1,097
Views
24
CrossRef citations to date
0
Altmetric
Review

Green Strategies to Printed Sensors for Healthcare Applications

, &
Pages 116-156 | Received 12 Nov 2019, Accepted 08 Feb 2020, Published online: 24 Feb 2020

References

  • Xu, Y.; Hu, X.; Kundu, S.; Nag, A.; Afsarimanesh, N.; Sapra, S.; Mukhopadhyay, S. C.; Han, T. Silicon-Based Sensors for Biomedical Applications: A Review. Sensors (Switzerland) 2019, 19, 1–22. DOI: 10.3390/s19132908.
  • Han, T.; Nag, A.; Afsarimanesh, N.; Mukhopadhyay, S. C.; Kundu, S.; Xu, Y. Laser-Assisted Printed Flexible Sensors: A Review. Sensors (Switzerland) 2019, 19, 1–28. DOI: 10.3390/s19061462.
  • Koydemir, H. C.; Ozcan, A. Wearable and Implantable Sensors for Biomedical Applications. Annu. Rev. Anal. Chem. 2018, 11, 1–20. DOI: 10.1146/annurev-anchem-061417-125956.
  • Costa, J. C.; Spina, F.; Lugoda, P.; Garcia-Garcia, L.; Roggen, D.; Münzenrieder, N. Flexible Sensors—from Materials to Applications. Technologies 2019, 7, 35–81. DOI: 10.3390/technologies7020035.
  • Alamán, J.; Alicante, R.; Peña, J. I.; Sánchez-Somolinos, C. Inkjet Printing of Functional Materials for Optical and Photonic Applications. Materials (Basel) 2016, 9, 910–947. DOI: 10.3390/ma9110910.
  • Xia, Y.; Li, R.; Chen, R.; Wang, J.; Xiang, L. 3D Architectured Graphene/Metal Oxide Hybrids for Gas Sensors: A Review. Sensors (Switzerland) 2018, 18, 1456–1421. DOI: 10.3390/s18051456.
  • Khan, S.; Lorenzelli, L.; Dahiya, R. S. Technologies for Printing Sensors and Electronics over Large Flexible Substrates: A Review. IEEE Sensors J. 2015, 15, 3164–3185. DOI: 10.1109/JSEN.2014.2375203.
  • Jung, Y. H.; Chang, T. H.; Zhang, H.; Yao, C.; Zheng, Q.; Yang, V. W.; Mi, H.; Kim, M.; Cho, S. J.; Park, D. W.; et al. High-Performance Green Flexible Electronics Based on Biodegradable Cellulose Nanofibril Paper. Nat. Commun. 2015, 6, 1–11. DOI: 10.1038/ncomms8170.
  • Liu, Y.; Wang, H.; Zhao, W.; Zhang, M.; Qin, H.; Xie, Y. Flexible, Stretchable Sensors for Wearable Health Monitoring: Sensing Mechanisms, Materials, Fabrication Strategies and Features. Sensors (Switzerland) 2018, 18, 1–35. DOI: 10.3390/s18020645.
  • Lehoux, P.; Roncarolo, F.; Oliveira, R. R.; Silva, H. P. Medical Innovation and the Sustainability of Health Systems: A Historical Perspective on Technological Change in Health. Health Serv. Manage. Res. 2016, 29, 115–123. DOI: 10.1177/0951484816670192.
  • Irimia-Vladu, M. Green” Electronics: Biodegradable and Biocompatible Materials and Devices for Sustainable Future. Chem. Soc. Rev. 2014, 43, 588–610. DOI: 10.1039/C3CS60235D.
  • Byrne, F. P.; Jin, S.; Paggiola, G.; Petchey, T. H. M.; Clark, J. H.; Farmer, T. J.; Hunt, A. J.; Robert McElroy, C.; Sherwood, J. Tools and Techniques for Solvent Selection: Green Solvent Selection Guides. Sustain. Chem. Process 2016, 4, 1–24. DOI: 10.1186/s40508-016-0051-z.
  • Georgina, I., Sarah, B. Green Solvents: An Ideal Solution?, Oct 21, 2018. http://www.nexant.com/resources/green-solvents-ideal solution (accessed Oct 30, 2018).
  • Hartonen, K.; Riekkola, M.-L. Water as the First Choice Green Solvent. Appl. Green Solvents Sep. Process 2017, 19–55. DOI: 10.1016/B978-0-12-805297-6.00002-4.
  • Filly, A.; Fabiano-Tixier, A. S.; Louis, C.; Fernandez, X.; Chemat, F. Water as a Green Solvent Combined with Different Techniques for Extraction of Essential Oil from Lavender Flowers. Comptes Rendus Chim. 2016, 19, 707–717. DOI: 10.1016/j.crci.2016.01.018.
  • Yang, W.; Wang, C. Graphene and the Related Conductive Inks for Flexible Electronics. J. Mater. Chem. C. 2016, 4, 7193–7207. DOI: 10.1039/C6TC01625A.
  • Overgaard, M. H.; Kühnel, M.; Hvidsten, R.; Petersen, S. V.; Vosch, T.; Nørgaard, K.; Laursen, B. W. Highly Conductive Semitransparent Graphene Circuits Screen-Printed from Water-Based Graphene Oxide Ink. Adv. Mater. Technol. 2017, 2, 1700011. DOI: 10.1002/admt.201700011.
  • Mohamed, A.; Ardyani, T.; Bakar, S. A.; Sagisaka, M.; Umetsu, Y.; Hussin, M. R. M.; Ahmad, M. K.; Mamat, M. H.; King, S.; Czajka, A.; et al. Preparation of Conductive Cellulose Paper through Electrochemical Exfoliation of Graphite: The Role of Anionic Surfactant Ionic Liquids as Exfoliating and Stabilizing Agents. Carbohydr. Polym. 2018, 201, 48–59. DOI: 10.1016/j.carbpol.2018.08.040.
  • Cao, L.; Bai, X.; Lin, Z.; Zhang, P.; Deng, S.; Du, X.; Li, W. The Preparation of Ag Nanoparticle and Ink Used for Inkjet Printing of Paper Based Conductive Patterns. Materials (Basel) 2017, 10, 1004. DOI: 10.3390/ma10091004.
  • Majee, S.; Liu, C.; Wu, B.; Zhang, S.; Zhang, Z. Ink-Jet Printed Highly Conductive Pristine Graphene Patterns Achieved with Water-Based Ink and Aqueous Doping Processing. Carbon N. Y. 2017, 114, 77–83. DOI: 10.1016/j.carbon.2016.12.003.
  • Denyse, Y. Graphene-Based Electrodes for Neural Stimulation and Recording. B.Sc. Thesis, National University of Singapore, Singapore, 2018.
  • Pei, L.; Li, Y. F. Rapid and Efficient Intense Pulsed Light Reduction of Graphene Oxide Inks for Flexible Printed Electronics. RSC Adv. 2017, 7, 51711–51720. DOI: 10.1039/C7RA10416B.
  • Baptista-Pires, L.; de la Escosura-Muñiz, A.; Balsells, M.; Zuaznabar-Gardona, J. C.; Merkoçi, A. Production and Printing of Graphene Oxide Foam Ink for Electrocatalytic Applications. Electrochem. Commun 2019, 98, 6–9. DOI: 10.1016/j.elecom.2018.11.001.
  • Stylianakis, M. M.; Viskadouros, G.; Polyzoidis, C.; Veisakis, G.; Kenanakis, G.; Kornilios, N.; Petridis, K.; Kymakis, E. Updating the Role of Reduced Graphene Oxide Ink on Field Emission Devices in Synergy with Charge Transfer Materials. Nanomaterials 2019, 9, 137–115. DOI: 10.3390/nano9020137.
  • Liang, J.; Tong, K.; Pei, Q. A Water-Based Silver-Nanowire Screen-Print Ink for the Fabrication of Stretchable Conductors and Wearable Thin-Film Transistors. Adv. Mater. 2016, 28, 5986–5996. DOI: 10.1002/adma.201600772.
  • Cuartero, M.; del Río, J. S.; Blondeau, P.; Ortuño, J. A.; Rius, F. X.; Andrade, F. J. Rubber-Based Substrates Modified with Carbon Nanotubes Inks to Build Flexible Electrochemical Sensors. Anal. Chim. Acta 2014, 827, 95–102. DOI: 10.1016/j.aca.2014.04.022.
  • Siljander, S.; Keinänen, P.; Räty, A.; Ramakrishnan, K. R.; Tuukkanen, S.; Kunnari, V.; Harlin, A.; Vuorinen, J.; Kanerva, M. Effect of Surfactant Type and Sonication Energy on the Electrical Conductivity Properties of Nanocellulose-CNT Nanocomposite Films. Int. J. Mol. Sci. 2018, 19, 1–14. DOI: 10.3390/ijms19061819.
  • Graves, J. E.; Sugden, M.; Litchfield, R. E.; Hutt, D. A.; Mason, T. J.; Cobley, A. J. Ultrasound Assisted Dispersal of a Copper Nanopowder for Electroless Copper Activation. Ultrason. Sonochem. 2016, 29, 428–438. DOI: 10.1016/j.ultsonch.2015.10.016.
  • Kim, J.; Kwon, S.; Cho, D. H.; Kang, B.; Kwon, H.; Kim, Y.; Park, S. O.; Jung, G. Y.; Shin, E.; Kim, W. G.; et al. Direct Exfoliation and Dispersion of Two-Dimensional Materials in Pure Water via Temperature Control. Nat. Commun. 2015, 6, 1–9. DOI: 10.1038/ncomms9294.
  • Han, X.; Chen, Y.; Zhu, H.; Preston, C.; Wan, J.; Fang, Z.; Hu, L. Scalable, Printable, Surfactant-Free Graphene Ink Directly from Graphite. Nanotechnology 2013, 24, 205304. DOI: 10.1088/0957-4484/24/20/205304.
  • Georgakilas, V.; Tiwari, J. N.; Kemp, K. C.; Perman, J. A.; Bourlinos, A. B.; Kim, K. S.; Zboril, R. Noncovalent Functionalization of Graphene and Graphene Oxide for Energy Materials, Biosensing, Catalytic, and Biomedical Applications. Chem. Rev. 2016, 116, 5464–5519. DOI: 10.1021/acs.chemrev.5b00620.
  • Zhang, X.; Browne, W. R.; Van Wees, B. J.; Feringa, B. L. Graphene Science Handbook Fabrication Methods. Taylor & Francis Group, Boca Raton, FL, 2016; pp. 187–204.
  • Di Crescenzo, A.; Ettorre, V.; Fontana, A. Non-Covalent and Reversible Functionalization of Carbon Nanotubes. Beilstein J. Nanotechnol. 2014, 5, 1675–1690. DOI: 10.3762/bjnano.5.178.
  • Kamran, U.; Heo, Y. J.; Lee, J. W.; Park, S. J. Functionalized Carbon Materials for Electronic Devices: A Review. Micromachines 2019, 10, 234–235. DOI: 10.3390/mi10040234.
  • Zhang, M.; Wei, X.; Huang, B.; Long, B. Research of Water-Based Graphene Conductive Screen Printing Ink and Its Property. Adv. Graphic Commun. Media Technol. 2017, 417, 865–874. DOI: 10.1007/978-981-10-3530-2_107.
  • Kairi, M. I.; Dayou, S.; Kairi, N. I.; Bakar, S. A.; Vigolo, B.; Mohamed, A. R. Toward High Production of Graphene Flakes-a Review on Recent Developments in Their Synthesis Methods and Scalability. J. Mater. Chem. A. 2018, 6, 15010–15026. DOI: 10.1039/C8TA04255A.
  • Li, T.; Hu, H. Preparation and Performance of Conductive Copper Ink Based on Chemical Deoxidization. Chem. Eng. Trans 2018, 66, 31–36. DOI: 10.3303/CET1866006.
  • Lin, Z.; Le, T.; Song, X.; Yao, Y.; Li, Z.; Moon, K. S.; Tentzeris, M. M.; Wong, C. P. Preparation of Water-Based Carbon Nanotube Inks and Application in the Inkjet Printing of Carbon Nanotube Gas Sensors. J. Electron. Packag. Trans. ASME 2013, 135, 011001. DOI: 10.1115/1.4023758.
  • Wang, D.; Chang, Y.; Wang, Y.; Zhang, Q.; Yang, Z.; Chang, Y.; Wang, Y.; Zhang, Q.; Green, Z. Y.; Wang, D.; et al. Green Water-Based Silver Nanoplate Conductive Ink for Flexible Printed Circuit. Mater. Technol. 2016, 31, 32–37. DOI: 10.1179/1753555715Y.0000000023.
  • Li, P.; Tao, C.-A.; Wang, B.; Huang, J.; Li, T.; Wang, J. Preparation of Graphene Oxide-Based Ink for Inkjet Printing. J. Nanosci. Nanotechnol. 2018, 18, 713–718. DOI: 10.1166/jnn.2018.13942.
  • Wagner, M.; O’Connell, C. D.; Harman, D. G.; Sullivan, R.; Ivaska, A.; Higgins, M. J.; Wallace, G. G. Synthesis and Optimization of PEDOT:PSS Based Ink for Printing Nanoarrays Using Dip-Pen Nanolithography. Synth. Met. 2013, 181, 64–71. DOI: 10.1016/j.synthmet.2013.08.012.
  • Hoeng, F.; Bras, J.; Gicquel, E.; Krosnicki, G.; Denneulin, A. Inkjet Printing of Nanocellulose-Silver Ink onto Nanocellulose Coated Cardboard. RSC Adv. 2017, 7, 15372–15381. DOI: 10.1039/C6RA23667G.
  • Singh, V. V.; Nigam, A. K.; Batra, A.; Boopathi, M.; Singh, B.; Vijayaraghavan, R. Applications of Ionic Liquids in Electrochemical Sensors. Int. J. Electrochem. 2012, 2012, 1–19. DOI: 10.1016/j.aca.2007.12.011.
  • Zhao, Y.; Huang, Y.; Zhang, X.; Zhang, S. Prediction of Heat Capacity of Ionic Liquids Based on COSMO-RS Sσ-Profile. Comput. Aided Chem. Eng. 2015, 37, 251–256. DOI: 10.1016/B978-0-444-63578-5.50037-2.
  • Cichowska-Kopczyńska, I.; Joskowska, M.; Debski, B.; Aranowski, R.; Hupka, J. Separation of Toluene from Gas Phase Using Supported Imidazolium Ionic Liquid Membrane. J. Memb. Sci. 2018, 566, 367–373. DOI: 10.1016/j.memsci.2018.08.058.
  • Welton, T. Ionic Liquids: A Brief History. Biophys. Rev. 2018, 10, 691–706. DOI: 10.1007/s12551-018-0419-2.
  • Yagodnitsyna, A. A.; Kovalev, A. V.; Bilsky, A. V. Experimental Study of Ionic Liquid-Water Flow in T-Shaped Microchannels with Different Aspect Ratios. J. Phys. Conf. Ser. 2017, 899, 1–6. DOI: 10.1088/1742-6596/899/3/032026.
  • Siljander, S.; Keinänen, P.; Räty, A.; Ramakrishnan, K. R.; Tuukkanen, S.; Kunnari, V.; Harlin, A.; Vuorinen, J.; Kanerva, M. Highly Stretchable and Highly Conductive PEDOT:PSS/Ionic Liquid Composite Transparent Electrodes for Solution-Processed Stretchable Electronics. Int. J. Mol. Sci. 2018, 19, 819–826. DOI: 10.1021/acsami.6b11988.
  • He, W.; Sun, Y.; Xi, J.; Abdurhman, A. A. M.; Ren, J.; Duan, H. Printing Graphene-Carbon Nanotube-Ionic Liquid Gel on Graphene Paper: Towards Flexible Electrodes with Efficient Loading of PtAu Alloy Nanoparticles for Electrochemical Sensing of Blood Glucose. Anal. Chim. Acta 2016, 903, 61–68. DOI: 10.1016/j.aca.2015.11.019.
  • Sun, S.; Duan, Z.; Wang, X.; Lai, G.; Zhang, X.; Wei, H.; Liu, L.; Ma, N. Cheap, Flexible, and Thermal-Sensitive Paper Sensor through Writing with Ionic Liquids Containing Pencil Leads. ACS Appl. Mater. Interfaces 2017, 9, 29140–29146. DOI: 10.1021/acsami.7b08737.
  • Tao, X.; Jia, H.; He, Y.; Liao, S.; Wang, Y. Ultrafast Paper Thermometers Based on a Green Sensing Ink. ACS Sens. 2017, 2, 449–454. DOI: 10.1021/acssensors.7b00060.
  • Li, R.; Si, Y.; Zhu, Z.; Guo, Y.; Zhang, Y.; Pan, N.; Sun, G.; Pan, T. Supercapacitive Iontronic Nanofabric Sensing. Adv. Mater. 2017, 29, 1–8. DOI: 10.1002/adma.201700253.
  • Bihar, E. Inkjet Printed Organic Electronic Devices for Biomedical Diagnosis. Ph.D. Thesis. Université de Lyon, 2016.
  • Hakeim, O. A.; Arafa, A. A.; Zahran, M. K.; Abdou, L. A. W. Characterisation and Application of Pigmented UV-Curable Inkjet Inks. Pigment Resin Technol. 2018, 47, 164–172. DOI: 10.1108/PRT-11-2016-0099.
  • Dang, M. C.; My, T.; Dang, D.; Fribourg-Blanc, E. Silver Nanoparticles Ink Synthesis for Conductive Patterns Fabrication Using Inkjet Printing Technology. Adv. Nat. Sci. Nanosci. Nanotechnol. 2015, 6, 1–8. DOI: 10.1088/2043-6262/6/1/015003.
  • Bacalzo, N.; Go, L. P.; Querebillo, C. J.; Hildebrandt, P.; Limpoco, F. T.; Enriquez, E. P. Controlled Microwave-Hydrolyzed Starch as Stabilizer for Green Formulation of Aqueous Gold-Nanoparticle Ink for Flexible Printed Electronics. ACS Appl. Nano Mater. 2018, 1, 1247–1256. DOI: 10.1021/acsanm.7b00379.
  • Seipel, S.; Yu, J.; Periyasamy, A. P.; Viková, M.; Vik, M.; Nierstrasz, V. A. Characterization and Optimization of an Inkjet-Printed Smart Textile UV-Sensor Cured with UV-LED Light. IOP Conf. Ser: Mater. Sci. Eng. 2017, 254, 072023. DOI: 10.1088/1757-899X/254/7/072023.
  • Layani, M.; Cooperstein, I.; Magdassi, S. UV Crosslinkable Emulsions with Silver Nanoparticles for Inkjet Printing of Conductive 3D Structures. J. Mater. Chem. C. 2013, 1, 3244–3249. DOI: 10.1039/c3tc30253a.
  • Sangermano, M.; Chiolerio, A.; Marti, G.; Martino, P. UV-Cured Acrylic Conductive Inks for Microelectronic Devices. Macromol. Mater. Eng. 2013, 298, 607–611. DOI: 10.1002/mame.201200072.
  • Karim, N.; Afroj, S.; Tan, S.; Novoselov, K. S.; Yeates, S. G. All Inkjet-Printed Graphene-Silver Composite Ink on Textiles for Highly Conductive Wearable Electronics Applications. Sci. Rep. 2019, 9, 1–10. DOI: 10.1038/s41598-019-44420-y.
  • Deng, D.; Feng, S.; Shi, M.; Huang, C. In Situ Preparation of Silver Nanoparticles Decorated Graphene Conductive Ink for Inkjet Printing. J. Mater. Sci: Mater. Electron. 2017, 28, 15411–15417. DOI: 10.1007/s10854-017-7427-z.
  • Wang, X.; Guo, W.; Zhu, Y.; Liang, X.; Wang, F.; Peng, P. Electrical and Mechanical Properties of Ink Printed Composite Electrodes on Plastic Substrates. Appl. Sci 2018, 8, 1–10. DOI: 10.3390/app8112101.
  • Ge, G.; Cai, Y.; Dong, Q.; Zhang, Y.; Shao, J.; Huang, W.; Dong, X. Flexible Pressure Sensor Based on RGO/Polyaniline Wrapped Sponge with Tunable Sensitivity for Human Motions Detection. Nanoscale 2018, 10, 10033–10040. DOI: 10.1039/C8NR02813C.
  • Bhattacharjee, L.; Mohanta, K.; Ravichandran, J. Stable Semiconducting Ink Based on a Polypyrrole/Carbon-Quantum-Dot Aqueous Colloidal Suspension : A Potential Sensor for Volatile Organics Present in Food. Chem. Sel. 2017, 2, 2139–2143. DOI: 10.1002/slct.201601784.
  • Bu-Jong, K.; Jin-Seok, P. Applications of Carbon Nanotubes to Flexible Transparent Conductive Electrodes. In Carbon Nanotubes - Recent Progress; Mohammed Muzibur, R.,Abdullah Mohamed, A., Eds.; IntechOpen: London, U.K., 2018; Vol. 1, pp. 209–233. DOI: 10.5772/intechopen.72002
  • Xu, L. Y.; Yang, G. Y.; Jing, H. Y.; Wei, J.; Han, Y. D. Ag-Graphene Hybrid Conductive Ink for Writing Electronics. Nanotechnology 2014, 25, 055201. DOI: 10.1088/0957-4484/25/5/055201.
  • Guo, B.; Glavas, L.; Albertsson, A. C. Biodegradable and Electrically Conducting Polymers for Biomedical Applications. Prog. Polym. Sci. 2013, 38, 1263–1286. DOI: 10.1016/j.progpolymsci.2013.06.003.
  • Šetka, M.; Drbohlavová, J.; Hubálek, J. Nanostructured Polypyrrole-Based Ammonia and Volatile Organic Compound Sensors. Sensors (Switzerland) 2017, 17, 562–528. DOI: 10.3390/s17030562.
  • Huang, Y.; Kormakov, S.; He, X.; Gao, X.; Zheng, X.; Liu, Y.; Sun, J.; Wu, D. Conductive Polymer Composites from Renewable Resources: An Overview of Preparation, Properties, and Applications. Polymers (Basel) 2019, 11, 1–32. DOI: 10.3390/polym11020187.
  • Ren, J.; Ren, R.-P.; Lv, Y.-K. Stretchable All-Solid-State Supercapacitors Based on Highly Conductive Polypyrrole-Coated Graphene Foam. Chem. Eng. J. 2018, 349, 111–118. DOI: 10.1016/j.cej.2018.05.075.
  • Humpolíček, P.; Kašpárková, V.; Pacherník, J.; Stejskal, J.; Bober, P.; Capáková, Z.; Radaszkiewicz, K. A.; Junkar, I.; Lehocký, M. The Biocompatibility of Polyaniline and Polypyrrole: A Comparative Study of Their Cytotoxicity, Embryotoxicity and Impurity Profile. Mater. Sci. Eng. C. 2018, 91, 303–310. DOI: 10.1016/j.msec.2018.05.037.
  • Huang, T.-Y.; Kung, C.-W.; Wei, H.-Y.; Boopathi, K. M.; Chu, C.-W.; Ho, K.-C. A High Performance Electrochemical Sensor for Acetaminophen Based on a RGO–PEDOT Nanotube Composite Modified Electrode. J. Mater. Chem. A. 2014, 2, 7229–7237. DOI: 10.1016/j.electacta.2017.11.034.
  • Li, C.; Shi, G. Polythiophene-Based Optical Sensors for Small Molecules. ACS Appl. Mater. Interfaces 2013, 5, 4503–4510. DOI: 10.1021/am400009d.
  • Yoon, H. Current Trends in Sensors Based on Conducting Polymer Nanomaterials. Nanomaterials 2013, 3, 524–549. DOI: 10.3390/nano3030524.
  • Bao, Q.; Yang, Z.; Song, Y.; Fan, M.; Pan, P.; Liu, J.; Liao, Z.; Wei, J. Printed Flexible Bifunctional Electrochemical Urea-PH Sensor Based on Multiwalled Carbon Nanotube/Polyaniline Electronic Ink. J. Mater. Sci: Mater. Electron. 2019, 30, 1751–1759. DOI: 10.1007/s10854-018-0447-5.
  • Bocchini, S.; Chiolerio, A.; Porro, S.; Accardo, D.; Garino, N.; Bejtka, K.; Perrone, D.; Pirri, C. F. Synthesis of Polyaniline-Based Inks, Doping Thereof and Test Device Printing towards Electronic Applications. J. Mater. Chem. C. 2013, 1, 5101–5109. DOI: 10.1039/c3tc30764f.
  • Maslik, J.; Andersson, H.; Forsberg, V.; Engholm, M.; Zhang, R.; Olin, H. PEDOT:PSS Temperature Sensor Ink-Jet Printed on Paper Substrate. J. Inst. 2018, 13, C12010. DOI: 10.1088/1748-0221/13/12/C12010.
  • Stříteský, S.; Marková, A.; Víteček, J.; Šafaříková, E.; Hrabal, M.; Kubáč, L.; Kubala, L.; Weiter, M.; Vala, M. Printing Inks of Electroactive Polymer PEDOT:PSS: The Study of Biocompatibility, Stability, and Electrical Properties. J. Biomed. Mater. Res. Part A. 2018, 106, 1121–1128. DOI: 10.1002/jbm.a.36314.
  • Morais, R. M.; Klem, M. D. S.; Nogueira, G. L.; Gomes, T. C.; Alves, N. Low Cost Humidity Sensor Based on PANI/PEDOT:PSS Printed on Paper. IEEE Sensors J. 2018, 18, 2647–2651. DOI: 10.1109/JSEN.2018.2803018.
  • Vacca, A.; Mascia, M.; Rizzardini, S.; Corgiolu, S.; Palmas, S.; Demelas, M.; Bonfiglio, A.; Ricci, P. C. Preparation and Characterisation of Transparent and Flexible PEDOT:PSS/PANI Electrodes by Ink-Jet Printing and Electropolymerisation. RSC Adv. 2015, 5, 79600–79606. DOI: 10.1039/C5RA15295J.
  • Saghaei, J.; Fallahzadeh, A.; Yousefi, M. H. Improvement of Electrical Conductivity of PEDOT:PSS Films by 2-Methylimidazole Post Treatment. Org. Electron. physics, Mater. Appl. 2015, 19, 70–75. DOI: 10.1016/j.orgel.2015.01.026.
  • Soleimani-Gorgani, A. Co-Solvents Roles in PEDOT : PSS Ink-Jet Inks. Adv. Nat. Sci: Nanosci. Nanotechnol. 2018, 9, 025009. DOI: 10.1088/2043-6254/aac2a0.
  • Gualandi, I.; Marzocchi, M.; Scavetta, E.; Calienni, M.; Bonfiglio, A.; Fraboni, B. A Simple All-PEDOT:PSS Electrochemical Transistor for Ascorbic Acid Sensing. J. Mater. Chem. B. 2015, 3, 6753–6762. DOI: 10.1039/C5TB00916B.
  • Du, F. P.; Cao, N. N.; Zhang, Y. F.; Fu, P.; Wu, Y. G.; Lin, Z. D.; Shi, R.; Amini, A.; Cheng, C. PEDOT:PSS/Graphene Quantum Dots Films with Enhanced Thermoelectric Properties via Strong Interfacial Interaction and Phase Separation. Sci. Rep. 2018, 8, 1–12. DOI: 10.1038/s41598-018-24632-4.
  • Wang, Y.; Zhu, C.; Pfattner, R.; Yan, H.; Jin, L.; Chen, S.; Molina-Lopez, F.; Lissel, F.; Liu, J.; Rabiah, N. I.; et al. A Highly Stretchable, Transparent, and Conductive Polymer. Sci. Adv. 2017, 3, 1–11. DOI: 10.1126/sciadv.1602076.
  • Xiong, Z.; Liu, C.; Zhang, X. Inkjet Printing of Silver Nano Particles Doped PEDOT:PSS Thin Film. In 2012 13th International Conference on Electronic Packaging Technology & High Density Packaging; IEEE, 2012; pp. 177–181. DOI: 10.1109/ICEPT-HDP.2012.6474595.
  • He, X.; Shen, G.; Xu, R.; Yang, W.; Zhang, C.; Liu, Z.; Chen, B.; Liu, J.; Song, M. Hexagonal and Square Patterned Silver Nanowires/PEDOT:PSS Composite Grids by Screen Printing for Uniformly Transparent Heaters. Polymers (Basel). 2019, 11, 468. DOI: 10.3390/polym11030468.
  • Kim, S.; Kim, S. Y.; Chung, M. H.; Kim, J.; Kim, J. H. A One-Step Roll-to-Roll Process of Stable AgNW/PEDOT:PSS Solution Using Imidazole as a Mild Base for Highly Conductive and Transparent Films: Optimizations and Mechanisms. J. Mater. Chem. C 2015, 3, 5859–5868. DOI: 10.1039/C5TC00801H.
  • Kim, J. C.; Rahman, M. M.; Ju, M. J.; Lee, J.-J. Highly Conductive and Stable Graphene/PEDOT:PSS Composite as a Metal Free Cathode for Organic Dye-Sensitized Solar Cells. RSC Adv. 2018, 8, 19058–19066. DOI: 10.1039/C8RA02668H.
  • Vuorinen, T.; Niittynen, J.; Kankkunen, T.; Kraft, T. M.; Mäntysalo, M. Inkjet-Printed Graphene/PEDOT:PSS Temperature Sensors on a Skin-Conformable Polyurethane Substrate. Sci. Rep. 2016, 6, 1–8. DOI: 10.1038/srep35289.
  • Eawwiboonthanakit, N.; Jaafar, M.; Ahmad, Z.; Ohtake, N.; Lila, B. Fabrication of PEDOT:PSS/Graphene Conductive Ink Printed on Flexible Substrate. Solid State Phenom. 2017, 264, 70–73. DOI: 10.4028/www.scientific.net/SSP.264.70.
  • Kanaparthi, S.; Badhulika, S. Low Cost, Flexible and Biodegradable Touch Sensor Fabricated by Solvent-Free Processing of Graphite on Cellulose Paper. Sensors Actuators, B Chem. 2017, 242, 857–864. DOI: 10.1016/j.snb.2016.09.172.
  • Romeo, A.; Moya, A.; Leung, T. S.; Gabriel, G.; Villa, R.; Sánchez, S. Inkjet Printed Flexible Non-Enzymatic Glucose Sensor for Tear Fluid Analysis. Appl. Mater. Today 2018, 10, 133–141. DOI: 10.1016/j.apmt.2017.12.016.
  • Emamian, S.; Narakathu, B. B.; Chlaihawi, A. A.; Bazuin, B. J.; Atashbar, M. Z. Physical Screen Printing of Flexible Piezoelectric Based Device on Polyethylene Terephthalate (PET) and Paper for Touch and Force Sensing Applications. Sensors Actuators A. Phys. 2017, 263, 639–647. DOI: 10.1016/j.sna.2017.07.045.
  • Wolfer, T.; Bollgruen, P.; Mager, D.; Overmeyer, L.; Korvink, J. G. Flexographic and Inkjet Printing of Polymer Optical Waveguides for Fully Integrated Sensor Systems. Procedia Technol. 2014, 15, 521–529. DOI: 10.1016/j.protcy.2014.09.012.
  • Dankoco, M. D.; Tesfay, G. Y.; Benevent, E.; Bendahan, M. Temperature Sensor Realized by Inkjet Printing Process on Flexible Substrate. Mater. Sci. Eng. B 2016, 205, 1–5. DOI: 10.1016/j.mseb.2015.11.003.
  • Malik, A.; Kandasubramanian, B. Flexible Polymeric Substrates for Electronic Applications. Polym. Rev 2018, 58, 630–667. DOI: 10.1080/15583724.2018.1473424.
  • Tortorich, R.; Shamkhalichenar, H.; Choi, J.-W. Inkjet-Printed and Paper-Based Electrochemical Sensors. Appl. Sci 2018, 8, 1–16. DOI: 10.3390/app8020288.
  • Hyun, W. J.; Lim, S.; Ahn, B. Y.; Lewis, J. A.; Frisbie, C. D.; Francis, L. F. Screen Printing of Highly Loaded Silver Inks on Plastic Substrates Using Silicon Stencils. Acs Appl. Mater. Interfaces 2015, 7, 12619–12624. DOI: 10.1021/acsami.5b02487.
  • Miller, C. J. Additive Printing Processes for Conductive Structures Based on Low Pressure Argon Plasma Treatment of Silver Nitrate- Based Inks. M.Sc. Dissertation, Case Western Reserve University, Cleveland, O.H., 2017.
  • Gregor-Svetec, D. Intelligent Packaging. In Nanomaterial for Food Packaging, 1st ed.; Cerqueira, M. A. P.; Lagaron, J. M.; Castro, L. M. P.; Vicente, A. A. M. O. S., Eds.; Elsevier: Amsterdam, Netherlands, 2018; pp. 203–247.
  • Kim, S.; Sojoudi, H.; Zhao, H.; Mariappan, D.; McKinley, G. H.; Gleason, K. K.; Hart, A. J. Ultrathin High-Resolution Flexographic Printing Using Nanoporous Stamps. Sci. Adv. 2016, 2, e1601660. DOI: 10.1126/sciadv.1601660.
  • Assaifan, A. K.; Lloyd, J. S.; Samavat, S.; Deganello, D.; Stanton, R. J.; Teng, K. S. Nanotextured Surface on Flexographic Printed ZnO Thin Films for Low-Cost Non-Faradaic Biosensors. ACS Appl. Mater. Interfaces 2016, 8, 33802–33810. DOI: 10.1021/acsami.6b11640.
  • Benson, J.; Fung, C. M.; Lloyd, J. S.; Deganello, D.; Smith, N. A.; Teng, K. S. Direct Patterning of Gold Nanoparticles Using Flexographic Printing for Biosensing Applications. Nanoscale Res. Lett. 2015, 10, 1–8. DOI: 10.1186/s11671-015-0835-1.
  • Maddipatla, D.; Narakathu, B. B.; Avuthu, S. G. R.; Emamian, S.; Eshkeiti, A.; Chlaihawi, A. A.; Bazuin, B. J.; Joyce, M. K.; Barrett, C. W.; Atashbar, M. Z. A Novel Flexographic Printed Strain Gauge on Paper Platform. In 2015 IEEE SENSORS, South Korea, Nov 1–4, 2015; Krikor, B.O., Gerald, G., Sandro, C., Paul, C.P.C., Kiseon, K., Subhas, M., Ralph. E., Michiel, V., Ignacio, R.M., John, R.V., Eds., IEEE: Piscataway, NJ, 2015; pp. 1–4. DOI: 10.1109/ICSENS.2015.7370606
  • Lorenz, A.; Gredy, C.; Beyer, S.; Yao, Y.; Papet, P.; Ufheil, J.; Senne, A.; Reinecke, H.; Clement, F. Flexographic Printing – towards an Advanced Front Side Metallization Approach with High Throughput and Low Silver Consumption. Sol. Energy Mater. Sol. Cells 2016, 157, 550–557. DOI: 10.1016/j.solmat.2016.07.025.
  • Willmann, J.; Stocker, D.; Dörsam, E. Characteristics and Evaluation Criteria of Substrate-Based Manufacturing. Is Roll-to-Roll the Best Solution for Printed Electronics? Org. Electron. 2014, 15, 1631–1640. DOI: 10.1016/j.orgel.2014.04.022.
  • Pandey, A.; Singh, S. Role of Flexohraphy Printing in Printing Industry. Int. J. Sci. Eng. Comput. Technol. 2016, 6, 12–13.
  • David, L. Flexography Advantages & Disadvantages, Mar 8, 2018. https://blog.focuslabel.com/flexography-advantagesdisadvantages (accessed Jan 13, 2020).
  • Santhiago, M.; Corrêa, C. C.; Bernardes, J. S.; Pereira, M. P.; Oliveira, L. J. M.; Strauss, M.; Bufon, C. C. B. Flexible and Foldable Fully-Printed Carbon Black Conductive Nanostructures on Paper for High-Performance Electronic, Electrochemical, and Wearable Devices. ACS Appl. Mater. Interfaces 2017, 9, 24365–24372. DOI: 10.1021/acsami.7b06598.
  • Singh, A. T.; Lantigua, D.; Meka, A.; Taing, S.; Pandher, M.; Camci-Unal, G. Paper-Based Sensors: Emerging Themes and Applications. Sensors (Switzerland) 2018, 18, 2838–2822. DOI: 10.3390/s18092838.
  • Jović, M.; Hidalgo-Acosta, J. C.; Lesch, A.; Costa Bassetto, V.; Smirnov, E.; Cortés-Salazar, F.; Girault, H. H. Large-Scale Layer-by-Layer Inkjet Printing of Flexible Iridium-Oxide Based PH Sensors. J. Electroanal. Chem. 2018, 819, 384–390. DOI: 10.1016/j.jelechem.2017.11.032.
  • Lezi, N.; Economopoulos, S.; Prodromidis, M.; Economou, A.; Tagmatarchis, N. Fabrication of a “Green” and Low-Cost Screen-Printed Graphene Sensor and Its Application to the Determination of Caffeine by Adsorptive Stripping Voltammetry. Int. J. Electrochem. Sci. 2017, 12, 6054–6067. DOI: 10.20964/2017.07.53.
  • Garland, S. P.; Murphy, T. M.; Pan, T. Print-to-Pattern Dry Film Photoresist Lithography. J. Micromech. Microeng. 2014, 24, 057002. DOI: 10.1088/0960-1317/24/5/057002.
  • Leppäniemi, J.; Huttunen, O. H.; Majumdar, H.; Alastalo, A. Flexography-Printed In2O3 Semiconductor Layers for High-Mobility Thin-Film Transistors on Flexible Plastic Substrate. Adv. Mater. 2015, 27, 7168–7175. DOI: 10.1002/adma.201502569.
  • Fastier-Wooller, J.; Dinh, T.; Dau, V. T.; Phan, H. P.; Yang, F.; Dao, D. V. Low-Cost Graphite on Paper Pressure Sensor for a Robot Gripper with a Trivial Fabrication Process. Sensors (Switzerland) 2018, 18, 3300–3311. DOI: 10.3390/s18103300.
  • da Costa, T. H.; Song, E.; Tortorich, R. P.; Choi, J.-W. A Paper-Based Electrochemical Sensor Using Inkjet-Printed Carbon Nanotube Electrodes. ECS J. Solid State Sci. Technol. 2015, 4, S3044–S3047. DOI: 10.1149/2.0121510jss.
  • Güder, F.; Ainla, A.; Redston, J.; Mosadegh, B.; Glavan, A.; Martin, T. J.; Whitesides, G. M. Paper-Based Electrical Respiration Sensor. Angew. Chem. Int. Ed. 2016, 55, 5727–5732. DOI: 10.1002/anie.201511805.
  • Motooka, M.; Uno, S. Improvement in Limit of Detection of Enzymatic Biogas Sensor Utilizing Chromatography Paper for Breath Analysis. Sensors (Switzerland) 2018, 18, 440–410. DOI: 10.3390/s18020440.
  • Cinti, S.; Colozza, N.; Cacciotti, I.; Moscone, D.; Polomoshnov, M.; Sowade, E.; Baumann, R. R.; Arduini, F. Electroanalysis Moves towards Paper-Based Printed Electronics: Carbon Black Nanomodified Inkjet-Printed Sensor for Ascorbic Acid Detection as a Case Study. Sensors Actuators, B. Chem. 2018, 265, 155–160. DOI: 10.1016/j.snb.2018.03.006.
  • Chen, S.; Song, Y.; Ding, D.; Ling, Z.; Xu, F. Flexible and Anisotropic Strain Sensor Based on Carbonized Crepe Paper with Aligned Cellulose Fibers. Adv. Funct. Mater. 2018, 28, 1–9. DOI: 10.1002/adfm.201802547.
  • Zhang, Y.; Sezen, S.; Ahmadi, M.; Cheng, X.; Rajamani, R. Paper-Based Supercapacitive Mechanical Sensors. Sci. Rep. 2018, 8, 16284. DOI: 10.1038/s41598-018-34606-1.
  • Liana, D. D.; Raguse, B.; Justin Gooding, J.; Chow, E. Recent Advances in Paper-Based Sensors. Sensors (Switzerland) 2012, 12, 11505–11526. DOI: 10.3390/s120911505.
  • Wang, X.; Mahoney, M.; Meyerhoff, M. E. Inkjet-Printed Paper-Based Colorimetric Polyion Sensor Using a Smartphone as a Detector. Anal. Chem. 2017, 89, 12334–12341. DOI: 10.1021/acs.analchem.7b03352.
  • Cinti, S.; Talarico, D.; Palleschi, G.; Moscone, D.; Arduini, F. Novel Reagentless Paper-Based Screen-Printed Electrochemical Sensor to Detect Phosphate. Anal. Chim. Acta 2016, 919, 78–84. DOI: 10.1016/j.aca.2016.03.011.
  • Chouler, J.; Cruz-Izquierdo, Á.; Rengaraj, S.; Scott, J. L.; Di Lorenzo, M. A Screen-Printed Paper Microbial Fuel Cell Biosensor for Detection of Toxic Compounds in Water. Biosens. Bioelectron. 2018, 102, 49–56. DOI: 10.1016/j.bios.2017.11.018.
  • Liu, H.; Jiang, H.; Du, F.; Zhang, D.; Li, Z.; Zhou, H. Flexible and Degradable Paper-Based Strain Sensor with Low Cost. ACS Sustainable Chem. Eng. 2017, 5, 10538–10543. DOI: 10.1021/acssuschemeng.7b02540.
  • Zhao, H.; Zhang, T.; Qi, R.; Dai, J.; Liu, S.; Fei, T. Drawn on Paper: A Reproducible Humidity Sensitive Device by Handwriting. ACS Appl. Mater. Interfaces 2017, 9, 28002–28009. DOI: 10.1021/acsami.7b05181.
  • Gaspar, C.; Olkkonen, J.; Passoja, S.; Smolander, M. Paper as Active Layer in Inkjet-Printed Capacitive Humidity Sensors. Sensors (Switzerland) 2017, 17, 1–10. DOI: 10.3390/s17071464.
  • Kim, S.; Georgiadis, A.; Tentzeris, M. M. Design of Inkjet-Printed RFID-Based Sensor on Paper: Single-and Dual-Tag Sensor Topologies. Sensors (Switzerland) 2018, 18, 1–11. DOI: 10.3390/s18061958.
  • Wang, Y.; Guo, H.; Chen, J. J.; Sowade, E.; Wang, Y.; Liang, K.; Marcus, K.; Baumann, R. R.; Feng, Z. S. Paper-Based Inkjet-Printed Flexible Electronic Circuits. ACS Appl. Mater. Interfaces 2016, 8, 26112–26118. DOI: 10.1021/acsami.6b06704.
  • Mraović, M.; Muck, T.; Pivar, M.; Trontelj, J.; Pleteršek, A. Humidity Sensors Printed on Recycled Paper and Cardboard. Sensors 2014, 14, 13628–13643. DOI: 10.3390/s140813628.
  • Cinti, S.; Mazzaracchio, V.; Cacciotti, I.; Moscone, D.; Arduini, F. Carbon Black-Modified Electrodes Screen-Printed onto Paper Towel, Waxed Paper and Parafilm M®. Sensors (Switzerland) 2017, 17, 1–12. DOI: 10.3390/s17102267.
  • Quddious, A.; Yang, S.; Khan, M. M.; Tahir, F. A.; Shamim, A.; Salama, K. N.; Cheema, H. M. Disposable, Paper-Based, Inkjet-Printed Humidity and H2S Gas Sensor for Passive Sensing Applications. Sensors (Switzerland) 2016, 16, 2073–2013. DOI: 10.3390/s16122073.
  • Gaspar, C.; Passoja, S.; Olkkonen, J.; Smolander, M. IR-Sintering Ef Fi Ciency on Inkjet-Printed Conductive Structures on Paper Substrates. Microelectron. Eng. 2016, 149, 135–140. DOI: 10.1016/j.mee.2015.10.006.
  • Barras, R.; Cunha, I.; Gaspar, D.; Fortunato, E.; Martins, R.; Pereira, L. Printable Cellulose-Based Electroconductive Composites for Sensing Elements in Paper Electronics. Flex. Print. Electron. 2017, 2, 014006. DOI: 10.1088/2058-8585/aa5ef9.
  • Bihar, E.; Wustoni, S.; Pappa, A. M.; Salama, K. N.; Baran, D.; Inal, S. A Fully Inkjet-Printed Disposable Glucose Sensor on Paper. Npj Flex. Electron. 2018, 2, 1–8. DOI: 10.1038/s41528-018-0044-y.
  • Hirst, K. History of Textiles, Mar 18, 2019. https://www.thoughtco.com/the-history-of-textiles-172909 (accessed Aug 10, 2018)
  • Radu, C. D.; Cerempei, A.; Salariu, M.; Parteni, O.; Ulea, E.; Campagne, C. The Potential of Improving Medical Textile for Cutaneous Diseases. IOP Conf. Ser: Mater. Sci. Eng. 2017, 254, 062010. DOI: 10.1088/1757-899X/254/6/062010.
  • Yanilmaz, M.; Dirican, M.; Zhang, X. Evaluation of Electrospun SiO2/Nylon 6,6 Nanofiber Membranes as a Thermally-Stable Separator for Lithium-Ion Batteries. Electrochim. Acta 2014, 133, 501–508. DOI: 10.1016/j.electacta.2014.04.109.
  • Palamutcu, S.; Devrent, N. Technical Textiles for Agricultural Applications. Int. Interdiscip. J. Sci. Res. 2017, 3, 1–8.
  • Zhang, Y.; Xu, S.; Zhang, Q.; Zhou, Y. Experimental and Theoretical Research on the Stress-Relaxation Behaviors of PTFE Coated Fabrics under Different Temperatures. Adv. Mater. Sci. Eng. 2015, 2015, 1–12. DOI: 10.1155/2015/319473.
  • Bruun, M. B.; Langkjaer, M. A. Sportswear : Between Fashion, Innovation and Sustainability. Fash. Pract. 2017, 9370, 1–8. DOI: 10.1080/17569370.2016.1221931.
  • Pavanello, P.; Carrubba, P.; Moraci, N. The Determination of interface friction by Means of Vibrating Table Tests. Geotext. Geomembranes 2018, 46, 830–835. DOI: 10.1016/j.geotexmem.2018.06.006.
  • Smart Textiles/Fabrics Market Analysis By Product (Active Smart Textile, Passive Smart Textile, Very Smart Textile), By Application (Architecture, Fashion And Entertainment, Medical, Defense & Military, Sports & Fitness, Transportation) And Segment Forecasts To 2024, Mar 2019. https://www.grandviewresearch.com/industry-analysis/smart-textiles-industry (accessed Nov 15, 2018).
  • Anwar, S. Manufacturing of electronic textile. Oct 2013. https://www.fibre2fashion.com/industryarticle/7124/manufacturing-ofelectronic-textile?page=3, (accessed Nov 15, 2018)
  • Hayward, J. E-Textiles 2019-2029: Technologies, Markets and Players; IDTechEx: Cambridge, U.K., 2018. https://www.idtechex.com/research/reports/e-textiles-2018-2028-technologies-markets-and-players-000613.asp. (accessed Nov 15, 2018)
  • Sarif Ullah Patwary, M. S. Smart Textiles and Nano-Technology: A General Overview. J. Text. Sci. Eng. 2015, 05, 1–7. DOI: 10.4172/2165-8064.1000181.
  • Tao, H.; Brenckle, M. A.; Yang, M.; Zhang, J.; Liu, M.; Siebert, S. M.; Averitt, R. D.; Mannoor, M. S.; McAlpine, M. C.; Rogers, J. A.; et al. Silk-Based Conformal, Adhesive, Edible Food Sensors. Adv. Mater. 2012, 24, 1067–1072. DOI: 10.1002/adma.201103814.
  • Lawrence, B. D.; Pan, Z.; Weber, M. D.; Kaplan, D. L.; Rosenblatt, M. I. Silk Film Culture System for in Vitro Analysis and Biomaterial Design. J. Vis. Exp. 2012, (62), 1–6. DOI: 10.3791/3646.
  • Padol, A. R.; Jayakumar, K.; Shridhar, N. B.; Narayana Swamy, H. D.; Narayana Swamy, M.; Mohan, K. Safety Evaluation of Silk Protein Film (a Novel Wound Healing Agent) in Terms of Acute Dermal Toxicity, Acute Dermal Irritation and Skin Sensitization. Toxicol. Int. 2011, 18, 17–21. DOI: 10.4103/0971-6580.75847.
  • Liu, Y.; Tao, L. Q.; Wang, D. Y.; Zhang, T. Y.; Yang, Y.; Ren, T. L. Flexible, Highly Sensitive Pressure Sensor with a Wide Range Based on Graphene-Silk Network Structure. Appl. Phys. Lett. 2017, 110, 123508. DOI: 10.1063/1.4978374.
  • Cao, J.; Huang, Z.; Wang, C. Natural Printed Silk Substrate Circuit Fabricated via Surface Modification Using One Step Thermal Transfer and Reduction Graphene Oxide. Appl. Surf. Sci. 2018, 440, 177–185. DOI: 10.1016/j.apsusc.2018.01.094.
  • Bunney, J.; Williamson, S.; Atkin, D.; Jeanneret, M.; Cozzolino, D.; Chapman, J.; Power, A.; Chandra, S. The Use of Electrochemical Biosensors in Food Analysis. Curr. Res. Nutr. Food Sci. J 2017, 5, 183–195. DOI: 10.12944/CRNFSJ.5.3.02.
  • Wang, T.; Ramnarayanan, A.; Cheng, H. Real Time Analysis of Bioanalytes in Healthcare, Food, Zoology and Botany. Sensors (Switzerland) 2018, 18, 1–27. DOI: 10.3390/s18010005.
  • Chayanika Das, K. K. Flexible Micro-Supercapacitors Using Silk and Cotton Substrates. ACS Appl. Mater. Interfaces 2016, 8, 29504–29510. DOI: 10.1021/acsami.6b10431.
  • Mengüç, Y.; Park, Y. L.; Pei, H.; Vogt, D.; Aubin, P. M.; Winchell, E.; Fluke, L.; Stirling, L.; Wood, R. J.; Walsh, C. J. Wearable Soft Sensing Suit for Human Gait Measurement. Int. J. Rob. Res. 2014, 33, 1748–1764. DOI: 10.1177/0278364914543793.
  • Cherenack, K.; Van Pieterson, L. Smart Textiles: Challenges and Opportunities. J. Appl. Phys. 2012, 112, 091301. DOI: 10.1063/1.4742728.
  • Bahadir, M. C.; Bahadir, S. K. Selection of Appropriate E-Textile Structure Manufacturing Process Prior to Sensor Integration Using AHP. Int. J. Adv. Manuf. Technol. 2015, 76, 1719–1730. DOI: 10.1007/s00170-014-6399-x.
  • Ren, J.; Wang, C.; Zhang, X.; Carey, T.; Chen, K.; Yin, Y.; Torrisi, F. Environmentally-Friendly Conductive Cotton Fabric as Flexible Strain Sensor Based on Hot Press Reduced Graphene Oxide. Carbon N. Y. 2017, 111, 622–630. DOI: 10.1016/j.carbon.2016.10.045.
  • Karim, N.; Afroj, S.; Tan, S.; He, P.; Fernando, A.; Carr, C.; Novoselov, K. S. Scalable Production of Graphene-Based Wearable E - Textiles. ACS Nano 2017, 11, 12266–12275. DOI: 10.1021/acsnano.7b05921.
  • Nomura, K. I.; Horii, Y.; Kanazawa, S.; Kusaka, Y.; Ushijima, H. Fabrication of a Textile-Basedwearable Blood Leakage Sensor Using Screen-Offset Printing. Sensors (Switzerland) 2018, 18, 1–11. DOI: 10.3390/s18010240.
  • Vu, C. C.; Kim, J. Human Motion Recognition by Textile Sensor Based on Machine Learning Algorithms. Sensors 2018, 18, 3109. DOI: 10.3390/s18093109.
  • Wang, C.; Xi, K.; Zhang, M.; Jian, M.; Zhang, Y. An All Silk-Derived Dual-Mode E-Skin for Simultaneous Temperature-Pressure Detection. ACS Appl. Mater. Interfaces 2017, 9, 39484–39492. DOI: 10.1021/acsami.7b13356.
  • Karim, N.; Afroj, S.; Malandraki, A.; Butterworth, S.; Beach, C.; Rigout, M.; Novoselov, K. S.; Casson, A. J.; Yeates, S. G. All Inkjet-Printed Graphene-Based Conductive Pattern for Wearable E-Textiles Applications. J. Mater. Chem. C 2017, 5, 11640–11648. DOI: 10.1039/C7TC03669H.
  • Qin, Y.; Howlader, M. M. R.; Deen, M. J.; Haddara, Y. M.; Selvaganapathy, P. R. Chemical Polymer Integration for Packaging of Implantable Sensors. Sensors Actuators B. Chem. 2014, 202, 758–778. DOI: 10.1016/j.snb.2014.05.063.
  • Owyeung, R. E.; Panzer, M. J.; Sonkusale, S. R. Colorimetric Gas Sensing Washable Threads for Smart Textiles. Sci. Rep. 2019, 9, 5607. DOI: 10.1038/s41598-019-42054-8.
  • Abu-Khalaf, J. M.; Saraireh, R.; Eisa, S. M.; Al-Halhouli, A. Experimental Characterization of Inkjet-Printed Stretchable Circuits for Wearable Sensor Applications. Sensors 2018, 18, 3476. DOI: 10.3390/s18103476.
  • Ojuroye, O.; Torah, R.; Beeby, S. Modified PDMS Packaging of Sensory E-Textile Circuit Microsystems for Improved Robustness with Washing. Microsyst. Technol. 2019, 25, 1–18. DOI: 10.1007/s00542-019-04455-7.
  • Simorangkir, R. B. V. B.; Yang, Y.; Hashmi, R. M.; Bjorninen, T.; Esselle, K. P.; Ukkonen, L. Polydimethylsiloxane-Embedded Conductive Fabric: Characterization and Application for Realization of Robust Passive and Active Flexible Wearable Antennas. IEEE Access 2018, 6, 48102–48112. DOI: 10.1109/ACCESS.2018.2867696.
  • Nag, A.; Simorangkir, R. B. V. B.; Valentin, E.; Bjorninen, T.; Ukkonen, L.; Hashmi, R. M.; Mukhopadhyay, S. C. A Transparent Strain Sensor Based on PDMS-Embedded Conductive Fabric for Wearable Sensing Applications. IEEE Access 2018, 6, 71020–71027. DOI: 10.1109/ACCESS.2018.2881463.
  • Sadeqi, A.; Nejad, H. R.; Alaimo, F.; Yun, H.; Punjiya, M. Washable Smart Threads for Strain Sensing Fabrics. IEEE Sens. J. 2018, 18, 9137–9144. DOI: 10.1109/JSEN.2018.2870640.
  • Tao, X.; Huang, T. H.; Shen, C. L.; Ko, Y. C.; Jou, G. T.; Koncar, V. A Novel Design of E-Textile Integration for Physiological Monitoring and Lighting. J. Fashion Technol. Textile Eng. 2018, 0, 1–4. DOI: 10.4172/2329-9568.S4-010.
  • Yung, L. C.; Fei, C. C.; Mandeep, J. S.; Abdullah, H. B.; Wee, L. K. Synthesis of a Nano-Silver Metal Ink for Use in Thick Conductive Film Fabrication Applied on a Semiconductor Package. PLoS One 2014, 9, e97484–9. DOI: 10.1371/journal.pone.0097484.
  • Cao, R.; Pu, X.; Du, X.; Yang, W.; Wang, J.; Guo, H. Screen-Printed Washable Electronic Textiles as Self-Powered Touch/Gesture Tribo-Sensor for Intelligent Human-Machine Interaction. ACS Nano 2018, 12, 1–23. DOI: 10.1021/acsnano.8b02477.
  • Huang, K. M.; Tsukamoto, H.; Yong, Y.; Chiu, H. L.; Nguyen, M. T.; Yonezawa, T.; Liao, Y. C. Stabilization of the Thermal Decomposition Process of Self-Reducible Copper Ion Ink for Direct Printed Conductive Patterns. RSC Adv. 2017, 7, 25095–25100. DOI: 10.1039/C7RA01005B.
  • Wu, X.; Shao, S.; Chen, Z.; Cui, Z. Printed Highly Conductive Cu Films with Strong Adhesion Enabled by Low-Energy Photonic Sintering on Low-Tg Flexible Plastic Substrate. Nanotechnology 2017, 28, 035203. DOI: 10.1088/1361-6528/28/3/035203.
  • Dincer, C.; Bruch, R.; Costa-Rama, E.; Fernández-Abedul, M. T.; Merkoçi, A.; Manz, A.; Urban, G. A.; Güder, F. Disposable Sensors in Diagnostics, Food, and Environmental Monitoring. Adv. Mater. 2019, 31, 1806739. DOI: 10.1002/adma.201806739.
  • Amit, M.; Mishra, R. K.; Hoang, Q.; Galan, A. M.; Wang, J.; Ng, T. N. Point-of-Use Robotic Sensors for Simultaneous Pressure Detection and Chemical Analysis. Mater. Horiz. 2019, 6, 604–611. DOI: 10.1039/C8MH01412D.
  • Vásquez Quintero, A.; Molina-Lopez, F.; Smits, E. C. P.; Danesh, E.; Van Den Brand, J.; Persaud, K.; Oprea, A.; Barsan, N.; Weimar, U.; De Rooij, N. F.; Briand, D. Smart RFID Label with a Printed Multisensor Platform for Environmental Monitoring. Flex. Print. Electron. 2016, 1, 1–12. DOI: 10.1088/2058-8585/1/2/025003.
  • Wu, C. C.; Chuang, W. Y.; Wu, C. D.; Su, Y. C.; Huang, Y. Y.; Huang, Y. J.; Peng, S. Y.; Yu, S. A.; Lin, C. T.; Lu, S. S. A Self-Sustained Wireless Multi-Sensor Platform Integrated with Printable Organic Sensors for Indoor Environmental Monitoring. Sensors (Switzerland) 2017, 17, 1–10. DOI: 10.3390/s17040715.
  • Nakata, S.; Arie, T.; Akita, S.; Takei, K. Wearable, Flexible, and Multifunctional Healthcare Device with an ISFET Chemical Sensor for Simultaneous Sweat PH and Skin Temperature Monitoring. ACS Sens. 2017, 2, 443–448. DOI: 10.1021/acssensors.7b00047.
  • Yamamoto, Y.; Harada, S.; Yamamoto, D.; Honda, W.; Arie, T.; Akita, S.; Takei, K. Printed Multifunctional Flexible Device with an Integrated Motion Sensor for Health Care Monitoring. Sci. Adv. 2016, 2, e1601473–8. DOI: 10.1126/sciadv.1601473.
  • Su, C. H.; Sun, C. L.; Liao, Y. C. Printed Combinatorial Sensors for Simultaneous Detection of Ascorbic Acid, Uric Acid, Dopamine, and Nitrite. ACS Omega 2017, 2, 4245–4252. DOI: 10.1021/acsomega.7b00681.
  • Güntner, A. T.; Abegg, S.; Königstein, K.; Gerber, P. A.; Schmidt-Trucksäss, A.; Pratsinis, S. E. Breath Sensors for Health Monitoring. ACS Sens. 2019, 4, 268–280. DOI: 10.1021/acssensors.8b00937.
  • Feig, V. R.; Tran, H.; Bao, Z. Biodegradable Polymeric Materials in Degradable Electronic Devices. ACS Cent. Sci. 2018, 4, 337–348. DOI: 10.1021/acscentsci.7b00595.
  • Boutry, C. M.; Nguyen, A.; Lawal, Q. O.; Chortos, A.; Rondeau-Gagné, S.; Bao, Z. A Sensitive and Biodegradable Pressure Sensor Array for Cardiovascular Monitoring. Adv. Mater. 2015, 27, 6954–6961. DOI: 10.1002/adma.201502535.
  • Hwang, S. W.; Song, J. K.; Huang, X.; Cheng, H.; Kang, S. K.; Kim, B. H.; Kim, J. H.; Yu, S.; Huang, Y.; Rogers, J. A. High-Performance Biodegradable/Transient Electronics on Biodegradable Polymers. Adv. Mater. 2014, 26, 3905–3911. DOI: 10.1002/adma.201306050.
  • Zhang, J.X.J.; Hoshino, K. Implantable Sensors. In Molecular Sensors and Nanodevices; William Andrew: Waltham, MA, 2014, pp 415–465.
  • U.S. FDA Accepts First Digital Medicine New Drug Application for Otsuka and Proteus Digital Health, Sept 10, 2015. https://www.proteus.com/press-releases/u-s-fda-accepts-firstdigitalmedicine-new-drug-application-for-otsuka-and-proteusdigital-health/. (accessed Feb 26, 2019).
  • Gray, M.; Meehan, J.; Ward, C.; Langdon, S. P.; Kunkler, I. H.; Murray, A.; Argyle, D. Implantable Biosensors and Their Contribution to the Future of Precision Medicine. Vet. J 2018, 239, 21–29. DOI: 10.1016/j.tvjl.2018.07.011.
  • Kang, S.; Murphy, R. K. J.; Hwang, S.; Lee, S. M.; Daniel, V.; Shin, J.; Gamble, P.; Cheng, H.; Yu, S.; Liu, Z.; et al. Bioresorbable Silicon Electronic Sensors for the Brain. Nature 2016, 530, 71–76. DOI: 10.1038/nature16492.
  • Boutry, C. M.; Beker, L.; Kaizawa, Y.; Vassos, C.; Tran, H.; Hinckley, A. C.; Pfattner, R.; Niu, S.; Li, J.; Claverie, J.; et al. Biodegradable and Flexible Arterial-Pulse Sensor for the Wireless Monitoring of Blood Flow. Nat. Biomed. Eng. 2019, 3, 47–57. DOI: 10.1038/s41551-018-0336-5.
  • Talal, T. K.; Seoudi, I.; Allahverdi, N.; Milne, S. D.; Zakaria, Z.; Connolly, P.; Anoop, A. A.; Menzies, R.; Al Hamad, H. A Wearable Wound Moisture Sensor as an Indicator for Wound Dressing Change: An Observational Study of Wound Moisture and Status. Int. Wound J. 2015, 13, 1309–1314. DOI: 10.1111/iwj.12521.
  • Zou, W.; González, A.; Jampaiah, D.; Ramanathan, R.; Taha, M.; Walia, S.; Sriram, S.; Bhaskaran, M.; Dominguez-Vera, J. M.; Bansal, V. Skin Color-Specific and Spectrally-Selective Naked-Eye Dosimetry of UVA, B and C Radiations. Nat. Commun. 2018, 9, 1–10. DOI: 10.1038/s41467-018-06273-3.
  • Kim, J.; Kim, M.; Lee, M.; Kim, K.; Ji, S.; Kim, Y.; Park, J.; Na, K.; Bae, K.; Kim, H. K.; et al. Wearable Smart Sensor Systems Integrated on Soft Contact Lenses for Wireless Ocular Diagnostics. Nat. Commun 2017, 8, 1–8. DOI: 10.1038/ncomms14997.
  • Yoon, S.; Sim, J. K.; Cho, Y. A Flexible and Wearable Human Stress Monitoring Patch. Nature 2016, 6, 1–11. DOI: 10.1038/srep23468.
  • Park, J.; Kim, J.; Kim, S.; Cheong, W. H.; Jang, J.; Park, Y.; Na, K.; Kim, Y.; Heo, J. H.; Lee, C. Y.; et al. Soft, Smart Contact Lenses with Integrations of Wireless Circuits, Glucose Sensors, and Displays. Sci. Adv. 2018, 4, eaap9841. DOI: 10.1126/sciadv.aap9841.
  • Rodríguez-Roldán, G.; Suaste-Gómez, E. Continuous Body Temperature Monitoring System Based on a Flexible PPy/PLA Wristband. In VII Latin American Congress on Biomedical Engineering CLAIB 2016; Torres, I., Bustamante, J., Sierra, D. A., Eds.; Springer: Singapore, 2017; pp. 110–113. DOI: 10.1007/978-981-10-4086-3_28.
  • Chae, M.; Yoo, Y. K.; Kim, J.; Kim, T. G.; Hwang, K. S. Graphene-Based Enzyme-Modified Field-Effect Transistor Biosensor for Monitoring Drug Effects in Alzheimer’s Disease Treatment. Sensors Actuators B. Chem. 2018, 272, 448–458. DOI: 10.1016/j.snb.2018.06.010.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.