1,363
Views
4
CrossRef citations to date
0
Altmetric
Review

Alginate/Polymer-Based Materials for Fire Retardancy: Synthesis, Structure, Properties, and Applications

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 357-414 | Received 14 Apr 2020, Accepted 23 Jul 2020, Published online: 07 Aug 2020

References

  • Pawar, S. N.; Edgar, K. J. Alginate Derivatization: A Review of Chemistry, Properties and Applications. Biomaterials 2012, 33, 3279–3305. DOI: 10.1016/j.biomaterials.2012.01.007.
  • Draget, K. I. Alginates. In Handbook of Hydrocolloids; Woodhead Publishing: Sawston, 2009; pp 807–828. DOI: 10.1533/9781845695873.807.
  • Pawar, S. N.; Edgar, K. J. Chemical Modification of Alginates in Organic Solvent Systems. Biomacromolecules 2011, 12, 4095–40103. DOI: 10.1021/bm201152a.
  • McHugh, D. J. A Guide to the Seaweed Industry. FAO Fisheries Technical Paper 441; Food and Agriculture Organization of the United Nations: Rome, 2003.
  • Andriamanantoanina, H.; Rinaudo, M. Relationship between the Molecular Structure of Alginates and Their Gelation in Acidic Conditions. Polym. Int. 2010, 59, 1531–1541. DOI: 10.1002/pi.2943.
  • Sabra, W.; Deckwer, W. D. Alginate-A Polysaccharide of Industrial Interest and Diverse Biological Functions. In Polysaccharides—Structural Diversity and Functional Versatility, 2nd ed.; Marcel Dekker: New York, 2005; pp 515–533.
  • Lee, K. Y.; Mooney, D. J. Alginate: Properties and Biomedical Applications. Prog. Polym. Sci. 2012, 37, 106–126. DOI: 10.1016/j.progpolymsci.2011.06.003.
  • Albert, A.; Salvador, A.; Fiszman, S. M. A Film of Alginate plus Salt as an Edible Susceptor in Microwaveable Food. Food Hydro. 2012, 27, 421–426. DOI: 10.1016/j.foodhyd.2011.11.005.
  • Rinaudo, M. Biomaterials Based on a Natural Polysaccharide: Alginate. Tip 2014, 17, 92–96. DOI: 10.1016/S1405-888X(14)70322-5.
  • Kong, H.; & Mooney, D. Polysaccharide- based hydrogels in tissue engineering, in Polysacharides. Structural diversity and functional versatility, 2d edition (ed. Dumitriu, S.) 817-837 (Marcel Dekker, New York, 2005).
  • Hambleton, A.; Debeaufort, F.; Bonnotte, A.; Voilley, A. Influence of Alginate Emulsion-Based Films Structure on Its Barrier Properties and on the Protection of Microencapsulated Aroma Compound. Food Hydro 2009, 23, 2116–2124. DOI: 10.1016/j.foodhyd.2009.04.001.
  • Pranoto, Y.; Salokhe, V. M.; Rakshit, S. K. Physical and Antibacte Rial Properties of Alginate-Based Edible Film Incorporated with Garlic Oil. Food Res. Int. 2005, 38, 267–272. DOI: 10.1016/j.foodres.2004.04.009.
  • Joyce, M.; Gilbert, R. D.; Khan, S. A. Effect of Ca+ Ions on the Water Retention of Alginate in Paper Coatings. J. Pulp Paper Sci. 1996, 22, 126–130.
  • Qin, Y. The Gel Swelling Properties of Alginate Fibers and Their Applications in Wound Management. Polym. Adv. Technol. 2008, 19, 6–14. DOI: 10.1002/pat.960.
  • Haug, A.; Larsen, B.; Samuelsson, B.; Sjövall, J.; Munch-Petersen, J. The Solubility of Alginate at Low pH. Acta Chem. Scand. 1963, 17, 1653–1662. DOI: 10.3891/acta.chem.scand.17-1653.
  • Zhang, C. J.; Zhu, P. J.; Ji, Q.; Wang, F.; Tan, L.; Xia, Y. Effects of Divalent Metal Ions on the Flame Retardancy and Pyrolysis Products of Alginate Fibers. Polym. Degrad. Stab. 2012, 97, 1034–1040. DOI: 10.1016/j.polymdegradstab.2012.03.004.
  • Dong, H.; Snyder, J. F.; Williams, K. S.; Andzelm, J. W. Cation-Induced Hydrogels of Cellulose Nanofibrils with Tunable Moduli. Biomacromolecules 2013, 14, 3338–3345. DOI: 10.1021/bm400993f.
  • Kohn, R. Ion Binding on Polyuronates-Alginate and Pectin. Pure. Appl. Chem. 1975, 42, 371–397. DOI: 10.1351/pac197542030371.
  • Ahmed, E. M. Hydrogel: Preparation, Characterization, and Applications: A Review. J. Adv. Res. 2015, 6, 105–121. DOI: 10.1016/j.jare.2013.07.006.
  • Joint FAO/WHO Expert Committee on Food Additives. Propylene Glycol Alginate. In Compendium of Food Additive Specifications, Paper 52, Addendum 5; Food and Agriculture Organization of the United Nations/World Health Organization: Rome, 1997; pp 131–134.
  • Kralova, I.; Johan, S. Surfactants Used in Food Industry: A Review. J. Disp. Sci. Tech 2009, 30, 1363–1383. DOI: 10.1080/01932690902735561.
  • Mohanty, A. K.; Misra, M. A.; Hinrichsen, G. I. Biofibers, Biodegradable Polymers and Biocomposites: An Overview. Macromol. Mater. Eng. 2000, 276-277, 1–24. DOI: 10.1002/(SICI)1439-2054(20000301)276:1 < 1::AID-MAME1 > 3.0.CO;2-W.
  • Lu, S. Y.; Hamerton, I. Recent Developments in the Chemistry of Halogen-Free Flame Retardant Polymers. Prog. Polym. Sci. 2002, 27, 1661–1712. DOI: 10.1016/S0079-6700(02)00018-7.
  • Holbery, J.; Houston, D. Natural-Fiber-Reinforced Polymer Composites in Automotive Applications. JOM 2006, 58, 80–86. DOI: 10.1007/s11837-006-0234-2.
  • Balakrishnan, P.; John, M. J.; Pothen, L.; Sreekala, M. S.; Thomas, S. Natural Fiber and Polymer Matrix Composites and Their Applications in Aerospace Engineering. In Advanced Composite Materials for Aerospace Engineering; Woodhead Publishing: Sawston, 2016; pp 365–383.
  • Mohammed Fayaz, A.; Balaji, K.; Girilal, M.; Kalaichelvan, P. T.; Venkatesan, R. Mycobased Synthesis of Silver Nanoparticles and Their Incorporation into Sodium Alginate Films for Vegetable and Fruit Preservation. J. Agric. Food Chem. 2009, 57, 6246–6252. DOI: 10.1021/jf900337h.
  • Junod, T. L. Gaseous Emissions and Toxic Hazards Associated with Plastics in Fire Situations: A Literature Review.
  • Horrocks, A. R.; Price, D., Eds.; Fire Retardant Materials; Woodhead Publishing: Sawston, 2001.
  • Makkar, H. P.; Tran, G.; Heuzé, V.; Giger-Reverdin, S.; Lessire, M.; Lebas, F.; Ankers, P. Seaweeds for Livestock Diets: A Review. Ani. Feed. Sci. Tech 2016, 212, 1–7. DOI: 10.1016/j.anifeedsci.2015.09.018.
  • Kim, S. K.; Chojnacka, K., Eds.; Marine Algae Extracts: Processes, Products, and Applications; John Wiley & Sons: Hoboken, 2015.
  • Gacesa, P. Alginates. Carbohydr. Polym. 1988, 8, 161–182. DOI: 10.1016/0144-8617(88)90001-X.
  • Remminghorst, U.; Rehm, B. H. Bacterial Alginates: From Biosynthesis to Applications. Biotechnol. Lett. 2006, 28, 1701–1712. DOI: 10.1007/s10529-006-9156-x.
  • Rehm, B. H.; Valla, S. Bacterial Alginates: Biosynthesis and Applications. Appl. Microbio. Biotech 1997, 48, 281–288. DOI: 10.1007/s002530051051.
  • Hay, I. D.; Ur Rehman, Z.; Ghafoor, A.; Rehm, B. H. Bacterial Biosynthesis of Alginates. J. Chem. Technol. Biotechnol. 2010, 85, 752–759. DOI: 10.1002/jctb.2372.
  • Fertah, M.; Belfkira, A.; Taourirte, M.; Brouillette, F. Extraction and Characterization of Sodium Alginate from Moroccan Laminaria Digitata Brown Seaweed. J. Chem. 2017, 10, 3707–3714. DOI: 10.1016/j.arabjc.2014.05.003.
  • Gacesa, P. Bacterial Alginate Biosynthesis-Recent Progress and Future Prospects. Microbiology 1998, 144, 1133–1143. DOI: 10.1099/00221287-144-5-1133.
  • Wong, T. Y.; Preston, L. A.; Schiller, N. L. Alginate Lyase: Review of Major Sources and Enzyme Characteristics, Structure-Function Analysis, Biological Roles, and Applications. Annu. Rev. Microbiol. 2000, 54, 289–340. DOI: 10.1146/annurev.micro.54.1.289.
  • Kıvılcımdan Moral, Ç.; Yıldız, M. Alginate Production from Alternative Carbon Sources and Use of Polymer-Based Adsorbent in Heavy Metal Removal. Int. J. Polym. Sci. 2016, 2016, 1–8. DOI: 10.1155/2016/7109825.
  • Hay, I. D.; Rehman, Z. U.; Moradali, M. F.; Wang, Y.; Rehm, B. H. Microbial Alginate Production, Modification and Its Applications. Microb. Biotechnol. 2013, 6, 637–650. DOI: 10.1111/1751-7915.12076.
  • Rhein-Knudsen, N.; Ale, M.; Meyer, A. Seaweed Hydrocolloid Production: An Update on Enzyme Assisted Extraction and Modification Technologies. Mar. Drugs. 2015, 13, 3340–3359. DOI: 10.3390/md13063340.
  • Haug, A.; Larsen, B. 1965 A Study on the Constitution of Alginic Acid by Partial Acid Hydrolysis. In Proceedings of the Fifth International Seaweed Symposium, Halifax; Pergamon; pp 271–277. DOI: 10.1016/B978-0-08-011841-3.50043-4.
  • Haug, A.; Larsen, B.; Smidsrød, O.; Smidsrød, O.; Eriksson, G.; Blinc, R.; Paušak, S.; Ehrenberg, L.; Dumanović, J. Studies on the Sequence of Uronic Acid Residues in Alginic Acid. Acta Chem. Scand. 1967, 21, 691–704. DOI: 10.3891/acta.chem.scand.21-0691.
  • Painter, T.; Smidsrød, O.; Larsen, B.; Haug, A.; Paasivirta, J. A Computer Study of the Changes in Composition-Distribution Occurring during Random Depolymerisation of a Binary Linear Heteropolysaccharide. Acta Chem. Scand. 1968, 22, 1637–1648. DOI: 10.3891/acta.chem.scand.22-1637.
  • Larsen, B.; Smidsrød, O.; Painter, T.; Haug, A.; Rasmussen, S. E.; Sunde, E.; Sørensen, N. A. Calculation of the Nearest-Neighbour Frequencies in Fragments of Alginate from the Yields of Free Monomers after Partial Hydrolysis. Acta Chem. Scand. 1970, 24, 726–728. DOI: 10.3891/acta.chem.scand.24-0726.
  • Llanes, F.; Sauriol, F.; Morin, F. G.; Perlin, A. S. An Examination of Sodium Alginate from Sargassum by NMR Spectroscopy. Can. J. Chem. 1997, 75, 585–590. DOI: 10.1139/v97-069.
  • Back, E. L. Thermal Auto-Crosslinking in Cellulose Material. Pulp. Pap. Mag. Can. 1967, 68, 165–171.
  • Sikorski, P.; Mo, F.; Skjåk-Braek, G.; Stokke, B. T. Evidence for Egg-Box-Compatible Interactions in Calcium-Alginate Gels from Fiber X-Ray Diffraction. Biomacromolecules 2007, 8, 2098–20103. DOI: 10.1021/bm0701503.
  • Donati, I.; Holtan, S.; Mørch, Y. A.; Borgogna, M.; Dentini, M.; Skjåk-Braek, G. New Hypothesis on the Role of Alternating Sequences in calcium-alginate gels. Biomacromolecules 2005, 6, 1031–1040. DOI: 10.1021/bm049306e.
  • Mørch, Y. A.; Donati, I.; Strand, B. L.; Skjåk-Braek, G. Effect of Ca2+, Ba2+, and Sr2+ on Alginate Microbeads. Biomacromolecules 2006, 7, 1471–1480. DOI: 10.1021/bm060010d.
  • Skjåk-Braek, G.; Grasdalen, H.; Smidsrød, O. Inhomogeneous Polysaccharide Ionic Gels. Carbohydr. Polym. 1989, 10, 31–54. DOI: 10.1016/0144-8617(89)90030-1.
  • Paredes Juárez, G. A.; Spasojevic, M.; Faas, M. M.; de Vos, P. Immunological and Technical Considerations in Application of Alginate-Based Microencapsulation Systems. Front. Bioeng. Biotechnol. 2014, 2, 26. DOI: 10.3389/fbioe.2014.00026.
  • Kühbeck, D.; Mayr, J.; Häring, M.; Hofmann, M.; Quignard, F.; Díaz, D. D. Evaluation of the Nitroaldol Reaction in the Presence of Metal Ion-Crosslinked Alginates. New J. Chem. 2015, 39, 2306–2315. DOI: 10.1039/c4nj02178a.
  • Goh, C. H.; Heng, P. W.; Chan, L. W. Alginates as a Useful Natural Polymer for Microencapsulation and Therapeutic Applications. Carbohydr. Polym. 2012, 88, 1–2. DOI: 10.1016/j.carbpol.2011.11.012.
  • Workman, V. L.; Dunnett, S. B.; Kille, P.; Palmer, D. D. On‐Chip Alginate Microencapsulation of Functional Cells. Macromol. Rapid Commun. 2008, 29, 165–170. DOI: 10.1002/marc.200700641.
  • Nakamura, K.; Nishimura, Y.; Hatakeyama, T.; Hatakeyama, H. Thermal Properties of Water Insoluble Alginate Films Containing Di- and Trivalent Cations. Thermochim. Acta 1995, 267, 343–353. DOI: 10.1016/0040-6031(95)02491-3.
  • Schiewer, S.; Wong, M. H. Ionic Strength Effects in Biosorption of Metals by Marine algae. Chemosphere 2000, 41, 271–282. DOI: 10.1016/S0045-6535(99)00421-X.
  • DeRamos, C. M.; Irwin, A. E.; Nauss, J. L.; Stout, B. E. 13C NMR and Molecular Modeling Studies of Alginic Acid Binding with Alkaline Earth and Lanthanide Metal Ions. Inorg. Chim. Acta 1997, 256, 69–75. DOI: 10.1016/S0020-1693(96)05418-7.
  • Lewin, M.; Weil, E. D. Mechanisms and Modes of Action in Flame Retardancy of Polymers. Fire Reta. Mater. 2001, 1, 31–68.
  • Kuo, C. K.; Ma, P. X. Ionically Crosslinked Alginate Hydrogels as Scaffolds for Tissue Engineering: Part 1. Structure, Gelation Rate and Mechanical Properties. Biomaterials 2001, 22, 511–521. DOI: 10.1016/S0142-9612(00)00201-5.
  • Draget, K. I.; Skjåk-Braek, G.; Smidsrød, O. Alginate Based New Materials. Int. J. Biological. Macromol. 1997, 21, 47–55. DOI: 10.1016/S0141-8130(97)00040-8.
  • Chang, C.; Zhang, L.; Zhou, J.; Zhang, L.; Kennedy, J. F. Structure and Properties of Hydrogels Prepared from Cellulose in NaOH/Urea Aqueous Solutions. Carbohydr. Polym. 2010, 82, 122–127. DOI: 10.1016/j.carbpol.2010.04.033.
  • Zhou, J.; Chang, C.; Zhang, R.; Zhang, L. Hydrogels Prepared from Unsubstituted Cellulose in NaOH/Urea Aqueous Solution. Macromol. Biosci. 2007, 7, 804–809. DOI: 10.1002/mabi.200700007.
  • Kartha, K. P.; Srivastava, H. C. Reaction of Epichlorhydrin with Carbohydrate Polymers. Part II. Starch Reaction Mechanism and Physicochemical Properties of Modified Starch. Starch/Stärke. 1985, 37, 297–306. DOI: 10.1002/star.19850370905.
  • National Center for Biotechnology Information. PubChem Database. Sodium erythorbate [FCC], CID = 23696296. https://pubchem.ncbi.nlm.nih.gov/compound/Sodium-erythorbate-_FCC (accessed 2019).
  • Qin, Y. Alginate Fibers: An Overview of the Production Processes and Applications in Wound Management. Polym. Int. 2008, 57, 171–180. DOI: 10.1002/pi.2296.
  • Lee, K. Y.; Mooney, D. J. Hydrogels for Tissue Engineering. Chem. Rev. 2001, 101, 1869–1880. DOI: 10.1021/cr000108x.
  • Lee, K. Y.; Rowley, J. A.; Eiselt, P.; Moy, E. M.; Bouhadir, K. H.; Mooney, D. J. Controlling Mechanical and Swelling Properties of Alginate Hydrogels Independently by Cross-Linker Type and Cross-Linking Density. Macromolecules 2000, 33, 4291–4294. DOI: 10.1021/ma9921347.
  • Rein, G. Smouldering Combustion Phenomena in Science and Technology. Int. Rev. Chem. Eng. 2009, 1, 3–18.
  • Soares, J. D.; Santos, J. E.; Chierice, G. O.; Cavalheiro, E. T. Thermal Behavior of Alginic Acid and Its Sodium Salt. Eclet. Quím. 2004, 29, 57–64. DOI: 10.1590/S0100-46702004000200009.
  • Patel, P.; Hull, T. R.; McCabe, R. W.; Flath, D.; Grasmeder, J.; Percy, M. Mechanism of Thermal Decomposition of Poly (Ether Ether Ketone) (PEEK) from a Review of Decomposition Studies. Polym. Degrad. Stab. 2010, 95, 709–718. DOI: 10.1016/j.polymdegradstab.2010.01.024.
  • Laoutid, F.; Bonnaud, L.; Alexandre, M.; Lopez-Cuesta, J. M.; Dubois, P. New Prospects in Flame Retardant Polymer Materials: From Fundamentals to Nanocomposites. Mater. Sci. Eng. Rep. 2009, 63, 100–125. DOI: 10.1016/j.mser.2008.09.002.
  • Mancini, F.; Montanari, L.; Peressini, D.; Fantozzi, P. Influence of Alginate Concentration and Molecular Weight on Functional Properties of Mayonnaize. LWT - Food. Sci. Tech. 2002, 35, 517–525. DOI: 10.1006/fstl.2002.0899.
  • Das, M. K.; Senapati, P. C. Furosemide-Loaded Alginate Microspheres Prepared by Ionic Cross-Linking Technique: Morphology and Release Characteristics. Indian J. Pharm. Sci. 2008, 70, 77–84. DOI: 10.4103/0250-474X.40336.
  • Martinsen, A.; Skjåk-Braek, G.; Smidsrød, O. Alginate as Immobilization Material: I. Correlation between Chemical and Physical Properties of Alginate Gel Beads. Biotechnol. Bioeng. 1989, 33, 79–89. DOI: 10.1002/bit.260330111.
  • da Silva, T. L.; Vidart, J. M.; da Silva, M. G.; Gimenes, M. L.; Vieira, M. G. Alginate and Sericin: Environmental and Pharmaceutical Applications. In Biological Activities and Application of Marine Polysaccharides; InTech: Rijeka, 2017; pp 57–86.
  • Timell, T. E. The Acid Hydrolysis of Glycosides: I. General Conditions and the Effect of the Nature of the Aglycone. Can. J. Chem. 1964, 42, 1456–1472. DOI: 10.1139/v64-221.
  • Smidsrød, O.; Haug, A.; Larsen, B.; Alivaara, A.; Traetteberg, M. Degradation of Alginate in the Presence of Reducing Compounds. Acta Chem. Scand. 1963, 17, 2628–2637. DOI: 10.3891/acta.chem.scand.17-2628.
  • Hoffman, A. S. Hydrogels for Biomedical Applications. Adv. Drug Deliv. Rev 2012, 64, 18–23. DOI: 10.1016/j.addr.2012.09.010.
  • Liu, X. D.; Yu, W. Y.; Zhang, Y.; Xue, W. M.; Yu, W. T.; Xiong, Y.; Ma, X. J.; Chen, Y.; Yuan, Q. Characterization of Structure and Diffusion Behaviour of Ca-Alginate Beads Prepared with External or Internal Calcium Sources. J. Microencapsul. 2002, 19, 775–782. DOI: 10.1080/0265204021000022743.
  • Ribeiro, A. J.; Silva, C.; Ferreira, D.; Veiga, F. Chitosan-Reinforced Alginate Microspheres Obtained through the Emulsification/Internal Gelation Technique. Eur. J. Pharm. Sci. 2005, 25, 31–40. DOI: 10.1016/j.ejps.2005.01.016.
  • Mahmoodi, N. M. Magnetic Ferrite Nanoparticle–Alginate Composite: Synthesis, Characterization and Binary System Dye Removal. J. Taiwan Inst. Chem. Eng 2013, 44, 322–330. DOI: 10.1016/j.jtice.2012.11.014.
  • Passow, U. The Abiotic Formation of TEP under Different Ocean Acidification Scenarios. Mar. Chem 2012, 128-129, 72–80. DOI: 10.1016/j.marchem.2011.10.004.
  • Chan, L. W.; Lee, H. Y.; Heng, P. W. Mechanisms of External and Internal Gelation and Their Impact on the Functions of Alginate as a Coat and Delivery System. Carbohydr. Polym. 2006, 63, 176–187. DOI: 10.1016/j.carbpol.2005.07.033.
  • Papageorgiou, M.; Kasapis, S.; Gothard, M. G. Structural and Textural Properties of Calcium Induced, Hot-Made Alginate Gels. Carbohydr. Polym 1994, 24, 199–207. DOI: 10.1016/0144-8617(94)90131-7.
  • Zhang, L.; Zhou, D.; Wang, H.; Cheng, S. Ion Exchange Membranes Blended by Cellulose Cuoxam with Alginate. J. Membr. Sci. 1997, 124, 195–201. DOI: 10.1016/S0376-7388(96)00227-X.
  • Işıklan, N.; Kurşun, F.; İnal, M. Graft Copolymerization of Itaconic Acid onto Sodium Alginate Using Benzoyl Peroxide. Carbohydr. Polym. 2010, 79, 665–672. DOI: 10.1016/j.carbpol.2009.09.021.
  • Kevadiya, B. D.; Joshi, G. V.; Patel, H. A.; Ingole, P. G.; Mody, H. M.; Bajaj, H. C. Montmorillonite-Alginate Nanocomposites as a Drug Delivery System: Intercalation and in Vitro Release of Vitamin B1 and Vitamin B6. J. Biomater. Appl. 2010, 25, 161–177. DOI: 10.1177/0885328209344003.
  • Areza Medical. Material Safety Data Sheet. Areza Calcium Alginate. https://arezamedical.mx/pdf/calcium-alginate-dressing-msds.pdf (accessed 2019).
  • Smidsrod, O.; Haug, A. R.; Larsen, B. The Influence of pH on the Rate of Hydrolysis of Acidic Polysaccharides. Acta Chem. Scand. 1966, 20, 1026–1034. DOI: 10.3891/acta.chem.scand.20-1026.
  • Chen, W.; Liu, Y.; Liu, Y.; Wang, Q. Preparation of Alginate Flame Retardant Containing P and Si and Its Flame Retardancy in Epoxy Resin. J. Appl. Polym. Sci. 2017, 134, 45552. DOI: 10.1002/app.45552.
  • Singh, V.; Kumar, P.; Sanghi, R. Use of Microwave Irradiation in the Grafting Modification of the Polysaccharides – A Review. Prog. Polym. Sci. 2012, 37, 340–364. DOI: 10.1016/j.progpolymsci.2011.07.005.
  • Kapishon, V.; Whitney, R. A.; Champagne, P.; Cunningham, M. F.; Neufeld, R. J. Polymerization Induced Self-Assembly of Alginate Based Amphiphilic Graft Copolymers Synthesized by Single Electron Transfer Living Radical Polymerization. Biomacromolecules 2015, 16, 2040–2048. DOI: 10.1021/acs.biomac.5b00470.
  • Ohlemiller, T. J. Smoldering Combustion. In SFPE Handbook of Fire Protection Engineering; Springer: Berlin, 2002, 3, 415–425.
  • Lyon, R. E.; Janssens, M. L. Polymer Flammability. Encycl. Polym. Sci. Tech. 2002, 15, 1–70. DOI: 10.1002/0471440264.pst135.pub2.
  • Pandey, M. P.; Kim, C. S. Lignin Depolymerization and Conversion: A Review of Thermochemical Methods. Chem. Eng. Technol. 2011, 34, 29–41. DOI: 10.1002/ceat.201000270.
  • Kandola, B. K.; Horrocks, A. R. Complex Char Formation in Flame-Retarded Fiber-Intumescent Combinations—II. Thermal Analytical Studies. Polym. Degrad. Stab. 1996, 54, 289–303. DOI: 10.1016/S0141-3910(96)00054-7.
  • Liu, Y.; Zhang, C. J.; Zhao, J. C.; Guo, Y.; Zhu, P.; Wang, D. Y. Bio-Based Barium Alginate Film: Preparation, Flame Retardancy and Thermal Degradation Behavior. Carbohydr. Polym. 2016, 139, 106–114. DOI: 10.1016/j.carbpol.2015.12.044.
  • Purser, D. A. Toxicity Assessment of Combustion Products. In The SFPE Handbook of Fire Protection Engineering; Springer: Berlin, 2002, 2, pp 83–171.
  • Liu, Y.; Zhao, J. C.; Zhang, C. J.; Guo, Y.; Zhu, P.; Wang, D. Y. Effect of Manganese and Cobalt Ions on Flame Retardancy and Thermal Degradation of Bio-Based Alginate Films. J. Mater. Sci. 2016, 51, 1052–1065. DOI: 10.1007/s10853-015-9435-9.
  • Alginate Market Analysis By Type (High G, High M), By Product (Sodium Alginate, Calcium Alginate, Potassium Alginate, Propylene Glycol Alginate), By Application, And Segment Forecast, 2018 – 2025; Grandview Research. https://www.grandviewresearch.com/industry-analysis/alginate-market (accessed 2019).
  • Sandford, P. A.; John, B. Industrial Utilization of Polysaccharides. In The Polysaccharides; Academic Press: Cambridge, MA, 1983, pp 411–490. DOI: 10.1016/B978-0-12-065602-8.50012-1.
  • Van den, B.; Sander, W. K.; Arie, P. V. D.; Bartelings, H.; Marinus, M.; Krimpen, V.; Marnix, P. The Economic Feasibility of Seaweed Production in the North Sea. Aquaculture Economics & Management 2016, 20, 235–252. DOI: 10.1080/13657305.2016.1177859.
  • Klein, B.; Buchholz, R. Microalgae as Sources of Food Ingredients and Nutraceuticals. In Microbial Production of Food Ingredients, Enzymes and Nutraceuticals; Woodhead Publishing: Sawston, 2013, pp 559–570. DOI: 10.1533/9780857093547.2.559.
  • Mayet, N.; Choonara, Y. E.; Kumar, P.; Tomar, L. K.; Tyagi, C.; Du Toit, L. C.; Pillay, V. A Comprehensive Review of Advanced Biopolymeric Wound Healing Systems. J. Pharm. Sci. 2014, 103, 2211–2230. DOI: 10.1002/jps.24068.
  • Junod, T. L. Gaseous Emissions and Toxic Hazards Associated with Plastics in Fire Situations: A Literature Review; National Aeronautics and Space Administration: Washington, DC, 1976.
  • Ateş, O.; Ebru, T. O. Microbial Xanthan, Levan, Gellan, and Curdlan as Food Additives. In Microbial Functional Foods and Nutraceuticals; Wiley: Hoboken, 2017, pp 149.
  • Rinaudo, M. Main Properties and Current Applications of Some Polysaccharides as Biomaterials. Polym. Int. 2008, 57, 397–430. DOI: 10.1002/pi.2378.
  • Brownlee, I. A.; Seal, C. J.; Wilcox, M.; Dettmar, P. W.; Pearson, J. P. Applications of Alginates in Food. In Alginates: Biology and Applications Volume 13 of Microbiology Monographs; Springer Science & Business Media: Berlin, 2009; pp 211–228. DOI: 10.1007/978-3-540-92679-5_9.
  • Szekalska, M.; Puciłowska, A.; Szymańska, E.; Ciosek, P.; Winnicka, K. Alginate: Current Use and Future Perspectives in Pharmaceutical and Biomedical Applications. Int. J. Polym. Sci. 2016, 2016, 1–17. DOI: 10.1155/2016/7697031.
  • Becker, T. A.; Daryl, R. K.; Tedd, B. Calcium Alginate Gel: A Biocompatible and Mechanically Stable Polymer for Endovascular Embolization. J. Biomed. Mater. Res. 2001, 54, 76–86. DOI: 10.1002/1097-4636(200101)54:1 < 76::AID-JBM9 > 3.0.CO;2-V.
  • Tønnesen, H. H.; Jan, K. Alginate in Drug Delivery Systems. Drug Dev. Ind. Pharm. 2002, 28, 621–630. DOI: 10.1081/DDC-120003853.
  • Uyen, L. L.; Ha, V. T.; Uyen, N. H.; Trang, L. T.; Hien, N. Q. Preparation of Oligoalginate Plant Growth Promoter by γ Irradiation of Alginate Solution Containing Hydrogen Peroxide. J. Agric. Food Chem. 2012, 60, 1737–1741. DOI: 10.1021/jf204469p.
  • Lawrence, M. J. Surfactant Systems: Their Use in Drug Delivery. Chem. Soc. Rev. 1994, 23, 417–424. DOI: 10.1039/CS9942300417.
  • Van den Mooter, G.; Kinget, R. Kinget, R; Oral Colon-Specific Drug Delivery: A Review. Drug Deliv. 1995, 2, 81–93. DOI: 10.3109/10717549509031355.
  • Zille, A.; Fernando, R. O.; Antonio, P. S. Plasma Treatment in Textile Industry. Plasma Process. Polym. 2015, 12, 98–131. DOI: 10.1002/ppap.201400052.
  • Morais, D. S.; Rui, M. G.; Maria, A. L. Antimicrobial Approaches for Textiles: From Research to Market. Materials 2016, 9, 498. DOI: 10.3390/ma9060498.
  • Tibbitt; Mark, W.; Kristi, S. Hydrogels as Extracellular Matrix Mimics for 3D Cell Culture. Biotechnol. Bioeng. 2009, 103, 655–663. DOI: 10.1002/bit.22361.
  • Shang, K.; Liao, W.; Wang, J.; Wang, Y. T.; Wang, Y. Z.; Schiraldi, D. A. Nonflammable Alginate Nanocomposite Aerogels Prepared by a Simple Freeze-Drying and Post-Cross-Linking Method. ACS Appl. Mater. Interfaces 2016, 8, 643–650. DOI: 10.1021/acsami.5b09768.
  • Chen, H. B.; Shen, P.; Chen, M. J.; Zhao, H. B.; Schiraldi, D. A. Highly Efficient Flame Retardant Polyurethane Foam with Alginate/Clay Aerogel Coating. ACS Appl. Mater. Interfaces 2016, 8, 32557–32564. DOI: 10.1021/acsami.6b11659.
  • Bhattarai, N.; Li, Z.; Edmondson, D.; Zhang, M. Alginate‐Based Nanofibrous Scaffolds: Structural, Mechanical, and Biological Properties. Adv. Mater. 2006, 18, 1463–1467. DOI: 10.1002/adma.200502537.
  • Liu, Z.; Li, J.; Zhao, X.; Li, Z.; Li, Q. Surface Coating for Flame Retardancy and Pyrolysis Behavior of Polyester Fabric Based on Calcium Alginate Nanocomposites. Nanomaterials 2018, 8, 875. DOI: 10.3390/nano8110875.
  • Chen, T.; Yang, M.; Tan, L.; Ji, Q. Flame Retardancy and Thermal Properties of Lanthanum Alginate. J. Appl. Sci. Eng. Innov 2019, 6, 1–4.
  • Troitzsch, J. H. Overview of Flame Retardants. Chem. Today 1998, 16.
  • Schartel, B.; Hull, T. R. Development of Fire‐Retarded Materials—Interpretation of Cone Calorimeter Data. Fire Mater. 2007, 31, 327–354. DOI: 10.1002/fam.949.
  • Weil, E. D.; Patel, N. G.; Said, M. M.; Hirschler, M. M.; Shakir, S. Oxygen Index: Correlations to Other Fire Tests. Fire Mater. 1992, 16, 159–167. DOI: 10.1002/fam.810160402.
  • Zhang, C. J.; Liu, Y.; Cui, L.; Yan, C.; Zhu, P. Bio-Based Calcium Alginate Nonwoven Fabrics: Flame Retardant and Thermal Degradation Properties. J. Anal. Appl. Pyrolysis 2016, 122, 13–23. DOI: 10.1016/j.jaap.2016.10.030.
  • Kearns, R. F.; Kearns, T. R.; Kearns, T. P. Protective Coating System. U.S. Patent No. 4,349,398, June 28, 1982.
  • Brief, A. The Role of Adhesives in the Economy. In Handbook of Adhesives; Springer: Boston, 1990; pp 21–38.
  • Yuan, W.; Dong, H.; Li, C. M.; Cui, X.; Yu, L.; Lu, Z.; Zhou, Q. pH-Controlled Construction of Chitosan/Alginate Multilayer Film: Characterization and Application for Antibody Immobilization. Langmuir 2007, 23, 13046–13052. DOI: 10.1021/la702774a.
  • Gibbs, F.; Selim, K.; Inteaz, A.; Catherine, N.; Mulligan, B. Encapsulation in the Food Industry: A Review. Int. J. Food. Sci. Nutr. 1999, 50, 213–224. DOI: 10.1080/096374899101256.
  • Andreopoulos, A. G. Diffusion Characteristics of Alginate Membranes. Biomaterials 1987, 8, 397–400. DOI: 10.1016/0142-9612(87)90012-3.
  • Zhang, C. J.; Zhu, P.; Zhao, J. C.; Zhang, N. N. Flame Retardancy and Pyrolysis Products of Calcium Alginate Fibers. AMR. 2012, 441, 346–350. DOI: 10.4028/www.scientific.net/AMR.441.346.
  • Zhang, X.; Xia, Y.; Yan, X.; Shi, M. Efficient Suppression of Flammability in Flame Retardant Viscose Fiber through Incorporating with Alginate Fiber. Mater. Lett. 2018, 215, 106–109. DOI: 10.1016/j.matlet.2017.12.077.
  • Wang, Y.; Yang, X.; Peng, H.; Wang, F.; Liu, X.; Yang, Y.; Hao, J. Layer-by-Layer Assembly of Multifunctional Flame Retardant Based on Brucite, 3-Aminopropyltriethoxysilane, and Alginate and Its Applications in Ethylene-Vinyl Acetate Resin. ACS Appl. Mater. Interfaces 2016, 8, 9925–9935. DOI: 10.1021/acsami.6b00998.
  • Wang, Y.; Li, Z.; Li, Y.; Wang, J.; Liu, X.; Song, T.; Yang, X.; Hao, J. Spray-Drying-Assisted Layer-by-Layer Assembly of Alginate, 3-Aminopropyltriethoxysilane, and Magnesium Hydroxide Flame Retardant and Its Catalytic Graphitization in Ethylene-Vinyl Acetate Resin. ACS Appl. Mater. Interfaces 2018, 10, 10490–104500. DOI: 10.1021/acsami.8b01556.
  • Chen, H. B.; Wang, Y. Z.; Sánchez-Soto, M.; Schiraldi, D. A. Low Flammability, Foam-like Materials Based on Ammonium Alginate and Sodium Montmorillonite Clay. Polymer 2012, 53, 5825–5831. DOI: 10.1016/j.polymer.2012.10.029.
  • Sun, X.; Li, Z.; Zhao, X.; Xue, Y.; Li, J.; Li, Q. 2016 Preparation and Properties of Calcium Alginate Nano-Cu2O Flame Retardant Antimicrobial Membrane Material. In 2016 2nd International Conference on Architectural, Civil and Hydraulics Engineering (ICACHE 2016); Atlantis Press. DOI: 10.2991/icache-16.2016.35.
  • Liu, Y.; Zhao, J.; Zhang, C.; Ji, H.; Zhu, P. The Flame Retardancy, Thermal Properties, and Degradation Mechanism of Zinc Alginate Films. J. Macromol. Sci. 2014, 53, 1074–1089. DOI: 10.1080/00222348.2014.891169.
  • Liu, Y.; Wang, J. S.; Zhu, P.; Zhao, J. C.; Zhang, C. J.; Guo, Y.; Cui, L. Thermal Degradation Properties of Biobased Iron Alginate Film. J Anal. Appl. Pyrolysis 2016, 119, 87–96. DOI: 10.1016/j.jaap.2016.03.014.
  • Liu, Y.; Zhao, X. R.; Peng, Y. L.; Wang, D.; Yang, L.; Peng, H.; Zhu, P.; Wang, D. Y. Effect of Reactive Time on Flame Retardancy and Thermal Degradation Behavior of Bio-Based Zinc Alginate Film. Polym. Degrad. Stab 2016, 127, 20–31. DOI: 10.1016/j.polymdegradstab.2015.12.024.
  • Liu, Y.; Zhao, J. C.; Zhang, C. J.; Guo, Y.; Cui, L.; Zhu, P.; Wang, D. Y. Bio-Based Nickel Alginate and Copper Alginate Films with Excellent Flame Retardancy: Preparation, Flammability and Thermal Degradation Behavior. RSC Adv. 2015, 5, 64125–64137. DOI: 10.1039/C5RA11048C.
  • Pan, H.; Wang, W.; Pan, Y.; Song, L.; Hu, Y.; Liew, K. M. Formation of Layer-by-Layer Assembled Titanate Nanotubes Filled Coating on Flexible Polyurethane Foam with Improved Flame Retardant and Smoke Suppression Properties. ACS Appl Mater Interfaces 2015, 7, 101–111. DOI: 10.1021/am507045g.
  • Pan, H.; Pan, Y.; Wang, W.; Song, L.; Hu, Y.; Liew, K. M. Synergistic Effect of Layer-by-Layer Assembled Thin Films Based on Clay and Carbon Nanotubes to Reduce the Flammability of Flexible Polyurethane Foam. Ind. Eng. Chem. Res. 2014, 53, 14315–14321. DOI: 10.1021/ie502215p.
  • Pan, Y.; Pan, H.; Yuan, B.; Hong, N.; Zhan, J.; Wang, B.; Song, L.; Hu, Y. Construction of Organic–Inorganic Hybrid Nano-Coatings Containing α-Zirconium Phosphate with High Efficiency for Reducing Fire Hazards of Flexible Polyurethane Foam. Mate. Chem. Phys. 2015, 163, 107–115. DOI: 10.1016/j.matchemphys.2015.07.020.
  • Liu, L.; Wang, W.; Hu, Y. Layered Double Hydroxide-Decorated Flexible Polyurethane Foam: Significantly Improved Toxic Effluent Elimination. RSC Adv. 2015, 5, 97458–97466. DOI: 10.1039/C5RA19414H.
  • Wang, W.; Pan, H.; Shi, Y.; Yu, B.; Pan, Y.; Liew, K. M.; Song, L.; Hu, Y. Sandwichlike Coating Consisting of Alternating Montmorillonite and β-FeOOH for Reducing the Fire Hazard of Flexible Polyurethane Foam. ACS Sustainable Chem. Eng. 2015, 3, 3214–3223. DOI: 10.1021/acssuschemeng.5b00805.
  • Mu, X.; Yuan, B.; Pan, Y.; Feng, X.; Duan, L.; Zong, R.; Hu, Y. A Single α-Cobalt Hydroxide/Sodium Alginate Bilayer Layer-by-Layer Assembly for Conferring Flame Retardancy to Flexible Polyurethane Foams. Mater. Chem. Phys. 2017, 191, 52–61. DOI: 10.1016/j.matchemphys.2017.01.023.
  • Wang, W.; Pan, Y.; Pan, H.; Yang, W.; Liew, K. M.; Song, L.; Hu, Y. Synthesis and Characterization of MnO2 Nanosheets Based Multilayer Coating and Applications as a Flame Retardant for Flexible Polyurethane Foam. Compos. Sci. Tech. 2016, 123, 212–221. DOI: 10.1016/j.compscitech.2015.12.014.
  • Nabipour, H.; Wang, X.; Song, L.; Hu, Y. Laponite-Based Inorganic-Organic Hybrid Coating to Reduce Fire Risk of Flexible Polyurethane Foams. Appl. Clay. Sci. 2020, 189, 105525. DOI: 10.1016/j.clay.2020.105525.
  • Wang, X.; Pan, Y. T.; Wan, J. T.; Wang, D. Y. An Eco-Friendly Way to Fire Retardant Flexible Polyurethane Foam: Layer-by-Layer Assembly of Fully Bio-Based Substances. RSC Adv. 2014, 4, 46164–46169. DOI: 10.1039/C4RA07972H.
  • Pan, Y.; Wang, W.; Liu, L.; Ge, H.; Song, L.; Hu, Y. Influences of Metal Ions Crosslinked Alginate Based Coatings on Thermal Stability and Fire Resistance of Cotton Fabrics. Carbohydr. Polym. 2017, 170, 133–139. DOI: 10.1016/j.carbpol.2017.04.065.
  • Liu, Z.; Li, Z.; Zhao, X.; Zhang, L.; Li, Q. Highly Efficient Flame Retardant Hybrid Composites Based on Calcium Alginate/Nano-Calcium Borate. Polymers 2018, 10, 625. DOI: 10.3390/polym10060625.
  • Zhang, T.; Luo, D.; Wojtal, P.; Zhitomirsky, I. Electrophoretic Deposition of Flame Retardant Polymer–Huntite Coatings. Mater. Lett. 2015, 159, 106–109. DOI: 10.1016/j.matlet.2015.06.097.
  • Kundu, C. K.; Wang, W.; Zhou, S.; Wang, X.; Sheng, H.; Pan, Y.; Song, L.; Hu, Y. A Green Approach to Constructing Multilayered Nanocoating for Flame Retardant Treatment of Polyamide 66 Fabric from Chitosan and Sodium Alginate. Carbohydr. Polym. 2017, 166, 131–138. DOI: 10.1016/j.carbpol.2017.02.084.
  • Pan, Y.; Liu, L.; Wang, X.; Song, L.; Hu, Y. Hypophosphorous Acid Cross-Linked Layer-by-Layer Assembly of Green Polyelectrolytes on Polyester-Cotton Blend Fabrics for Durable Flame-Retardant Treatment. Carbohydr. Polym. 2018, 201, 1–8. DOI: 10.1016/j.carbpol.2018.08.044.
  • Mallakpour, S.; Masoud, H. Condensation Polymer/Layered Double Hydroxide NCs: Preparation, Characterization, and Utilizations. Euro. Polym. J. 2017, 90, 273–300. DOI: 10.1016/j.eurpolymj.2017.03.015.
  • Kumacheva, E.; Piotr, G. Microfluidic Reactors for Polymer Particles; John Wiley & Sons: Hoboken, 2011.
  • Babrauskas, V. Development of the Cone Calorimeter—A Bench‐Scale Heat Release Rate Apparatus Based on Oxygen Consumption. Fire Mater. 1984, 8, 81–95. DOI: 10.1002/fam.810080206.
  • Smidsrød, O.; Gudmund, S. Alginate as Immobilization Matrix for Cells. Tren. Biotechnol. 1990, 8, 71–78. DOI: 10.1016/0167-7799(90)90139-O.
  • Platzer, N. A. Stabilization of Polymers and Stabilizer Processes. American Chemical Society: Washington, DC, 1968.
  • Skene, W. G.; Belt, S. T.; Connolly, T. J.; Peter, H.; Scaiano, J. C. Decomposition Kinetics, Arrhenius Parameters, and Bond Dissociation Energies for Alkoxyamines of Relevance in “Living” Free Radical Polymerization. Macromolecules 1998, 31, 9103–9105. DOI: 10.1021/ma9812229.
  • Vogiatzis, K. D.; Polynski, M. V.; Kirkland, J. K.; Townsend, J.; Hashemi, A.; Liu, C.; Pidko, E. A. Computational Approach to Molecular Catalysis by 3d Transition Metals: Challenges and Opportunities. Chem. Rev. 2019, 119, 2453–2523. DOI: 10.1021/acs.chemrev.8b00361.
  • Sawada, T.; Masahisa, N. Enantioselective Total Synthesis of (+)-Colletoic Acid via Catalytic Asymmetric Intramolecular Cyclopropanation of an α-Diazo-β-Keto Diphenylphosphine Oxide. Org. Lett. 2013, 15, 1004–1007. DOI: 10.1021/ol303459x.
  • Schawe, J. E. The Gibbs Free Energy Difference between a Supercooled Melt and the Crystalline Phase of Polymers. J. Therm. Anal. Calorim. 2015, 120, 1417–1425. DOI: 10.1007/s10973-015-4453-z.
  • Matisová, E.; Svetlana, Š. Carbon Sorbents and Their Utilization for the Preconcentration of Organic Pollutants in Environmental Samples. J. Chromatogr. A 1995, 707, 145–179. DOI: 10.1016/0021-9673(95)00347-P.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.