3,679
Views
91
CrossRef citations to date
0
Altmetric
Review

Advances in Responsively Conductive Polymer Composites and Sensing Applications

, , , , , , , & show all
Pages 157-193 | Received 12 Sep 2019, Accepted 20 Feb 2020, Published online: 10 Mar 2020

References

  • Balazs, A. C.; Emrick, T.; Russell, T. P. Nanoparticle Polymer Composites: Where Two Small Worlds Meet. Science 2006, 314, 1107–1110. DOI: 10.1126/science.1130557.
  • Sarkar, B.; Alexandridis, P. Block Copolymer-Nanoparticle Composites: Structure, Functional Properties, and Processing. Prog. Polym. Sci. 2015, 40, 33–62. DOI: 10.1016/j.progpolymsci.2014.10.009.
  • Yan, N.; Liu, H.; Zhu, Y.; Jiang, W.; Dong, Z. Entropy-Driven Hierarchical Nanostructures from Cooperative Self-Assembly of Gold Nanoparticles/Block Copolymers under Three-Dimensional Confinement. Macromolecules 2015, 48, 5980–5987. DOI: 10.1021/acs.macromol.5b01219.
  • Zhang, L.; Chen, Y.; Li, Z.; Li, L.; Saint-Cricq, P.; Li, C.; Lin, J.; Wang, C.; Su, Z.; Zink, J. I. Tailored Synthesis of Octopus-Type Janus Nanoparticles for Synergistic Actively-Targeted and Chemo-Photothermal Therapy. Angew. Chem. Int. Ed. 2016, 55, 2118–2121. DOI: 10.1002/anie.201510409.
  • Chen, J.; Cui, X.; Sui, K.; Zhu, Y.; Jiang, W. Balance the Electrical Properties and Mechanical Properties of Carbon Black Filled Immiscible Polymer Blends with a Double Percolation Structure. Compos. Sci. Technol. 2017, 140, 99–105. DOI: 10.1016/j.compscitech.2016.12.029.
  • Zhang, Y.; He, Y.; Yan, N.; Zhu, Y.; Hu, Y. Inorganic Nanoparticle Induced Morphological Transition for Confined Self-Assembly of Block Copolymers within Emulsion Droplets. J. Phys. Chem. B 2017, 121, 8417–8425. DOI: 10.1021/acs.jpcb.7b06701.
  • Liu, M.; Li, B.; Zhou, H.; Chen, C.; Liu, Y.; Liu, T. Extraordinary Rate Capability Achieved by a 3D “Skeleton/Skin” Carbon Aerogel–Polyaniline Hybrid with Vertically Aligned Pores. Chem. Commun. 2017, 53, 2810–2813. DOI: 10.1039/C7CC00121E.
  • Hu, J.; Lin, J.; Zhang, Y.; Lin, Z.; Qiao, Z.; Liu, Z.; Yang, W.; Liu, X.; Dong, M.; Guo, Z. A New anti-Biofilm Strategy of Enabling Arbitrary Surfaces of Materials and Devices with Robust Bacterial anti-Adhesion via a Spraying Modified Microsphere Method. J. Mater. Chem. A 2019, 7, 26039–26052. DOI: 10.1039/C9TA07236E.
  • Lin, J.; Chen, X. Y.; Chen, C. Y.; Hu, J. T.; Zhou, C. L.; Cai, X. F.; Wang, W.; Zheng, C.; Zhang, P. P.; Cheng, J.; et al. Durably Antibacterial and Bacterially Antiadhesive Cotton Fabrics Coated by Cationic Fluorinated Polymers. ACS Appl. Mater. Interfaces 2018, 10, 6124–6136. DOI: 10.1021/acsami.7b16235.
  • Zhang, Y.; An, Y.; Wu, L.; Chen, H.; Li, Z.; Dou, H.; Murugadoss, V.; Fan, J.; Zhang, X.; Mai, X.; Guo, Z. Metal-Free Energy Storage Systems: combining Batteries with Capacitors Based on a Methylene Blue Functionalized Graphene Cathode. J. Mater. Chem. A 2019, 7, 19668–19675. DOI: 10.1039/C9TA06734E.
  • Qian, Y. X.; Yuan, Y. H.; Wang, H. L.; Liu, H.; Zhang, J. X.; Shi, S.; Guo, Z. H.; Wang, N. Highly Efficient Uranium Adsorption by Salicylaldoxime/Polydopamine Graphene Oxide Nanocomposites. J. Mater. Chem. A 2018, 6, 24676–24685. DOI: 10.1039/C8TA09486A.
  • Li, S. W.; Yang, P. P.; Liu, X. H.; Zhang, J. X.; Xie, W.; Wang, C.; Liu, C. T.; Guo, Z. H. Graphene Oxide Based Dopamine Mussel-like Cross-Linked Polyethylene Imine Nanocomposite Coating with Enhanced Hexavalent Uranium Adsorption. J. Mater. Chem. A 2019, 7, 16902–16911. DOI: 10.1039/C9TA04562G.
  • Gu, H.; Xu, X.; Cai, J.; Wei, S.; Wei, H.; Liu, H.; Young, D. P.; Shao, Q.; Wu, S.; Ding, T.; Guo, Z. Controllable Organic Magnetoresistance in Polyaniline Coated Poly(p-Phenylene-2,6-Benzobisoxazole) Short Fibers. Chem. Commun. 2019, 55, 10068–10071. DOI: 10.1039/C9CC04789A.
  • Ma, Y.; Hou, C.; Zhang, H.; Zhang, Q.; Liu, H.; Wu, S.; Guo, Z. Three-Dimensional Core-Shell Fe3O4/Polyaniline Coaxial Heterogeneous Nanonets: Preparation and High Performance Supercapacitor Electrodes. Electrochim. Acta 2019, 315, 114–123. DOI: 10.1016/j.electacta.2019.05.073.
  • Wang, Y.; Jiang, D.; Zhang, L.; Li, B.; Sun, C.; Yan, H.; Wu, Z.; Liu, H.; Zhang, J.; Fan, J.; et al. Hydrogen Bonding Derived Self-Healing Polymer Composites Reinforced with Amidation Carbon Fibers. Nanotechnology 2020, 31, 025704. DOI: 10.1088/1361-6528/ab4743.
  • Guo, Y.; Yang, X.; Ruan, K.; Kong, J.; Dong, M.; Zhang, J.; Gu, J.; Guo, Z. Reduced Graphene Oxide Heterostructured Silver Nanoparticles Significantly Enhanced Thermal Conductivities in Hot-Pressed Electrospun Polyimide Nanocomposites. ACS Appl. Mater. Interfaces 2019, 11, 25465–25473. DOI: 10.1021/acsami.9b10161.
  • Guo, Y. Q.; Ruan, K. P.; Yang, X. T.; Ma, T. B.; Kong, J.; Wu, N. N.; Zhang, J. X.; Gu, J. W.; Guo, Z. H. Constructing Fully Carbon-Based Fillers with a Hierarchical Structure to Fabricate Highly Thermally Conductive Polyimide Nanocomposites. J. Mater. Chem. C 2019, 7, 7035–7044. DOI: 10.1039/C9TC01804B.
  • He, Y. X.; Chen, Q. Y.; Liu, H.; Zhang, L.; Wu, D. Y.; Lu, C.; OuYang, W.; Jiang, D. F.; Wu, M. F.; Zhang, J. X.; et al. Friction and Wear of MoO3/Graphene Oxide Modified Glass Fiber Reinforced Epoxy Nanocomposites. Macromol. Mater. Eng. 2019, 304, 1900166. DOI: 10.1002/mame.201900166.
  • Cui, X.; Zhu, G.; Pan, Y.; Shao, Q.; Zhao, C.; Dong, M.; Zhang, Y.; Guo, Z. Polydimethylsiloxane-Titania Nanocomposite Coating: Fabrication and Corrosion Resistance. Polymer 2018, 138, 203–210. DOI: 10.1016/j.polymer.2018.01.063.
  • Si, W.; Sun, J.; He, X.; Huang, Y.; Zhuang, J.; Zhang, J.; Murugadoss, V.; Fan, J.; Wu, D.; Guo, Z. Enhancing Thermal Conductivity via Conductive Network Conversion from High to Low Thermal Dissipation in the Polydimethylsiloxane Composites. J. Mater. Chem. C 2020, in press, DOI: 10.1039/C9TC06968B.
  • Deng, H.; Lin, L.; Ji, M.; Zhang, S.; Yang, M.; Fu, Q. Progress on the Morphological Control of Conductive Network in Conductive Polymer Composites and the Use as Electroactive Multifunctional Materials. Prog. Polym. Sci. 2014, 39, 627–655. DOI: 10.1016/j.progpolymsci.2013.07.007.
  • Zheng, Z.; Olayinka, O.; Li, B. 2S-Soy Protein-Based Biopolymer as a Non-Covalent Surfactant and Its Effects on Electrical Conduction and Dielectric Relaxation of Polymer Nanocomposites. Eng. Sci. 2018, 4, 87–99. DOI: 10.30919/es8d766.
  • Xie, L.; Zhu, Y. Tune the Phase Morphology to Design Conductive Polymer Composites: A Review. Polym. Compos. 2018, 39, 2985–2996. DOI: 10.1002/pc.24345.
  • Zheng, Y.; Wang, X.; Wu, G. Chemical Modification of Carbon Fiber with Diethylenetriaminepentaacetic Acid/Halloysite Nanotube as a Multifunctional Interfacial Reinforcement for Silicone Resin Composites. Polym. Adv. Technol. 2020, 31, 527–535. DOI: 10.1002/pat.4793.
  • Zheng, Y.; Chen, L.; Wang, X.; Wu, G. Modification of Renewable Cardanol onto Carbon Fiber for the Improved Interfacial Properties of Advanced Polymer Composites. Polymers 2019, 12, 45. DOI: 10.3390/polym12010045.
  • Gu, H.; Xu, X.; Dong, M.; Xie, P.; Shao, Q.; Fan, R.; Liu, C.; Wu, S.; Wei, R.; Guo, Z. Carbon Nanospheres Induced High Negative Permittivity in Nanosilver-Polydopamine Metacomposites. Carbon 2019, 147, 550–558. DOI: 10.1016/j.carbon.2019.03.028.
  • Jiang, D.; Wang, Y.; Li, B.; Sun, C.; Wu, Z.; Yan, H.; Xing, L.; Qi, S.; Li, Y.; Liu, H.; et al. Flexible Sandwich Structural Strain Sensor Based on Silver Nanowires Decorated with Self-Healing Substrate. Macromol. Mater. Eng. 2019, 304, 1900074. DOI: 10.1002/mame.201900074.
  • Zhu, G.; Cui, X.; Zhang, Y.; Chen, S.; Dong, M.; Liu, H.; Shao, Q.; Ding, T.; Wu, S.; Guo, Z. Poly (Vinyl Butyral)/Graphene Oxide/Poly (Methylhydrosiloxane) Nanocomposite Coating for Improved Aluminum Alloy Anticorrosion. Polymer 2019, 172, 415–422. DOI: 10.1016/j.polymer.2019.03.056.
  • Zhang, J.; Zhang, W.; Wei, L.; Pu, L.; Liu, J.; Liu, H.; Li, Y.; Fan, J.; Ding, T.; Guo, Z. Alternating Multilayer Structural Epoxy Composite Coating for Corrosion Protection of Steel. Macromol. Mater. Eng. 2019, 304, 1900374. DOI: 10.1002/mame.201900374.
  • Guo, X. K.; Ge, S. S.; Wang, J. X.; Zhang, X. C.; Zhang, T.; Lin, J.; Zhao, C. X. X.; Wang, B.; Zhu, G. F.; Guo, Z. H. Waterborne Acrylic Resin Modified with Glycidyl Methacrylate (GMA): Formula Optimization and Property Analysis. Polymer 2018, 143, 155–163. DOI: 10.1016/j.polymer.2018.04.020.
  • Wei, H.; Wang, H.; Li, A.; Cui, D.; Zhao, Z.; Chu, L.; Wei, X.; Wang, L.; Pan, D.; Fan, J.; et al. Multifunctions of Polymer Nanocomposites: Environmental Remediation, Electromagnetic Interference Shielding, and Sensing Applications. ChemNanoMat 2020, 6, 174–184. DOI: 10.1002/cnma.201900588.
  • Jiang, D.; Murugadoss, V.; Wang, Y.; Lin, J.; Ding, T.; Wang, Z.; Shao, Q.; Wang, C.; Liu, H.; Lu, N.; et al. Electromagnetic Interference Shielding Polymers and Nanocomposites - A Review. Polym. Rev. 2019, 59, 280–337.
  • Wang, C.; Murugadoss, V.; Kong, J.; He, Z.; Mai, X.; Shao, Q.; Chen, Y.; Guo, L.; Liu, C.; Angaiah, S.; Guo, Z. Overview of Carbon Nanostructures and Nanocomposites for Electromagnetic Wave Shielding. Carbon 2018, 140, 696–733. DOI: 10.1016/j.carbon.2018.09.006.
  • Wu, N.; Xu, D.; Wang, Z.; Wang, F.; Liu, J.; Liu, W.; Shao, Q.; Liu, H.; Gao, Q.; Guo, Z. Achieving Superior Electromagnetic Wave Absorbers through the Novel Metal-Organic Frameworks Derived Magnetic Porous Carbon Nanorods. Carbon 2019, 145, 433–444. DOI: 10.1016/j.carbon.2019.01.028.
  • Wu, N.; Liu, C.; Xu, D.; Liu, J.; Liu, W.; Liu, H.; Zhang, J.; Xie, W.; Guo, Z. Ultrathin High-Performance Electromagnetic Wave Absorbers with Facilely Fabricated Hierarchical Porous Co/C Crabapples. J. Mater. Chem. C 2019, 7, 1659–1669. DOI: 10.1039/C8TC04984J.
  • Ma, P.-C.; Siddiqui, N. A.; Marom, G.; Kim, J.-K. Dispersion and Functionalization of Carbon Nanotubes for Polymer-Based Nanocomposites: A Review. Compos. Part A Appl. Sci. Manuf. 2010, 41, 1345–1367. DOI: 10.1016/j.compositesa.2010.07.003.
  • Wei, H.; Wang, H.; Xia, Y.; Cui, D.; Shi, Y.; Dong, M.; Liu, C.; Ding, T.; Zhang, J.; Ma, Y.; et al. An Overview of Lead-Free Piezoelectric Materials and Devices. J. Mater. Chem. C 2018, 6, 12446–12467. DOI: 10.1039/C8TC04515A.
  • Liu, H.; Li, Q.; Bu, Y.; Zhang, N.; Wang, C.; Pan, C.; Mi, L.; Guo, Z.; Liu, C.; Shen, C. Stretchable Conductive Nonwoven Fabrics with Self-Cleaning Capability for Tunable Wearable Strain Sensor. Nano Energy 2019, 66, 104143. DOI: 10.1016/j.nanoen.2019.104143.
  • Gu, H.; Zhang, H.; Ma, C.; Sun, H.; Liu, C.; Dai, K.; Zhang, J.; Wei, R.; Ding, T.; Guo, Z. Smart Strain Sensing Organic–Inorganic Hybrid Hydrogels with Nano Barium Ferrite as the Cross-Linker. J. Mater. Chem. C 2019, 7, 2353–2360. DOI: 10.1039/C8TC05448G.
  • Liu, H.; Li, Q.; Zhang, S.; Yin, R.; Liu, X.; He, Y.; Dai, K.; Shan, C.; Guo, J.; Liu, C.; et al. Electrically Conductive Polymer Composites for Smart Flexible Strain Sensors: A Critical Review. J. Mater. Chem. C 2018, 6, 12121–12141. DOI: 10.1039/C8TC04079F.
  • Chen, J. W.; Yu, Q. L.; Cui, X. H.; Dong, M. Y.; Zhang, J. X.; Wang, C.; Fan, J. C.; Zhu, Y. T.; Guo, Z. H. An Overview of Stretchable Strain Sensors from Conductive Polymer Nanocomposites. J. Mater. Chem. C 2019, 7, 11710–11730. DOI: 10.1039/C9TC03655E.
  • Li, Y.; Zhang, T.; Jiang, B.; Zhao, L.; Liu, H.; Zhang, J.; Fan, J.; Guo, Z.; Huang, Y. Interfacially Reinforced Carbon Fiber Silicone Resin via Constructing Functional Nano-Structural Silver. Compos. Sci. Technol. 2019, 181, 107689. DOI: 10.1016/j.compscitech.2019.107689.
  • Ma, R.; Wang, Y.; Qi, H.; Shi, C.; Wei, G.; Xiao, L.; Huang, Z.; Liu, S.; Yu, H.; Teng, C.; et al. Nanocomposite Sponges of Sodium Alginate/Graphene Oxide/Polyvinyl Alcohol as Potential Wound Dressing: In Vitro and in Vivo Evaluation. Compos. Part B Eng. 2019, 167, 396–405. DOI: 10.1016/j.compositesb.2019.03.006.
  • Zhang, Z. Z.; Zhang, J. X.; Li, S. Y.; Liu, J. P.; Dong, M. Y.; Li, Y. C.; Lu, N.; Lei, S. Y.; Tang, J. J.; Fan, J. C.; Guo, Z. H. Effect of Graphene Liquid Crystal on Dielectric Properties of Polydimethylsiloxane Nanocomposites. Compos. Part B Eng. 2019, 176, 107338. DOI: 10.1016/j.compositesb.2019.107338.
  • Dong, M.; Li, Q.; Liu, H.; Liu, C.; Wujcik, E. K.; Shao, Q.; Ding, T.; Mai, X.; Shen, C.; Guo, Z. Thermoplastic Polyurethane-Carbon Black Nanocomposite Coating: Fabrication and Solid Particle Erosion Resistance. Polymer 2018, 158, 381–390. DOI: 10.1016/j.polymer.2018.11.003.
  • Dong, M.; Wang, C.; Liu, H.; Liu, C.; Shen, C.; Zhang, J.; Jia, C.; Ding, T.; Guo, Z. Enhanced Solid Particle Erosion Properties of Thermoplastic Polyurethane-Carbon Nanotube Nanocomposites. Macromol. Mater. Eng. 2019, 304, 1900010. DOI: 10.1002/mame.201900010.
  • Wu, Z.; Cui, H.; Chen, L.; Jiang, D.; Weng, L.; Ma, Y.; Li, X.; Zhang, X.; Liu, H.; Wang, N.; et al. Interfacially Reinforced Unsaturated Polyester Carbon Fiber Composites with a Vinyl Ester-Carbon Nanotubes Sizing Agent. Compos. Sci. Technol. 2018, 164, 195–203. DOI: 10.1016/j.compscitech.2018.05.051.
  • Pan, Y.; Li, L.; Chan, S. H.; Zhao, J. Correlation between Dispersion State and Electrical Conductivity of MWCNTs/PP Composites Prepared by Melt Blending. Compos. Part A Appl. Sci. Manuf. 2010, 41, 419–426. DOI: 10.1016/j.compositesa.2009.11.009.
  • Ezat, G. S.; Kelly, A. L.; Mitchell, S. C.; Youseffi, M.; Coates, P. D. Effect of Maleic Anhydride Grafted Polypropylene Compatibilizer on the Morphology and Properties of Polypropylene/Multiwalled Carbon Nanotube Composite. Polym. Compos. 2012, 33, 1376–1386. DOI: 10.1002/pc.22264.
  • Cheng, H. K. F.; Pan, Y.; Sahoo, N. G.; Chong, K.; Li, L.; Chan, S. H.; Zhao, J. Improvement in Properties of Multiwalled Carbon Nanotube/Polypropylene Nanocomposites through Homogeneous Dispersion with the Aid of Surfactants. J. Appl. Polym. Sci. 2012, 124, 1117–1127. DOI: 10.1002/app.35047.
  • Gorrasi, G.; Bredeau, S.; Di Candia, C.; Patimo, G.; De Pasquale, S.; Dubois, P. Electroconductive Polyamide 6/MWNT Nanocomposites: Effect of Nanotube Surface-Coating by in Situ Catalyzed Polymerization. Macromol. Mater. Eng. 2011, 296, 408–413. DOI: 10.1002/mame.201000336.
  • Huang, Y. Y.; Ahir, S. V.; Terentjev, E. M. Dispersion Rheology of Carbon Nanotubes in a Polymer Matrix. Phys. Rev. B 2006, 73, 125422. DOI: 10.1103/PhysRevB.73.125422.
  • Villmow, T.; Kretzschmar, B.; Pötschke, P. Influence of Screw Configuration, Residence Time, and Specific Mechanical Energy in Twin-Screw Extrusion of Polycaprolactone/Multi-Walled Carbon Nanotube Composites. Compos. Sci. Technol. 2010, 70, 2045–2055. DOI: 10.1016/j.compscitech.2010.07.021.
  • Wu, F.; Lu, Y.; Shao, G.; Zeng, F.; Wu, Q. Preparation of Polyacrylonitrile/Graphene Oxide by in Situ Polymerization. Polym. Int. 2012, 61, 1394–1399. DOI: 10.1002/pi.4221.
  • Ye, Y.-S.; Chen, Y.-N.; Wang, J.-S.; Rick, J.; Huang, Y.-J.; Chang, F.-C.; Hwang, B.-J. Versatile Grafting Approaches to Functionalizing Individually Dispersed Graphene Nanosheets Using RAFT Polymerization and Click Chemistry. Chem. Mater. 2012, 24, 2987–2997. DOI: 10.1021/cm301345r.
  • Wang, X. W.; Zhang, C. A.; Wang, P. L.; Zhao, J.; Zhang, W.; Ji, J. H.; Hua, K.; Zhou, J.; Yang, X. B.; Li, X. P. Enhanced Performance of Biodegradable Poly(Butylene Succinate)/Graphene Oxide Nanocomposites via in Situ Polymerization. Langmuir 2012, 28, 7091–7095. DOI: 10.1021/la204894h.
  • Nayak, S.; Bhattacharjee, S.; Singh, B. P. Preparation of Transparent and Conducting Carbon Nanotube/N-Hydroxymethyl Acrylamide Composite Thin Films by in Situ Polymerization. Carbon 2012, 50, 4269–4276. DOI: 10.1016/j.carbon.2012.05.010.
  • Liu, K.; Chen, L.; Chen, Y.; Wu, J.; Zhang, W.; Chen, F.; Fu, Q. Preparation of Polyester/Reduced Graphene Oxide Composites via in Situ Melt Polycondensation and Simultaneous Thermo-Reduction of Graphene Oxide. J. Mater. Chem. 2011, 21, 8612–8617. DOI: 10.1039/c1jm10717h.
  • Sahoo, N. G.; Rana, S.; Cho, J. W.; Li, L.; Chan, S. H. Polymer Nanocomposites Based on Functionalized Carbon Nanotubes. Prog. Polym. Sci. 2010, 35, 837–867. DOI: 10.1016/j.progpolymsci.2010.03.002.
  • Spitalsky, Z.; Tasis, D.; Papagelis, K.; Galiotis, C. Carbon Nanotube-Polymer Composites: Chemistry, Processing, Mechanical and Electrical Properties. Prog. Polym. Sci. 2010, 35, 357–401. DOI: 10.1016/j.progpolymsci.2009.09.003.
  • Li, W.; Tang, X.-Z.; Zhang, H.-B.; Jiang, Z.-G.; Yu, Z.-Z.; Du, X.-S.; Mai, Y.-W. Simultaneous Surface Functionalization and Reduction of Graphene Oxide with Octadecylamine for Electrically Conductive Polystyrene Composites. Carbon 2011, 49, 4724–4730. DOI: 10.1016/j.carbon.2011.06.077.
  • El Sawi, I.; Olivier, P. A.; Demont, P.; Bougherara, H. Processing and Electrical Characterization of a Unidirectional CFRP Composite Filled with Double Walled Carbon Nanotubes. Compos. Sci. Technol. 2012, 73, 19–26. DOI: 10.1016/j.compscitech.2012.08.016.
  • Combessis, A.; Bayon, L.; Flandin, L. Effect of Filler Auto-Assembly on Percolation Transition in Carbon Nanotube/Polymer Composites. Appl. Phys. Lett. 2013, 102, 011907. DOI: 10.1063/1.4773994.
  • Thostenson, E. T.; Chou, T.-W. Real-Time in Situ Sensing of Damage Evolution in Advanced Fiber Composites Using Carbon Nanotube Networks. Nanotechnology 2008, 19, 215713. DOI: 10.1088/0957-4484/19/21/215713.
  • Thostenson, E. T.; Chou, T.-W. Carbon Nanotube Networks: Sensing of Distributed Strain and Damage for Life Prediction and Self Healing. Adv. Mater. 2006, 18, 2837–2841. DOI: 10.1002/adma.200600977.
  • Souier, T.; Santos, S.; Al Ghaferi, A.; Stefancich, M.; Chiesa, M. Enhanced Electrical Properties of Vertically Aligned Carbon Nanotube-Epoxy Nanocomposites with High Packing Density. Nanoscale. Res. Lett. 2012, 7, 1–8.
  • Dang, Z.-M.; Jiang, M.-J.; Xie, D.; Yao, S.-H.; Zhang, L.-Q.; Bai, J. Supersensitive Linear Piezoresistive Property in Carbon Nanotubes/Silicone Rubber Nanocomposites. J. Appl. Phys. 2008, 104, 024114. DOI: 10.1063/1.2956605.
  • Bokobza, L. Some Issues in Rubber Nanocomposites: New Opportunities for Silicone Materials. Silicon 2009, 1, 141–145. DOI: 10.1007/s12633-009-9010-6.
  • Bloor, D.; Graham, A.; Williams, E. J.; Laughlin, P. J.; Lussey, D. Metal-Polymer Composite with Nanostructured Filler Particles and Amplified Physical Properties. Appl. Phys. Lett. 2006, 88, 102103. DOI: 10.1063/1.2183359.
  • Huang, J.; Li, N.; Xiao, L.; Liu, H.; Wang, Y.; Chen, J.; Nie, X.; Zhu, Y. Fabrication of a Highly Tough, Strong, and Stiff Carbon Nanotube/Epoxy Conductive Composite with an Ultralow Percolation Threshold via Self-Assembly. J. Mater. Chem. A 2019, 7, 15731–15740. DOI: 10.1039/C9TA04256C.
  • Ma, L.; Zhu, Y.; Feng, P.; Song, G.; Huang, Y.; Liu, H.; Zhang, J.; Fan, J.; Hou, H.; Guo, Z. Reinforcing Carbon Fiber Epoxy Composites with Triazine Derivatives Functionalized Graphene Oxide Modified Sizing Agent. Compos. Part B Eng. 2019, 176, 107078. DOI: 10.1016/j.compositesb.2019.107078.
  • Gong, X.; Liu, Y.; Wang, Y.; Xie, Z.; Dong, Q.; Dong, M.; Liu, H.; Shao, Q.; Lu, N.; Murugadoss, V.; et al. Amino Graphene Oxide/Dopamine Modified Aramid Fibers: Preparation, Epoxy Nanocomposites and Property Analysis. Polymer 2019, 168, 131–137. DOI: 10.1016/j.polymer.2019.02.021.
  • He, Y.; Yang, S.; Liu, H.; Shao, Q.; Chen, Q.; Lu, C.; Jiang, Y.; Liu, C.; Guo, Z. Reinforced Carbon Fiber Laminates with Oriented Carbon Nanotube Epoxy Nanocomposites: Magnetic Field Assisted Alignment and Cryogenic Temperature Mechanical Properties. J. Colloid Interface Sci. 2018, 517, 40–51. DOI: 10.1016/j.jcis.2018.01.087.
  • Wu, Z.; Gao, S.; Chen, L.; Jiang, D.; Shao, Q.; Zhang, B.; Zhai, Z.; Wang, C.; Zhao, M.; Ma, Y.; et al. Electrically Insulated Epoxy Nanocomposites Reinforced with Synergistic Core–Shell SiO2@MWCNTs and Montmorillonite Bifillers. Macromol. Chem. Phys. 2017, 218, 1700357. DOI: 10.1002/macp.201700357.
  • He, Y.; Chen, Q.; Yang, S.; Lu, C.; Feng, M.; Jiang, Y.; Cao, G.; Zhang, J.; Liu, C. Micro-Crack Behavior of Carbon Fiber Reinforced Fe3O4/Graphene Oxide Modified Epoxy Composites for Cryogenic Application. Compos. Part A Appl. Sci. Manuf. 2018, 108, 12–22. DOI: 10.1016/j.compositesa.2018.02.014.
  • Lee, J.; Lim, M.; Yoon, J.; Kim, M. S.; Choi, B.; Kim, D. M.; Kim, D. H.; Park, I.; Choi, S. J. Transparent, Flexible Strain Sensor Based on a Solution-Processed Carbon Nanotube Network. ACS Appl. Mater. Interfaces 2017, 9, 26279–26285. DOI: 10.1021/acsami.7b03184.
  • Gupta, N.; Rao, K. D. M.; Srivastava, K.; Gupta, R.; Kumar, A.; Marconnet, A.; Fisher, T. S.; Kulkarni, G. U. Cosmetically Adaptable Transparent Strain Sensor for Sensitively Delineating Patterns in Small Movements of Vital Human Organs. ACS Appl. Mater. Interfaces 2018, 10, 44126–44133. DOI: 10.1021/acsami.8b16282.
  • Wang, Z.; Gao, W.; Zhang, Q.; Zheng, K.; Xu, J.; Xu, W.; Shang, E.; Jiang, J.; Zhang, J.; Liu, Y. 3D-Printed Graphene/Polydimethylsiloxane Composites for Stretchable and Strain-Insensitive Temperature Sensors. ACS Appl. Mater. Interfaces 2019, 11, 1344–1352. DOI: 10.1021/acsami.8b16139.
  • Wu, S.; Zhang, J.; Ladani, R. B.; Ravindran, A. R.; Mouritz, A. P.; Kinloch, A. J.; Wang, C. H. Novel Electrically Conductive Porous PDMS/Carbon Nanofiber Composites for Deformable Strain Sensors and Conductors. ACS Appl. Mater. Interfaces 2017, 9, 14207–14215. DOI: 10.1021/acsami.7b00847.
  • Yu, H.; Lian, Y.; Sun, T.; Yang, X.; Wang, Y.; Xie, G.; Du, X.; Gou, J.; Li, W.; Tai, H. Two-Sided Topological Architecture on a Monolithic Flexible Substrate for Ultrasensitive Strain Sensors. ACS Appl. Mater. Interfaces 2019, 11, 43543–43552. DOI: 10.1021/acsami.9b14476.
  • Zheng, Y.; Li, Y.; Li, Z.; Wang, Y.; Dai, K.; Zheng, G.; Liu, C.; Shen, C. The Effect of Filler Dimensionality on the Electromechanical Performance of Polydimethylsiloxane Based Conductive Nanocomposites for Flexible Strain Sensors. Compos. Sci. Technol. 2017, 139, 64–73. DOI: 10.1016/j.compscitech.2016.12.014.
  • Xiang, D.; Zhang, X.; Li, Y.; Harkin-Jones, E.; Zheng, Y.; Wang, L.; Zhao, C.; Wang, P. Enhanced Performance of 3D Printed Highly Elastic Strain Sensors of Carbon Nanotube/Thermoplastic Polyurethane Nanocomposites via Non-Covalent Interactions. Compos. Part B Eng. 2019, 176, 107250. DOI: 10.1016/j.compositesb.2019.107250.
  • Balberg, I.; Binenbaum, N.; Wagner, N. Percolation Thresholds in the Three-Dimensional Sticks System. Phys. Rev. Lett. 1984, 52, 1465–1468. DOI: 10.1103/PhysRevLett.52.1465.
  • Yoonessi, M.; Gaier, J. R. Highly Conductive Multifunctional Graphene Polycarbonate Nanocomposites. ACS Nano 2010, 4, 7211–7220. DOI: 10.1021/nn1019626.
  • Levine, L. E.; Long, G. G.; Ilavsky, J.; Gerhardt, R. A.; Ou, R.; Parker, C. A. Self-Assembly of Carbon Black into Nanowires That Form a Conductive Three Dimensional Micronetwork. Appl. Phys. Lett. 2007, 90, 014101. DOI: 10.1063/1.2425011.
  • Waddell, J.; Ou, R.; Capozzi, C. J.; Gupta, S.; Parker, C. A.; Gerhardt, R. A.; Seal, K.; Kalinin, S. V.; Baddorf, A. P. Detection of Percolating Paths in Polyhedral Segregated Network Composites Using Electrostatic Force Microscopy and Conductive Atomic Force Microscopy. Appl. Phys. Lett. 2009, 95, 233122. DOI: 10.1063/1.3265742.
  • Al-Saleh, M. H.; Sundararaj, U. An Innovative Method to Reduce Percolation Threshold of Carbon Black Filled Immiscible Polymer Blends. Compos. Part A Appl. Sci. Manuf. 2008, 39, 284–293. DOI: 10.1016/j.compositesa.2007.10.010.
  • Dai, K.; Zhao, S.; Zhai, W.; Zheng, G.; Liu, C.; Chen, J.; Shen, C. Tuning of Liquid Sensing Performance of Conductive Carbon Black (CB)/Polypropylene (PP) Composite Utilizing a Segregated Structure. Compos. Part A Appl. Sci. Manuf. 2013, 55, 11–18. DOI: 10.1016/j.compositesa.2013.08.001.
  • Balogun, Y. A.; Buchanan, R. C. Enhanced Percolative Properties from Partial Solubility Dispersion of Filler Phase in Conducting Polymer Composites (CPCs). Compos. Sci. Technol. 2010, 70, 892–900. DOI: 10.1016/j.compscitech.2010.01.009.
  • Malliaris, A.; Turner, D. T. Influence of Particle Size on the Electrical Resistivity of Compacted Mixtures of Polymeric and Metallic Powders. J. Appl. Phys 1971, 42, 614–618. DOI: 10.1063/1.1660071.
  • Grunlan, J. C.; Gerberich, W. W.; Francis, L. F. Lowering the Percolation Threshold of Conductive Composites Using Particulate Polymer Microstructure. J. Appl. Polym. Sci. 2001, 80, 692–705. DOI: 10.1002/1097-4628(20010425)80:4<692::AID-APP1146>3.0.CO;2-W.
  • Kusy, R. P.; Turner, D. T. Electrical Conductivity of a Polyurethane Elastomer Containing Segregated Particles of Nickel. J. Appl. Polym. Sci. 1973, 17, 1631–1633. DOI: 10.1002/app.1973.070170528.
  • Gupta, S.; Ou, R. Q.; Gerhardt, R. A. Effect of the Fabrication Method on the Electrical Properties of Poly(Acrylonitrile-co-Butadiene-co-Styrene)/Carbon Black Composites. J. Elec. Mater. 2006, 35, 224–229. DOI: 10.1007/BF02692439.
  • Pang, H.; Bao, Y.; Xu, L.; Yan, D.-X.; Zhang, W.-Q.; Wang, J.-H.; Li, Z.-M. Double-Segregated Carbon Nanotube-Polymer Conductive Composites as Candidates for Liquid Sensing Materials. J. Mater. Chem. A 2013, 1, 4177–4181. DOI: 10.1039/c3ta10242d.
  • Bao, Y.; Xu, L.; Pang, H.; Yan, D.-X.; Chen, C.; Zhang, W.-Q.; Tang, J.-H.; Li, Z.-M. Preparation and Properties of Carbon Black/Polymer Composites with Segregated and Double-Percolated Network Structures. J. Mater. Sci. 2013, 48, 4892–4898. DOI: 10.1007/s10853-013-7269-x.
  • Jurewicz, I.; Worajittiphon, P.; King, A. A. K.; Sellin, P. J.; Keddie, J. L.; Dalton, A. B. Locking Carbon Nanotubes in Confined Lattice Geometries - A Route to Low Percolation in Conducting Composites. J. Phys. Chem. B 2011, 115, 6395–6400. DOI: 10.1021/jp111998p.
  • Ou, R.; Gupta, S.; Parker, C. A.; Gerhardt, R. A. Fabrication and Electrical Conductivity of Poly(Methyl Methacrylate) (PMMA)/Carbon Black (CB) Composites: Comparison between an Ordered Carbon Black Nanowire-like Segregated Structure and a Randomly Dispersed Carbon Black Nanostructure. J. Phys. Chem. B 2006, 110, 22365–22373. DOI: 10.1021/jp064498o.
  • Pang, H.; Piao, Y.-Y.; Cui, C.-H.; Bao, Y.; Lei, J.; Yuan, G.-P.; Zhang, C.-L. Preparation and Performance of Segregated Polymer Composites with Hybrid Fillers of Octadecylamine Functionalized Graphene and Carbon Nanotubes. J. Polym. Res. 2013, 20, 304.
  • Pang, H.; Chen, C.; Bao, Y.; Chen, J.; Ji, X.; Lei, J.; Li, Z.-M. Electrically Conductive Carbon Nanotube/Ultrahigh Molecular Weight Polyethylene Composites with Segregated and Double Percolated Structure. Mater. Lett. 2012, 79, 96–99. DOI: 10.1016/j.matlet.2012.03.111.
  • Bharati, A.; Cardinaels, R.; Seo, J. W.; Wubbenhorst, M.; Moldenaers, P. Enhancing the Conductivity of Carbon Nanotube Filled Blends by Tuning Their Phase Separated Morphology with a Copolymer. Polymer 2015, 79, 271–282. DOI: 10.1016/j.polymer.2015.09.080.
  • Grunlan, J. C.; Gerberich, W. W.; Francis, L. F. Electrical and Mechanical Behavior of Carbon Black–Filled Poly(Vinyl Acetate) Latex–Based Composites. Polym. Eng. Sci. 2001, 41, 1947–1962. DOI: 10.1002/pen.10891.
  • Mao, C.; Zhu, Y.; Jiang, W. Design of Electrical Conductive Composites: tuning the Morphology to Improve the Electrical Properties of Graphene Filled Immiscible Polymer Blends. ACS Appl. Mater. Interfaces 2012, 4, 5281–5286. DOI: 10.1021/am301230q.
  • Qi, X.-Y.; Yan, D.; Jiang, Z.; Cao, Y.-K.; Yu, Z.-Z.; Yavari, F.; Koratkar, N. Enhanced Electrical Conductivity in Polystyrene Nanocomposites at Ultra-Low Graphene Content. ACS Appl. Mater. Interfaces 2011, 3, 3130–3133. DOI: 10.1021/am200628c.
  • Xu, Z.; Zhang, Y.; Wang, Z.; Sun, N.; Li, H. Enhancement of Electrical Conductivity by Changing Phase Morphology for Composites Consisting of Polylactide and Poly(Epsilon-Caprolactone) Filled with Acid-Oxidized Multiwalled Carbon Nanotubes. ACS Appl. Mater. Interfaces 2011, 3, 4858–4864. DOI: 10.1021/am201355j.
  • Huang, J.; Mao, C.; Zhu, Y.; Jiang, W.; Yang, X. Control of Carbon Nanotubes at the Interface of a co-Continuous Immiscible Polymer Blend to Fabricate Conductive Composites with Ultralow Percolation Thresholds. Carbon 2014, 73, 267–274. DOI: 10.1016/j.carbon.2014.02.063.
  • Gubbels, F.; Jerome, R.; Vanlathem, E.; Deltour, R.; Blacher, S.; Brouers, F. Kinetic and Thermodynamic Control of the Selective Localization of Carbon Black at the Interface of Immiscible Polymer Blends. Chem. Mater. 1998, 10, 1227–1235. DOI: 10.1021/cm970594d.
  • Gao, C.; Zhang, S.; Lin, Y.; Li, F.; Guan, S.; Jiang, Z. High-Performance Conductive Materials Based on the Selective Location of Carbon Black in Poly(Ether Ether Ketone)/Polyimide Matrix. Compos. Part B Eng. 2015, 79, 124–131.
  • Zhang, L.; Wan, C.; Zhang, Y. Morphology and Electrical Properties of Polyamide 6/Polypropylene/Multi-Walled Carbon Nanotubes Composites. Compos. Sci. Technol. 2009, 69, 2212–2217. DOI: 10.1016/j.compscitech.2009.06.005.
  • Al-Saleh, M. H.; Sundararaj, U. Nanostructured Carbon Black Filled Polypropylene/Polystyrene Blends Containing Styrene-Butadiene-Styrene Copolymer: Influence of Morphology on Electrical Resistivity. Eur. Polym. J. 2008, 44, 1931–1939. DOI: 10.1016/j.eurpolymj.2008.04.013.
  • Cui, L.; Zhang, Y.; Zhang, Y.; Zhang, X.; Zhou, W. Electrical Properties and Conductive Mechanisms of Immiscible Polypropylene/Novolac Blends Filled with Carbon Black. Eur. Polym. J. 2007, 43, 5097–5106. DOI: 10.1016/j.eurpolymj.2007.08.023.
  • Pan, Y.; Liu, X.; Hao, X.; Stary, Z.; Schubert, D. W. Enhancing the Electrical Conductivity of Carbon Black-Filled Immiscible Polymer Blends by Tuning the Morphology. Eur. Polym. J. 2016, 78, 106–115. DOI: 10.1016/j.eurpolymj.2016.03.019.
  • Gao, X.; Zhang, S.; Mai, F.; Lin, L.; Deng, Y.; Deng, H.; Fu, Q. Preparation of High Performance Conductive Polymer Fibres from Double Percolated Structure. J. Mater. Chem. 2011, 21, 6401–6408. DOI: 10.1039/c0jm04543h.
  • Ma, L.-F.; Bao, R.-Y.; Huang, S.-L.; Liu, Z.-Y.; Yang, W.; Xie, B.-H.; Yang, M.-B. Electrical Properties and Morphology of Carbon Black Filled PP/EPDM Blends: effect of Selective Distribution of Fillers Induced by Dynamic Vulcanization. J. Mater. Sci. 2013, 48, 4942–4951. DOI: 10.1007/s10853-013-7275-z.
  • Yuan, J.-K.; Yao, S.-H.; Sylvestre, A.; Bai, J. Biphasic Polymer Blends Containing Carbon Nanotubes: Heterogeneous Nanotube Distribution and Its Influence on the Dielectric Properties. J. Phys. Chem. C 2012, 116, 2051–2058. DOI: 10.1021/jp210872w.
  • Calberg, C.; Blacher, S.; Gubbels, F.; Brouers, F.; Deltour, R.; Jér?Me, R. Electrical and Dielectric Properties of Carbon Black Filled co-Continuous Two-Phase Polymer Blends. J. Phys. D: Appl. Phys. 1999, 32, 1517–1525. DOI: 10.1088/0022-3727/32/13/313.
  • Bose, S.; Bhattacharyya, A. R.; Bondre, A. P.; Kulkarni, A. R.; Pötschke, P. Rheology, Electrical Conductivity, and the Phase Behavior of Cocontinuous PA6/ABS Blends with MWNT: Correlating the Aspect Ratio of MWNT with the Percolation Threshold. J. Polym. Sci. B Polym. Phys. 2008, 46, 1619–1631. DOI: 10.1002/polb.21501.
  • Khare, R. A.; Bhattacharyya, A. R.; Kulkarni, A. R.; Saroop, M.; Biswas, A. Influence of Multiwall Carbon Nanotubes on Morphology and Electrical Conductivity of PP/ABS Blends. J. Polym. Sci. B Polym. Phys. 2008, 46, 2286–2295. DOI: 10.1002/polb.21560.
  • Thongruang, W.; Balik, C. M.; Spontak, R. J. Volume-Exclusion Effects in Polyethylene Blends Filled with Carbon Black, Graphite, or Carbon Fiber. J. Polym. Sci. B Polym. Phys. 2002, 40, 1013–1025. DOI: 10.1002/polb.10157.
  • Sun, Y.; Guo, Z.-X.; Yu, J. Effect of ABS Rubber Content on the Localization of MWCNTs in PC/ABS Blends and Electrical Resistivity of the Composites. Macromol. Mater. Eng. 2010, 295, 263–268. DOI: 10.1002/mame.200900242.
  • Gubbels, F.; Blacher, S.; Vanlathem, E.; Jerome, R.; Deltour, R.; Brouers, F.; Teyssie, P. Design of Electrical Composites: Determining the Role of the Morphology on the Electrical Properties of Carbon Black Filled Polymer Blends. Macromolecules 1995, 28, 1559–1566. DOI: 10.1021/ma00109a030.
  • Gubbels, F.; Jerome, R.; Teyssie, P.; Vanlathem, E.; Deltour, R.; Calderone, A.; Parente, V.; Bredas, J. L. Selective Localization of Carbon Black in Immiscible Polymer Blends: A Useful Tool to Design Electrical Conductive Composites. Macromolecules 1994, 27, 1972–1974. DOI: 10.1021/ma00085a049.
  • Li, Y.; Shimizu, H. Conductive PVDF/PA6/CNTs Nanocomposites Fabricated by Dual Formation of Cocontinuous and Nanodispersion Structures. Macromolecules 2008, 41, 5339–5344. DOI: 10.1021/ma8006834.
  • Chen, Y.; Yang, Q.; Huang, Y.; Liao, X.; Niu, Y. Influence of Phase Coarsening and Filler Agglomeration on Electrical and Rheological Properties of MWNTs-Filled PP/PMMA Composites under Annealing. Polymer 2015, 79, 159–170. DOI: 10.1016/j.polymer.2015.10.027.
  • P?Tschke, P.; Bhattacharyya, A. R.; Janke, A. Morphology and Electrical Resistivity of Melt Mixed Blends of Polyethylene and Carbon Nanotube Filled Polycarbonate. Polymer 2003, 44, 8061–8069. DOI: 10.1016/j.polymer.2003.10.003.
  • Thongruang, W.; Spontak, R. J.; Balik, C. M. Bridged Double Percolation in Conductive Polymer Composites: An Electrical Conductivity, Morphology and Mechanical Property Study. Polymer 2002, 43, 3717–3725. DOI: 10.1016/S0032-3861(02)00180-5.
  • Al-Saleh, M. H. Carbon Nanotube-Filled Polypropylene/Polyethylene Blends: compatibilization and Electrical Properties. Polym. Bull. 2016, 73, 975–987. DOI: 10.1007/s00289-015-1530-1.
  • Lu, C.; Wang, R.; Hu, X.; N.; Cao, Q-q.; Huang, X-h.; He, Y-x.; Zhang, Y-q. Influence of Morphology on PTC Effect for Poly (Ethylene-co-Butyl Acrylate)/nylon6 Blends with Multiwall Carbon Nanotubes Dispersed at Interface and in Matrix. Polym. Bull. 2014, 71, 545–561. DOI: 10.1007/s00289-013-1076-z.
  • Sumita, M.; Sakata, K.; Asai, S.; Miyasaka, K.; Nakagawa, H. Dispersion of Fillers and the Electrical-Conductivity of Polymer Blends Filled with Carbon-Black. Polym. Bull. 1991, 25, 265–271. DOI: 10.1007/BF00310802.
  • Tan, Y.; Fang, L.; Xiao, J.; Song, Y.; Zheng, Q. Grafting of Copolymers onto Graphene by Miniemulsion Polymerization for Conductive Polymer Composites: improved Electrical Conductivity and Compatibility Induced by Interfacial Distribution of Graphene. Polym. Chem. 2013, 4, 2939. DOI: 10.1039/c3py00164d.
  • Tchoudakov, R.; Breuer, O.; Narkis, M.; Siegmann, A. Conductive Polymer Blends with Low Carbon Black Loading: Polypropylene/Polyamide. Polym. Eng. Sci. 1996, 36, 1336–1346. DOI: 10.1002/pen.10528.
  • Lyu, H.; Liu, J.; Liu, H.; Liu, C.; Lu, Y.; Sun, K.; Fan, R.; Wang, N.; Lu, N.; Guo, Z.; Wujcik, E. K. An Overview of Electrically Conductive Polymer Nanocomposites toward Electromagnetic Interference Shielding. Eng. Sci. 2018, 2, 26–42. DOI: 10.30919/es8d615.
  • Chen, M.; Li, K.; Cheng, G.; He, K.; Li, W.; Zhang, D.; Li, W.; Feng, Y.; Wei, L.; Li, W.; et al. Touchpoint-Tailored Ultra-Sensitive Piezoresistive Pressure Sensors with a Broad Dynamic Response Range and Low Detection Limit. ACS Appl. Mater. Interfaces 2018, 11, 2551–2558. DOI: 10.1021/acsami.8b20284.
  • Chen, J.; Li, H.; Yu, Q.; Hu, Y.; Cui, X.; Zhu, Y.; Jiang, W. Strain Sensing Behaviors of Stretchable Conductive Polymer Composites Loaded with Different Dimensional Conductive Fillers. Compos. Sci. Technol. 2018, 168, 388–396. DOI: 10.1016/j.compscitech.2018.10.025.
  • Sekitani, T.; Noguchi, Y.; Hata, K.; Fukushima, T.; Aida, T.; Someya, T. A Rubberlike Stretchable Active Matrix Using Elastic Conductors. Science 2008, 321, 1468–1472. DOI: 10.1126/science.1160309.
  • Alexopoulos, N. D.; Bartholome, C.; Poulin, P.; Marioli-Riga, Z. Structural Health Monitoring of Glass Fiber Reinforced Composites Using Embedded Carbon Nanotube (CNT) Fibers. Compos. Sci. Technol. 2010, 70, 260–271. DOI: 10.1016/j.compscitech.2009.10.017.
  • Bautista-Quijano, J. R.; Aviles, F.; Aguilar, J. O.; Tapia, A. Strain Sensing Capabilities of a Piezoresistive MWCNT-Polysulfone Film. Sensor Actuat. A Phys. 2010, 159, 135–140. DOI: 10.1016/j.sna.2010.03.005.
  • Gao, S-l.; Zhuang, R.-C.; Zhang, J.; Liu, J.-W.; Mäder, E. Glass Fibers with Carbon Nanotube Networks as Multifunctional Sensors. Adv. Funct. Mater. 2010, 20, 1885–1893. DOI: 10.1002/adfm.201000283.
  • Hu, N.; Karube, Y.; Arai, M.; Watanabe, T.; Yan, C.; Li, Y.; Liu, Y.; Fukunaga, H. Investigation on Sensitivity of a Polymer/Carbon Nanotube Composite Strain Sensor. Carbon 2010, 48, 680–687. DOI: 10.1016/j.carbon.2009.10.012.
  • Murugaraj, P.; Mainwaring, D.; Khelil, N. A.; Peng, J. L.; Siegele, R.; Sawant, P. The Improved Electromechanical Sensitivity of Polymer Thin Films Containing Carbon Clusters Produced in Situ by Irradiation with Metal Ions. Carbon 2010, 48, 4230–4237. DOI: 10.1016/j.carbon.2010.07.026.
  • Rogers, J. A.; Someya, T.; Huang, Y. Materials and Mechanics for Stretchable Electronics. Science 2010, 327, 1603–1607. DOI: 10.1126/science.1182383.
  • Shin, M. K.; Oh, J.; Lima, M.; Kozlov, M. E.; Kim, S. J.; Baughman, R. H. Elastomeric Conductive Composites Based on Carbon Nanotube Forests. Adv. Mater. 2010, 22, 2663–2667. DOI: 10.1002/adma.200904270.
  • Eswaraiah, V.; Balasubramaniam, K.; Ramaprabhu, S. Functionalized Graphene Reinforced Thermoplastic Nanocomposites as Strain Sensors in Structural Health Monitoring. J. Mater. Chem. 2011, 21, 12626–12628. DOI: 10.1039/c1jm12302e.
  • Gao, L.; Chou, T.-W.; Thostenson, E. T.; Zhang, Z.; Coulaud, M. In Situ Sensing of Impact Damage in Epoxy/Glass Fiber Composites Using Percolating Carbon Nanotube Networks. Carbon 2011, 49, 3382–3385. DOI: 10.1016/j.carbon.2011.04.003.
  • Granero, A. J.; Wagner, P.; Wagner, K.; Razal, J. M.; Wallace, G. G.; Panhuis, M. I. H. Highly Stretchable Conducting SIBS-P3HT Fibers. Adv. Funct. Mater. 2011, 21, 955–962. DOI: 10.1002/adfm.201001460.
  • Hwang, J.; Jang, J.; Hong, K.; Kim, K. N.; Han, J. H.; Shin, K.; Park, C. E. Poly(3-Hexylthiophene) Wrapped Carbon Nanotube/Poly(Dimethylsiloxane) Composites for Use in Finger-Sensing Piezoresistive Pressure Sensors. Carbon 2011, 49, 106–110. DOI: 10.1016/j.carbon.2010.08.048.
  • Kollosche, M.; Stoyanov, H.; Laflamme, S.; Kofod, G. Strongly Enhanced Sensitivity in Elastic Capacitive Strain Sensors. J. Mater. Chem. 2011, 21, 8292–8294. DOI: 10.1039/c0jm03786a.
  • Shang, S.; Zeng, W.; Tao, X-m. High Stretchable MWNTs/Polyurethane Conductive Nanocomposites. J. Mater. Chem. 2011, 21, 7274. DOI: 10.1039/c1jm10255a.
  • Wakuda, D.; Suganuma, K. Stretchable Fine Fiber with High Conductivity Fabricated by Injection Forming. Appl. Phys. Lett. 2011, 98, 073304. DOI: 10.1063/1.3555433.
  • Ahn, J.-H.; Je, J. H. Stretchable Electronics: materials, Architectures and Integrations. J. Phys. D Appl. Phys. 2012, 45, 103001. DOI: 10.1088/0022-3727/45/10/103001.
  • Lu, N.; Lu, C.; Yang, S.; Rogers, J. Highly Sensitive Skin-Mountable Strain Gauges Based Entirely on Elastomers. Adv. Funct. Mater. 2012, 22, 4044–4050. DOI: 10.1002/adfm.201200498.
  • Lin, L.; Deng, H.; Gao, X.; Zhang, S.; Bilotti, E.; Peijs, T.; Fu, Q. Modified Resistivity-Strain Behavior through the Incorporation of Metallic Particles in Conductive Polymer Composite Fibers Containing Carbon Nanotubes. Polym. Int. 2013, 62, 134–140. DOI: 10.1002/pi.4291.
  • Lin, L.; Liu, S.; Fu, S.; Zhang, S.; Deng, H.; Fu, Q. Fabrication of Highly Stretchable Conductors via Morphological Control of Carbon Nanotube Network. Small 2013, 9, 3620–3629. DOI: 10.1002/smll.201202306.
  • Lin, L.; Liu, S.; Zhang, Q.; Li, X.; Ji, M.; Deng, H.; Fu, Q. Towards Tunable Sensitivity of Electrical Property to Strain for Conductive Polymer Composites Based on Thermoplastic Elastomer. ACS Appl. Mater. Interfaces 2013, 5, 5815–5824. DOI: 10.1021/am401402x.
  • Deng, H.; Ji, M.; Yan, D.; Fu, S.; Duan, L.; Zhang, M.; Fu, Q. Towards Tunable Resistivity-Strain Behavior through Construction of Oriented and Selectively Distributed Conductive Networks in Conductive Polymer Composites. J. Mater. Chem. A 2014, 2, 10048–10058. DOI: 10.1039/C4TA01073F.
  • Li, M.; Li, H.; Zhong, W.; Zhao, Q.; Wang, D. Stretchable Conductive Polypyrrole/Polyurethane (PPy/PU) Strain Sensor with Netlike Microcracks for Human Breath Detection. ACS Appl. Mater. Interfaces 2014, 6, 1313–1319. DOI: 10.1021/am4053305.
  • Roh, E.; Hwang, B. U.; Kim, D.; Kim, B. Y.; Lee, N. E. Stretchable, Transparent, Ultrasensitive, and Patchable Strain Sensor for Human-Machine Interfaces Comprising a Nanohybrid of Carbon Nanotubes and Conductive Elastomers. ACS Nano 2015, 9, 6252–6261. DOI: 10.1021/acsnano.5b01613.
  • Li, Q.; Liu, H.; Zhang, S.; Zhang, D.; Liu, X.; He, Y.; Mi, L.; Zhang, J.; Liu, C.; Shen, C.; Guo, Z. Superhydrophobic Electrically Conductive Paper for Ultrasensitive Strain Sensor with Excellent Anticorrosion and Self-Cleaning Property. ACS Appl. Mater. Interfaces 2019, 11, 21904–21914. DOI: 10.1021/acsami.9b03421.
  • Chen, X.; Liu, H.; Zheng, Y.; Zhai, Y.; Liu, X.; Liu, C.; Mi, L.; Guo, Z.; Shen, C. Highly Compressible and Robust Polyimide/Carbon Nanotube Composite Aerogel for High-Performance Wearable Pressure Sensor. ACS Appl. Mater. Interfaces 2019, 11, 42594–42606. DOI: 10.1021/acsami.9b14688.
  • Wan, Y.; Qiu, Z.; Hong, Y.; Wang, Y.; Zhang, J.; Liu, Q.; Wu, Z.; Guo, C. F. A Highly Sensitive Flexible Capacitive Tactile Sensor with Sparse and High-Aspect-Ratio Microstructures. Adv. Electron. Mater. 2018, 4, 1700586. DOI: 10.1002/aelm.201700586.
  • You, X.; He, J.; Nan, N.; Sun, X.; Qi, K.; Zhou, Y.; Shao, W.; Liu, F.; Cui, S. Stretchable Capacitive Fabric Electronic Skin Woven by Electrospun Nanofiber Coated Yarns for Detecting Tactile and Multimodal Mechanical Stimuli. J. Mater. Chem. C 2018, 6, 12981–12991. DOI: 10.1039/C8TC03631D.
  • Lee, J.; Kwon, H.; Seo, J.; Shin, S.; Koo, J. H.; Pang, C.; Son, S.; Kim, J. H.; Jang, Y. H.; Kim, D. E.; Lee, T. Conductive Fiber-Based Ultrasensitive Textile Pressure Sensor for Wearable Electronics. Adv. Mater. 2015, 27, 2433–2439. DOI: 10.1002/adma.201500009.
  • Zhang, Y.; Fang, Y.; Li, J.; Zhou, Q.; Xiao, Y.; Zhang, K.; Luo, B.; Zhou, J.; Hu, B. Dual-Mode Electronic Skin with Integrated Tactile Sensing and Visualized Injury Warning. ACS Appl. Mater. Interfaces 2017, 9, 37493–37500. DOI: 10.1021/acsami.7b13016.
  • Lonergan, M. C.; Brett, E. J. S.; Doleman, J.; Beaber, S. A.; Grubbs, R. H.; Lewis, N. S. Array-Based Vapor Sensing Using Chemically Sensitive, Carbon Black-Polymer Resistors. Chem. Mater. 1996, 8, 2298–2312. DOI: 10.1021/cm960036j.
  • Li, J. R.; Xu, J. R.; Zhang, M. Q.; Rong, M. Z. Carbon Black/Polystyrene Composites as Candidates for Gas Sensing Materials. Carbon 2003, 41, 2353–2360. DOI: 10.1016/S0008-6223(03)00273-2.
  • Shevade, A. V.; Ryan, M. A.; Homer, M. L.; Manfreda, A. M.; Zhou, H.; Manatt, K. S. Molecular Modeling of Polymer Composite-Analyte Interactions in Electronic Nose Sensors. Sens. Actuators B Chem. 2003, 93, 84–91. DOI: 10.1016/S0925-4005(03)00245-4.
  • Dong, X. M.; Fu, R. W.; Zhang, M. Q.; Zhang, B.; Rong, M. Z. Electrical Resistance Response of Carbon Black Filled Amorphous Polymer Composite Sensors to Organic Vapors at Low Vapor Concentrations. Carbon 2004, 42, 2551–2559. DOI: 10.1016/j.carbon.2004.05.034.
  • Lewis, N. S. Comparisons betweenMammalian and ArtificialOlfaction Based on Arrays ofCarbon Black − PolymerComposite Vapor Detectors. Acc. Chem. Res. 2004, 37, 663–672. DOI: 10.1021/ar030120m.
  • Feller, J. F.; Guezenoc, H.; Bellegou, H.; Grohens, Y. Smart Poly(Styrene)/Carbon Black Conductive Polymer Composites Films for Styrene Vapour Sensing. Macromol. Symp. 2005, 222, 273–280. DOI: 10.1002/masy.200550436.
  • Castro, M.; Lu, J.; Bruzaud, S.; Kumar, B.; Feller, J.-F. Carbon Nanotubes/Poly(Epsilon-Caprolactone) Composite Vapour Sensors. Carbon 2009, 47, 1930–1942. DOI: 10.1016/j.carbon.2009.03.037.
  • Castro, M.; Kumar, B.; Feller, J. F.; Haddi, Z.; Amari, A.; Bouchikhi, B. Novel e-Nose for the Discrimination of Volatile Organic Biomarkers with an Array of Carbon Nanotubes (CNT) Conductive Polymer Nanocomposites (CPC) Sensors. Sens. Actuators B Chem. 2011, 159, 213–219. DOI: 10.1016/j.snb.2011.06.073.
  • Li, Y.; Pötschke, P.; Pionteck, J.; Voit, B. Electrical and Vapor Sensing Behaviors of Polycarbonate Composites Containing Hybrid Carbon Fillers. Eur. Polym. J. 2018, 108, 461–471. DOI: 10.1016/j.eurpolymj.2018.09.027.
  • Bora, A.; Mohan, K.; Pegu, D.; Gohain, C. B.; Dolui, S. K. A Room Temperature Methanol Vapor Sensor Based on Highly Conducting Carboxylated Multi-Walled Carbon Nanotube/Polyaniline Nanotube Composite. Sens. Actuators B Chem. 2017, 253, 977–986. DOI: 10.1016/j.snb.2017.07.023.
  • Benlikaya, R.; Slobodian, P.; Proisl, K.; Cvelbar, U.; Morozov, I. Ascertaining the Factors That Influence the Vapor Sensor Response: The Entire Case of MWCNT Network Sensor. Sens. Actuators B Chem. 2019, 283, 478–486. DOI: 10.1016/j.snb.2018.11.160.
  • Qiang, F.; Dai, S.-W.; Zhao, L.; Gong, L.-X.; Zhang, G.-D.; Jiang, J.-X.; Tang, L.-C. An Insulating Second Filler Tuning Porous Conductive Composites for Highly Sensitive and Fast Responsive Organic Vapor Sensor. Sens. Actuators B Chem. 2019, 285, 254–263. DOI: 10.1016/j.snb.2019.01.043.
  • Wu, W.; Shi, N.; Zhang, J.; Wu, X.; Wang, T.; Yang, L.; Yang, R.; Ou, C.; Xue, W.; Feng, X.; et al. Electrospun Fluorescent Sensors for the Selective Detection of Nitro Explosive Vapors and Trace Water. J. Mater. Chem. A 2018, 6, 18543–18550. DOI: 10.1039/C8TA01861H.
  • Singhal, P.; Mazumdar, P.; Rattan, S. One Pot Synthesis of Free Standing Highly Conductive Polymer Nanocomposite Films: Towards Rapid BTX Vapor Sensor. Polym. Eng. Sci. 2018, 58, 1074–1081. DOI: 10.1002/pen.24669.
  • Sheng, J.; Zeng, X.; Zhu, Q.; Yang, Z.; Zhang, X. Facile Fabrication of CNT-Based Chemical Sensor Operating at Room Temperature. Mater. Res. Express. 2017, 4, 125701. DOI: 10.1088/2053-1591/aa9ac7.
  • Yan, H.; Zhong, M.; Lv, Z.; Wan, P. Stretchable Electronic Sensors of Nanocomposite Network Films for Ultrasensitive Chemical Vapor Sensing. Small 2017, 13, 1701697. DOI: 10.1002/smll.201701697.
  • Li, Y.; Zheng, Y.; Zhan, P.; Zheng, G.; Dai, K.; Liu, C.; Shen, C. Vapor Sensing Performance as a Diagnosis Probe to Estimate the Distribution of Multi-Walled Carbon Nanotubes in Poly(Lactic Acid)/Polypropylene Conductive Composites. Sens. Actuators B Chem. 2018, 255, 2809–2819. DOI: 10.1016/j.snb.2017.09.098.
  • Patel, S. V.; Cemalovic, S.; Tolley, W. K.; Hobson, S. T.; Anderson, R.; Fruhberger, B. Implications of Thermal Annealing on the Benzene Vapor Sensing Behavior of PEVA-Graphene Nanocomposite Threads. ACS Sens. 2018, 3, 640–647. DOI: 10.1021/acssensors.7b00912.
  • Gao, J.; Wang, H.; Huang, X.; Hu, M.; Xue, H.; Li, R. K. Y. A Super-Hydrophobic and Electrically Conductive Nanofibrous Membrane for a Chemical Vapor Sensor. J. Mater. Chem. A 2018, 6, 10036–10047. DOI: 10.1039/C8TA02356E.
  • Marriam, I.; Wang, X.; Tebyetekerwa, M.; Chen, G.; Zabihi, F.; Pionteck, J.; Peng, S.; Ramakrishna, S.; Yang, S.; Zhu, M. A Bottom-up Approach to Design Wearable and Stretchable Smart Fibers with Organic Vapor Sensing Behaviors and Energy Storage Properties. J. Mater. Chem. A 2018, 6, 13633–13643. DOI: 10.1039/C8TA03262A.
  • Chiou, J. C.; Wu, C. C.; Huang, Y. C.; Chang, S. C.; Lin, T. M. Effects of Operating Temperature on Droplet Casting of Flexible Polymer/Multi-Walled Carbon Nanotube Composite Gas Sensors. Sensors 2016, 17, 4. DOI: 10.3390/s17010004.
  • Liu, H.; Huang, W.; Yang, X.; Dai, K.; Zheng, G.; Liu, C.; Shen, C.; Yan, X.; Guo, J.; Guo, Z. Organic Vapor Sensing Behaviors of Conductive Thermoplastic Polyurethane-Graphene Nanocomposites. J. Mater. Chem. C 2016, 4, 4459–4469. DOI: 10.1039/C6TC00987E.
  • Poetschke, P.; Andres, T.; Villmow, T.; Pegel, S.; Bruenig, H.; Kobashi, K.; Fischer, D.; Haeussler, L. Liquid Sensing Properties of Fibres Prepared by Melt Spinning from Poly(Lactic Acid) Containing Multi-Walled Carbon Nanotubes. Compos. Sci. Technol. 2010, 70, 343–349. DOI: 10.1016/j.compscitech.2009.11.005.
  • Pioggia, G.; Francesco, F. D.; Ferro, M.; Sorrentino, F.; Salvo, P.; Ahluwalia, A. Characterization of a Carbon Nanotube Polymer Composite Sensor for an Impedimetric Electronic Tongue. Microchim. Acta 2008, 163, 57–62. DOI: 10.1007/s00604-008-0952-y.
  • Poetschke, P.; Kobashi, K.; Villmow, T.; Andres, T.; Paiva, M. C.; Covas, J. A. Liquid Sensing Properties of Melt Processed Polypropylene/Poly(Epsilon-Caprolactone) Blends Containing Multiwalled Carbon Nanotubes. Compos. Sci. Technol. 2011, 71, 1451–1460. DOI: 10.1016/j.compscitech.2011.05.019.
  • Villmow, T.; Pegel, S.; John, A.; Rentenberger, R.; Pötschke, P. Liquid Sensing: smart Polymer/CNT Composites. Mater. Today 2011, 14, 340–345. DOI: 10.1016/S1369-7021(11)70164-X.
  • Villmow, T.; Pegel, S.; Pötschke, P.; Heinrich, G. Polymer/Carbon Nanotube Composites for Liquid Sensing: Model for Electrical Response Characteristics. Polymer 2011, 52, 2276–2285. DOI: 10.1016/j.polymer.2011.03.029.
  • Rentenberger, R.; Cayla, A.; Villmow, T.; Jehnichen, D.; Campagne, C.; Rochery, M.; Devaux, E.; Pötschke, P. Multifilament Fibres of Poly(Epsilon-Caprolactone)/Poly(Lactic Acid) Blends with Multiwalled Carbon Nanotubes as Sensor Materials for Ethyl Acetate and Acetone. Sens. Actuators B Chem. 2011, 160, 22–31.
  • Xu, Z.; Wang, N.; Li, N.; Zheng, G.; Dai, K.; Liu, C.; Shen, C. Liquid Sensing Behaviors of Conductive Polypropylene Composites Containing Hybrid Fillers of Carbon Fiber and Carbon Black. Compos. Part B Eng. 2016, 94, 45–51. DOI: 10.1016/j.compositesb.2016.03.047.
  • Koratkar, N.; Modi, A.; Lass, E.; Ajayan, P. Temperature Effects on Resistance of Aligned Multiwalled Carbon Nanotube Films. J. Nanosci. Nanotech. 2004, 4, 744–748. DOI: 10.1166/jnn.2004.109.
  • Miaudet, P.; Bartholome, C.; Derre, A.; Maugey, M.; Sigaud, G.; Zakri, C.; Poulin, P. Thermo-Electrical Properties of PVA-Nanotube Composite Fibers. Polymer 2007, 48, 4068–4074. DOI: 10.1016/j.polymer.2007.05.028.
  • Xiang, Z.-D.; Chen, T.; Li, Z.-M.; Bian, X.-C. Negative Temperature Coefficient of Resistivity in Lightweight Conductive Carbon Nanotube/Polymer Composites. Macromol. Mater. Eng. 2009, 294, 91–95. DOI: 10.1002/mame.200800273.
  • Rybak, A.; Boiteux, G.; Melis, F.; Seytre, G. Conductive Polymer Composites Based on Metallic Nanofiller as Smart Materials for Current Limiting Devices. Compos. Sci. Technol. 2010, 70, 410–416. DOI: 10.1016/j.compscitech.2009.11.019.
  • Zhao, S.; Lou, D.; Zhan, P.; Li, G.; Dai, K.; Guo, J.; Zheng, G.; Liu, C.; Shen, C.; Guo, Z. Heating-Induced Negative Temperature Coefficient Effect in Conductive Graphene/Polymer Ternary Nanocomposites with a Segregated and Double-Percolated Structure. J. Mater. Chem. C 2017, 5, 8233–8242. DOI: 10.1039/C7TC02472J.
  • Cui, C.-H.; Pang, H.; Yan, D.-X.; Jia, L.-C.; Jiang, X.; Lei, J.; Li, Z.-M. Percolation and Resistivity-Temperature Behaviours of Carbon Nanotube-Carbon Black Hybrid Loaded Ultrahigh Molecular Weight Polyethylene Composites with Segregated Structures. RSC Adv. 2015, 5, 61318–61323. DOI: 10.1039/C5RA08847J.
  • Sajid, M.; Gul, J. Z.; Kim, S. W.; Kim, H. B.; Na, K. H.; Choi, K. H. Development of 3D-Printed Embedded Temperature Sensor for Both Terrestrial and Aquatic Environmental Monitoring Robots”, 3D Print. Addit. Manuf. 2018, 5, 160–169. DOI: 10.1089/3dp.2017.0092.
  • Jasmi, F.; Azeman, N. H.; Bakar, A. A. A.; Zan, M. S. D.; Haji Badri, K.; Su'ait, M. S. Ionic Conductive Polyurethane-Graphene Nanocomposite for Performance Enhancement of Optical Fiber Bragg, Grating Temperature Sensor. IEEE Access 2018, 6, 47355–47363. DOI: 10.1109/ACCESS.2018.2867220.
  • Hou, Y-l.; Zhang, P.; Xie, M-m. Thermally Induced Double-Positive Temperature Coefficients of Electrical Resistivity in Combined Conductive Filler-Doped Polymer Composites. J. Appl. Polym. Sci. 2017, 134, 44876. DOI: 10.1002/app.44876.
  • Zhang, P.; Wang, B-b. Positive Temperature Coefficient Effect and Mechanism of Compatible LLDPE/HDPE Composites Doping Conductive Graphite Powders. J. Appl. Polym. Sci. 2018, 135, 46453. DOI: 10.1002/app.46453.
  • Lai, F.; Wang, B.-B.; Zhang, P. Enhanced Positive Temperature Coefficient in Amorphous PS/CSPE-MWCNT Composites with Low Percolation Threshold. J. Appl. Polym. Sci. 2019, 136, 47053. DOI: 10.1002/app.47053.
  • Yurddaskal, M.; Erol, M.; Celik, E. Carbon Black and Graphite Filled Conducting Nanocomposite Films for Temperature Sensor Applications. J. Mater. Sci. Mater. Electron. 2017, 28, 9514–9518. DOI: 10.1007/s10854-017-6695-y.
  • Zhang, P.; Hou, Y.; Wang, B. VO2-Enhanced Double Positive Temperature Coefficient Effects of High Density Polyethylene/Graphite Composites. Mater. Res. Express 2018, 6, 035702. DOI: 10.1088/2053-1591/aaf589.
  • Li, M.; Wang, Y.; Zhang, Y.; Zhou, H.; Huang, Z.; Li, D. Highly Flexible and Stretchable MWCNT/HEPCP Nanocomposites with Integrated near-IR, Temperature and Stress Sensitivity for Electronic Skin. J. Mater. Chem. C 2018, 6, 5877–5887. DOI: 10.1039/C8TC01331D.
  • Zhao, S.; Li, G.; Liu, H.; Dai, K.; Zheng, G.; Yan, X.; Liu, C.; Chen, J.; Shen, C.; Guo, Z. Positive Temperature Coefficient (PTC) Evolution of Segregated Structural Conductive Polypropylene Nanocomposites with Visually Traceable Carbon Black Conductive Network. Adv. Mater. Interfaces 2017, 4, 1700265. DOI: 10.1002/admi.201700265.
  • Zhao, X.; Long, Y.; Yang, T.; Li, J.; Zhu, H. Simultaneous High Sensitivity Sensing of Temperature and Humidity with Graphene Woven Fabrics. ACS Appl. Mater. Interfaces 2017, 9, 30171–30176. DOI: 10.1021/acsami.7b09184.
  • Zhou, X.; Zhu, L.; Fan, L.; Deng, H.; Fu, Q. Fabrication of Highly Stretchable, Washable, Wearable, Water-Repellent Strain Sensors with Multi-Stimuli Sensing Ability. ACS Appl. Mater. Interfaces 2018, 10, 31655–31663. DOI: 10.1021/acsami.8b11766.
  • Zou, H-z.; Zhang, X.; Zheng, S-d.; Yang, W.; Liu, Z-y.; Yang, M-b.; Feng, J-m. PVDF/CF Conductive Composites with High Sensitivity and Stable Reproducibility of Positive Temperature Coefficient Effect. Acta Polym. Sin. 2017, 8, 1215–1219. DOI: 10.1016/j.compositesa.2016.12.001.
  • Cui, X.; Chen, J.; Zhu, Y.; Jiang, W. Lightweight and Conductive Carbon Black/Chlorinated Poly(Propylene Carbonate) Foams with a Remarkable Negative Temperature Coefficient Effect of Resistance for Temperature Sensor Applications. J. Mater. Chem. C 2018, 6, 9354–9362. DOI: 10.1039/C8TC02123F.
  • Giurgiutiu, V.; Zagrai, A.; Bao, J. J. Piezoelectric Wafer Embedded Active Sensors for Aging Aircraft Structural Health Monitoring. Struct. Health Monit. 2002, 1, 41–61. DOI: 10.1177/147592170200100104.
  • Kang, I.; Schulz, M. J.; Kim, J. H.; Shanov, V.; Shi, D. A Carbon Nanotube Strain Sensor for Structural Health Monitoring. Smart Mater. Struct. 2006, 15, 737–748. DOI: 10.1088/0964-1726/15/3/009.
  • Burton, A. R.; Lynch, J. P.; Kurata, M.; Law, K. H. Fully Integrated Carbon Nanotube Composite Thin Film Strain Sensors on Flexible Substrates for Structural Health Monitoring. Smart Mater. Struct. 2017, 26, 095052. DOI: 10.1088/1361-665X/aa8105.
  • Amjadi, M.; Pichitpajongkit, A.; Lee, S.; Ryu, S.; Park, I. Highly Stretchable and Sensitive Strain Sensor Based on Silver Nanowire-Elastomer Nanocomposite. ACS Nano 2014, 8, 5154–5163. DOI: 10.1021/nn501204t.
  • Helmer, R. J. N.; Farrow, D.; Ball, K.; Phillips, E.; Farouil, A.; Blanchonette, I. A Pilot Evaluation of an Electronic Textile for Lower Limb Monitoring and Interactive Biofeedback. In 5th Asia-Pacific Congress on Sports Technology, Subic, A., Fuss, F. K., Alam, F. and Clifton, P. Eds., 2011, pp. 513–518DOI: 10.1016/j.proeng.2011.05.123.
  • Giorgino, T.; Tormene, P.; Lorussi, F.; De Rossi, D.; Quaglini, S. Sensor Evaluation for Wearable Strain Gauges in Neurological Rehabilitation. IEEE Trans. Neural Syst. Rehabil. Eng. 2009, 17, 409–415. DOI: 10.1109/TNSRE.2009.2019584.
  • Lorussi, F.; Scilingo, E. P.; Tesconi, M.; Tognetti, A.; De Rossi, D. Strain Sensing Fabric for Hand Posture and Gesture Monitoring. IEEE Trans. Inform. Technol. Biomed. 2005, 9, 372–381. DOI: 10.1109/TITB.2005.854510.
  • Liu, C.-X.; Choi, J.-W. Patterning Conductive PDMS Nanocomposite in an Elastomer Using Microcontact Printing. J. Micromech. Microeng. 2009, 19, 085019. DOI: 10.1088/0960-1317/19/8/085019.
  • Xiao, X.; Yuan, L.; Zhong, J.; Ding, T.; Liu, Y.; Cai, Z.; Rong, Y.; Han, H.; Zhou, J.; Wang, Z. L. High-Strain Sensors Based on ZnO Nanowire/Polystyrene Hybridized Flexible Films. Adv. Mater. 2011, 23, 5440–5444. DOI: 10.1002/adma.201103406.
  • McEvoy, M. A.; Correll, N. Materials That Couple Sensing, Actuation, Computation, and Communication. Science 2015, 347, 1261689–1261689. DOI: 10.1126/science.1261689.
  • Majidi, C. Soft Robotics: A Perspective-Current Trends and Prospects for the Future. Soft Robot 2014, 1, 5–11. DOI: 10.1089/soro.2013.0001.
  • Cai, L.; Song, L.; Luan, P.; Zhang, Q.; Zhang, N.; Gao, Q.; Zhao, D.; Zhang, X.; Tu, M.; Yang, F.; et al. Super-Stretchable, Transparent Carbon Nanotube-Based Capacitive Strain Sensors for Human Motion Detection. Sci. Rep. 2013, 3, 3048DOI: 10.1038/srep03048.
  • Cohen, D. J.; Mitra, D.; Peterson, K.; Maharbiz, M. M. A Highly Elastic, Capacitive Strain Gauge Based on Percolating Nanotube Networks. Nano Lett. 2012, 12, 1821–1825. DOI: 10.1021/nl204052z.
  • Yao, S.; Zhu, Y. Wearable Multifunctional Sensors Using Printed Stretchable Conductors Made of Silver Nanowires. Nanoscale 2014, 6, 2345–2352. DOI: 10.1039/c3nr05496a.
  • Lipomi, D. J.; Vosgueritchian, M.; Tee, B. C.; Hellstrom, S. L.; Lee, J. A.; Fox, C. H.; Bao, Z. Skin-like Pressure and Strain Sensors Based on Transparent Elastic Films of Carbon Nanotubes. Nature Nanotech. 2011, 6, 788–792. DOI: 10.1038/nnano.2011.184.
  • Zhang, S.; Liu, H.; Yang, S.; Shi, X.; Zhang, D.; Shan, C.; Mi, L.; Liu, C.; Shen, C.; Guo, Z. Ultrasensitive and Highly Compressible Piezoresistive Sensor Based on Polyurethane Sponge Coated with a Cracked Cellulose Nanofibril/Silver Nanowire Layer. ACS Appl. Mater. Interfaces 2019, 11, 10922–10932. DOI: 10.1021/acsami.9b00900.
  • Duan, L.; D’Hooge, D.; R.; Spoerk, M.; Cornillie, P.; Cardon, L.  Facile and Low-Cost Route for Sensitive Stretchable Sensors by Controlling Kinetic and Thermodynamic Conductive Network Regulating Strategies. ACS Appl. Mater. Interfaces 2018, 10, 22678–22691. DOI: 10.1021/acsami.8b03967.
  • Ji, M.; Deng, H.; Yan, D.; Li, X.; Duan, L.; Fu, Q. Selective Localization of Multi-Walled Carbon Nanotubes in Thermoplastic Elastomer Blends: An Effective Method for Tunable Resistivity–Strain Sensing Behavior. Compos. Sci. Technol. 2014, 92, 16–26. DOI: 10.1016/j.compscitech.2013.11.018.
  • Lin, Y.; Liu, S.; Chen, S.; Wei, Y.; Dong, X.; Liu, L. A Highly Stretchable and Sensitive Strain Sensor Based on Graphene–Elastomer Composites with a Novel Double-Interconnected Network. J. Mater. Chem. C 2016, 4, 6345–6352. DOI: 10.1039/C6TC01925K.
  • Wang, M.; Zhang, K.; Dai, X. X.; Li, Y.; Guo, J.; Liu, H.; Li, G. H.; Tan, Y. J.; Zeng, J. B.; Guo, Z. Enhanced Electrical Conductivity and Piezoresistive Sensing in Multi-Wall Carbon Nanotubes/Polydimethylsiloxane Nanocomposites via the Construction of a Self-Segregated Structure. Nanoscale 2017, 9, 11017–11026. DOI: 10.1039/C7NR02322G.
  • Wang, S.; Zhang, X.; Wu, X.; Lu, C. Tailoring Percolating Conductive Networks of Natural Rubber Composites for Flexible Strain Sensors via a Cellulose Nanocrystal Templated Assembly. Soft Matter 2016, 12, 845–852. DOI: 10.1039/C5SM01958C.
  • Chen, J.; Zhu, Y.; Jiang, W. A Stretchable and Transparent Strain Sensor Based on Sandwich-like PDMS/CNTs/PDMS Composite Containing an Ultrathin Conductive CNT Layer. Compos. Sci. Technol. 2020, 186, 107938. DOI: 10.1016/j.compscitech.2019.107938.
  • Cho, S. H.; Lee, S. W.; Yu, S.; Kim, H.; Chang, S.; Kang, D.; Hwang, I.; Kang, H. S.; Jeong, B.; Kim, E. H.; et al. Micropatterned Pyramidal Ionic Gels for Sensing Broad-Range Pressures with High Sensitivity. ACS Appl. Mater. Interfaces 2017, 9, 10128–10135. DOI: 10.1021/acsami.7b00398.
  • Mannsfeld, S. C. B.; Tee, B. C. K.; Stoltenberg, R. M.; Chen, C. V. H. H.; Barman, S.; Muir, B. V. O.; Sokolov, A. N.; Reese, C.; Bao, Z. Highly Sensitive Flexible Pressure Sensors with Microstructured Rubber Dielectric Layers. Nature Mater. 2010, 9, 859–864. DOI: 10.1038/nmat2834.
  • Wang, X.; Gu, Y.; Xiong, Z.; Cui, Z.; Zhang, T. Silk-Molded Flexible, Ultrasensitive, and Highly Stable Electronic Skin for Monitoring Human Physiological Signals. Adv. Mater. 2014, 26, 1336–1342. DOI: 10.1002/adma.201304248.
  • Dong, X. M.; Luo, Y.; Xie, L. N.; Fu, R. W.; Zhang, M. Q. Conductive Carbon Black-Filled Polymethacrylate Composites as Gas Sensing Materials: Effect of Glass Transition Temperature. Thin Solid Films 2008, 516, 7886–7890. DOI: 10.1016/j.tsf.2008.06.003.
  • Kennedy, Z. C.; Christ, J. F.; Evans, K. A.; Arey, B. W.; Sweet, L. E.; Warner, M. G.; Erikson, R. L.; Barrett, C. A. 3D-Printed Poly(Vinylidene Fluoride)/Carbon Nanotube Composites as a Tunable, Low-Cost Chemical Vapour Sensing Platform. Nanoscale 2017, 9, 5458–5466. DOI: 10.1039/C7NR00617A.
  • Hansen, C. M. Hansen Solubility Parameters; CRC Press: New York, 2000.
  • Jeon, J.; Lee, H.-B.-R.; Bao, Z. Flexible Wireless Temperature Sensors Based on Ni Microparticle-Filled Binary Polymer Composites. Adv. Mater. 2013, 25, 850–855. DOI: 10.1002/adma.201204082.
  • Liu, F.; Zhang, X.; Li, W.; Cheng, J.; Tao, X.; Li, Y.; Sheng, L. Investigation of the Electrical Conductivity of HDPE Composites Filled with Bundle-like MWNTs. Compos. Part A-Appl. S 2009, 40, 1717–1721. DOI: 10.1016/j.compositesa.2009.08.004.
  • Ho, D. H.; Sun, Q.; Kim, S. Y.; Han, J. T.; Kim, D. H.; Cho, J. H. Stretchable and Multimodal All Graphene Electronic Skin. Adv. Mater. Weinheim. 2016, 28, 2601–2608. DOI: 10.1002/adma.201505739.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.