579
Views
6
CrossRef citations to date
0
Altmetric
Review

Modeling Permeability in Multi-Phase Polymer Composites: A Critical Review of Semi-Empirical Approaches

, &
Pages 194-237 | Received 04 May 2019, Accepted 09 Mar 2020, Published online: 05 Apr 2020

References

  • Maltseva, O.; Mozhaeva, N. Empirical Modeling of the Total Electron Content of the Ionosphere. In Empirical Modeling and Its Applications; TechOpen, London. 2016.
  • Scharnhorst, A.; Börner, K.; van den Besselaar, P. Models of Science Dynamics: Encounters between Complexity Theory and Information Sciences; Springer: Berlin, 2012.
  • Kayabasi, E.; Kurt, H. Simulation of Heat Exchangers and Heat Exchanger Networks with an Economic Aspect”, Engineering Science and Technology. Int. J. 2018, 21, 70–76. DOI: 10.1016/j.jestch.2018.02.006.
  • Septien, S.; Escudero Sanz, F. J.; Salvador, S.; Valin, S. Steam Gasification of Char from Wood Chips Fast Pyrolysis: Development of a Semi-Empirical Model for a Fluidized Bed Reactor Application. Biomass Bioenergy 2015, 77, 64–74. DOI: 10.1016/j.biombioe.2015.03.011.
  • Choi, Y. S.; Kim, S. J.; Kim, D. A Semi-Empirical Correlation for Pressure Drop in Packed Beds of Spherical Particles. Transp. Porous Media 2008, 75, 133–149.
  • Matoz-Fernandez, D. A.; Dávila, M. V.; Pasinetti, P. M.; Ramirez-Pastor, A. J. A Semiempirical Model for Adsorption of Binary Mixtures. Phys. Chem. Chem. Phys. 2014, 16, 24063–24068. DOI: 10.1039/C4CP03456B.
  • Fedorov, A. V.; Shulgin, A. V.; Korneeva, Y. S. Semi-Empirical Model of the Combustion Wave in a Gas Suspension of Magnesium Particles. Combust. Explos. Shock Waves 2015, 51, 560–567. DOI: 10.1134/S0010508215050068.
  • Prasad, K.; Nikzad, M.; Doherty, C. M.; Sbarski, I. Diffusion of Low-Molecular-Weight Permeants through Semi-Crystalline Polymers: Combining Molecular Dynamics with Semi-Empirical Models. Polym. Int. 2018, 67, 717–725. DOI: 10.1002/pi.5560.
  • Gaskova, O. L. Semiempirical Model for the Description of Sorption Equilibria on Clay Mineral Surfaces. Geochem. Int. 2009, 47, 611–622. DOI: 10.1134/S0016702909060068.
  • Corcione, M. A Semi-Empirical Model for Predicting the Effective Dynamic Viscosity of Nanoparticle Suspensions AU - Corcione, Massimo. Heat Transfer Eng. 2012, 33, 575–583. DOI: 10.1080/01457632.2012.630242.
  • Clerc, D. G. Mechanical Hardness and Elastic Stiffness of Alloys: semiempirical models1Contribution of NIST—An Agency of the U.S. Government. Not Subject to Copyright in the United States1. J. Phys. Chem. Solids 1999, 60, 83–102. DOI: 10.1016/S0022-3697(98)00237-6.
  • Geyer, R.; Jambeck, J. R.; Law, K. L. Production, Use, and Fate of All Plastics Ever Made. Sci. Adv. 2017, 3, e1700782. DOI: 10.1126/sciadv.1700782.
  • Balakrishnan, P.; Thomas, M. S.; Pothen, L. A.; Thomas, S.; Sreekala, M. S. Polymer Films for Packaging. In Encyclopedia of Polymeric Nanomaterials; Kobayashi, S., Müllen, K. Eds.; Springer: Berlin, 2014; pp 1–8.
  • George, S. C.; Thomas, S. Transport Phenomena through Polymeric Systems. Prog. Polym. Sci. 2001, 26, 985–1017. DOI: 10.1016/S0079-6700(00)00036-8.
  • Hiltner, A.; Liu, R. Y. F.; Hu, Y. S.; Baer, E. Oxygen Transport as a Solid-State Structure Probe for Polymeric Materials: A Review. J. Polym. Sci. B Polym. Phys. 2005, 43, 1047–1063. DOI: 10.1002/polb.20349.
  • Choudalakis, G.; Gotsis, A. D. Permeability of Polymer/Clay Nanocomposites: A Review. Eur. Polym. J. 2009, 45, 967–984. DOI: 10.1016/j.eurpolymj.2009.01.027.
  • Prasad, K.; Nikzad, M.; Sbarski, I. Permeability Control in Polymeric Systems: A Review. J. Polym. Res. 2018, 25, 232. DOI: 10.1007/s10965-018-1636-x.
  • Izrailev, S.; Stepaniants, S.; Isralewitz, B.; Kosztin, D.; Lu, H.; Molnar, F.; Wriggers, W.; Schulten, K. Steered Molecular Dynamics; Springer: Berlin, 1999; pp 39–65.
  • Shamloo, A.; Pedram, M. Z.; Heidari, H.; Alasty, A. Computing the Blood Brain Barrier (BBB) Diffusion Coefficient: A Molecular Dynamics Approach. J. Magn. Magn. Mater. 2016, 410, 187–197. DOI: 10.1016/j.jmmm.2016.03.030.
  • Rydzewski, J.; Nowak, W. Ligand Diffusion in Proteins via Enhanced Sampling in Molecular Dynamics. Phys. Life Rev. 2017, 22-23, 58–74. DOI: 10.1016/j.plrev.2017.03.003.
  • Wei, B.; Zhang, X.; Liu, J.; Xu, X.; Pu, W.; Bai, M. Adsorptive Behaviors of Supercritical CO2 in Tight Porous Media and Triggered Chemical Reactions with Rock Minerals during CO2-EOR and -Sequestration. Chem. Eng. J. 2020, 381, 122577. DOI: 10.1016/j.cej.2019.122577.
  • Wolterbeek, T. K. T.; Ruckert, F.; Van Moorsel, S. G.; Cornelissen, E. K. Reactive Transport and Permeability Evolution in Wellbore Defects Exposed to Periodic Pulses of CO2-Rich Water. Int. J. Greenhouse Gas Control 2019, 91, 102835. DOI: 10.1016/j.ijggc.2019.102835.
  • Rudakov, D.; Sobolev, V. A Mathematical Model of Gas Flow during Coal Outburst Initiation. Int. J. Min. Sci. Technol. 2019, 29, 791–796. DOI: 10.1016/j.ijmst.2019.02.002.
  • Kim, Y.-N.; Kwon, H.-J.; Lee, D.-U. Effects of Pulsed Electric Field (PEF) Treatment on Physicochemical Properties of Panax Ginseng. Innovative Food Sci. Emerg. Technol. 2019, 58, 102232. DOI: 10.1016/j.ifset.2019.102232.
  • Snarskii, A. A.; Zorinets, D.; Shamonin, M.; Kalita, V. M. Theoretical Method for Calculation of Effective Properties of Composite Materials with Reconfigurable Microstructure: Electric and Magnetic Phenomena. Phys. A 2019, 535, 122467. DOI: 10.1016/j.physa.2019.122467.
  • Buschow, K. H. J.; Cahn, R. W.; Flemings, M. C.; Ilschner, B.; Kramer, E. J.; Mahajan, S. Polymer Glasses: Diffusion in. In Buschow, K.H.J., Cahn, R., Flemings, M., Ilschner, B., Kramer, E., Mahajan, S., Veyssiere, P. Eds. Encyclopedia of Materials - Science and Technology, Vols. 1–11; Elsevier, Amsterdam, 2001.
  • Gårdebjer, S.; Gebäck, T.; Andersson, T.; Fratini, E.; Baglioni, P.; Bordes, R.; Viridén, A.; Nicholas, M.; Lorén, N.; Larsson, A. The Impact of Interfaces in Laminated Packaging on Transport of Carboxylic Acids. J. Membr. Sci. 2016, 518, 305–312. DOI: 10.1016/j.memsci.2016.06.045.
  • Ashry, A. H.; Abou-Leila, M.; Abdalla, A. M. Measurement of Radon Permeability through Polyethylene Membrane Using Scintillation Detector. Radiat. Meas. 2011, 46, 149–152. DOI: 10.1016/j.radmeas.2010.07.018.
  • He, W.; Lv, W.; Dickerson, J. H. Gas Diffusion Mechanisms and Models. In Gas Transport in Solid Oxide Fuel Cells; Springer International Publishing: Cham, 2014; pp 9–17.
  • Bikson, B.; Nelson, J. K.; Muruganandam, N. Composite Cellulose Acetate/Poly(Methyl Methacrylate) Blend Gas Separation Membranes. J. Membr. Sci. 1994, 94, 313–328. DOI: 10.1016/0376-7388(94)87041-1.
  • Glaskova, Т.; Aniskevich, A. Moisture Absorption by Epoxy/Montmorillonite Nanocomposite. Compos. Sci. Technol. 2009, 69, 2711–2715. DOI: 10.1016/j.compscitech.2009.08.013.
  • Geerts, Y.; Gillard, S.; Geuskens, G. Morphology and Permeability of Polymer Blends—I. Crosslinked EPDM-Silicone Blends. Eur. Polym. J. 1996, 32, 143–145. DOI: 10.1016/0014-3057(95)00139-5.
  • Koenhen, D. M.; Smolders, C. A. The Determination of Solubility parameters of Solvents and Polymers by Means of Correlations with Other Physical Quantities. J. Appl. Polym. Sci. 1975, 19, 1163–1179. DOI: 10.1002/app.1975.070190423.
  • Kubica, P.; Wolinska-Grabczyk, A. Correlation between Cohesive Energy Density, Fractional Free Volume, and Gas Transport Properties of Poly(Ethylene-co-Vinyl Acetate) Materials. Int. J. Polym. Sci. 2015, 2015, 1–8. DOI: 10.1155/2015/861979.
  • Mannan, H. A.; Mukhtar, H.; Murugesan, T.; Man, Z.; Bustam, M. A.; Shaharun, M. S.; Bakar, M. Z. A. Prediction of CO2 Gas Permeability Behavior of Ionic Liquid–Polymer Membranes (ILPM). J. Appl. Polym. Sci. 2017, 134. DOI: 10.1002/app.44761.
  • Singh, B.; Bouchet, J.; Rochat, G.; Leterrier, Y.; Månson, J. A. E.; Fayet, P. Ultra-Thin Hybrid Organic/Inorganic Gas Barrier Coatings on Polymers. Surf. Coat. Technol. 2007, 201, 7107–7114. DOI: 10.1016/j.surfcoat.2007.01.013.
  • Elrawemi, M.; Blunt, L.; Fleming, L.; Bird, D.; Robbins, D.; Sweeney, F. Modelling Water Vapour Permeability through Atomic Layer Deposition Coated Photovoltaic Barrier Defects. Thin Solid Films 2014, 570, 101–106. DOI: 10.1016/j.tsf.2014.08.042.
  • da Silva Sobrinho, A. S.; Czeremuszkin, G.; Latrèche, M.; Wertheimer, M. R. Defect-Permeation Correlation for Ultrathin Transparent Barrier Coatings on Polymers. J. Vac. Sci. Technol. A 2000, 18, 149–157. DOI: 10.1116/1.582156.
  • Duan, Z.; Thomas, N. L. Water Vapour Permeability of Poly(Lactic Acid): Crystallinity and the Tortuous Path Model. J. Appl. Phys. 2014, 115, 064903. DOI: 10.1063/1.4865168.
  • Lasoski, S. W. Jr.; Cobbs, W. H. Jr. Moisture Permeability of Polymers. I. Role of Crystallinity and Orientation. J. Polym. Sci. 1959, 36, 21–33. DOI: 10.1002/pol.1959.1203613003.
  • Alter, H. A Critical Investigation of Polyethylene Gas Permeability. J. Polym. Sci. 1962, 57, 925–935. DOI: 10.1002/pol.1962.1205716572.
  • Maxwell, J. C. A Treatise on Electricity and Magnetism; Clarendon Press, Oxford, 1873.
  • Bitinis, N.; Verdejo, R.; Maya, E. M.; Espuche, E.; Cassagnau, P.; Lopez-Manchado, M. A. Physicochemical Properties of Organoclay Filled Polylactic Acid/Natural Rubber Blend Bionanocomposites. Compos. Sci. Technol. 2012, 72, 305–313. DOI: 10.1016/j.compscitech.2011.11.018.
  • Lohfink, G. W.; Kamal, M. R. Morphology and Permeability in Extruded Polypropylene/Ethylene Vinyl-Alcohol Copolymer Blends. Polym. Eng. Sci. 1993, 33, 1404–1420. DOI: 10.1002/pen.760332106.
  • Bouma, R. H. B.; Checchetti, A.; Chidichimo, G.; Drioli, E. Permeation through a Heterogeneous Membrane: The Effect of the Dispersed Phase. J. Membr. Sci. 1997, 128, 141–149. DOI: 10.1016/S0376-7388(96)00303-1.
  • Gonzo, E. E.; Parentis, M. L.; Gottifredi, J. C. Estimating Models for Predicting Effective Permeability of Mixed Matrix Membranes. J. Membr. Sci. 2006, 277, 46–54. DOI: 10.1016/j.memsci.2005.10.007.
  • Vinh-Thang, H.; Kaliaguine, S. Predictive Models for Mixed-Matrix Membrane Performance: A Review. Chem. Rev. 2013, 113, 4980–5028. DOI: 10.1021/cr3003888.
  • Hu, Y. S.; Liu, R. Y. F.; Zhang, L. Q.; Rogunova, M.; Schiraldi, D. A.; Nazarenko, S.; Hiltner, A.; Baer, E. Oxygen Transport and Free Volume in Cold-Crystallized and Melt-Crystallized Poly(Ethylene Naphthalate). Macromolecules 2002, 35, 7326–7337. DOI: 10.1021/ma0205156.
  • Kit, K. M.; Schultz, J. M.; Gohil, R. M. Morphology and Barrier Properties of Oriented Blends of Poly(Ethylene Terephthalate) and Poly(Ethylene 2,6-Naphthalate) with Poly(Ethylene-co-Vinyl Alcohol). Polym. Eng. Sci. 1995, 35, 680–692. DOI: 10.1002/pen.760350808.
  • Kim, D.; Kim, S. W. Barrier Property and Morphology of Polypropylene/Polyamide Blend Film. Korean J. Chem. Eng. 2003, 20, 776–782. DOI: 10.1007/BF02706923.
  • Chiew, Y. C.; Glandt, E. D. The Effect of Structure on the Conductivity of a Dispersion. J. Colloid Interface Sci. 1983, 94, 90–104. DOI: 10.1016/0021-9797(83)90238-2.
  • Park, H. B.; Ha, S. Y.; Lee, Y. M. Percolation Behavior of Gas Permeability in Rigid-Flexible Block Copolymer Membranes. J. Membr. Sci. 2000, 177, 143–152. DOI: 10.1016/S0376-7388(00)00468-3.
  • Verlet, L.; Weis, J.-J. Equilibrium Theory of Simple Liquids. Phys. Rev. A 1972, 5, 939–952. DOI: 10.1103/PhysRevA.5.939.
  • Higuchi, W. I. A New Relationship for the Dielectric Properties of Two Phase Mixtures. J. Phys. Chem. 1958, 62, 649–653. DOI: 10.1021/j150564a003.
  • Tinga, W. R.; Voss, W. A. G.; Blossey, D. F. Generalized Approach to Multiphase Dielectric Mixture Theory. J. Appl. Phys. 1973, 44, 3897–3902. DOI: 10.1063/1.1662868.
  • Bruggeman, D. A. G. Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen. Ann. Phys. 1935, 416, 636–664. DOI: 10.1002/andp.19354160705.
  • Böttcher, C. J. F. The Dielectric Constant of Crystalline Powders. Recl. Trav. Chim. Pays Bas 2010, 64, 47–51. DOI: 10.1002/recl.19450640205.
  • Pal, R. Permeation Models for Mixed Matrix Membranes. J. Colloid Interface Sci. 2008, 317, 191–198. DOI: 10.1016/j.jcis.2007.09.032.
  • Felske, J. D. Effective Thermal Conductivity of Composite Spheres in a Continuous Medium with Contact Resistance. Int. J. Heat Mass Transf. 2004, 47, 3453–3461. DOI: 10.1016/j.ijheatmasstransfer.2004.01.013.
  • Haddadi, M.; Agoudjil, B.; Boudenne, A.; Garnier, B. Analytical and Numerical Investigation on Effective Thermal Conductivity of Polymer Composites Filled with Conductive Hollow Particles. Int. J. Thermophys. 2013, 34, 101–112. DOI: 10.1007/s10765-013-1393-3.
  • Soleimany, A.; Karimi-Sabet, J.; Hosseini, S. S. Experimental and Modeling Investigations towards Tailoring Cellulose Triacetate Membranes for High Performance Helium Separation. Chem. Eng. Res. Des. 2018, 137, 194–212. DOI: 10.1016/j.cherd.2018.07.011.
  • Mahajan, R.; Koros, W. J. Factors Controlling Successful Formation of Mixed-Matrix Gas Separation Materials. Ind. Eng. Chem. Res. 2000, 39, 2692–2696. DOI: 10.1021/ie990799r.
  • Nielsen, L. E. The Thermal and Electrical Conductivity of Two-Phase Systems. Ind. Eng. Chem. Fund. 1974, 13, 17–20. DOI: 10.1021/i160049a004.
  • Rajati, H.; Bakhtiari, O.; Mohammadi, T. Molecular Modeling of the Gaseous Penetrants Permeabilities through 4A, DDR and Silicalite-1 Zeolites Incorporated in Mixed Matrix Membranes. Sep. Sci. Technol. 2018, 53, 910–927. DOI: 10.1080/01496395.2017.1406513.
  • Casado-Coterillo, C.; Fernández-Barquín, A.; Valencia, S.; Irabien, Á. Estimating CO2/N2 Permselectivity through Si/Al = 5 Small-Pore Zeolites/PTMSP Mixed Matrix Membranes: Influence of Temperature and Topology. Membranes 2018, 8, 32. DOI: 10.3390/membranes8020032.
  • Hopfenberg, H. B.; Paul, D. R. Chapter 10 - Transport Phenomena in Polymer Blends. In Polymer Blends; Paul, D. R.; Newman, S. Eds.; Academic Press, New York, 1978; pp 445–489.
  • Bharadwaj, R. K. Modeling the Barrier Properties of Polymer-Layered Silicate Nanocomposites. Macromolecules 2001, 34, 9189–9192. DOI: 10.1021/ma010780b.
  • Nazarenko, S.; Meneghetti, P.; Julmon, P.; Olson, B. G.; Qutubuddin, S. Gas Barrier of Polystyrene Montmorillonite Clay Nanocomposites: Effect of Mineral Layer Aggregation. J. Polym. Sci. B Polym. Phys. 2007, 45, 1733–1753. DOI: 10.1002/polb.21181.
  • Ha, H.; Park, J.; Ando, S.; Kim, C. B.; Nagai, K.; Freeman, B. D.; Ellison, C. J. Gas Permeation and Selectivity of Poly(Dimethylsiloxane)/Graphene Oxide Composite Elastomer Membranes. J. Membr. Sci. 2016, 518, 131–140. DOI: 10.1016/j.memsci.2016.06.028.
  • Picard, E.; Vermogen, A.; Gérard, J. F.; Espuche, E. Barrier Properties of Nylon 6-Montmorillonite Nanocomposite Membranes Prepared by Melt Blending: Influence of the Clay Content and Dispersion State: Consequences on Modelling. J. Membr. Sci. 2007, 292, 133–144. DOI: 10.1016/j.memsci.2007.01.030.
  • Sorrentino, A.; Tortora, M.; Vittoria, V. Diffusion Behavior in Polymer–Clay Nanocomposites. J. Polym. Sci. B Polym. Phys. 2006, 44, 265–274. DOI: 10.1002/polb.20684.
  • Ly, Y. P.; Cheng, Y.-L. Diffusion in Heterogeneous Media Containing Impermeable Domains Arranged in Parallel Arrays of Variable Orientation. J. Membr. Sci. 1997, 133, 207–215. DOI: 10.1016/S0376-7388(97)00085-9.
  • Yang, C.; Nuxoll, E. E.; Cussler, E. L. Reactive Barrier Films. AIChE J. 2001, 47, 295–302. DOI: 10.1002/aic.690470208.
  • Yang, C.; Smyrl, W. H.; Cussler, E. L. Flake Alignment in Composite Coatings. J. Membr. Sci. 2004, 231, 1–12. DOI: 10.1016/j.memsci.2003.09.022.
  • Lape, N. K.; Nuxoll, E. E.; Cussler, E. L. Polydisperse Flakes in Barrier Films. J. Membr. Sci. 2004, 236, 29–37. DOI: 10.1016/j.memsci.2003.12.026.
  • Gusev, A. A.; Lusti, H. R. Rational Design of Nanocomposites for Barrier Applications. Adv. Mater. 2001, 13, 1641–1643. DOI: 10.1002/1521-4095(200111)13:21<1641::AID-ADMA1641>3.0.CO;2-P.
  • Fredrickson, G. H.; Bicerano, J. Barrier Properties of Oriented Disk Composites. J. Chem. Phys. 1999, 110, 2181–2188. DOI: 10.1063/1.477829.
  • Hedenqvist, M.; Gedde, U. W. Diffusion of Small-Molecule Penetrants in Semicrystalline Polymers. Prog. Polym. Sci. 1996, 21, 299–333. DOI: 10.1016/0079-6700(95)00022-4.
  • Michaels, A. S.; Parker, R. B. Sorption and Flow of Gases in Polyethylene. J. Polym. Sci. 1959, 41, 53–71. DOI: 10.1002/pol.1959.1204113805.
  • Compañ, V.; Del Castillo, L. F.; Hernández, S. I.; López-González, M. M.; Riande, E. Crystallinity Effect on the Gas Transport in Semicrystalline Coextruded Films Based on Linear Low Density Polyethylene. J. Polym. Sci. B Polym. Phys. 2010, 48, 634–642. DOI: 10.1002/polb.21932.
  • Cussler, E. L.; Hughes, S. E.; Ward, W. J.; Aris, R. Barrier Membranes. J. Membr. Sci. 1988, 38, 161–174. DOI: 10.1016/S0376-7388(00)80877-7.
  • Rehage, G.; Ernst, O.; Fuhrmann, J. Fickian and Non-Fickian Diffusion in High Polymer Systems. Discuss. Faraday Soc. 1970, 49, 208–221. DOI: 10.1039/df9704900208.
  • Reinecke, S. A.; Sleep, B. E. Knudsen Diffusion, Gas Permeability, and Water Content in an Unconsolidated Porous Medium. Water Resour. Res. 2002, 38, 16-1–16-15. DOI: 10.1029/2002WR001278.
  • Huang, H.-D.; Liu, C.-Y.; Li, D.; Chen, Y.-H.; Zhong, G.-J.; Li, Z.-M. Ultra-Low Gas Permeability and Efficient Reinforcement of Cellulose Nanocomposite Films by Well-Aligned Graphene Oxide Nanosheets. J. Mater. Chem. A 2014, 2, 15853–15863. DOI: 10.1039/C4TA03305A.
  • Lin, Y.; Tyler, R.; Sun, H.; Shi, K.; Schiraldi, D. A. Improving Oxygen Barrier Property of Biaxially Oriented PET/Phosphate Glass Composite Films. Polymer 2017, 127, 236–240. DOI: 10.1016/j.polymer.2017.08.041.
  • Aris, R. On a Problem in Hindered Diffusion. Arch. Rational Mech. Anal. 1986, 95, 83–91. DOI: 10.1007/BF00281082.
  • Falla, W. R.; Mulski, M.; Cussler, E. L. Estimating Diffusion through Flake-Filled Membranes. J. Membr. Sci. 1996, 119, 129–138. DOI: 10.1016/0376-7388(96)00106-8.
  • Wakeham, W. A.; Mason, E. A. Diffusion through Multiperforate Laminae. Ind. Eng. Chem. Fund. 1979, 18, 301–305. DOI: 10.1021/i160072a001.
  • Te Hennepe, H. J. C.; Boswerger, W. B. F.; Bargeman, D.; Mulder, M. H. V.; Smolders, C. A. Zeolite-Filled Silicone Rubber Membranes Experimental Determination of Concentration Profiles. J. Membr. Sci. 1994, 89, 185–196. DOI: 10.1016/0376-7388(93)E0221-5.
  • Ebneyamini, A.; Azimi, H.; Tezel, F. H.; Thibault, J. Mixed Matrix Membranes Applications: Development of a Resistance-Based Model. J. Membr. Sci. 2017, 543, 351–360. DOI: 10.1016/j.memsci.2017.08.065.
  • Kang, D.-Y.; Jones, C. W.; Nair, S. Modeling Molecular Transport in Composite Membranes with Tubular Fillers. J. Membr. Sci. 2011, 381, 50–63. DOI: 10.1016/j.memsci.2011.07.015.
  • Alexandre, B.; Langevin, D.; Médéric, P.; Aubry, T.; Couderc, H.; Nguyen, Q. T.; Saiter, A.; Marais, S. Water Barrier Properties of Polyamide 12/Montmorillonite Nanocomposite Membranes: Structure and Volume Fraction Effects. J. Membr. Sci. 2009, 328, 186–204. DOI: 10.1016/j.memsci.2008.12.004.
  • Tan, B.; Thomas, N. L. Tortuosity Model to Predict the Combined Effects of Crystallinity and Nano-Sized Clay Mineral on the Water Vapour Barrier Properties of Polylactic Acid. Appl. Clay Sci. 2017, 141, 46–54. DOI: 10.1016/j.clay.2017.02.014.
  • Goderis, B.; Reynaers, H.; Koch, M. H. J.; Mathot, V. B. F. Use of SAXS and Linear Correlation Functions for the Determination of the Crystallinity and Morphology of Semi-Crystalline Polymers. Application to Linear Polyethylene. J. Polym. Sci. B Polym. Phys. 1999, 37, 1715–1738. DOI: 10.1002/(SICI)1099-0488(19990715)37:14<1715::AID-POLB15>3.0.CO;2-F.
  • Venable, R. M.; Krämer, A.; Pastor, R. W. Molecular Dynamics Simulations of Membrane Permeability. Chem. Rev. 2019, 119, 5954–5997. DOI: 10.1021/acs.chemrev.8b00486.
  • Shimazu, A.; Miyazaki, T.; Ikeda, K. Interpretation of d-Spacing Determined by Wide Angle X-Ray Scattering in 6FDA-Based Polyimide by Molecular Modeling. J. Membr. Sci. 2000, 166, 113–118. DOI: 10.1016/S0376-7388(99)00254-9.
  • Börjesson, A.; Erdtman, E.; Ahlström, P.; Berlin, M.; Andersson, T.; Bolton, K. Molecular Modelling of Oxygen and Water Permeation in Polyethylene. Polymer 2013, 54, 2988–2998. DOI: 10.1016/j.polymer.2013.03.065.
  • Orsi, M.; Michel, J.; Essex, J. W. Coarse-Grain Modelling of DMPC and DOPC Lipid Bilayers. J. Phys. Condens. Matter 2010, 22, 155106. DOI: 10.1088/0953-8984/22/15/155106.
  • Shelley, J. C.; Shelley, M. Y.; Reeder, R. C.; Bandyopadhyay, S.; Klein, M. L. A Coarse Grain Model for Phospholipid Simulations. J. Phys. Chem. B 2001, 105, 4464–4470. DOI: 10.1021/jp010238p.
  • Jiang, F.; Oliveira, M. S. A.; Sousa, A. C. M. Mesoscale SPH Modeling of Fluid Flow in Isotropic Porous Media. Comput. Phys. Commun. 2007, 176, 471–480. DOI: 10.1016/j.cpc.2006.12.003.
  • Belov, E. B.; Lomov, S. V.; Verpoest, I.; Peters, T.; Roose, D.; Parnas, R. S.; Hoes, K.; Sol, H. Modelling of Permeability of Textile Reinforcements: Lattice Boltzmann Method. Compos. Sci. Technol. 2004, 64, 1069–1080. DOI: 10.1016/j.compscitech.2003.09.015.
  • Berdichevsky, A. L.; Cai, Z. Preform Permeability Predictions by Self-Consistent Method and Finite Element Simulation. Polym. Compos. 1993, 14, 132–143. DOI: 10.1002/pc.750140207.
  • Guseva, O.; Gusev, A. A. Finite Element Assessment of the Potential of Platelet-Filled Polymers for Membrane Gas Separations. J. Membr. Sci. 2008, 325, 125–129. DOI: 10.1016/j.memsci.2008.07.030.
  • Jamieson, E. H. H.; Windle, A. H. Structure and Oxygen-Barrier Properties of Metallized Polymer Film. J. Mater. Sci. 1983, 18, 64–80. DOI: 10.1007/BF00543811.
  • Monsalve-Bravo, G. M.; Dutta, R. C.; Bhatia, S. K. Multiscale Simulation of Gas Transport in Mixed-Matrix Membranes with Interfacial Polymer Rigidification. Microporous Mesoporous Mater. 2019, 296, 109982. DOI: 10.1016/j.micromeso.2019.109982.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.