413
Views
3
CrossRef citations to date
0
Altmetric
Review

Poly(Caprolactone Fumarate) and Oligo[Poly(Ethylene Glycol) Fumarate]: Two Decades of Exploration in Biomedical Applications

, , , &
Pages 319-356 | Received 05 Jan 2020, Accepted 12 Apr 2020, Published online: 04 May 2020

References

  • Liang, Y.; Li, L.; Scott, R. A.; Kiick, K. L. Polymeric Biomaterials: Diverse Functions Enabled by Advances in Macromolecular Chemistry. Macromolecules 2017, 50, 483–502. DOI: 10.1021/acs.macromol.6b02389.
  • Tibbitt, M. W.; Rodell, C. B.; Burdick, J. A.; Anseth, K. S. Progress in Material Design for Biomedical Applications. Proc. Natl. Acad. Sci. USA. 2015, 112, 14444–14451. DOI: 10.1073/pnas.1516247112.
  • Kohane, D. S.; Langer, R. Polymeric Biomaterials in Tissue Engineering. Pediatr. Res. 2008, 63, 487–491. DOI: 10.1203/01.pdr.0000305937.26105.e7.
  • Teo, A. J. T.; Mishra, A.; Park, I.; Kim, Y.-J.; Park, W.-T.; Yoon, Y.-J. Polymeric Biomaterials for Medical Implants and Devices. ACS Biomater. Sci. Eng. 2016, 2, 454–472. DOI: 10.1021/acsbiomaterials.5b00429.
  • BaoLin, G.; Ma, P. X. Synthetic Biodegradable Functional Polymers for Tissue Engineering: A Brief Review. Sci. China Chem. 2014, 57, 490–500. DOI: 10.1007/s11426-014-5086-y.
  • Gunatillake, P. A.; Adhikari, R. Biodegradable Synthetic Polymers for Tissue Engineering. Eur. Cells Mater. 2003, 5, 1–16. DOI: 10.22203/eCM.v005a01.
  • Maitz, M. F. Applications of Synthetic Polymers in Clinical Medicine. Biosurf. Biotribol. 2015, 1, 161–176. DOI: 10.1016/j.bsbt.2015.08.002.
  • Ulbricht, J.; Jordan, R.; Luxenhofer, R. On the Biodegradability of Polyethylene Glycol, Polypeptoids and Poly(2-Oxazoline)s. Biomaterials 2014, 35, 4848–4861. DOI: 10.1016/j.biomaterials.2014.02.029.
  • Woodruff, M. A.; Hutmacher, D. W. The Return of a Forgotten Polymer—Polycaprolactone in the 21st Century. Prog. Polym. Sci. 2010, 35, 1217–1256. DOI: 10.1016/j.progpolymsci.2010.04.002.
  • O’Brien, F. J. Biomaterials & Scaffolds for Tissue Engineering. Mater. Today 2011, 14, 88–95.
  • Jenkins, M. J.; Harrison, K. L. The Effect of Molecular Weight on the Crystallization Kinetics of Polycaprolactone. Polym. Adv. Technol. 2006, 17, 474–478. DOI: 10.1002/pat.733.
  • Lam, C. X.; Hutmacher, D. W.; Schantz, J. T.; Woodruff, M. A.; Teoh, S. H. Evaluation of Polycaprolactone Scaffold Degradation for 6 Months in Vitro and in Vivo. J. Biomed. Mater. Res. 2009, 90A, 906–919. DOI: 10.1002/jbm.a.32052.
  • Sun, H.; Mei, L.; Song, C.; Cui, X.; Wang, P. The in Vivo Degradation, Absorption and Excretion of PCL-Based Implant. Biomaterials 2006, 27, 1735–1740. DOI: 10.1016/j.biomaterials.2005.09.019.
  • Huang, M.-H.; Coudane, J.; Li, S.; Vert, M. Methylated and Pegylated PLA–PCL–PLA Block Copolymers via the Chemical Modification of di-Hydroxy PCL Combined with the Ring Opening Polymerization of Lactide. J. Polym. Sci. A Polym. Chem. 2005, 43, 4196–4205. DOI: 10.1002/pola.20870.
  • Park, J. H.; Lee, B. K.; Park, S. H.; Kim, M. G.; Lee, J. W.; Lee, H. Y.; Lee, H. B.; Kim, J. H.; Kim, M. S. Preparation of Biodegradable and Elastic Poly(ε-Caprolactone-co-Lactide) Copolymers and Evaluation as a Localized and Sustained Drug Delivery Carrier. Int. J. Mol. Sci. 2017, 18, 671. DOI: 10.3390/ijms18030671.
  • Jabbari, E.; Wang, S.; Lu, L.; Gruetzmacher, J. A.; Ameenuddin, S.; Hefferan, T. E.; Currier, B. L.; Windebank, A. J.; Yaszemski, M. J. Synthesis, Material Properties, and Biocompatibility of a Novel Self-Cross-Linkable Poly(Caprolactone Fumarate) as an Injectable Tissue Engineering Scaffold. Biomacromolecules 2005, 6, 2503–2511. DOI: 10.1021/bm050206y.
  • Cai, Z.; Wan, Y.; Becker, M. L.; Long, Y.-Z.; Dean, D. Poly(Propylene Fumarate)-Based Materials: Synthesis, Functionalization, Properties, Device Fabrication and Biomedical Applications. Biomaterials 2019, 208, 45–71. DOI: 10.1016/j.biomaterials.2019.03.038.
  • Kasper, F. K.; Tanahashi, K.; Fisher, J. P.; Mikos, A. G. Synthesis of Poly(Propylene Fumarate). Nat. Protoc. 2009, 4, 518–525. DOI: 10.1038/nprot.2009.24.
  • Chen, X.; Dong, X.; Wang, Y.; Zhao, Z.; Liu, L. Mitochondrial Engineering of the TCA Cycle for Fumarate Production. Metab. Eng. 2015, 31, 62–73. DOI: 10.1016/j.ymben.2015.02.002.
  • He, S.; Timmer, M. D.; Yaszemski, M. J.; Yasko, A. W.; Engel, P. S.; Mikos, A. G. Synthesis of Biodegradable Poly(Propylene Fumarate) Networks with Poly(Propylene Fumarate)–Diacrylate Macromers as Crosslinking Agents and Characterization of Their Degradation Products. Polymer 2001, 42, 1251–1260. DOI: 10.1016/S0032-3861(00)00479-1.
  • Yaszemski, M. J.; Payne, R. G.; Hayes, W. C.; Langer, R.; Mikos, A. G. In Vitro Degradation of a Poly(Propylene Fumarate)-Based Composite Material. Biomaterials 1996, 17, 2127–2130. DOI: 10.1016/0142-9612(96)00008-7.
  • Lee, K. W.; Wang, S.; Lu, L.; Jabbari, E.; Currier, B. L.; Yaszemski, M. J. Fabrication and Characterization of Poly(Propylene Fumarate) Scaffolds with Controlled Pore Structures Using 3-Dimensional Printing and Injection Molding. Tissue Eng. 2006, 12, 2801–2811. DOI: 10.1089/ten.2006.12.2801.
  • Lee, K. W.; Wang, S.; Fox, B. C.; Ritman, E. L.; Yaszemski, M. J.; Lu, L. Poly(Propylene Fumarate) Bone Tissue Engineering Scaffold Fabrication Using Stereolithography: Effects of Resin Formulations and Laser Parameters. Biomacromolecules 2007, 8, 1077–1084. DOI: 10.1021/bm060834v.
  • P.Fisher, J.; Holland, T. A.; Dean, D.; Engel, P. S.; Mikos, A. G. Synthesis and Properties of Photocross-Linked Poly(Propylene Fumarate) Scaffolds. J. Biomater. Sci. Polym. Ed. 2001, 12, 673–687. DOI: 10.1163/156856201316883476.
  • Trachtenberg, J. E.; Placone, J. K.; Smith, B. T.; Fisher, J. P.; Mikos, A. G. Extrusion-Based 3D Printing of Poly(Propylene Fumarate) Scaffolds with Hydroxyapatite Gradients. J. Biomater. Sci. Polym. Ed. 2017, 28, 532–554. DOI: 10.1080/09205063.2017.1286184.
  • Wang, S.; Lu, L.; Gruetzmacher, J. A.; Currier, B. L.; Yaszemski, M. J. Synthesis and Characterizations of Biodegradable and Crosslinkable Poly(ε-Caprolactone Fumarate), Poly(Ethylene Glycol Fumarate), and Their Amphiphilic Copolymer. Biomaterials 2006, 27, 832–841. DOI: 10.1016/j.biomaterials.2005.07.013.
  • Runge, M. B.; Wang, H.; Spinner, R. J.; Windebank, A. J.; Yaszemski, M. J. Reformulating Polycaprolactone Fumarate to Eliminate Toxic Diethylene Glycol: Effects of Polymeric Branching and Autoclave Sterilization on Material Properties. Acta Biomater. 2012, 8, 133–143. DOI: 10.1016/j.actbio.2011.08.023.
  • Sharifi, S.; Mirzadeh, H.; Imani, M.; Ziaee, F.; Tajabadi, M.; Jamshidi, A.; Atai, M. Synthesis, Photocrosslinking Characteristics, and Biocompatibility Evaluation of N-Vinyl Pyrrolidone/Polycaprolactone Fumarate Biomaterials Using a New Proton Scavenger. Polym. Adv. Technol. 2008, 19, 1828–1838. DOI: 10.1002/pat.1207.
  • Castro, N.; Goldstein, P.; Cooke, M. N. Synthesis and Manufacture of Photocrosslinkable Poly(Caprolactone)-Based Three-Dimensional Scaffolds for Tissue Engineering Applications. Adv. Biosci. Biotechnol. 2011, 02, 167–173.
  • Sharifi, S.; Mirzadeh, H.; Imani, M.; Atai, M.; Ziaee, F. Photopolymerization and Shrinkage Kinetics of in Situ Crosslinkable N-Vinyl-Pyrrolidone/Poly(Epsilon-Caprolactone Fumarate) Networks. J. Biomed. Mater. Res. 2008, 84A, 545–556. DOI: 10.1002/jbm.a.31384.
  • Wang, S.; Kempen, D. H.; Simha, N. K.; Lewis, J. L.; Windebank, A. J.; Yaszemski, M. J.; Lu, L. Photo-Cross-Linked Hybrid Polymer Networks Consisting of Poly(Propylene Fumarate) and Poly(Caprolactone Fumarate): Controlled Physical Properties and Regulated Bone and Nerve Cell Responses. Biomacromolecules 2008, 9, 1229–1241. DOI: 10.1021/bm7012313.
  • Wang, S.; Yaszemski, M. J.; Gruetzmacher, J. A.; Lu, L. Photo-Crosslinked Poly(ε-Caprolactone Fumarate) Networks: Roles of Crystallinity and Crosslinking Density in Determining Mechanical Properties. Polymer 2008, 49, 5692–5699. DOI: 10.1016/j.polymer.2008.10.021.
  • Makadia, H. K.; Siegel, S. J. Poly Lactic-co-Glycolic Acid (PLGA) as Biodegradable Controlled Drug Delivery Carrier. Polymers 2011, 3, 1377–1397. DOI: 10.3390/polym3031377.
  • Persenaire, O.; Alexandre, M.; Degée, P.; Dubois, P. Mechanisms and Kinetics of Thermal Degradation of Poly(ε-Caprolactone). Biomacromolecules 2001, 2, 288–294. DOI: 10.1021/bm0056310.
  • Gentile, P.; Chiono, V.; Carmagnola, I.; Hatton, P. V. An Overview of Poly(Lactic-co-Glycolic) Acid (PLGA)-Based Biomaterials for Bone Tissue Engineering. Int. J. Mol. Sci. 2014, 15, 3640–3659. DOI: 10.3390/ijms15033640.
  • Wang, S.; Yaszemski, M. J.; Knight, A. M.; Gruetzmacher, J. A.; Windebank, A. J.; Lu, L. Photo-Crosslinked Poly(Epsilon-Caprolactone Fumarate) Networks for Guided Peripheral Nerve Regeneration: Material Properties and Preliminary Biological Evaluations. Acta Biomater. 2009, 5, 1531–1542. DOI: 10.1016/j.actbio.2008.12.015.
  • Shokri, N.; Akbari Javar, H.; Fouladdel, S.; Khalaj, A.; Khoshayand, M.; Dinarvand, R.; Atyabi, F.; Nomani, A.; Azizi, E. Preparation and Evaluation of Poly (Caprolactone Fumarate) Nanoparticles Containing Doxorubicin HCI. Daru. 2011, 19, 12–22.
  • Matsumoto, A. Free-Radical Crosslinking Polymerization and Copolymerization of Multivinyl Compounds. In: Synthesis and Photosynthesis. Advances in Polymer Science; 1995; Vol. 123, pp 41–80. DOI: 10.1007/3-540-58908-2_2.
  • Kim, J.; Yaszemski, M. J.; Lu, L. Three-Dimensional Porous Biodegradable Polymeric Scaffolds Fabricated with Biodegradable Hydrogel Porogens. Tissue Eng Part C Methods 2009, 15, 583–594. DOI: 10.1089/ten.tec.2008.0642.
  • Farokhi, M.; Sharifi, S.; Shafieyan, Y.; Bagher, Z.; Mottaghitalab, F.; Hatampoor, A.; Imani, M.; Shokrgozar, M. A. Porous Crosslinked Poly(Epsilon-Caprolactone Fumarate)/Nanohydroxyapatite Composites for Bone Tissue Engineering. J. Biomed. Mater. Res. 2012, 100A, 1051–1060. DOI: 10.1002/jbm.a.33241.
  • Timmer, M. D.; Ambrose, C. G.; Mikos, A. G. Evaluation of Thermal- and Photo-Crosslinked Biodegradable Poly(Propylene Fumarate)-Based Networks. J. Biomed. Mater. Res. 2003, 66A, 811–818. DOI: 10.1002/jbm.a.10011.
  • Fisher, J. P.; Timmer, M. D.; Holland, T. A.; Dean, D.; Engel, P. S.; Mikos, A. G. Photoinitiated Cross-Linking of the Biodegradable Polyester Poly(Propylene Fumarate). Part I. Determination of Network Structure. Biomacromolecules 2003, 4, 1327–1334. DOI: 10.1021/bm030028d.
  • Zhu, J.; Marchant, R. E. Design Properties of Hydrogel Tissue-Engineering Scaffolds. Expert Rev. Med. Dev. 2011, 8, 607–626. DOI: 10.1586/erd.11.27.
  • Place, E. S.; George, J. H.; Williams, C. K.; Stevens, M. M. Synthetic Polymer Scaffolds for Tissue Engineering. Chem. Soc. Rev. 2009, 38, 1139–1151. DOI: 10.1039/b811392k.
  • Wang, S.; Kempen, D. H. R.; Yaszemski, M. J.; Lu, L. The Roles of Matrix Polymer Crystallinity and Hydroxyapatite Nanoparticles in Modulating Material Properties of Photo-Crosslinked Composites and Bone Marrow Stromal Cell Responses. Biomaterials 2009, 30, 3359–3370. DOI: 10.1016/j.biomaterials.2009.03.015.
  • Chen, B. K.; Knight, A. M.; Madigan, N. N.; Gross, L.; Dadsetan, M.; Nesbitt, J. J.; Rooney, G. E.; Currier, B. L.; Yaszemski, M. J.; Spinner, R. J.; Windebank, A. J. Comparison of Polymer Scaffolds in Rat Spinal Cord: A Step toward Quantitative Assessment of Combinatorial Approaches to Spinal Cord Repair. Biomaterials 2011, 32, 8077–8086. DOI: 10.1016/j.biomaterials.2011.07.029.
  • Rui, J.; Dadsetan, M.; Runge, M. B.; Spinner, R. J.; Yaszemski, M. J.; Windebank, A. J.; Wang, H. Controlled Release of Vascular Endothelial Growth Factor Using Poly-Lactic-co-Glycolic Acid Microspheres: In Vitro Characterization and Application in Polycaprolactone Fumarate Nerve Conduits. Acta Biomater. 2012, 8, 511–518. DOI: 10.1016/j.actbio.2011.10.001.
  • Muangsanit, P.; Shipley, R. J.; Phillips, J. B. Vascularization Strategies for Peripheral Nerve Tissue Engineering. Anat. Rec. 2018, 301, 1657–1667. DOI: 10.1002/ar.23919.
  • Lundborg, G. The Intrinsic Vascularization of Human Peripheral Nerves: Structural and Functional Aspects. J. Hand Surg. 1979, 4, 34–41. DOI: 10.1016/S0363-5023(79)80102-1.
  • Wang, H.; Zhu, H.; Guo, Q.; Qian, T.; Zhang, P.; Li, S.; Xue, C.; Gu, X. Overlapping Mechanisms of Peripheral Nerve Regeneration and Angiogenesis following Sciatic Nerve Transection. Front. Cell. Neurosci. 2017, 11, 323–323. DOI: 10.3389/fncel.2017.00323.
  • Wang, C.; Jia, Y.; Yang, W.; Zhang, C.; Zhang, K.; Chai, Y. Silk Fibroin Enhances Peripheral Nerve Regeneration by Improving Vascularization within Nerve Conduits. J. Biomed. Mater. Res. 2018, 106, 2070–2077. DOI: 10.1002/jbm.a.36390.
  • Pillai, M. M.; Akshaya, T. R.; Elakkiya, V.; Gopinathan, J.; Sahanand, K. S.; Rai, B. K. D.; Bhattacharyya, A.; Selvakumar, R. Egg Shell Membrane—A Potential Natural Scaffold for Human Meniscal Tissue Engineering: An in Vitro Study. RSC Adv. 2015, 5, 76019–76025. DOI: 10.1039/C5RA09959E.
  • Sah, M. K.; Pramanik, K. Soluble-Eggshell-Membrane-Protein-Modified Porous Silk Fibroin Scaffolds with Enhanced Cell Adhesion and Proliferation Properties. J. Appl. Polym. Sci. 2014, 131, n/a–n/a. DOI: 10.1002/app.40138.
  • Biscaia, S. I.; Viana, T. F.; Almeida, H. A.; Bártolo, P. J. Production and Characterisation of PCL/ES Scaffolds for Bone Tissue Engineering. Mater. Today Proc. 2015, 2, 208–216. DOI: 10.1016/j.matpr.2015.04.024.
  • Guha Ray, P.; Pal, P.; Srivas, P. K.; Basak, P.; Roy, S.; Dhara, S. Surface Modification of Eggshell Membrane with Electrospun Chitosan/Polycaprolactone Nanofibers for Enhanced Dermal Wound Healing. ACS Appl. Bio Mater. 2018, 1, 985–998. DOI: 10.1021/acsabm.8b00169.
  • Golafshan, N.; Gharibi, H.; Kharaziha, M.; Fathi, M. A Facile One-Step Strategy for Development of a Double Network Fibrous Scaffold for Nerve Tissue Engineering. Biofabrication 2017, 9, 025008. DOI: 10.1088/1758-5090/aa68ed.
  • Golafshan, N.; Kharaziha, M.; Alehosseini, M. A Three-Layered Hollow Tubular Scaffold as an Enhancement of Nerve Regeneration Potential. Biomed. Mater. 2018, 13, 065005. DOI: 10.1088/1748-605X/aad8da.
  • Runge, M. B.; Dadsetan, M.; Baltrusaitis, J.; Ruesink, T.; Lu, L.; Windebank, A. J.; Yaszemski, M. J. Development of Electrically Conductive Oligo(Polyethylene Glycol) Fumarate-Polypyrrole Hydrogels for Nerve Regeneration. Biomacromolecules 2010, 11, 2845–2853. DOI: 10.1021/bm100526a.
  • Ateh, D. D.; Navsaria, H. A.; Vadgama, P. Polypyrrole-Based Conducting Polymers and Interactions with Biological Tissues. J. R Soc. Interface 2006, 3, 741–752. DOI: 10.1098/rsif.2006.0141.
  • Vernitskaya, T. y V.; Efimov, O. N. Polypyrrole: A Conducting Polymer; Its Synthesis, Properties and Applications. Russ. Chem. Rev. 1997, 66, 443–457. DOI: 10.1070/RC1997v066n05ABEH000261.
  • Moroder, P.; Runge, M. B.; Wang, H.; Ruesink, T.; Lu, L.; Spinner, R. J.; Windebank, A. J.; Yaszemski, M. J. Material Properties and Electrical Stimulation Regimens of Polycaprolactone Fumarate-Polypyrrole Scaffolds as Potential Conductive Nerve Conduits. Acta Biomater. 2011, 7, 944–953. DOI: 10.1016/j.actbio.2010.10.013.
  • Shin, S. R.; Jung, S. M.; Zalabany, M.; Kim, K.; Zorlutuna, P.; Kim, S. b.; Nikkhah, M.; Khabiry, M.; Azize, M.; Kong, J.; et al. Carbon-Nanotube-Embedded Hydrogel Sheets for Engineering Cardiac Constructs and Bioactuators. ACS Nano 2013, 7, 2369–2380. DOI: 10.1021/nn305559j.
  • Zhou, Z.; Liu, X.; Wu, W.; Park, S.; Miller Ii, A. L.; Terzic, A.; Lu, L. Effective Nerve Cell Modulation by Electrical Stimulation of Carbon Nanotube Embedded Conductive Polymeric Scaffolds. Biomater. Sci. 2018, 6, 2375–2385. DOI: 10.1039/C8BM00553B.
  • Prasadh, S.; Wong, R. C. W. Unraveling the Mechanical Strength of Biomaterials Used as a Bone Scaffold in Oral and Maxillofacial Defects. Oral Sci. Int. 2018, 15, 48–55. DOI: 10.1016/S1348-8643(18)30005-3.
  • Ghassemi, T.; Shahroodi, A.; Ebrahimzadeh, M. H.; Mousavian, A.; Movaffagh, J.; Moradi, A. Current Concepts in Scaffolding for Bone Tissue Engineering. Arch. Bone Jt. Surg. 2018, 6, 90–99.
  • Pina, S.; Oliveira, J. M.; Reis, R. L. Natural-Based Nanocomposites for Bone Tissue Engineering and Regenerative Medicine: A Review. Adv. Mater. 2015, 27, 1143–1169. DOI: 10.1002/adma.201403354.
  • Mehrali, M.; Thakur, A.; Pennisi, C. P.; Talebian, S.; Arpanaei, A.; Nikkhah, M.; Dolatshahi-Pirouz, A. Nanoreinforced Hydrogels for Tissue Engineering: Biomaterials That Are Compatible with Load-Bearing and Electroactive Tissues. Adv. Mater. 2017, 29, 1603612. DOI: 10.1002/adma.201603612.
  • Dorj, B.; Won, J.-E.; Kim, J.-H.; Choi, S.-J.; Shin, U. S.; Kim, H.-W. Robocasting Nanocomposite Scaffolds of Poly(Caprolactone)/Hydroxyapatite Incorporating Modified Carbon Nanotubes for Hard Tissue Reconstruction. J. Biomed. Mater. Res. 2013, 101A, 1670–1681. DOI: 10.1002/jbm.a.34470.
  • Li, J.; Liu, X.; Park, S.; Miller, A. L., II; Terzic, A.; Lu, L. Strontium-Substituted Hydroxyapatite Stimulates Osteogenesis on Poly(Propylene Fumarate) Nanocomposite Scaffolds. J. Biomed. Mater. Res. 2019, 107, 631–642. DOI: 10.1002/jbm.a.36579.
  • Joughehdoust, S.; Behnamghader, A.; Imani, M.; Daliri, M.; Doulabi, A. H.; Jabbari, E. A Novel Foam-like Silane Modified Alumina Scaffold Coated with Nano-Hydroxyapatite–Poly(ε-Caprolactone Fumarate) Composite Layer. Ceram. Int. 2013, 39, 209–218. DOI: 10.1016/j.ceramint.2012.06.011.
  • Sadeghzade, S.; Emadi, R.; Ahmadi, T.; Tavangarian, F. Synthesis, Characterization and Strengthening Mechanism of Modified and Unmodified Porous Diopside/Baghdadite Scaffolds. Mater. Chem. Phys. 2019, 228, 89–97. DOI: 10.1016/j.matchemphys.2019.02.041.
  • Sharifi, S.; Shafieyan, Y.; Mirzadeh, H.; Bagheri-Khoulenjani, S.; Rabiee, S. M.; Imani, M.; Atai, M.; Shokrgozar, M. A.; Hatampoor, A. Hydroxyapatite Scaffolds Infiltrated with Thermally Crosslinked Polycaprolactone Fumarate and Polycaprolactone Itaconate. J. Biomed. Mater. Res. 2011, 98A, 257–267. DOI: 10.1002/jbm.a.33108.
  • Sethuraman, A.; Belfort, G. Protein Structural Perturbation and Aggregation on Homogeneous Surfaces. Biophys. J. 2005, 88, 1322–1333. DOI: 10.1529/biophysj.104.051797.
  • Kim, J.; Sharma, A.; Runge, B.; Waters, H.; Doll, B.; McBride, S.; Alvarez, P.; Dadsetan, M.; Yaszemski, M. J.; Hollinger, J. O. Osteoblast Growth and Bone-Healing Response to Three-Dimensional Poly(ε-Caprolactone Fumarate) Scaffolds. J. Tissue Eng. Regen. Med. 2012, 6, 404–413. DOI: 10.1002/term.442.
  • Wagner, E. R.; Bravo, D.; Dadsetan, M.; Riester, S. M.; Chase, S.; Westendorf, J. J.; Dietz, A. B.; van Wijnen, A. J.; Yaszemski, M. J.; Kakar, S. Ligament Tissue Engineering Using a Novel Porous Polycaprolactone Fumarate Scaffold and Adipose Tissue-Derived Mesenchymal Stem Cells Grown in Platelet Lysate. Tissue Eng. Part A 2015, 21, 2703–2713. DOI: 10.1089/ten.tea.2015.0183.
  • Wagner, E. R.; Parry, J.; Dadsetan, M.; Bravo, D.; Riester, S. M.; Van Wijnen, A. J.; Yaszemski, M. J.; Kakar, S. VEGF-Mediated Angiogenesis and Vascularization of a Fumarate-Crosslinked Polycaprolactone (PCLF) Scaffold. Connect. Tissue Res. 2018, 59, 542–549. DOI: 10.1080/03008207.2018.1424145.
  • Parry, J. A.; Wagner, E. R.; Kok, P. L.; Dadsetan, M.; Yaszemski, M. J.; van Wijnen, A. J.; Kakar, S. A Combination of a Polycaprolactone Fumarate Scaffold with Polyethylene Terephthalate Sutures for Intra-Articular Ligament Regeneration. Tissue Eng. Part A 2018, 24, 245–253. DOI: 10.1089/ten.tea.2016.0531.
  • Wagner, E. R.; Parry, J.; Dadsetan, M.; Bravo, D.; Riester, S. M.; van Wijnen, A. J.; Yaszemski, M. J.; Kakar, S. Chondrocyte Attachment, Proliferation, and Differentiation on Three-Dimensional Polycaprolactone Fumarate Scaffolds. Tissue Eng. Part A 2017, 23, 622–629. DOI: 10.1089/ten.tea.2016.0341.
  • Shamirzaei Jeshvaghani, E.; Ghasemi-Mobarakeh, L.; Mansurnezhad, R.; Ajalloueian, F.; Kharaziha, M.; Dinari, M.; Sami Jokandan, M.; Chronakis, I. S. Fabrication, Characterization, and Biocompatibility Assessment of a Novel Elastomeric Nanofibrous Scaffold: A Potential Scaffold for Soft Tissue Engineering. J. Biomed. Mater. Res. 2018, 106, 2371–2383.
  • Zhu, J. Bioactive Modification of Poly(Ethylene Glycol) Hydrogels for Tissue Engineering. Biomaterials 2010, 31, 4639–4656. DOI: 10.1016/j.biomaterials.2010.02.044.
  • Lin, C.-C.; Anseth, K. S. PEG Hydrogels for the Controlled Release of Biomolecules in Regenerative Medicine. Pharm. Res. 2009, 26, 631–643. DOI: 10.1007/s11095-008-9801-2.
  • Ekblad, T.; BergströM, G.; Ederth, T.; Conlan, S. L.; Mutton, R.; Clare, A. S.; Wang, S.; Liu, Y.; Zhao, Q.; D’Souza, F.; et al. Poly(Ethylene Glycol)-Containing Hydrogel Surfaces for Antifouling Applications in Marine and Freshwater Environments. Biomacromolecules 2008, 9, 2775–2783. DOI: 10.1021/bm800547m.
  • Robinson, K. J.; Coffey, J. W.; Muller, D. A.; Young, P. R.; Kendall, M. A. F.; Thurecht, K. J.; Grøndahl, L.; Corrie, S. R. Comparison between Polyethylene Glycol and Zwitterionic Polymers as Antifouling Coatings on Wearable Devices for Selective Antigen Capture from Biological Tissue. Biointerphases 2015, 10, 04A305. DOI: 10.1116/1.4932055.
  • Knop, K.; Hoogenboom, R.; Fischer, D.; Schubert, U. S. Poly(Ethylene Glycol) in Drug Delivery: Pros and Cons as Well as Potential Alternatives. Angew. Chem. Int. Ed. 2010, 49, 6288–6308. DOI: 10.1002/anie.200902672.
  • Peppas, N. A.; Keys, K. B.; Torres-Lugo, M.; Lowman, A. M. Poly(Ethylene Glycol)-Containing Hydrogels in Drug Delivery. J. Controlled Release 1999, 62, 81–87. DOI: 10.1016/S0168-3659(99)00027-9.
  • Andreopoulos, F. M.; Deible, C. R.; Stauffer, M. T.; Weber, S. G.; Wagner, W. R.; Beckman, E. J.; Russell, A. J. Photoscissable Hydrogel Synthesis via Rapid Photopolymerization of Novel PEG-Based Polymers in the Absence of Photoinitiators. J. Am. Chem. Soc. 1996, 118, 6235–6240. DOI: 10.1021/ja954117c.
  • Wang, J.; Zhang, F.; Tsang, W. P.; Wan, C.; Wu, C. Fabrication of Injectable High Strength Hydrogel Based on 4-Arm Star PEG for Cartilage Tissue Engineering. Biomaterials 2017, 120, 11–21. DOI: 10.1016/j.biomaterials.2016.12.015.
  • Lutz, J.-F. Polymerization of Oligo(Ethylene Glycol) (Meth)Acrylates: Toward New Generations of Smart Biocompatible Materials. J. Polym. Sci. A Polym. Chem. 2008, 46, 3459–3470.
  • Lin-Gibson, S.; Bencherif, S.; Cooper, J. A.; Wetzel, S. J.; Antonucci, J. M.; Vogel, B. M.; Horkay, F.; Washburn, N. R. Synthesis and Characterization of PEG Dimethacrylates and Their Hydrogels. Biomacromolecules 2004, 5, 1280–1287. DOI: 10.1021/bm0498777.
  • Browning, M. B.; Cereceres, S. N.; Luong, P. T.; Cosgriff-Hernandez, E. M. Determination of the in Vivo Degradation Mechanism of PEGDA Hydrogels. J. Biomed. Mater. Res. A 2014, 102, 4244–4251. DOI: 10.1002/jbm.a.35096.
  • Jo, S.; Shin, H.; Shung, A. K.; Fisher, J. P.; Mikos, A. G. Synthesis and Characterization of Oligo(Poly(Ethylene Glycol) Fumarate) Macromer. Macromolecules 2001, 34, 2839–2844. DOI: 10.1021/ma001563y.
  • Kinard, L. A.; Kasper, F. K.; Mikos, A. G. Synthesis of Oligo(Poly(Ethylene Glycol) Fumarate). Nat. Protoc. 2012, 7, 1219–1227. DOI: 10.1038/nprot.2012.055.
  • Jo, S.; Shin, H.; Mikos, A. G. Modification of Oligo(Poly(Ethylene Glycol) Fumarate) Macromer with a GRGD Peptide for the Preparation of Functionalized Polymer Networks. Biomacromolecules 2001, 2, 255–261. DOI: 10.1021/bm000107e.
  • Shin, H.; Jo, S.; Mikos, A. G. Modulation of Marrow Stromal Osteoblast Adhesion on Biomimetic Oligo[Poly(Ethylene Glycol) Fumarate] Hydrogels Modified with Arg-Gly-Asp Peptides and a Poly(Ethyleneglycol) Spacer. J. Biomed. Mater. Res. 2002, 61, 169–179. DOI: 10.1002/jbm.10193.
  • Temenoff, J. S.; Athanasiou, K. A.; LeBaron, R. G.; Mikos, A. G. Effect of Poly(Ethylene Glycol) Molecular Weight on Tensile and Swelling Properties of Oligo(Poly(Ethylene Glycol) Fumarate) Hydrogels for Cartilage Tissue Engineering. J. Biomed. Mater. Res. 2002, 59, 429–437. DOI: 10.1002/jbm.1259.
  • Park, H.; Guo, X.; Temenoff, J. S.; Tabata, Y.; Caplan, A. I.; Kasper, F. K.; Mikos, A. G. Effect of Swelling Ratio of Injectable Hydrogel Composites on Chondrogenic Differentiation of Encapsulated Rabbit Marrow Mesenchymal Stem Cells in Vitro. Biomacromolecules 2009, 10, 541–546. DOI: 10.1021/bm801197m.
  • Brink, K. S.; Yang, P. J.; Temenoff, J. S. Degradative Properties and Cytocompatibility of a Mixed-Mode Hydrogel Containing Oligo[Poly(Ethylene Glycol)Fumarate] and Poly(Ethylene Glycol)Dithiol. Acta Biomater. 2009, 5, 570–579. DOI: 10.1016/j.actbio.2008.09.015.
  • Shin, H.; Quinten Ruhe, P.; Mikos, A. G.; Jansen, J. A. In Vivo Bone and Soft Tissue Response to Injectable, Biodegradable Oligo(Poly(Ethylene Glycol) Fumarate) Hydrogels. Biomaterials 2003, 24, 3201–3211. DOI: 10.1016/S0142-9612(03)00168-6.
  • Holland, T. A.; Tabata, Y.; Mikos, A. G. In Vitro Release of Transforming Growth Factor-Beta 1 from Gelatin Microparticles Encapsulated in Biodegradable, Injectable Oligo(Poly(Ethylene Glycol) Fumarate) Hydrogels. J. Controlled Release 2003, 91, 299–313. DOI: 10.1016/S0168-3659(03)00258-X.
  • Liu, M.; Zeng, X.; Ma, C.; Yi, H.; Ali, Z.; Mou, X.; Li, S.; Deng, Y.; He, N. Injectable Hydrogels for Cartilage and Bone Tissue Engineering. Bone Res. 2017, 5, 17014. DOI: 10.1038/boneres.2017.14.
  • Mano, J. F. Stimuli-Responsive Polymeric Systems for Biomedical Applications. Adv. Eng. Mater. 2008, 10, 515–527. DOI: 10.1002/adem.200700355.
  • Temenoff, J. S.; Park, H.; Jabbari, E.; Conway, D. E.; Sheffield, T. L.; Ambrose, C. G.; Mikos, A. G. Thermally Cross-Linked Oligo(Poly(Ethylene Glycol) Fumarate) Hydrogels Support Osteogenic Differentiation of Encapsulated Marrow Stromal Cells in Vitro. Biomacromolecules 2004, 5, 5–10. DOI: 10.1021/bm030067p.
  • Temenoff, J. S.; Shin, H.; Conway, D. E.; Engel, P. S.; Mikos, A. G. In Vitro Cytotoxicity of Redox Radical Initiators for Cross-Linking of Oligo(Poly(Ethylene Glycol) Fumarate) Macromers. Biomacromolecules 2003, 4, 1605–1613. DOI: 10.1021/bm030056w.
  • Timmer, M. D.; Jo, S.; Wang, C.; Ambrose, C. G.; Mikos, A. G. Characterization of the Cross-Linked Structure of Fumarate-Based Degradable Polymer Networks. Macromolecules 2002, 35, 4373–4379. DOI: 10.1021/ma020028q.
  • Lam, J.; Kim, K.; Lu, S.; Tabata, Y.; Scott, D. W.; Mikos, A. G.; Kasper, F. K. A Factorial Analysis of the Combined Effects of Hydrogel Fabrication Parameters on the in Vitro Swelling and Degradation of Oligo(Poly(Ethylene Glycol) Fumarate) Hydrogels. J. Biomed. Mater. Res. 2014, 102, 3477–3487. DOI: 10.1002/jbm.a.35015.
  • Fisher, J. P.; Lalani, Z.; Bossano, C. M.; Brey, E. M.; Demian, N.; Johnston, C. M.; Dean, D.; Jansen, J. A.; Wong, M. E.; Mikos, A. G. Effect of Biomaterial Properties on Bone Healing in a Rabbit Tooth Extraction Socket Model. J. Biomed. Mater. Res. 2004, 68A, 428–438. DOI: 10.1002/jbm.a.20073.
  • Holland, T. A.; Tessmar, J. K.; Tabata, Y.; Mikos, A. G. Transforming Growth Factor-Beta 1 Release from Oligo(Poly(Ethylene Glycol) Fumarate) Hydrogels in Conditions That Model the Cartilage Wound Healing Environment. J. Controlled Release 2004, 94, 101–114. DOI: 10.1016/j.jconrel.2003.09.007.
  • Dadsetan, M.; Liu, Z.; Pumberger, M.; Giraldo, C. V.; Ruesink, T.; Lu, L.; Yaszemski, M. J. A Stimuli-Responsive Hydrogel for Doxorubicin Delivery. Biomaterials 2010, 31, 8051–8062. DOI: 10.1016/j.biomaterials.2010.06.054.
  • Williams, C. G.; Malik, A. N.; Kim, T. K.; Manson, P. N.; Elisseeff, J. H. Variable Cytocompatibility of Six Cell Lines with Photoinitiators Used for Polymerizing Hydrogels and Cell Encapsulation. Biomaterials 2005, 26, 1211–1218. DOI: 10.1016/j.biomaterials.2004.04.024.
  • Methods for Photocrosslinking Alginate Hydrogel Scaffolds with High Cell Viability. Tissue Eng. Part C Methods 2011, 17, 173–179.
  • Bryant, S. J.; Nuttelman, C. R.; Anseth, K. S. Cytocompatibility of UV and Visible Light Photoinitiating Systems on Cultured NIH/3T3 Fibroblasts in Vitro. J. Biomater. Sci. Polym. Ed. 2000, 11, 439–457. DOI: 10.1163/156856200743805.
  • Hammoudi, T. M.; Lu, H.; Temenoff, J. S. Long-Term Spatially Defined Coculture within Three-Dimensional Photopatterned Hydrogels. Tissue Eng. Part C Methods 2010, 16, 1621–1628. DOI: 10.1089/ten.tec.2010.0146.
  • Dadsetan, M.; Giuliani, M.; Wanivenhaus, F.; Brett Runge, M.; Charlesworth, J. E.; Yaszemski, M. J. Incorporation of Phosphate Group Modulates Bone Cell Attachment and Differentiation on Oligo(Polyethylene Glycol) Fumarate Hydrogel. Acta Biomater. 2012, 8, 1430–1439. DOI: 10.1016/j.actbio.2011.12.031.
  • Dadsetan, M.; Knight, A. M.; Lu, L.; Windebank, A. J.; Yaszemski, M. J. Stimulation of Neurite Outgrowth Using Positively Charged Hydrogels. Biomaterials 2009, 30, 3874–3881. DOI: 10.1016/j.biomaterials.2009.04.018.
  • Holland, T. A.; Bodde, E. W. H.; Baggett, L. S.; Tabata, Y.; Mikos, A. G.; Jansen, J. A. Osteochondral Repair in the Rabbit Model Utilizing Bilayered, Degradable Oligo(Poly(Ethylene Glycol) Fumarate) Hydrogel Scaffolds. J. Biomed. Mater. Res. 2005, 75A, 156–167. DOI: 10.1002/jbm.a.30379.
  • Liu, X.; Miller, A. L.; Park, S.; Waletzki, B. E.; Zhou, Z.; Terzic, A.; Lu, L. Functionalized Carbon Nanotube and Graphene Oxide Embedded Electrically Conductive Hydrogel Synergistically Stimulates Nerve Cell Differentiation. ACS Appl. Mater. Interfaces 2017, 9, 14677–14690. DOI: 10.1021/acsami.7b02072.
  • Nejadnik, M. R.; Mikos, A. G.; Jansen, J. A.; Leeuwenburgh, S. C. Facilitating the Mineralization of Oligo(Poly(Ethylene Glycol) Fumarate) Hydrogel by Incorporation of Hydroxyapatite Nanoparticles. J. Biomed. Mater. Res. 2012, 100A, 1316–1323. DOI: 10.1002/jbm.a.34071.
  • Holland, T. A.; Tabata, Y.; Mikos, A. G. Dual Growth Factor Delivery from Degradable Oligo(Poly(Ethylene Glycol) Fumarate) Hydrogel Scaffolds for Cartilage Tissue Engineering. J. Controlled Release 2005, 101, 111–125. DOI: 10.1016/j.jconrel.2004.07.004.
  • Park, H.; Temenoff, J. S.; Holland, T. A.; Tabata, Y.; Mikos, A. G. Delivery of TGF-beta1 and Chondrocytes via Injectable, Biodegradable Hydrogels for Cartilage Tissue Engineering Applications. Biomaterials 2005, 26, 7095–7103. DOI: 10.1016/j.biomaterials.2005.05.083.
  • Park, H.; Temenoff, J. S.; Tabata, Y.; Caplan, A. I.; Mikos, A. G. Injectable Biodegradable Hydrogel Composites for Rabbit Marrow Mesenchymal Stem Cell and Growth Factor Delivery for Cartilage Tissue Engineering. Biomaterials 2007, 28, 3217–3227. DOI: 10.1016/j.biomaterials.2007.03.030.
  • Park, H.; Temenoff, J. S.; Tabata, Y.; Caplan, A. I.; Raphael, R. M.; Jansen, J. A.; Mikos, A. G. Effect of Dual Growth Factor Delivery on Chondrogenic Differentiation of Rabbit Marrow Mesenchymal Stem Cells Encapsulated in Injectable Hydrogel Composites. J. Biomed. Mater. Res. 2009, 88A, 889–897. DOI: 10.1002/jbm.a.31948.
  • Guo, X.; Park, H.; Young, S.; Kretlow, J. D.; van den Beucken, J. J.; Baggett, L. S.; Tabata, Y.; Kasper, F. K.; Mikos, A. G.; Jansen, J. A. Repair of Osteochondral Defects with Biodegradable Hydrogel Composites Encapsulating Marrow Mesenchymal Stem Cells in a Rabbit Model. Acta Biomater. 2010, 6, 39–47. DOI: 10.1016/j.actbio.2009.07.041.
  • Lim, C. T.; Ren, X.; Afizah, M. H.; Tarigan-Panjaitan, S.; Yang, Z.; Wu, Y.; Chian, K. S.; Mikos, A. G.; Hui, J. H. Repair of Osteochondral Defects with Rehydrated Freeze-Dried Oligo[Poly(Ethylene Glycol) Fumarate] Hydrogels Seeded with Bone Marrow Mesenchymal Stem Cells in a Porcine Model. Tissue Eng. Part A 2013, 19, 1852–1861. DOI: 10.1089/ten.tea.2012.0621.
  • de Girolamo, L.; Niada, S.; Arrigoni, E.; Di Giancamillo, A.; Domeneghini, C.; Dadsetan, M.; Yaszemski, M. J.; Gastaldi, D.; Vena, P.; Taffetani, M.; et al. Repair of Osteochondral Defects in the Minipig Model by OPF Hydrogel Loaded with Adipose-Derived Mesenchymal Stem Cells. Regen. Med. 2015, 10, 135–151. DOI: 10.2217/rme.14.77.
  • Sophia Fox, A. J.; Bedi, A.; Rodeo, S. A. The Basic Science of Articular Cartilage: Structure, Composition, and Function. Sports Health 2009, 1, 461–468. DOI: 10.1177/1941738109350438.
  • Kim, K.; Lam, J.; Lu, S.; Spicer, P. P.; Lueckgen, A.; Tabata, Y.; Wong, M. E.; Jansen, J. A.; Mikos, A. G.; Kasper, F. K. Osteochondral Tissue Regeneration Using a Bilayered Composite Hydrogel with Modulating Dual Growth Factor Release Kinetics in a Rabbit Model. J. Controlled Release 2013, 168, 166–178. DOI: 10.1016/j.jconrel.2013.03.013.
  • Lu, S.; Lam, J.; Trachtenberg, J. E.; Lee, E. J.; Seyednejad, H.; van den Beucken, J.; Tabata, Y.; Wong, M. E.; Jansen, J. A.; Mikos, A. G.; Kasper, F. K. Dual Growth Factor Delivery from Bilayered, Biodegradable Hydrogel Composites for Spatially-Guided Osteochondral Tissue Repair. Biomaterials 2014, 35, 8829–8839. DOI: 10.1016/j.biomaterials.2014.07.006.
  • Guo, X.; Park, H.; Liu, G.; Liu, W.; Cao, Y.; Tabata, Y.; Kasper, F. K.; Mikos, A. G. In Vitro Generation of an Osteochondral Construct Using Injectable Hydrogel Composites Encapsulating Rabbit Marrow Mesenchymal Stem Cells. Biomaterials 2009, 30, 2741–2752. DOI: 10.1016/j.biomaterials.2009.01.048.
  • Shin, H.; Zygourakis, K.; Farach-Carson, M. C.; Yaszemski, M. J.; Mikos, A. G. Attachment, Proliferation, and Migration of Marrow Stromal Osteoblasts Cultured on Biomimetic Hydrogels Modified with an Osteopontin-Derived Peptide. Biomaterials 2004, 25, 895–906. DOI: 10.1016/S0142-9612(03)00602-1.
  • Temenoff, J. S.; Park, H.; Jabbari, E.; Sheffield, T. L.; LeBaron, R. G.; Ambrose, C. G.; Mikos, A. G. In Vitro Osteogenic Differentiation of Marrow Stromal Cells Encapsulated in Biodegradable Hydrogels. J. Biomed. Mater. Res. 2004, 70A, 235–244. DOI: 10.1002/jbm.a.30064.
  • Shin, H.; Temenoff, J. S.; Bowden, G. C.; Zygourakis, K.; Farach-Carson, M. C.; Yaszemski, M. J.; Mikos, A. G. Osteogenic Differentiation of Rat Bone Marrow Stromal Cells Cultured on Arg–Gly–Asp Modified Hydrogels without Dexamethasone and β-Glycerol Phosphate. Biomaterials 2005, 26, 3645–3654. DOI: 10.1016/j.biomaterials.2004.09.050.
  • Leeuwenburgh, S. C.; Jansen, J. A.; Mikos, A. G. Functionalization of Oligo(Poly(Ethylene Glycol)Fumarate) Hydrogels with Finely Dispersed Calcium Phosphate Nanocrystals for Bone-Substituting Purposes. J. Biomater. Sci. Polym. Ed. 2007, 18, 1547–1564.
  • Bongio, M.; van den Beucken, J. J.; Nejadnik, M. R.; Leeuwenburgh, S. C.; Kinard, L. A.; Kasper, F. K.; Mikos, A. G.; Jansen, J. A. Biomimetic Modification of Synthetic Hydrogels by Incorporation of Adhesive Peptides and Calcium Phosphate Nanoparticles: In Vitro Evaluation of Cell Behavior. Eur. Cells Mater. 2011, 22, 359–376. DOI: 10.22203/eCM.v022a27.
  • Bongio, M.; van den Beucken, J. J.; Nejadnik, M. R.; Tahmasebi Birgani, Z.; Habibovic, P.; Kinard, L. A.; Kasper, F. K.; Mikos, A. G.; Leeuwenburgh, S. C.; Jansen, J. A. Subcutaneous Tissue Response and Osteogenic Performance of Calcium Phosphate Nanoparticle-Enriched Hydrogels in the Tibial Medullary Cavity of guinea Pigs. Acta Biomater. 2013, 9, 5464–5474. DOI: 10.1016/j.actbio.2012.10.026.
  • Olthof, M. G. L.; Tryfonidou, M. A.; Liu, X.; Pouran, B.; Meij, B. P.; Dhert, W. J. A.; Yaszemski, M. J.; Lu, L.; Alblas, J.; Kempen, D. H. R. Phosphate Functional Groups Improve Oligo[(Polyethylene Glycol) Fumarate] Osteoconduction and BMP-2 Osteoinductive Efficacy. Tissue Eng. Part A 2018, 24, 819–829. DOI: 10.1089/ten.tea.2017.0229.
  • Olthof, M. G. L.; Kempen, D. H. R.; Liu, X.; Dadsetan, M.; Tryfonidou, M. A.; Yaszemski, M. J.; Dhert, W. J. A.; Lu, L. Bone Morphogenetic Protein-2 Release Profile Modulates Bone Formation in Phosphorylated Hydrogel. J. Tissue Eng. Regen. Med. 2018, 12, 1339–1351. DOI: 10.1002/term.2664.
  • Olthof, M. G. L.; Tryfonidou, M. A.; Dadsetan, M.; Dhert, W. J. A.; Yaszemski, M. J.; Kempen, D. H. R.; Lu, L. In Vitro and in Vivo Correlation of Bone Morphogenetic Protein-2 Release Profiles from Complex Delivery Vehicles. Tissue Eng. Part C Methods 2018, 24, 379–390. DOI: 10.1089/ten.tec.2018.0024.
  • Olthof, M. G. L.; Lu, L.; Tryfonidou, M. A.; Loozen, L. D.; Pouran, B.; Yaszemski, M. J.; Meij, B. P.; Dhert, W. J. A.; Alblas, J.; Kempen, D. H. R. The Osteoinductive Effect of Controlled Bone Morphogenic Protein 2 Release is Location Dependent. Tissue Eng. Part A 2019, 25, 193–202. DOI: 10.1089/ten.tea.2017.0427.
  • Olthof, M. G. L.; Kempen, D. H. R.; Liu, X.; Dadsetan, M.; Tryfonidou, M. A.; Yaszemski, M. J.; Dhert, W. J. A.; Lu, L. Effect of Biomaterial Electrical Charge on Bone Morphogenetic Protein-2-Induced in Vivo Bone Formation. Tissue Eng. Part A 2019, 25, 1037–1052. DOI: 10.1089/ten.tea.2018.0140.
  • Nejadnik, M. R.; Yang, X.; Mimura, T.; Birgani, Z. T.; Habibovic, P.; Itatani, K.; Jansen, J. A.; Hilborn, J.; Ossipov, D.; Mikos, A. G.; Leeuwenburgh, S. C. Calcium-Mediated Secondary Cross-Linking of Bisphosphonated Oligo(Poly(Ethylene Glycol) Fumarate) Hydrogels. Macromol. Biosci. 2013, 13, 1308–1313. DOI: 10.1002/mabi.201300117.
  • George, M. N.; Liu, X.; Miller, A. L.; II, Xu, H.; Lu, L. Phosphate Functionalization and Enzymatic Calcium Mineralization Synergistically Enhance Oligo[Poly(Ethylene Glycol) Fumarate] Hydrogel Osteoconductivity for Bone Tissue Engineering. J. Biomed. Mater. Res. 2020, 108, 515–527. DOI: 10.1002/jbm.a.36832.
  • Kinard, L. A.; Dahlin, R. L.; Lam, J.; Lu, S.; Lee, E. J.; Kasper, F. K.; Mikos, A. G. Synthetic Biodegradable Hydrogel Delivery of Demineralized Bone Matrix for Bone Augmentation in a Rat Model. Acta Biomater. 2014, 10, 4574–4582. DOI: 10.1016/j.actbio.2014.07.011.
  • Valentini, R. F.; Vargo, T. G.; Gardella, J. A., Jr.; Aebischer, P. Electrically Charged Polymeric Substrates Enhance Nerve Fibre Outgrowth in Vitro. Biomaterials 1992, 13, 183–190. DOI: 10.1016/0142-9612(92)90069-Z.
  • Fine, E. G.; Valentini, R. F.; Bellamkonda, R.; Aebischer, P. Improved Nerve Regeneration through Piezoelectric Vinylidenefluoride-Trifluoroethylene Copolymer Guidance Channels. Biomaterials 1991, 12, 775–780. DOI: 10.1016/0142-9612(91)90029-A.
  • Liu, X.; Miller Ii, A. L.; Park, S.; Waletzki, B. E.; Terzic, A.; Yaszemski, M. J.; Lu, L. Covalent Crosslinking of Graphene Oxide and Carbon Nanotube into Hydrogels Enhances Nerve Cell Responses. J. Mater. Chem. B 2016, 4, 6930–6941. DOI: 10.1039/C6TB01722C.
  • Liu, X.; Kim, J. C.; Miller, A. L.; Waletzki, B. E.; Lu, L. Electrically Conductive Nanocomposite Hydrogels Embedded with Functionalized Carbon Nanotubes for Spinal Cord Injury. New J. Chem. 2018, 42, 17671–17681. DOI: 10.1039/C8NJ03038C.
  • Zhu, Y.; Murali, S.; Cai, W.; Li, X.; Suk, J. W.; Potts, J. R.; Ruoff, R. S. Graphene and Graphene Oxide: Synthesis, Properties, and Applications. Adv. Mater. 2010, 22, 3906–3924. DOI: 10.1002/adma.201001068.
  • Lee, E. J. H.; Zhi, L.; Burghard, M.; Müllen, K.; Kern, K. Electrical Properties and Photoconductivity of Stacked-Graphene Carbon Nanotubes. Adv. Mater. 2010, 22, 1854–1857. DOI: 10.1002/adma.200903462.
  • Madigan, N. N.; Chen, B. K.; Knight, A. M.; Rooney, G. E.; Sweeney, E.; Kinnavane, L.; Yaszemski, M. J.; Dockery, P.; O'Brien, T.; McMahon, S. S.; Windebank, A. J. Comparison of Cellular Architecture, Axonal Growth, and Blood Vessel Formation through Cell-Loaded Polymer Scaffolds in the Transected Rat Spinal Cord. Tissue Eng. Part A 2014, 20, 2985–2997. DOI: 10.1089/ten.tea.2013.0551.
  • Blum, J. S.; Temenoff, J. S.; Park, H.; Jansen, J. A.; Mikos, A. G.; Barry, M. A. Development and Characterization of Enhanced Green Fluorescent Protein and Luciferase Expressing Cell Line for Non-Destructive Evaluation of Tissue Engineering Constructs. Biomaterials 2004, 25, 5809–5819. DOI: 10.1016/j.biomaterials.2004.01.035.
  • Zhang, M. W.; Park, H.; Guo, X.; Nakamura, K.; Raphael, R. M.; Kasper, F. K.; Mikos, A. G.; Tsonis, P. A. Adapting Biodegradable Oligo(Poly(Ethylene Glycol) Fumarate) Hydrogels for Pigment Epithelial Cell Encapsulation and Lens Regeneration. Tissue Eng. Part C Methods 2010, 16, 261–267. DOI: 10.1089/ten.tec.2009.0162.
  • Qiu, Y.; Lim, J. J.; Scott, L., Jr.; Adams, R. C.; Bui, H. T.; Temenoff, J. S. PEG-Based Hydrogels with Tunable Degradation Characteristics to Control Delivery of Marrow Stromal Cells for Tendon Overuse Injuries. Acta Biomater. 2011, 7, 959–966. DOI: 10.1016/j.actbio.2010.11.002.
  • Doroski, D. M.; Levenston, M. E.; Temenoff, J. S. Cyclic Tensile Culture Promotes Fibroblastic Differentiation of Marrow Stromal Cells Encapsulated in Poly(Ethylene Glycol)-Based Hydrogels. Tissue Eng. Part A 2010, 16, 3457–3466. DOI: 10.1089/ten.tea.2010.0233.
  • Wang, H.; Liu, Z.; Li, D.; Guo, X.; Kasper, F. K.; Duan, C.; Zhou, J.; Mikos, A. G.; Wang, C. Injectable Biodegradable Hydrogels for Embryonic Stem Cell Transplantation: Improved Cardiac Remodelling and Function of Myocardial Infarction. J. Cell. Mol. Med. 2012, 16, 1310–1320. DOI: 10.1111/j.1582-4934.2011.01409.x.
  • Zhou, J.; Yang, X.; Liu, W.; Wang, C.; Shen, Y.; Zhang, F.; Zhu, H.; Sun, H.; Chen, J.; Lam, J.; et al. Injectable OPF/Graphene Oxide Hydrogels Provide Mechanical Support and Enhance Cell Electrical Signaling after Implantation into Myocardial Infarct. Theranostics 2018, 8, 3317–3330. DOI: 10.7150/thno.25504.
  • Henke, M.; Brandl, F.; Goepferich, A. M.; Tessmar, J. K. Size-Dependent Release of Fluorescent Macromolecules and Nanoparticles from Radically Cross-Linked Hydrogels. Eur. J. Pharm. Biopharm. 2010, 74, 184–192. DOI: 10.1016/j.ejpb.2009.08.011.
  • Maran, A.; Dadsetan, M.; Buenz, C. M.; Shogren, K. L.; Lu, L.; Yaszemski, M. J. Hydrogel-PLGA Delivery System Prolongs 2-Methoxyestradiol-Mediated anti-Tumor Effects in Osteosarcoma Cells. J. Biomed. Mater. Res. 2013, 101A, 2491–2499. DOI: 10.1002/jbm.a.34550.
  • Liu, X.; Fundora, K. A.; Zhou, Z.; Miller, A. L.; 2nd;.; Lu, L. Composite Hydrogel Embedded with Porous Microspheres for Long-Term pH-Sensitive Drug Delivery. Tissue Eng. Part A 2019, 25, 172–182. DOI: 10.1089/ten.tea.2018.0071.
  • Gustafson, C. T.; Boakye-Agyeman, F.; Brinkman, C. L.; Reid, J. M.; Patel, R.; Bajzer, Z.; Dadsetan, M.; Yaszemski, M. J. Controlled Delivery of Vancomycin via Charged Hydrogels. PLoS One 2016, 11, e0146401. DOI: 10.1371/journal.pone.0146401.
  • Sharifi, S.; Mirzadeh, H.; Imani, M.; Rong, Z.; Jamshidi, A.; Shokrgozar, M.; Atai, M.; Roohpour, N. Injectable in Situ Forming Drug Delivery System Based on Poly(Epsilon-Caprolactone Fumarate) for Tamoxifen Citrate Delivery: Gelation Characteristics, in Vitro Drug Release and anti-Cancer Evaluation. Acta Biomater. 2009, 5, 1966–1978. DOI: 10.1016/j.actbio.2009.02.004.
  • Lam, J.; Lu, S.; Meretoja, V. V.; Tabata, Y.; Mikos, A. G.; Kasper, F. K. Generation of Osteochondral Tissue Constructs with Chondrogenically and Osteogenically Predifferentiated Mesenchymal Stem Cells Encapsulated in Bilayered Hydrogels. Acta Biomater. 2014, 10, 1112–1123. DOI: 10.1016/j.actbio.2013.11.020.
  • Guo, X.; Liao, J.; Park, H.; Saraf, A.; Raphael, R. M.; Tabata, Y.; Kasper, F. K.; Mikos, A. G. Effects of TGF-beta3 and Preculture Period of Osteogenic Cells on the Chondrogenic Differentiation of Rabbit Marrow Mesenchymal Stem Cells Encapsulated in a Bilayered Hydrogel Composite. Acta Biomater. 2010, 6, 2920–2931. DOI: 10.1016/j.actbio.2010.02.046.
  • Needham, C. J.; Shah, S. R.; Dahlin, R. L.; Kinard, L. A.; Lam, J.; Watson, B. M.; Lu, S.; Kasper, F. K.; Mikos, A. G. Osteochondral Tissue Regeneration through Polymeric Delivery of DNA Encoding for the SOX Trio and RUNX2. Acta Biomater. 2014, 10, 4103–4112. DOI: 10.1016/j.actbio.2014.05.011.
  • Kasper, F. K.; Kushibiki, T.; Kimura, Y.; Mikos, A. G.; Tabata, Y. In Vivo Release of Plasmid DNA from Composites of Oligo(Poly(Ethylene Glycol)Fumarate) and Cationized Gelatin Microspheres. J. Controlled Release 2005, 107, 547–561. DOI: 10.1016/j.jconrel.2005.07.005.
  • Kasper, F. K.; Seidlits, S. K.; Tang, A.; Crowther, R. S.; Carney, D. H.; Barry, M. A.; Mikos, A. G. In Vitro Release of Plasmid DNA from Oligo(Poly(Ethylene Glycol) Fumarate) Hydrogels. J. Controlled Release 2005, 104, 521–539. DOI: 10.1016/j.jconrel.2005.03.008.
  • Kasper, F. K.; Young, S.; Tanahashi, K.; Barry, M. A.; Tabata, Y.; Jansen, J. A.; Mikos, A. G. Evaluation of Bone Regeneration by DNA Release from Composites of Oligo(Poly(Ethylene Glycol) Fumarate) and Cationized Gelatin Microspheres in a Critical-Sized Calvarial Defect. J. Biomed. Mater. Res. 2006, 78A, 335–342. DOI: 10.1002/jbm.a.30698.
  • Chew, S. A.; Kretlow, J. D.; Spicer, P. P.; Edwards, A. W.; Baggett, L. S.; Tabata, Y.; Kasper, F. K.; Mikos, A. G. Delivery of Plasmid DNA Encoding Bone Morphogenetic Protein-2 with a Biodegradable Branched Polycationic Polymer in a Critical-Size Rat Cranial Defect Model. Tissue Eng. Part A 2011, 17, 751–763. DOI: 10.1089/ten.tea.2010.0496.
  • Hakim, J. S.; Esmaeili Rad, M.; Grahn, P. J.; Chen, B. K.; Knight, A. M.; Schmeichel, A. M.; Isaq, N. A.; Dadsetan, M.; Yaszemski, M. J.; Windebank, A. J. Positively Charged Oligo[Poly(Ethylene Glycol) Fumarate] Scaffold Implantation Results in a Permissive Lesion Environment after Spinal Cord Injury in Rat. Tissue Eng. Part A 2015, 21, 2099–2114. DOI: 10.1089/ten.tea.2015.0019.
  • Rooney, G. E.; Knight, A. M.; Madigan, N. N.; Gross, L.; Chen, B.; Giraldo, C. V.; Seo, S.; Nesbitt, J. J.; Dadsetan, M.; Yaszemski, M. J.; Windebank, A. J. Sustained Delivery of Dibutyryl Cyclic Adenosine Monophosphate to the Transected Spinal Cord via Oligo [(Polyethylene Glycol) Fumarate] Hydrogels. Tissue Eng. Part A 2011, 17, 1287–1302. DOI: 10.1089/ten.tea.2010.0396.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.