1,837
Views
3
CrossRef citations to date
0
Altmetric
Review

Advances in the Application of Polymers of Intrinsic Microporosity in Liquid Separation and Purification: Membrane Separation and Adsorption Separation

, , , , , & show all
Pages 239-279 | Received 28 Feb 2020, Accepted 01 Aug 2020, Published online: 25 Sep 2020

References

  • Ye, H.; Li, J.; Lin, Y.; Chen, J.; Chen, C. Preparation and Pervaporation Performances of PEA-Based Polyurethaneurea and Polyurethaneimide Membranes to Benzene/Cyclohexane Mixture. J. Macromol. Sci. A 2008, 45, 563–571. DOI: 10.1080/10601320802100697.
  • Ye, H.; Li, J.; Lin, Y.; Chen, J.; Chen, C. Pervaporation Membranes for Separation of Aromatic/Aliphatic Mixtures. Prog. Chem. 2008, 20, 288–299.
  • Zeng, M.; Echols, I.; Wang, P.; Lei, S.; Luo, J.; Peng, B.; He, L.; Zhang, L.; Huang, D.; Mejia, C.; et al., Underwater Superhydrophilicand Multifunctional Biopolymer Membrane for Efficient Oil–WaterSeparation and Aqueous Pollutant Removal. ACS Sustainable Chem. Eng. 2018, 6, 3879–3887. DOI: 10.1021/acssuschemeng.7b04219.
  • Das, B.; Renaud, A.; Volosin, A. M.; Yu, L.; Newman, N.; Seo, D. K. Nanoporous Delafossite CuAlO2 from Inorganic/Polymer Double Gels: A Desirable High-Surface-Area p-Type Transparent Electrode Material. Inorg. Chem. 2015, 54, 1100–1108. DOI: 10.1021/ic5023906.
  • Du, N.; Dal-Cin, M. M.; Robertson, G. P.; Guiver, M. D. Decarboxylation-Induced Cross-Linking of Polymers of Intrinsic Microporosity (PIMs) for Membrane Gas Separation. Macromolecules 2012, 45, 5134–5139. DOI: 10.1021/ma300751s.
  • Puthiaraj, P.; Lee, Y. R.; Zhang, S.; Ahn, W. S. Triazine-Based Covalent Organic Polymers: design, Synthesis and Applications in Heterogeneous Catalysis. J. Mater. Chem. A 2016, 4, 16288–16311. DOI: 10.1039/C6TA06089G.
  • Mckeown, N. B.; Budd, P. M. Polymers of Intrinsic Microporosity (PIMs): Organic Materials for Membrane Separations, Heterogeneous Catalysis and Hydrogen Storage. Chem. Soc. Rev. 2006, 35, 675–683. DOI: 10.1039/b600349d.
  • Shi, Q.; Zhang, K.; Lu, R.; Jiang, J. Water Desalination and Biofuel Dehydration through a Thin Membrane of Polymer of Intrinsic Microporosity: Atomistic Simulation Study. J. Membr. Sci. 2018, 545, 49–56. DOI: 10.1016/j.memsci.2017.09.057.
  • Yong, W. F.; Salehian, P.; Zhang, L.; Chung, T. S. Effects of Hydrolyzed PIM-1 in Polyimide-Based Membranes on C2–C4 Alcohols Dehydration via Pervaporation. J. Membr. Sci. 2017, 523, 430–438. DOI: 10.1016/j.memsci.2016.10.021.
  • Adymkanov, S. V.; Yampol Skii, Y. P.; Polyakov, A. M.; Budd, P. M.; Reynolds, K. J.; Mckeown, N. B.; Msayib, K. J. Pervaporation of Alcohols through Highly Permeable PIM-1 Polymer Films. Polym. Sci. 2008, 50, 444–450.
  • Agarwal, P.; Tomlinson, I.; Jr. Hefner, R. E.; Ge, S.; Rao, Y.; Dikic, T. Thin Film Composite Membranes from Polymers of Intrinsic Microporosity Using Layer-by-Layer Method. J. Membr. Sci. 2019, 572, 475–479. DOI: 10.1016/j.memsci.2018.11.028.
  • Mckeown, N. B.; Budd, P. M.; Msayib, K. J.; Ghanem, B. S.; Kingston, H. J.; Tattershall, C. E.; Makhseed, S.; Reynolds, K. J.; Fritsch, D. Polymers of Intrinsic Microporosity (PIMs): Bridging the Void between Microporous and Polymeric Materials. Chemistry 2005, 11, 2610–2620. DOI: 10.1002/chem.200400860.
  • Everett, D. H. Manual of Symbols and Terminology for Physicochemical Quantities and Units, Appendix II: Definitions, Terminology and Symbols in Colloid and Surface Chemistry. Pure Appl. Chem. 1972, 37, 577–638.
  • McKeown, N. B.; Makhseed, S.; Budd, P. M. Phthalocyanine-Based Nanoporous Network Polymers. Chem. Commun. 2002, 38, 2780–2781. DOI: 10.1039/b207642j.
  • Mckeown, N. B.; Hanif, S.; Msayib, K.; Tattershall, C. E.; Budd, P. M. Porphyrin-Based Nanoporous Network Polymers. Chem. Commun. 2002, 23, 2782–2783. DOI: 10.1039/b208702m.
  • Ghanem, B. S.; Msayib, K. J.; McKeown, N. B.; Harris, K. D. M.; Pan, Z.; Budd, P. M.; Butler, A.; Selbie, J.; Book, D.; Walton, A. A Triptycene-Based Polymer of Intrinsic Microposity That Displays Enhanced Surface Area and Hydrogen Adsorption. Chem. Commun. 2007, 1, 67–69. DOI: 10.1039/B614214A.
  • Vile, J.; Carta, M.; Bezzu, C. G.; McKeown, N. B. Tribenzotriquinacene-Based Polymers of Intrinsic Microporosity. Polym. Chem. 2011, 2, 2257–2260. DOI: 10.1039/c1py00294e.
  • Vile, J.; Carta, M.; Bezzu, C. G.; Kariuki, B. M.; Mckeown, N. B. Centrotriindane- and Triptindane-Based Polymers of Intrinsic Microporosity. Polymer 2014, 55, 326–329. DOI: 10.1016/j.polymer.2013.07.035.
  • Budd, P. M.; Ghanem, B.; Msayib, K.; McKeown, N. B.; Tattershall, C. A Nanoporous Network Polymer Derived from Hexaazatrinaphthylene with Potential as an Adsorbent and Catalyst Support. J. Mater. Chem. 2003, 13, 2721–2726. DOI: 10.1039/B303996J.
  • Xu, S.; Liang, L.; Li, B.; Luo, Y.; Liu, C.; Tan, B. Research Progress on Microporous Organic Polymers. Prog. Chem. 2011, 23, 2085–2094.
  • Budd, P. M.; Ghanem, B. S.; Makhseed, S.; McKeown, N. B.; Msayib, K. J.; Tattershall, C. E. Polymers of Intrinsic Microporosity (PIMs): Robust, Solution-Processable, Organic Nanoporous Materials. Chem. Commun. 2004, 2, 230–231. DOI: 10.1039/b311764b.
  • Budd, P. M.; Elabas, E. S.; Ghanem, B. S.; Makhseed, S.; McKeown, N. B.; Msayib, K. J.; Tattershall, C. E.; Wang, D. Solution-Processed, Organophilic Membrane Derived from a Polymer of Intrinsic Microporosity. Adv. Mater. 2004, 16, 456–459. DOI: 10.1002/adma.200306053.
  • Budd, P. M.; Msayib, K. J.; Tattershall, C. E.; Ghanem, B. S.; Reynolds, K. J.; Mckeown, N. B.; Fritsch, D. Gas Separation Membranes from Polymers of Intrinsic Microporosity. J. Membr. Sci. 2005, 251, 263–269. DOI: 10.1016/j.memsci.2005.01.009.
  • Rakow, N. A.; Wendland, M. S.; Trend, J. E.; Poirier, R. J.; Paolucci, D. M.; Maki, S. P.; Lyons, C. S.; Swierczek, M. J. Visual Indicator for Trace Organic Volatiles. Langmuir 2010, 26, 3767–3770. DOI: 10.1021/la903483q.
  • Mckeown, N. B. The Synthesis of Polymers of Intrinsic Microporosity(PIMs). Sci. China Chem. 2017, 60, 1023–1042. DOI: 10.1007/s11426-017-9058-x.
  • Neil, B.; M.; Bader, G.; Kadhum, J. M.; Peter, M. B.; Carin, E. T.; Khalid, M.; Siren, T.; David, B.; Henrietta, W. L.; Allan, W.  Towards Polymer-Based Hydrogen Storage Materials: engineering Ultramicroporous Cavities within Polymers of Intrinsic Microporosity. Angew. Chem. (International ed. in English) 2006, 45, 1804–1807.
  • Heuchel, M.; Fritsch, D.; Budd, P. M.; Mckeown, N. B.; Hofmann, D. Atomistic Packing Model and Free Volume Distribution of a Polymer with Intrinsic Microporosity (PIM-1). J. Membr. Sci. 2008, 318, 84–99. DOI: 10.1016/j.memsci.2008.02.038.
  • Ghanem, B. S.; Mckeown, N. B.; Budd, P. M.; Fritsch, D. Polymers of Intrinsic Microporosity Derived from Bis(Phenazyl) Monomers. Macromolecules 2008, 41, 1640–1646. DOI: 10.1021/ma071846r.
  • Yang, Z.; Guo, R.; Malpass-Evans, R.; Carta, M.; Mckeown, N. B.; Guiver, M. D.; Wu, L.; Xu, T. Highly Conductive Anion-Exchange Membranes from Microporous Tröger's Base Polymers. Angew. Chem. 2016, 128, 11671–11674. DOI: 10.1002/ange.201605916.
  • Ghanem, B. S.; Mckeown, N. B.; Budd, P. M.; Al-Harbi, N. M.; Fritsch, D.; Heinrich, K.; Starannikova, L.; Tokarev, A.; Yampolskii, Y. Synthesis, Characterization, and Gas Permeation Properties of a Novel Group of Polymers with Intrinsic Microporosity: PIM-Polyimides. Macromolecules 2009, 42, 7881–7888. DOI: 10.1021/ma901430q.
  • Song, J.; Du, N.; Dai, Y.; Robertson, G. P.; Guiver, M. D.; Thomas, S.; Pinnau, I. Linear High Molecular Weight Ladder Polymers by Optimized Polycondensation of Tetrahydroxytetramethylspirobisindane and 1,4-Dicyanotetrafluorobenzene. Macromolecules 2008, 41, 7411–7417. DOI: 10.1021/ma801000u.
  • Du, N.; Song, J.; Robertson, G. P.; Pinnau, I.; Guiver, M. D. Linear High Molecular Weight Ladder Polymer via Fast Polycondensation of 5,5′,6,6′‐Tetrahydroxy‐3,3,3′,3′‐Tetramethylspirobisindane with 1,4‐Dicyanotetrafluorobenzene. Macromol. Rapid Commun. 2008, 29, 783–788. DOI: 10.1002/marc.200800038.
  • Zak, M.; Klepic, M.; Stastna, L. C.; Sedlakova, Z.; Vychodilova, H.; Hovorka, S.; Friess, K.; Randova, A.; Brozova, L.; Jansen, J. C.; et al. Selective Removal of Butanol from Aqueous Solution by Pervaporation with a PIM-1 Membrane and Membrane Aging. Sep. Purif. Technol. 2015, 151, 108–114. DOI: 10.1016/j.seppur.2015.07.041.
  • Ponomarev, I. I.; Blagodatskikh, I. V.; Muranov, A. V.; Volkova, Y. A.; Razorenov, D. Y.; Ponomarev, I. I.; Skupov, K. M. Dimethyl Sulfoxide as a Green Solvent for Successful Precipitative Polyheterocyclization Based on Nucleophilic Aromatic Substitution, Resulting in High Molecular Weight PIM-1. Mendeleev Commun. 2016, 26, 362–364. DOI: 10.1016/j.mencom.2016.07.033.
  • Weng, X.; Baez, J. E.; Khiterer, M.; Hoe, M. Y.; Bao, Z.; Shea, K. J. Chiral Polymers of Intrinsic Microporosity: Selective Membrane Permeation of Enantiomers. Angew. Chem. Int. Ed. Engl. 2015, 54, 11214–11218. DOI: 10.1002/ange.201504934.
  • Feng, X.; Huang, R. Y. M. Liquid Separation by Membrane Pervaporation: A Review. Ind. Eng. Chem. Res. 1997, 36, 1048–1066. DOI: 10.1021/ie960189g.
  • Wijmans, J. G.; Baker, R. W., the Solution-Diffusion Model: A Review. J. Membr. Sci. 1995, 107, 1–21. DOI: 10.1016/0376-7388(95)00102-I.
  • Chen, C. X.; Guo, H. X.; Qin, P. Y. Membrane Separation. Chemical Industry Press, Beijing, China, 2017.
  • Ghazali, M.; Nawawi, M.; Huang, R. Y. M. Pervaporation Dehydration of Isopropanol with Chitosan Membranes. J. Membr. Sci. 1997, 124, 53–62. DOI: 10.1016/S0376-7388(96)00216-5.
  • Patil, M. B.; Veerapur, R. S.; Bhat, S. D.; Madhusoodana, C. D.; Aminabhavi, T. M. Hybrid Composite Membranes of Sodium Alginate for Pervaporation Dehydration of 1,4-Dioxane and Tetrahydrofuran. Desalin. Water Treat. 2009, 3, 11–20. DOI: 10.5004/dwt.2009.434.
  • Peng, P.; Shi, B.; Lan, Y. A Review of Membrane Materials for Ethanol Recovery by Pervaporation. Sep. Purif. Technol. 2010, 46, 234–246. DOI: 10.1080/01496395.2010.504681.
  • Ye, H.; Wang, J.; Chen, X.; Shi, S. Novel Modification of PU Membranes by Cyclodextrin (CD) Crosslinking for Simultaneously Improving Selectivity and Permeability. J. Macromol. Sci. A 2013, 50, 661–669. DOI: 10.1080/10601325.2013.784582.
  • Smitha, B.; Suhanya, D. Separation of Organic-Organic Mixtures by pervaporation – A Review. J. Membr. Sci 2004, 241, 1–21. DOI: 10.1016/j.memsci.2004.03.042.
  • Mafi, A.; Raisi, A.; Hatam, M.; Aroujalian, A. A Comparative Study on the Free Volume Theories for Diffusivity through Polymeric Membrane in Pervaporation Process. J. Appl. Polym. Sci. 2014, 131, 475. DOI: 10.1002/app.40581.
  • Nalaparaju, A.; Zhao, X. S.; Jiang, J. W. Biofuel Purification by Pervaporation and Vapor Permeation in Metal–Organic Frameworks: A Computational Study. Energy Environ. Sci. 2011, 4, 2107–2116. DOI: 10.1039/c0ee00630k.
  • O Brien, D. J.; Roth, L. H.; Mcaloon, A. J. Ethanol Production by Continuous Fermentation–Pervaporation: A Preliminary Economic Analysis. J. Membr. Sci. 2000, 166, 105–111. DOI: 10.1016/S0376-7388(99)00255-0.
  • Kumar R; Ghosh, A.; K; Pal, P. Sustainable Production of Biofuels through Membrane-Integrated Systems. Sep. Purif. Rev. 2019, 49, 1–22.
  • Ye, H.; Yan, X.; Zhang, X.; Song, W. Pervaporation Properties of Oleyl Alcohol-Filled Polydimethylsiloxane Membranes for the Recovery of Phenol from Wastewater. Iran. Polym. J. 2017, 26, 639–649.
  • Claes, S.; Vandezande, P.; Mullens, S.; Sitter, K. D.; Peeters, R.; Bael, M. K. V. Preparation and Benchmarking of Thin Film Supported PTMSP-Silica Pervaporation Membranes. J. Membr. Sci. 2012, 389, 265–271. DOI: 10.1016/j.memsci.2011.10.035.
  • Koschine, T.; Rätzke, K.; Faupel, F.; Khan, M. M.; Emmler, T.; Filiz, V.; Abetz, V.; Ravelli, L.; Egger, W. Correlation of Gas Permeation and Free Volume in New and Used High Free Volume Thin Film Composite Membranes. J. Polym. Sci. B: Polym. Phys. 2015, 53, 213–217. DOI: 10.1002/polb.23616.
  • Lan, Y.; Peng, P.; Chen, P. Preparation of Polymers of Intrinsic Microporosity Composite Membranes Incorporated with Modified Nano-Fumed Silica for Butanol Separation. Adv. Polym. Technol. 2018, 37, 3297–3304. DOI: 10.1002/adv.22114.
  • Lan, Y.; Peng, P. Preparation of Polymer of Intrinsic Microporosity Composite Membranes and Their Applications for Butanol Recovery. J. Appl. Polym. Sci. 2019, 136, 46912. DOI: 10.1002/app.46912.
  • Mason, C. R.; Buonomenna, M. G.; Golemme, G.; Budd, P. M.; Galiano, F.; Figoli, A.; Friess, K.; Hynek, V. New Organophilic Mixed Matrix Membranes Derived from a Polymer of Intrinsic Microporosity and Silicalite-1. Polymer 2013, 54, 2222–2230. DOI: 10.1016/j.polymer.2013.02.032.
  • Golemme, G.; Buonomenna, M. G.; Bruno, A.; Manes, R. Method for preparing hydrophobic fluorinated mixed matrix membranes, said membranes, and separation methods using said membranes. E.P. 12170372.2, 31 May 2012, 2013.
  • Gahlot, S.; Sharma, P. P.; Bhil, B. M.; Gupta, H.; Kulshrestha, V. GO/SGO Based SPES Composite Membranes for the Removal of Water by Pervaporation Separation. Macromol. Symp. 2015, 357, 189–193. DOI: 10.1002/masy.201400238.
  • Liang, B.; Zhan, W.; Qi, G.; Lin, S.; Nan, Q.; Liu, Y.; Cao, B.; Pan, K. High Performance Graphene Oxide/Polyacrylonitrile Composite Pervaporation Membranes for Desalination Applications. J. Mater. Chem. A 2015, 3, 5140–5147. DOI: 10.1039/C4TA06573E.
  • Wang, N.; Ji, S.; Zhang, G.; Li, J.; Wang, L. Self-Assembly of Graphene Oxide and Polyelectrolyte Complex Nanohybrid Membranes for Nanofiltration and Pervaporation. Chem. Eng. J. 2012, 213, 318–329. DOI: 10.1016/j.cej.2012.09.080.
  • Gonciaruk, A.; Althumayri, K.; Harrison, W. J.; Budd, P. M.; Siperstein, F. R. PIM-1/Graphene Composite: A Combined Experimental and Molecular Simulation Study. Micropor. & Mesopor. Mater. 2015, 209, 126–134.
  • Alberto, M.; Luque-Alled, J. M.; Gao, L.; Iliut, M.; Prestat, E.; Newman, L.; Haigh, S. J.; Vijayaraghavan, A.; Budd, P. M.; Gorgojo, P. Enhanced Organophilic Separations with Mixed Matrix Membranes of Polymers of Intrinsic Microporosity and Graphene-like Fillers. J. Membr. Sci. 2017, 526, 437–449. DOI: 10.1016/j.memsci.2016.12.061.
  • Zhang, G.; Cheng, H.; Su, P.; Zhang, X.; Zheng, J.; Lu, Y.; Liu, Q. PIM-1/PDMS Hybrid Pervaporation Membrane for High-Efficiency Separation of n-Butanol-Water Mixture under Low Concentration. Sep. Purif. Technol. 2019, 216, 83–91. DOI: 10.1016/j.seppur.2019.01.080.
  • Reynolds, K. J. S. Characterization and Properties of a Polymer of Intrinsic Microporosity. University of Manchester: Manchester, UK, 2007.
  • Gao, L.; Alberto, M.; Gorgojo, P.; Szekely, G.; Budd, P. M. High-Flux PIM-1/PVDF Thin Film Composite Membranes for 1-Butanol/Water Pervaporation. J. Membr. Sci. 2017, 529, 207–214. DOI: 10.1016/j.memsci.2017.02.008.
  • Zhao, J.; Jin, W. Manipulation of Confined Structure in Alcohol-Permselective Pervaporation Membranes. Chinese J. Chem. Eng. 2017, 25, 1616–1626. DOI: 10.1016/j.cjche.2017.05.004.
  • Li, C.; Zhang, X.; Hao, X.; Feng, X.; Pang, X.; Zhang, H. Thermodynamic and Mechanistic Studies on Recovering Phenol Crystals from Dilute Aqueous Solutions Using Pervaporation–Crystallization Coupling (PVCC) System. Chem. Eng. Sci. 2015, 127, 106–114. DOI: 10.1016/j.ces.2015.01.039.
  • Ding, C.; Zhang, X.; Li, C.; Hao, X.; Wang, Y.; Guan, G. ZIF-8 Incorporated Polyether Block Amide Membrane for Phenol Permselective Pervaporation with High Efficiency. Sep. Purif. Technol. 2016, 166, 252–261. DOI: 10.1016/j.seppur.2016.04.027.
  • Kujawski, W.; Warszawski, A.; Ratajczak, W.; Porębski, T.; Capała, W.; Ostrowska, I. I., Application of Pervaporation and Adsorption to the Phenol Removal from Wastewater. Sep. Purif. Technol. 2004, 40, 123–132. DOI: 10.1016/j.seppur.2004.01.013.
  • Ye, H.; Xiang, Z.; Zhao, Z.; Song, B.; Zhang, Z.; Song, W. Pervaporation Performance of Surface-Modified Zeolite/PU Mixed Matrix Membranes for Separation of Phenol from Water. Iran. Polym. J. 2017, 26, 193–203. DOI: 10.1007/s13726-017-0509-1.
  • Ye, H.; Wang, Y.; Zhang, X.; Zhang, Z.; Song, B. Polyurethane Membrane with a Cyclodextrin-Modified Carbon Nanotube for Pervaporation of Phenol/Water Mixture. J. Polym. Eng. 2017, 37, 449–459. DOI: 10.1515/polyeng-2016-0155.
  • Ye, H.; Dong, C.; Zhu, Q.; Yan, X.; Shi, S. Pervaporation Performance of Silico-Manganese Nanohybrid/PU Mixed Matrix Membranes for Separation of Phenol from Water. DWT. 2018, 129, 69–83. DOI: 10.5004/dwt.2018.22896.
  • Bennett, M.; Brisdon, B. J.; England, R.; Field, R. W. Performance of PDMS and Organofunctionalised PDMS Membranes for the Pervaporative Recovery of Organics from Aqueous Streams. J. Membr. Sci. 1997, 137, 63–88. DOI: 10.1016/S0376-7388(97)00183-X.
  • Yan, X.; Ye, H.; Dong, C.; Wu, Y.; Shi, S. Preparation and Characterization of PIM-1 and PIM-1/PU-Blend Membranes for Pervaporation Separation of Phenol from Water. DWT. 2019, 138, 68–79. DOI: 10.5004/dwt.2019.23320.
  • Yushkin, A. A.; Anokhina, T. S.; Bazhenov, S. D.; Borisov, I. L.; Budd, P. M.; Volkov, A. V. Sorption and Nanofiltration Characteristics of PIM-1 Material in Polar and Non-Polar Solvents. Pet. Chem. 2018, 58, 1154–1158. DOI: 10.1134/S096554411813011X.
  • Wu, X. M.; Zhang, Q. G.; Soyekwo, F.; Liu, Q. L.; Zhu, A. M. Pervaporation Removal of Volatile Organic Compounds from Aqueous Solutions Using the Highly Permeable PIM‐1 Membrane. AIChE J. 2016, 62, 842–851. DOI: 10.1002/aic.15077.
  • Wu, X. M.; Guo, H.; Soyekwo, F.; Zhang, Q. G.; Lin, C. X.; Liu, Q. L.; Zhu, A. M. Pervaporation Purification of Ethylene Glycol Using the Highly Permeable PIM-1 Membrane. J. Chem. Eng. Data 2016, 61, 579–586. DOI: 10.1021/acs.jced.5b00731.
  • Chen, M.; Wu, X.; Soyekwo, F.; Zhang, Q.; Lv, R.; Zhu, A.; Liu, Q. Toward Improved Hydrophilicity of Polymers of Intrinsic Microporosity for Pervaporation Dehydration of Ethylene Glycol. Sep. Purif. Technol. 2017, 174, 166–173. DOI: 10.1016/j.seppur.2016.10.024.
  • Liu, Q.; Liu, P.; Chen, M.; Ma, Y.; Hu, C.; Zhang, Q.; Zhu, A. A Hydrophobic Pervaporation Membrane with Hierarchical Microporosity for High-Efficient Dehydration of Alcohols. Chem. Eng. Sci. 2019, 206, 489–498. DOI: 10.1016/j.ces.2019.05.057.
  • Salehian, P.; Yong, W. F.; Chung, T. S. Development of High Performance Carboxylated PIM-1/P84 Blend Membranes for Pervaporation Dehydration of Isopropanol and CO 2/CH 4 Separation. J. Membr. Sci. 2016, 518, 110–119. DOI: 10.1016/j.memsci.2016.06.027.
  • Huang, Z.; Guan, H. M.; Tan, W. L.; Qiao, X. Y.; Kulprathipanja, S. Pervaporation Study of Aqueous Ethanol Solution through Zeolite-Incorporated Multilayer Poly(Vinyl Alcohol) Membranes: Effect of Zeolites. J. Membr. Sci. 2006, 276, 260–271. DOI: 10.1016/j.memsci.2005.09.056.
  • Liu, H. X.; Wang, N.; Cui, Z.; Ji, S.; Li, J. R. Membrane Materials in the Pervaporation Separation of Aromatic/Aliphatic Hydrocarbon Mixtures—a Review. Chinese J. Chem. Eng. 2018, 26, 1–16. DOI: 10.1016/j.cjche.2017.03.006.
  • Ye, H.; Li, J.; Lin, Y.; Chen, J.; Chen, C. Pervaporation Separation for Toluene/n-Heptane Mixture by Polyimide Membranes Containing Fluorine. Chinese J. Polym. Sci. 2008, 26, 705–712. DOI: 10.1142/S025676790800345X.
  • Mitra, D. Desulfurization of Gasoline by Pervaporation. Sep. Purif. Methods. 2012, 41, 97–125. DOI: 10.1080/15422119.2011.573044.
  • Lu, F. W.; Kong, Y.; Lv, H. L.; Ding, J.; Yang, J. R. The Pervaporation Performance of Polyimide-Block-Polyethylene Glycol Membranes for Gasoline Desulphurization: Effect of PEG Groups. Amr. 2010, 150-151, 317–320. DOI: 10.4028/www.scientific.net/AMR.150-151.317.
  • Won, W.; Feng, X.; Lawless, D. Pervaporation with Chitosan Membranes: separation of Dimethyl Carbonate/Methanol/Water Mixtures. J. Membr. Sci. 2002, 209, 493–508. DOI: 10.1016/S0376-7388(02)00367-8.
  • Wang, L.; Han, X.; Li, J.; Zhan, X.; Chen, J. Separation of Azeotropic Dimethylcarbonate/Methanol Mixtures by Pervaporation: Sorption and Diffusion Behaviors in the Pure and Nano Silica Filled PDMS Membranes. Sep. Sci. Technol. 2011, 46, 1396–1405. DOI: 10.1080/01496395.2011.571227.
  • Flanders, C. L.; Tuan, V. A.; Noble, R. D.; Falconer, J. L. Separation of C6 Isomers by Vapor Permeation and Pervaporation through ZSM-5 Membranes. J. Membr. Sci. 2000, 176, 43–53. DOI: 10.1016/S0376-7388(00)00431-2.
  • Zhang, L.; Li, L. L.; Liu, N. J.; Chen, H. L.; Pan, Z. R.; Lue, S. J. Pervaporation Behavior of PVA Membrane Containing β-Cyclodextrin for Separating Xylene Isomeric Mixtures. AIChE J. 2013, 59, 604–612. DOI: 10.1002/aic.13835.
  • Číhal, P.; Vopička, O.; Durďáková, T.-M.; Budd, P. M.; Harrison, W.; Friess, K. Pervaporation and Vapour Permeation of Methanol - Dimethyl Carbonate Mixtures Through PIM-1 Membranes. Sep. Purif. Technol. 2019, 217, 206–214. DOI: 10.1016/j.seppur.2019.02.023.
  • Zuo, J.; Wang, Y.; Sun, S. P.; Chung, T. S. Molecular Design of Thin Film Composite (TFC) Hollow Fiber Membranes for Isopropanol Dehydration via Pervaporation. J. Membr. Sci. 2012, 405-406, 123–133. DOI: 10.1016/j.memsci.2012.02.058.
  • Baker, R. W.; Wijmans, J. G.; Huang, Y. Permeability, Permeance and Selectivity: A Preferred Way of Reporting Pervaporation Performance Data. J. Membr. Sci. 2010, 348, 346–352. DOI: 10.1016/j.memsci.2009.11.022.
  • Ye, H.; Zuo, S.; Yan, X.; Dong, C. X.; Shi, S. P. Pervaporation of Oleyl Alcohol Modified PDMS Membranes: A Comparison between the Apparent and Intrinsic Performances for Organics Water Mixtures. DWT. 2018, 119, 16–26. DOI: 10.5004/dwt.2018.22227.
  • Patrizia, M.; Solomon, M. F. J.; Gyorgy, S.; Livingston, A. G. Molecular Separation with Organic Solvent Nanofiltration: A Critical Review. Chem. Rev. 2014, 114, 10735–10806. DOI: 10.1021/cr500006j.
  • Pieter, V.; Gevers, L. E. M.; Vankelecom, I. F. J. Solvent Resistant Nanofiltration: separating on a Molecular Level. Chem. Soc. Rev. 2008, 37, 365–405. DOI: 10.1039/B610848M.
  • McKeown, N. B.; Budd, P. M.; Fritsch, D. Thin layer composite membranes with microporous layers and supporting layers. in: PCT Int. Appl. WO 2005113121, 2005.
  • Fritsch, D.; Merten, P.; Heinrich, K.; Lazar, M.; Priske, M. High Performance Organic Solvent Nanofiltration Membranes: Development and Thorough Testing of Thin Film Composite Membranes Made of Polymers of Intrinsic Microporosity (PIMs). J. Membr. Sci. 2012, 401-402, 222–231. DOI: 10.1016/j.memsci.2012.02.008.
  • Tsarkov, S.; Khotimskiy, V.; Budd, P. M.; Volkov, V.; Kukushkina, J.; Volkov, A. Solvent Nanofiltration through High Permeability Glassy Polymers: Effect of Polymer and Solute Nature. J. Membr. Sci. 2012, 423-424, 65–72. DOI: 10.1016/j.memsci.2012.07.026.
  • Volkov, A.; Tsarkov, S.; Khotimskiy, V.; Budd, P. M. High Permeability Glassy Polymers for OSN: Effect of Solvent, Solute and Polymer Structure. Procedia Eng. 2012, 44, 1619–1621. DOI: 10.1016/j.proeng.2012.08.887.
  • Anokhina, T. S.; Yushkin, A. A.; Budd, P. M.; Volkov, A. V. Application of PIM-1 for Solvent Swing Adsorption and Solvent Recovery by Nanofiltration. Sep. Purif. Technol. 2015, 156, 683–690. DOI: 10.1016/j.seppur.2015.10.066.
  • Gorgojo, P.; Karan, S.; Wong, H. C.; Jimenez-Solomon, M. F.; Cabral, J. T.; Livingston, A. G. Ultrathin Polymer Films with Intrinsic Microporosity: Anomalous Solvent Permeation and High Flux Membranes. Adv. Funct. Mater. 2014, 24, 4729–4737. DOI: 10.1002/adfm.201400400.
  • Cook, M.; Gaffney, P. R. J.; Peeva, L. G.; Livingston, A. G. Roll-to-Roll Dip Coating of Q10 Three Different PIMs for Organic Solvent Nanofiltration. J. Membr. Sci. 2018, 558.
  • Gao, J.; Japip, S.; Chung, T. Organic Solvent Resistant Membranes Made from a Cross-Linked Functionalized Polymer with Intrinsic Microporosity (PIM) Containing Thioamide Groups. Chem. Eng. J. 2018, 353, 689–698. DOI: 10.1016/j.cej.2018.07.156.
  • Zhao, H.; Feng, L.; Ding, X.; Tan, X.; Zhang, Y. Gas Permeation Properties of a Metallic Ion-Cross-Linked PIM-1 Thin-Film Composite Membrane Supported on a UV-Cross-Linked Porous Substrate. Chinese J. Chem. Eng. 2018, 26, 2477–2486. DOI: 10.1016/j.cjche.2018.03.009.
  • Zhang, C.; Li, P.; Cao, B. Electrospun Microfibrous Membranes Based on PIM-1/POSS with High Oil Wettability for Separation of Oil-Water Mixtures and Cleanup of Oil Soluble Contaminants. Ind. Eng. Chem. Res. 2015, 54, 150824150138000.
  • Zhang, C.; Li, P.; Cao, B. Electrospun Polymer of Intrinsic Microporosity Fibers and Their Use in the Adsorption of Contaminants from a Nonaqueous System. J. Appl. Polym. Sci. 2016, 133, 43475.
  • Zhang, C.; Li, P.; Huang, W.; Cao, B. Selective Adsorption and Separation of Organic Dyes in Aqueous Solutions by Hydrolyzed PIM-1 Microfibers. Chem. Eng. Res. Des. 2016, 109, 76–85. DOI: 10.1016/j.cherd.2016.01.006.
  • Satilmis, B.; Budd, P. M.; Uyar, T. Systematic Hydrolysis of PIM-1 and Electrospinning of Hydrolyzed PIM-1 Ultrafine Fibers for an Efficient Removal of Dye from Water. React. Funct. Polym. 2017, 121, 67–75. DOI: 10.1016/j.reactfunctpolym.2017.10.019.
  • Satilmis, B.; Uyar, T. Amine Modified Electrospun PIM-1 Ultrafine Fibers for an Efficient Removal of Methyl Orange from an Aqueous System. Appl. Surf. Sci. 2018, 453, 220–229. DOI: 10.1016/j.apsusc.2018.05.069.
  • Satilmis, B.; Budd, P. M. Selective Dye Adsorption by Chemically-Modified and Thermally-Treated Polymers of Intrinsic Microporosity. J Colloid Interface Sci. 2017, 492, 81–91. DOI: 10.1016/j.jcis.2016.12.048.
  • Satilmis, B.; Alnajrani, M. N.; Budd, P. M. Hydroxyalkylaminoalkylamide PIMs: Selective Adsorption by Ethanolamine- and Diethanolamine-Modified PIM-1. Macromolecules 2015, 48, 5663–5669. DOI: 10.1021/acs.macromol.5b01196.
  • Satilmis, B.; Uyar, T. Removal of Aniline from Air and Water by Polymers of Intrinsic Microporosity (PIM-1) Electrospun Ultrafine Fibers. J Colloid Interface Sci. 2018, 516, 317–324. DOI: 10.1016/j.jcis.2018.01.069.
  • Satilmis, B.; Uyar, T. Development of Superhydrophobic Electrospun Fibrous Membrane of Polymers of Intrinsic Microporosity (PIM-2). Eur. Polym. J. 2019, 112, 87–94. DOI: 10.1016/j.eurpolymj.2018.12.029.
  • Pan, Y.; Zhang, L.; Li, Z.; Ma, L.; Zhang, Y.; Wang, J.; Meng, J. Hierarchical Porous Membrane via Electrospinning PIM-1 for Micropollutants Removal. Appl. Surf. Sci. 2018, 443, 441–451. DOI: 10.1016/j.apsusc.2018.02.241.
  • Sihn, Y. H.; Byun, J.; Patel, H. A.; Lee, W.; Yavuz, C. T. Rapid Extraction of Uranium Ions from Seawater Using Novel Porous Polymeric Adsorbents. RSC Adv. 2016, 6, 45968–45976. DOI: 10.1039/C6RA06807C.
  • Satilmis, B.; Isık, T.; Demir, M. M.; Uyar, T. Amidoxime Functionalized Polymers of Intrinsic Microporosity (PIM-1) Electrospun Ultrafine Fibers for Rapid Removal of Uranyl Ions from Water. Appl. Surf. Sci. 2019, 467-468, 648–657. DOI: 10.1016/j.apsusc.2018.10.210.
  • Zhang, C.; Li, P.; Cao, B. Fabrication of Superhydrophobic-Superoleophilic Fabrics by Etching and Dip-Coating Two-Step Method for Oil-Water Separation. Ind. Eng. Chem. Res. 2016, 55, 5030–5035. DOI: 10.1021/acs.iecr.6b00206.
  • Xu, Q.; Zhang, K.; Jiang, J. Molecular Simulation and Analysis of Sorption Process toward Theoretical Prediction for Liquid Permeation through Membranes. J. Phys. Chem. B 2018, 122, 12211–12218. DOI: 10.1021/acs.jpcb.8b09785.
  • Gupta, K. M.; Liu, J.; Jiang, J. A Molecular Simulation Protocol for Membrane Pervaporation. J. Membr. Sci. 2019, 572, 676–682. DOI: 10.1016/j.memsci.2018.11.052.
  • Gupta, K. M.; Shi, Q.; Sarkisov, L.; Jiang, J. Ethanolamine Purification by Nanofiltration through PIM-1 and Carbon Membranes: A Molecular Simulation Study. J. Phys. Chem. C 2017, 121, 20539–20545. DOI: 10.1021/acs.jpcc.7b07043.
  • Liu, J.; Xu, Q.; Jiang, J. A Molecular Simulation Protocol for Swelling and Organic Solvent Nanofiltration of Polymer Membranes. J. Membr. Sci. 2019, 573, 639–646. DOI: 10.1016/j.memsci.2018.12.035.
  • Zhang, P.; Jiang, X.; Wan, S.; Dai, S. Advancing Polymers of Intrinsic Microporosity by Mechanochemistry. J. Mater. Chem. A 2015, 3, 6739–6741. DOI: 10.1039/C4TA07196D.
  • Zhang, X.; Hou, R.; Zhang, J.; Meng, Q.; Shen, C.; Zhang, G. PIM-1/PAN Thin-Film Composite Hollow Fiber Membrane as Structured Packings for Isopropanol (IPA)/Water Distillation. Ind. Eng. Chem. Res. 2020, 59, 6210–6218. DOI: 10.1021/acs.iecr.0c00167.
  • Jue, M.; Breedveld, V.; Lively, R. Defect-Free PIM-1 Hollow Fiber Membranes. J. Membr. Sci. 2017, 530, 33–41. DOI: 10.1016/j.memsci.2017.02.012.
  • Hao, L.; Zuo, J.; Chung, T. S. Formation of Defect-Free Polyetherimide/PIM-1 Hollow Fiber Membranes for Gas Separation. AIChE J. 2014, 60, 3848–3858. DOI: 10.1002/aic.14565.
  • Yong, W. F.; Li, F. Y.; Xiao, Y. C.; Chung, T. S.; Tong, Y. W. High Performance PIM-1/Matrimid Hollow Fiber Membranes for CO2/CH4, O-2/N-2 and CO2/N-2 Separation. J. Membr. Sci. 2013, 443, 156–169. [Database] DOI: 10.1016/j.memsci.2013.04.037.
  • Ma, Y.; Zhang, F.; Yang, S.; Lively, R. P. Evidence for Entropic Diffusion Selection of Xylene Isomers in Carbon Molecular Sieve Membranes. J. Membr. Sci. 2018, 564, 404–414. DOI: 10.1016/j.memsci.2018.07.040.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.