with Multi-Functional Ti3C2Tx Nanosheets for Task-Specific Solvent Transport. Compos Part A 2017, 100, 139–149. DOI: 10.1016/j.compositesa.2017.05.003.
  • Kim, H. B.; Sajid, M.; Kim, K. T.; Na, K. H.; Choi, K. H. Linear Humidity Sensor Fabrication Using bi-Layered Active Region of Transition Metal Carbide and Polymer Thin Films. Sens. Actuators B 2017, 252, 725–734. DOI: 10.1016/j.snb.2017.06.052.
  • Sajid, M.; Kim, H. B.; Siddiqui, G. U.; Na, K. H.; Choi, K. H. Linear Bi-Layer Humidity Sensor with Tunable Response Using Combinations of Molybdenum Carbide with Polymers. Sens. Actuators A 2017, 262, 68–77. DOI: 10.1016/j.sna.2017.05.029.
  • An, H.; Habib, T.; Shah, S.; Gao, H.; Radovic, M.; Green, M. J.; Lutkenhaus, J. L. Surface-Agnostic Highly Stretchable and Bendable Conductive MXene Multilayers. Sci. Adv. 2018, 4, eaaq0118. DOI: 10.1126/sciadv.aaq0118.
  • Zhou, Z.; Panatdasirisuk, W.; Mathis, T. S.; Anasori, B.; Lu, C.; Zhang, X.; Liao, Z.; Gogotsi, Y.; Yang, S. Layer-by-Layer Assembly of MXene and Carbon Nanotubes on Electrospun Polymer Films for Flexible Energy Storage. Nanoscale 2018, 10, 6005–6013. DOI: 10.1039/C8NR00313K.
  • Jiang, C.; Wu, C.; Li, X.; Yao, Y.; Lan, L.; Zhao, F.; Ye, Z.; Ying, Y.; Ping, J. All-Electrospun Flexible Triboelectric Nanogenerator Based on Metallic MXene Nanosheets. Nano Energy 2019, 59, 268–276. DOI: 10.1016/j.nanoen.2019.02.052.
  • Raagulan, K.; Braveenth, R.; Jang, H. J.; Lee, Y. S.; Yang, C.-M.; Kim, M. B.; Moon, J. J.; Chai, K. Y. Electromagnetic Shielding by MXene-Graphene-PVDF Composite with Hydrophobic, Lightweight and Flexible Graphene Coated Fabric. Materials 2018, 11, 1803. DOI: 10.3390/ma11101803.
  • Wang, Q.-W.; Zhang, H.-B.; Liu, J.; Zhao, S.; Xie, X.; Liu, L.; Yang, R.; Koratkar, N.; Yu, Z.-Z. Multifunctional and Water‐Resistant MXene‐Decorated Polyester Textiles with Outstanding Electromagnetic Interference Shielding and Joule Heating Performances. Adv. Funct. Mater. 2019, 29, 1806819. DOI: 10.1002/adfm.201806819.
  • Mayerberger, E. A.; Urbanek, O.; McDaniel, R. M.; Street, R. M.; Barsoum, M. W.; Schauer, C. L. Preparation and Characterization of Polymer‐Ti3C2Tx (MXene) Composite Nanofibers Produced via Electrospinning. J. Appl. Polym. Sci. 2017, 134, 45295. DOI: 10.1002/app.45295.
  • Mayerberger, E. A.; Street, R. M.; McDaniel, R. M.; Barsoum, M. W.; Schauer, C. L. Antibacterial Properties of Electrospun Ti3C2Tz(MXene)/Chitosan Nanofibers. RSC Adv. 2018, 8, 35386–35394. DOI: 10.1039/C8RA06274A.
  • Shao, W.; Tebyetekerwa, M.; Marriam, I.; Li, W.; Wu, Y.; Peng, S.; Ramakrishna, S.; Yang, S.; Zhu, M. Polyester@ MXene Nanofibers-Based Yarn Electrodes. J. Power Sources 2018, 396, 683–690. DOI: 10.1016/j.jpowsour.2018.06.084.
  • Levitt, A. S.; Alhabeb, M.; Hatter, C. B.; Sarycheva, A.; Dion, G.; Gogotsi, Y. Electrospun MXene/Carbon Nanofibers as Supercapacitor Electrodes. J. Mater. Chem. A 2019, 7, 269–277. DOI: 10.1039/C8TA09810G.
  • Huang, X.; Wang, R.; Jiao, T.; Zou, G.; Zhan, F.; Yin, J.; Zhang, L.; Zhou, J.; Peng, Q. Facile Preparation of Hierarchical AgNP-Loaded MXene/Fe3O4/Polymer Nanocomposites by Electrospinning with Enhanced Catalytic Performance for Wastewater Treatment. ACS Omega 2019, 4, 1897–1906. DOI: 10.1021/acsomega.8b03615.
  • Gao, X.; Li, Z.-K.; Xue, J.; Qian, Y.; Zhang, L.-Z.; Caro, J.; Wang, H. Titanium Carbide Ti3C2Tx (MXene) Enhanced PAN Nanofiber Membrane for Air Purification. J. Membr. Sci 2019, 586, 162–169. DOI: 10.1016/j.memsci.2019.05.058.
  • Hu, Y.; Zhuo, H.; Luo, Q.; Wu, Y.; Wen, R.; Chen, Z.; Liu, L.; Zhong, L.; Peng, X.; Sun, R. Biomass Polymer-Assisted Fabrication of Aerogels from MXenes with Ultrahigh Compression Elasticity and Pressure Sensitivity. J. Mater. Chem. A 2019, 7, 10273–10281. DOI: 10.1039/C9TA01448A.
  • Li, X.-P.; Li, Y.; Li, X.; Song, D.; Min, P.; Hu, C.; Zhang, H.-B.; Koratkar, N.; Yu, Z.-Z. Highly Sensitive, Reliable and Flexible Piezoresistive Pressure Sensors Featuring Polyurethane Sponge Coated with MXene Sheets. J. Colloid Interface Sci 2019, 542, 54–62. DOI: 10.1016/j.jcis.2019.01.123.
  • Zhang, H.; Wang, L.; Chen, Q.; Li, P.; Zhou, A.; Cao, X.; Hu, Q. Preparation, Mechanical and Anti-Friction Performance of MXene/Polymer Composites. Mater. Des 2016, 92, 682–689. DOI: 10.1016/j.matdes.2015.12.084.
  • Cao, X.; Wu, M.; Zhou, A.; Wang, Y.; He, X.; Wang, L. Non-Isothermal Crystallization and Thermal Degradation Kinetics of MXene/Linear Low-Density Polyethylene Nanocomposites. e-Polymers 2017, 17, 373–381. DOI: 10.1515/epoly-2017-0017.
  • Yu, B.; Tawiah, B.; Wang, L.-Q.; Yin Yuen, A. C.; Zhang, Z.-C.; Shen, L.-L.; Lin, B.; Fei, B.; Yang, W.; Li, A.; et al. Interface Decoration of Exfoliated MXene Ultra-Thin Nanosheets for Fire and Smoke Suppressions of Thermoplastic Polyurethane Elastomer. J. Hazard. Mater. 2019, 374, 110–119. DOI: 10.1016/j.jhazmat.2019.04.026.
  • Mirkhani, S. A.; Zeraati, A. S.; Aliabadian, E.; Naguib, M.; Sundararaj, U. High Dielectric Constant and Low Dielectric Loss via Poly (Vinyl Alcohol)/Ti3C2Tx MXene Nanocomposite. ACS Appl. Mater. Interfaces 2019, 11, 18599–18608. DOI: 10.1021/acsami.9b00393.
  • Zhang, Y.-Z.; Lee, K. H.; Anjum, D. H.; Sougrat, R.; Jiang, Q.; Kim, H.; Alshareef, H. N. MXenes Stretch Hydrogel Sensor Performance to New Limits. Sci. Adv. 2018, 4, eaat0098. DOI: 10.1126/sciadv.aat0098.
  • Wang, L.; Chen, L.; Song, P.; Liang, C.; Lu, Y.; Qiu, H.; Zhang, Y.; Kong, J.; Gu, J. Fabrication on the Annealed Ti3C2Tx MXene/Epoxy Nanocomposites for Electromagnetic Interference Shielding Application. Compos. Part B 2019, 171, 111–118. DOI: 10.1016/j.compositesb.2019.04.050.
  • Shah, J. Synthesis of MXene-Epoxy Nanocomposites. M.A. Dissertation; Drexel University, Philadelphia, PA, 2017.
  • Seyedin, S.; Zhang, J.; Usman, K.; Qin, S.; Glushenkov, A.; Yanza, E.; Jones, R.; Razal, J. Facile Solution Processing of Stable MXene Dispersions towards Conductive Composite Fibers. Global Challen. 2019, 3, 1900037. DOI: 10.1002/gch2.201900037.
  • Zhang, C.; Ma, Y.; Zhang, X.; Abdolhosseinzadeh, S.; Sheng, H.; Lan, W.; Pakdel, A.; Heier, J.; Nüesch, F. Two-Dimensional Transition Metal Carbides and Nitrides (MXenes): Synthesis, Properties, and Electrochemical Energy Storage Applications. Energy Environ. Mater. 2019, 0, 1–27. DOI: 10.1002/eem2.12058.
  • Ghaleb, Z.; Jaafar, M.; Rashid, A. Chapter Three - Fabrication Methods of Carbon-Based Rubber Nanocomposites and Their Applications. In Carbon-Based Nanofiller and Their Rubber Nanocomposites; Yaragalla, S., Mishra, R. K., Thomas, S., Eds.; Elsevier, San Diego, 2019; pp 49–63.
  • Huang, Z.; Wang, S.; Kota, S.; Pan, Q.; Barsoum, M. W.; Li, C. Y. Structure and Crystallization Behavior of Poly (Ethylene Oxide)/Ti3C2Tx MXene Nanocomposites. Polymer 2016, 102, 119–126. DOI: 10.1016/j.polymer.2016.09.011.
  • Liu, R.; Li, W. High-Thermal-Stability and High-Thermal-Conductivity Ti3C2Tx MXene/Poly (Vinyl Alcohol)(PVA) Composites. ACS Omega 2018, 3, 2609–2617. DOI: 10.1021/acsomega.7b02001.
  • Boota, M.; Pasini, M.; Galeotti, F.; Porzio, W.; Zhao, M.-Q.; Halim, J.; Gogotsi, Y. Interaction of Polar and Nonpolar Polyfluorenes with Layers of Two-Dimensional Titanium Carbide (MXene): Intercalation and Pseudocapacitance. Chem. Mater. 2017, 29, 2731–2738. DOI: 10.1021/acs.chemmater.6b03933.
  • Fei, M.; Lin, R.; Deng, Y.; Xian, H.; Bian, R.; Zhang, X.; Cheng, J.; Xu, C.; Cai, D. Polybenzimidazole/Mxene Composite Membranes for Intermediate Temperature Polymer Electrolyte Membrane Fuel Cells. Nanotechnology 2018, 29, 035403. DOI: 10.1088/1361-6528/aa9ab0.
  • Naguib, M.; Saito, T.; Lai, S.; Rager, M. S.; Aytug, T.; Paranthaman, M. P.; Zhao, M.-Q.; Gogotsi, Y. Ti3C2Tx (MXene)–Polyacrylamide Nanocomposite Films. RSC Adv. 2016, 6, 72069–72073. DOI: 10.1039/C6RA10384G.
  • Liu, Y.; Zhang, J.; Zhang, X.; Li, Y.; Wang, J. Ti3C2Tx Filler Effect on the Proton Conduction Property of Polymer Electrolyte Membrane. ACS Appl. Mater. Interfaces 2016, 8, 20352–20363. DOI: 10.1021/acsami.6b04800.
  • Cao, Y.; Deng, Q.; Liu, Z.; Shen, D.; Wang, T.; Huang, Q.; Du, S.; Jiang, N.; Lin, C.-T.; Yu, J. Enhanced Thermal Properties of Poly (Vinylidene Fluoride) Composites with Ultrathin Nanosheets of MXene. RSC Adv. 2017, 7, 20494–20501. DOI: 10.1039/C7RA00184C.
  • Wu, X.; Hao, L.; Zhang, J.; Zhang, X.; Wang, J.; Liu, J. Polymer-Ti3C2Tx Composite Membranes to Overcome the Trade-off in Solvent Resistant Nanofiltration for Alcohol-Based System. J. Membr. Sci. 2016, 515, 175–188. DOI: 10.1016/j.memsci.2016.05.048.
  • Shao, J.; Wang, J.-W.; Liu, D.-N.; Wei, L.; Wu, S.-Q.; Ren, H. A Novel High Permittivity Percolative Composite with Modified MXene. Polymer 2019, 174, 86–95. DOI: 10.1016/j.polymer.2019.04.057.
  • Hu, C.; Shen, F.; Zhu, D.; Zhang, H.; Xue, J.; Han, X. Characteristics of Ti3C2X–Chitosan Films with Enhanced Mechanical Properties. Front. Energy Res. 2017, 4, 1–6. DOI: 10.3389/fenrg.2016.00041.
  • Jiao, S.; Zhou, A.; Wu, M.; Hu, H. Kirigami Patterning of MXene/Bacterial Cellulose Composite Paper for All‐Solid‐State Stretchable Micro‐Supercapacitor Arrays. Adv. Sci. 2019, 6, 1900529. DOI: 10.1002/advs.201900529.
  • Chen, K.; Chen, Y.; Deng, Q.; Jeong, S.-H.; Jang, T.-S.; Du, S.; Kim, H.-E.; Huang, Q.; Han, C.-M. Strong and Biocompatible Poly (Lactic Acid) Membrane Enhanced by Ti3C2Tz (MXene) Nanosheets for Guided Bone Regeneration. Mater. Lett. 2018, 229, 114–117. DOI: 10.1016/j.matlet.2018.06.063.
  • Han, R.; Ma, X.; Xie, Y.; Da, T.; Zhang, S. Preparation of a New 2D MXene/PES Composite Membrane with Excellent Hydrophilicity and High Flux. Rsc Adv. 2017, 7, 56204–56210. DOI: 10.1039/C7RA10318B.
  • Si, J.-Y.; Tawiah, B.; Sun, W.-L.; Lin, B.; Wang, C.; Yuen, A. C. Y.; Yu, B.; Li, A.; Yang, W.; Lu, H.-D.; et al. Functionalization of MXene Nanosheets for Polystyrene towards High Thermal Stability and Flame Retardant Properties. Polymers 2019, 11, 976. DOI: 10.3390/polym11060976.
  • Zhang, Z.; Yang, S.; Zhang, P.; Zhang, J.; Chen, G.; Feng, X. Mechanically Strong MXene/Kevlar Nanofiber Composite Membranes as High-Performance Nanofluidic Osmotic Power Generators. Nat. Commun. 2019, 10, 1–9. DOI: 10.1038/s41467-019-10885-8.
  • Chen, Z.; Han, Y.; Li, T.; Zhang, X.; Wang, T.; Zhang, Z. Preparation and Electrochemical Performances of Doped MXene/Poly (3, 4-Ethylenedioxythiophene) Composites. Mater. Lett. 2018, 220, 305–308. DOI: 10.1016/j.matlet.2018.03.049.
  • Tong, Y.; He, M.; Zhou, Y.; Zhong, X.; Fan, L.; Huang, T.; Liao, Q.; Wang, Y. Hybridizing Polypyrrole Chains with Laminated and Two-Dimensional Ti3C2Tx toward High-Performance Electromagnetic Wave Absorption. Appl. Surf. Sci. 2018, 434, 283–293. DOI: 10.1016/j.apsusc.2017.10.140.
  • Wei, H.; Dong, J.; Fang, X.; Zheng, W.; Sun, Y.; Qian, Y.; Jiang, Z.; Huang, Y. Ti3C2Tx MXene/Polyaniline (PANI) Sandwich Intercalation Structure Composites Constructed for Microwave Absorption. Compos. Sci. Technol. 2019, 169, 52–59. DOI: 10.1016/j.compscitech.2018.10.016.
  • Qin, L.; Tao, Q.; Liu, X.; Fahlman, M.; Halim, J.; Persson, P. O.; Rosen, J.; Zhang, F. Polymer-MXene Composite Films Formed by MXene-Facilitated Electrochemical Polymerization for Flexible Solid-State Microsupercapacitors. Nano Energy 2019, 60, 734–742. DOI: 10.1016/j.nanoen.2019.04.002.
  • Carey, M.; Hinton, Z.; Sokol, M.; Alvarez, N. J.; Barsoum, M. W. Nylon-6/Ti3C2Tz MXene Nanocomposites Synthesized by in Situ Ring Opening Polymerization of ε-Caprolactam and Their Water Transport Properties. ACS Appl. Mater. Interfaces 2019, 11, 20425–20436. DOI: 10.1021/acsami.9b05027.
  • Wang, L.; Qiu, H.; Song, P.; Zhang, Y.; Lu, Y.; Liang, C.; Kong, J.; Chen, L.; Gu, J. 3D Ti3C2Tx MXene/C Hybrid Foam/Epoxy Nanocomposites with Superior Electromagnetic Interference Shielding Performances and Robust Mechanical Properties. Compos. Part A 2019, 123, 293–300. DOI: 10.1016/j.compositesa.2019.05.030.
  • Zou, Y.; Fang, L.; Chen, T.; Sun, M.; Lu, C.; Xu, Z. Near-Infrared Light and Solar Light Activated Self-Healing Epoxy Coating Having Enhanced Properties Using MXene Flakes as Multifunctional Fillers. Polymers 2018, 10, 474. DOI: 10.3390/polym10050474.
  • Ren, Y.; Zhu, J.; Wang, L.; Liu, H.; Liu, Y.; Wu, W.; Wang, F. Synthesis of Polyaniline Nanoparticles Deposited on Two-Dimensional Titanium Carbide for High-Performance Supercapacitors. Mater. Lett. 2018, 214, 84–87. DOI: 10.1016/j.matlet.2017.11.060.
  • Wu, W.; Wei, D.; Zhu, J.; Niu, D.; Wang, F.; Wang, L.; Yang, L.; Yang, P.; Wang, C. Enhanced Electrochemical Performances of Organ-Like Ti3C2 MXenes/Polypyrrole Composites as Supercapacitors Electrode Materials. Ceram. Int. 2019, 45, 7328–7337. DOI: 10.1016/j.ceramint.2019.01.016.
  • Liu, R.; Miao, M.; Li, Y.; Zhang, J.; Cao, S.; Feng, X. Ultrathin Biomimetic Polymeric Ti3C2Tx MXene Composite Films for Electromagnetic Interference Shielding. ACS Appl. Mater. Interfaces 2018, 10, 44787–44795. DOI: 10.1021/acsami.8b18347.
  • Wang, H.; Li, L.; Zhu, C.; Lin, S.; Wen, J.; Jin, Q.; Zhang, X. In Situ Polymerized Ti3C2Tx/PDA Electrode with Superior Areal Capacitance for Supercapacitors. J. Alloys Compd. 2019, 778, 858–865. DOI: 10.1016/j.jallcom.2018.11.172.
  • Sheng, X.; Zhao, Y.; Zhang, L.; Lu, X. Properties of Two-Dimensional Ti3C2 MXene/Thermoplastic Polyurethane Nanocomposites with Effective Reinforcement via Melt Blending. Compos. Sci. Technol. 2019, 181, 107710. DOI: 10.1016/j.compscitech.2019.107710.
  • Zhi, W.; Xiang, S.; Bian, R.; Lin, R.; Wu, K.; Wang, T.; Cai, D. Study of Mxene-Filled Polyurethane Nanocomposites Prepared via an Emulsion Method. Compos. Sci. Technol. 2018, 168, 404–411. DOI: 10.1016/j.compscitech.2018.10.026.
  • Li, Q.; Zhong, B.; Zhang, W.; Jia, Z.; Jia, D.; Qin, S.; Wang, J.; Razal, J. M.; Wang, X. Ti3C2 MXene as a New Nanofiller for Robust and Conductive Elastomer Composites. Nanoscale 2019, 11, 14712–14719. DOI: 10.1039/C9NR03661J.
  • Rasool, K.; Mahmoud, K. A.; Johnson, D. J.; Helal, M.; Berdiyorov, G. R.; Gogotsi, Y. Efficient Antibacterial Membrane Based on Two-Dimensional Ti3C2Tx (MXene) Nanosheets. Sci. Rep. 2017, 7, 1758. DOI: 10.1038/s41598-017-01714-3.
  • Shen, J.; Liu, G.; Ji, Y.; Liu, Q.; Cheng, L.; Guan, K.; Zhang, M.; Liu, G.; Xiong, J.; Yang, J.; Jin, W. 2D MXene Nanofilms with Tunable Gas Transport Channels. Adv. Funct. Mater. 2018, 28, 1801511. DOI: 10.1002/adfm.201801511.
  • Zheng, S.; Zhang, C.; Zhou, F.; Dong, Y.; Shi, X.; Nicolosi, V.; Wu, Z.; Bao, X. Ionic Liquid Pre-Intercalated MXene Films for Ionogel-Based Flexible Micro-Supercapacitors with High Volumetric Energy Density. J. Mater. Chem. A 2019, 7, 9478–9485. DOI: 10.1039/C9TA02190F.
  • Ciou, J.; Li, S.; Lee, P. Ti3C2 MXene Paper for the Effective Adsorption and Controllable Release of Aroma Molecules. Small 2019, 15, 1903281. DOI: 10.1002/smll.201903281.
  • Zhang, C.; Anasori, B.; Seral-Ascaso, A.; Park, S.; McEvoy, N.; Shmeliov, A.; Duesberg, G.; Coleman, J.; Gogotsi, Y.; Nicolosi, V. Transparent, Flexible, and Conductive 2D Titanium Carbide (MXene) Films with High Volumetric Capacitance. Adv. Mater. 2017, 29, 1702678. DOI: 10.1002/adma.201702678.
  • Sobolčiak, P.; Ali, A.; Hassan, M. K.; Helal, M. I.; Tanvir, A.; Popelka, A.; Al-Maadeed, M. A.; Krupa, I.; Mahmoud, K. A. 2D Ti3C2Tx (MXene)-Reinforced Polyvinyl Alcohol (PVA) Nanofibers with Enhanced Mechanical and Electrical Properties. PLoS One 2017, 12, e0183705. DOI: 10.1371/journal.pone.0183705.
  • Sun, R.; Zhang, H.-B.; Liu, J.; Xie, X.; Yang, R.; Li, Y.; Hong, S.; Yu, Z.-Z. Highly Conductive Transition Metal Carbide/Carbonitride (MXene)@ Polystyrene Nanocomposites Fabricated by Electrostatic Assembly for Highly Efficient Electromagnetic Interference Shielding. Adv. Funct. Mater. 2017, 27, 1702807. DOI: 10.1002/adfm.201702807.
  • Chen, J.; Chen, K.; Tong, D.; Huang, Y.; Zhang, J.; Xue, J.; Huang, Q.; Chen, T. CO2 and Temperature Dual Responsive “Smart” MXene Phases. Chem. Commun. 2015, 51, 314–317. DOI: 10.1039/C4CC07220K.
  • Tu, S.; Jiang, Q.; Zhang, X.; Alshareef, H. N. Large Dielectric Constant Enhancement in MXene Percolative Polymer Composites. ACS Nano 2018, 12, 3369–3377. DOI: 10.1021/acsnano.7b08895.
  • Zha, X.-H.; Zhou, J.; Zhou, Y.; Huang, Q.; He, J.; Francisco, J. S.; Luo, K.; Du, S. Promising Electron Mobility and High Thermal Conductivity in Sc2CT2 (T = F, OH) MXenes. Nanoscale 2016, 8, 6110–6117. DOI: 10.1039/C5NR08639F.
  • Yan, C.; Ji, C.; Zeng, X.; Sun, R.; Wong, C.-P. 2018 Interconnecting the Promising MXenes via Ag Nanowire in Epoxy Nanocomposites for High-Performance Thermal Management Applications [C]. Proceedings of the 2018 19th International Conference on Electronic Packaging Technology (ICEPT), IEEE, Shanghai, China, 510–512. DOI: 10.1109/ICEPT.2018.8480698.
  • Kang, R.; Zhang, Z.; Guo, L.; Cui, J.; Chen, Y.; Hou, X.; Wang, B.; Lin, C.-T.; Jiang, N.; Yu, J. Enhanced Thermal Conductivity of Epoxy Composites Filled with 2D Transition Metal Carbides (MXenes) with Ultralow Loading. Sci. Rep. 2019, 9, 9135. DOI: 10.1038/s41598-019-45664-4.
  • Wang, L.; Shi, B. Hydroxide Conduction Enhancement of Chitosan Membranes by Functionalized MXene. Materials 2018, 11, 2335. DOI: 10.3390/ma11112335.
  • Ke, C. Biological and Mechanical Properties of MAX Phases and MXene/PLA Nanocomposites. Ph.D. Dissertation; Seoul National University, Seoul, South Korea, 2018.
  • Carey, M. On the Synthesis & Characterization of Ti3C2Tx MXene Polymer Composites. MA Dissertation. Drexel University, Philadelphia, PA, 2017.
  • Zhang, X.; Xu, J.; Wang, H.; Zhang, J.; Yan, H.; Pan, B.; Zhou, J.; Xie, Y. Ultrathin Nanosheets of MAX Phases with Enhanced Thermal and Mechanical Properties in Polymeric Compositions: Ti3Si0. 75Al0. 25C2. Angew. Chem. Int. Ed. 2013, 52, 4361–4365. DOI: 10.1002/anie.201300285.
  • Cui, C.; Xiang, C.; Geng, L.; Lai, X.; Guo, R.; Zhang, Y.; Xiao, H.; Lan, J.; Lin, S.; Jiang, S. Flexible and Ultrathin Electrospun Regenerate Cellulose Nanofibers and d-Ti3C2Tx (MXene) Composite Film for Electromagnetic Interference Shielding. J. Alloys Compd. 2019, 788, 1246–1255. DOI: 10.1016/j.jallcom.2019.02.294.
  • Wang, H.; Wu, Y.; Yuan, X.; Zeng, G.; Zhou, J.; Wang, X.; Chew, J. W. Clay‐Inspired MXene‐Based Electrochemical Devices and Photo‐Electrocatalyst: State‐of‐the‐Art Progresses and Challenges. Adv. Mater. 2018, 30, 1704561. DOI: 10.1002/adma.201704561.
  • Lin, H.; Chen, Y.; Shi, J. Insights into 2D MXenes for Versatile Biomedical Applications: Current Advances and Challenges Ahead. Adv. Sci. 2018, 5, 1800518. DOI: 10.1002/advs.201800518.
  • Sinha, A.; Zhao, H.; Huang, Y.; Lu, X.; Chen, J.; Jain, R. MXene: An Emerging Material for Sensing and Biosensing. TrAC Trends Anal. Chem. 2018, 105, 424–435. DOI: 10.1016/j.trac.2018.05.021.
  • Feng, W.; Wang, R.; Zhou, Y.; Ding, L.; Gao, X.; Zhou, B.; Hu, P.; Chen, Y. Ultrathin Molybdenum Carbide MXene with Fast Biodegradability for Highly Efficient Theory‐Oriented Photonic Tumor Hyperthermia. Adv. Funct. Mater. 2019, 29, 1901942. DOI: 10.1002/adfm.201901942.
  • Liu, G.; Zou, J.; Tang, Q.; Yang, X.; Zhang, Y.; Zhang, Q.; Huang, W.; Chen, P.; Shao, J.; Dong, X. Surface Modified Ti3C2 MXene Nanosheets for Tumor Targeting Photothermal/Photodynamic/Chemo Synergistic Therapy. ACS Appl. Mater. Interfaces 2017, 9, 40077–40086. DOI: 10.1021/acsami.7b13421.
  • Rasool, K.; Helal, M.; Ali, A.; Ren, C. E.; Gogotsi, Y.; Mahmoud, K. A. Antibacterial Activity of Ti3C2Tx MXene. ACS Nano 2016, 10, 3674–3684. DOI: 10.1021/acsnano.6b00181.
  • Han, X.; Huang, J.; Lin, H.; Wang, Z.; Li, P.; Chen, Y. 2D Ultrathin MXene‐Based Drug‐Delivery Nanoplatform for Synergistic Photothermal Ablation and Chemotherapy of Cancer. Adv. Healthcare Mater. 2018, 7, 1701394. DOI: 10.1002/adhm.201701394.
  • Dai, C.; Lin, H.; Xu, G.; Liu, Z.; Wu, R.; Chen, Y. Biocompatible 2D Titanium Carbide (MXenes) Composite Nanosheets for pH-Responsive MRI-Guided Tumor Hyperthermia. Chem. Mater. 2017, 29, 8637–8652. DOI: 10.1021/acs.chemmater.7b02441.
  • Chen, K.; Qiu, N.; Deng, Q.; Kang, M.-H.; Yang, H.; Baek, J.-U.; Koh, Y.-H.; Du, S.; Huang, Q.; Kim, H.-E. Cytocompatibility of Ti3AlC2, Ti3SiC2, and Ti2AlN: In Vitro Tests and First-Principles Calculations. ACS Biomater. Sci. Eng. 2017, 3, 2293–2301. DOI: 10.1021/acsbiomaterials.7b00432.
  • Lin, H.; Gao, S.; Dai, C.; Chen, Y.; Shi, J. A Two-Dimensional Biodegradable Niobium Carbide (MXene) for Photothermal Tumor Eradication in NIR-I and NIR-II Biowindows. J. Am. Chem. Soc. 2017, 139, 16235–16247. DOI: 10.1021/jacs.7b07818.
  • Lee, E.; VahidMohammadi, A.; Prorok, B. C.; Yoon, Y. S.; Beidaghi, M.; Kim, D.-J. Room Temperature Gas Sensing of Two-Dimensional Titanium Carbide (MXene). ACS Appl. Mater. Interfaces 2017, 9, 37184–37190. DOI: 10.1021/acsami.7b11055.
  • Shao, Y.; Zhang, F.; Shi, X.; Pan, H. N-Functionalized MXenes: Ultrahigh Carrier Mobility and Multifunctional Properties. Phys. Chem. Chem. Phys. 2017, 19, 28710–28717. DOI: 10.1039/C7CP05816K.
  • Zhan, X.; Si, C.; Zhou, J.; Sun, Z. MXene and MXene-Based Composites: Synthesis, Properties and Environment-Related Applications. Nanoscale Horiz. 2020, 5, 235–258. DOI: 10.1039/C9NH0071D.
  • Yang, Y.; Shi, L.; Cao, Z.; Wang, R.; Sun, J. Strain Sensors with a High Sensitivity and a Wide Sensing Range Based on a Ti3C2Tx (MXene) Nanoparticle–Nanosheet Hybrid Network. Adv. Funct. Mater. 2019, 29, 1807882. DOI: 10.1002/adfm.201807882.
  • Kim, S.; Koh, H.; Ren, C.; Kwon, O.; Maleski, K.; Cho, S.; Anasori, B.; Kim, C.; Choi, Y.; Kim, J.; et al. Metallic Ti3C2Tx MXene Gas Sensors with Ultrahigh Signal-to-Noise Ratio. ACS Nano 2018, 12, 986–993. DOI: 10.1021/acsnano.7b07460.
  • Liu, H.; Duan, C.; Yang, C.; Shen, W.; Wang, F.; Zhu, Z. A Novel Nitrite Biosensor Based on the Direct Electrochemistry of Hemoglobin Immobilized on MXene-Ti3C2. Sens. Actuators B 2015, 218, 60–66. DOI: 10.1016/j.snb.2015.04.090.
  • Ma, Y.; Yue, Y.; Zhang, H.; Cheng, F.; Zhao, W.; Rao, J.; Luo, S.; Wang, J.; Jiang, X.; Liu, Z.; et al. 3D Synergistical MXene/Reduced Graphene Oxide Aerogel for a Piezoresistive Sensor. ACS Nano 2018, 12, 3209–3216. DOI: 10.1021/acsnano.7b06909.
  • Chen, X.; Sun, X.; Xu, W.; Pan, G.; Zhou, D.; Zhu, J.; Wang, H.; Bai, X.; Dong, B.; Song, H. Ratiometric Photoluminescence Sensing Based on Ti3C2 MXene Quantum Dots as an Intracellular pH Sensor. Nanoscale 2018, 10, 1111–1118. DOI: 10.1039/C7NR06958H.
  • Yuan, W.; Yang, K.; Peng, H.; Li, F.; Yin, F. A Flexible VOCs Sensor Based on a 3D Mxene Framework with a High Sensing Performance. J. Mater. Chem. A 2018, 6, 18116–18124. DOI: 10.1039/C8TA06928J.
  • Ma, Y.; Liu, N.; Li, L.; Hu, X.; Zou, Z.; Wang, J.; Luo, S.; Gao, Y. A Highly Flexible and Sensitive Piezoresistive Sensor Based on MXene with Greatly Changed Interlayer distances. Nat. Commun. 2017, 8, 1207. DOI: 10.1038/s41467-017-01136-9.
  • Yang, K.; Yin, F.; Xia, D.; Peng, H.; Yang, J.; Yuan, W. A Highly Flexible and Multifunctional Strain Sensor Based on a Network-Structured MXene/Polyurethane Mat with Ultra-High Sensitivity and a Broad Sensing Range. Nanoscale 2019, 11, 9949–9957. DOI: 10.1039/C9NR00488B.
  • Shi, X.; Wang, H.; Xie, X.; Xue, Q.; Zhang, J.; Kang, S.; Wang, C.; Liang, J.; Chen, Y. Bioinspired Ultrasensitive and Stretchable MXene-Based Strain Sensor via Nacre-Mimetic Microscale “Brick-and-Mortar” Architecture. ACS Nano 2019, 13, 649–659. DOI: 10.1021/acsnano.8b07805.
  • Wang, K.; Lou, Z.; Wang, L.; Zhao, L.; Zhao, S.; Wang, D.; Han, W.; Jiang, K.; Shen, G. Bioinspired Interlocked Structure-Induced High Deformability for Two-Dimensional Titanium Carbide (MXene)/Natural Microcapsule-Based Flexible Pressure Sensors. ACS Nano 2019, 13, 9139–9147. DOI: 10.1021/acsnano.9b03454.
  • Tang, X.; Guo, X.; Wu, W.; Wang, G. 2D Metal Carbides and Nitrides (MXenes) as High‐Performance Electrode Materials for Lithium‐Based Batteries. Adv. Energy Mater. 2018, 8, 1801897. DOI: 10.1002/aenm.201801897.
  • Tang, H.; Hu, Q.; Zheng, M.; Chi, Y.; Qin, X.; Pang, H.; Xu, Q. MXene–2D Layered Electrode Materials for Energy Storage. Prog. Nat. Sci. Mater. Int. 2018, 28, 133–147. DOI: 10.1016/j.pnsc.2018.03.003.
  • Okubo, M.; Sugahara, A.; Kajiyama, S.; Yamada, A. MXene as a Charge Storage Host. Acc. Chem. Res. 2018, 51, 591–599. DOI: 10.1021/acs.accounts.7b00481.
  • Chaudhari, N. K.; Jin, H.; Kim, B.; Baek, D. S.; Joo, S. H.; Lee, K. MXene: An Emerging Two-Dimensional Material for Future Energy Conversion and Storage Applications. J. Mater. Chem. A 2017, 5, 24564–24579. DOI: 10.1039/C7TA09094C.
  • Zhang, X.; Zhang, Z.; Zhou, Z. MXene-Based Materials for Electrochemical Energy Storage. J. Energy Chem. 2018, 27, 73–85. DOI: 10.1016/j.jechem.2017.08.004.
  • Gund, G. S.; Park, J. H.; Harpalsinh, R.; Kota, M.; Shin, J. H.; Kim, T-i.; Gogotsi, Y.; Park, H. S. MXene/Polymer Hybrid Materials for Flexible AC-Filtering Electrochemical Capacitors. Joule 2019, 3, 164–176. DOI: 10.1016/j.joule.2018.10.017.
  • Zhu, M.; Huang, Y.; Deng, Q.; Zhou, J.; Pei, Z.; Xue, Q.; Huang, Y.; Wang, Z.; Li, H.; Huang, Q.; Zhi, C. Highly Flexible, Freestanding Supercapacitor Electrode with Enhanced Performance Obtained by Hybridizing Polypyrrole Chains with MXene. Adv. Energy Mater. 2016, 6, 1600969. DOI: 10.1002/aenm.201600969.
  • Hu, M.; Li, Z.; Li, G.; Hu, T.; Zhang, C.; Wang, X. All-Solid-State Flexible Fiber-Based MXene Supercapacitors. Adv. Mater. Technol. 2017, 2, 1700143. DOI: 10.1002/admt.201700143.
  • Lin, S.-Y.; Zhang, X. Two-Dimensional Titanium Carbide Electrode with Large Mass Loading for Supercapacitor. J. Power Sources 2015, 294, 354–359. DOI: 10.1016/j.jpowsour.2015.06.082.
  • Chen, C.; Boota, M.; Xie, X.; Zhao, M.; Anasori, B.; Ren, C. E.; Miao, L.; Jiang, J.; Gogotsi, Y. Charge Transfer Induced Polymerization of EDOT Confined between 2D Titanium Carbide Layers. J. Mater. Chem. A 2017, 5, 5260–5265. DOI: 10.1039/C7TA00149E.
  • Dong, Y.; Zheng, S.; Qin, J.; Zhao, X.; Shi, H.; Wang, X.; Chen, J.; Wu, Z.-S. All-MXene-Based Integrated Electrode Constructed by Ti3C2 Nanoribbon Framework Host and Nanosheet Interlayer for High-Energy-Density Li–S Batteries. ACS Nano 2018, 12, 2381–2388. DOI: 10.1021/acsnano.7b07672.
  • Song, J.; Su, D.; Xie, X.; Guo, X.; Bao, W.; Shao, G.; Wang, G. Immobilizing Polysulfides with MXene-Functionalized Separators for Stable Lithium–Sulfur Batteries. ACS Appl. Mater. Interfaces 2016, 8, 29427–29433. DOI: 10.1021/acsami.6b09027.
  • Pan, Q.; Zheng, Y.; Kota, S.; Huang, W.; Wang, S.; Qi, H.; Kim, S.; Tu, Y.; Barsoum, M. W.; Li, C. Y. 2D MXene-Containing Polymer Electrolytes for All-Solid-State Lithium Metal Batteries. Nanoscale Adv. 2019, 1, 395–402. DOI: 10.1039/C8NA00206A.
  • Yang, C.; Xu, D.; Peng, W.; Li, Y.; Zhang, G.; Zhang, F.; Fan, X. Ti2C3Tx Nanosheets as Photothermal Agents for near-Infrared Responsive Hydrogels. Nanoscale 2018, 10, 15387–15392. DOI: 10.1039/C8NR05301D.
  • Fan, X.; Ding, Y.; Liu, Y.; Liang, J.; Chen, Y. Plasmonic Ti3C2Tx MXene Enables Highly Efficient Photothermal Conversion for Healable and Transparent Wearable Device. ACS Nano 2019, 13, 8124–8134. DOI: 10.1021/acsnano.9b03161.
  • Park, T. H.; Yu, S.; Koo, M.; Kim, H.; Kim, E. H.; Park, J.-E.; Ok, B.; Kim, B.; Noh, S. H.; Park, C.; et al. Shape-Adaptable 2D Titanium Carbide (MXene) Heater. ACS Nano 2019, 13, 6835–6844. DOI: 10.1021/acsnano.9b01602.
  • Fan, X.; Liu, L.; Jin, X.; Wang, W.; Zhang, S.; Tang, B. MXene Ti3C2Tx for Phase Change Composite with Superior Photothermal Storage Capability. J. Mater. Chem. A 2019, 7, 14319–14327. DOI: 10.1039/C9TA03962G.
  • Wu, X.; Han, B.; Zhang, H.-B.; Xie, X.; Tu, T.; Zhang, Y.; Dai, Y.; Yang, R.; Yu, Z.-Z. Compressible, Durable and Conductive Polydimethylsiloxane-Coated MXene Foams for High-Performance Electromagnetic Interference Shielding. Chem. Eng. J. 2020, 381, 122622. DOI: 10.1016/j.cej.2019.122622.
  • Li, K.; Jiao, T.; Xing, R.; Zou, G.; Zhao, Q.; Zhou, J.; Zhang, L.; Peng, Q. Fabrication of Hierarchical MXene-Based AuNPs-Containing Core–Shell Nanocomposites for High Efficient Catalysts. Green Energy Environ. 2018, 3, 147–155. DOI: 10.1016/j.gee.2017.11.004.
  • Wang, L.; Song, H.; Yuan, L.; Li, Z.; Zhang, P.; Gibson, J. K.; Zheng, L.; Wang, H.; Chai, Z.; Shi, W. Effective Removal of Anionic Re (VII) by Surface-Modified Ti2CTx MXene Nanocomposites: Implications for Tc (VII) Sequestration. Environ. Sci. Technol. 2019, 53, 3739–3747. DOI: 10.1021/acs.est.8b07083.
  • Lin, B.; Yin Yuen, A. C.; Li, A.; Zhang, Y.; Chen, T. B. Y.; Yu, B.; Lee, E. W. M.; Peng, S.; Yang, W.; Lu, H.-D.; et al. MXene/Chitosan Nanocoating for Flexible Polyurethane Foam towards Remarkable Fire Hazards Reductions. J. Hazard. Mater. 2020, 381, 120952. DOI: 10.1016/j.jhazmat.2019.120952.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.