1,331
Views
17
CrossRef citations to date
0
Altmetric
Review

Advances in Physiologically Relevant Actuation of Shape Memory Polymers for Biomedical Applications

ORCID Icon, , & ORCID Icon
Pages 280-318 | Received 09 Apr 2020, Accepted 14 Sep 2020, Published online: 29 Sep 2020

References

  • Toraya-Brown, S.; Fiering, S. Local Tumour Hyperthermia as Immunotherapy for Metastatic Cancer. Int. J. Hyperthermia 2014, 30, 531–539. DOI: 10.3109/02656736.2014.968640.
  • Chatterjee, D. K.; Diagaradjane, P.; Krishnan, S. Sunil Krishnan Nanoparticle-Mediated Hyperthermia in Cancer Therapy. Ther. Deliv. 2011, 2, 1001–1014. DOI: 10.4155/tde.11.72.
  • Wust, P.; H, B.; Sreenivasa, G.; Rau, B.; Gellermann, J.; Riess, H.; Felix, R.; Schlag, P. M. Hyperthermia in Combined Treatment of Cancer. Lancet. Oncol. 2002, 3, 487–497. DOI: 10.1016/s1470-2045(02)00818-5.
  • Guo, Q.; Bishop, C. J.; Meyer, R. A.; Wilson, D. R.; Olasov, L.; Schlesinger, D. E.; Mather, P. T.; Spicer, J. B.; Elisseeff, J. H.; Green, J. J. Entanglement-Based Thermoplastic Shape Memory Polymeric Particles with Photothermal Actuation for Biomedical Applications. ACS Appl. Mater. Interfaces 2018, 10, 13333–13341. DOI: 10.1021/acsami.8b01582.
  • Rao, W.; Deng, Z.-S.; Liu, J. A Review of Hyperthermia Combined with Radiotherapy/Chemotherapy on Malignant Tumors. Crit. Rev. Biomed. Eng. 2010, 38, 101–116. DOI: 10.1615/critrevbiomedeng.v38.i1.80.
  • Hildebrandt, B.; Wust, P.; Ahlers, O.; Dieing, A.; Sreenivasa, G.; Kerner, T.; Felix, R.; Riess, H. The Cellular and Molecular Basis of Hyperthermia. Crit. Rev. Oncol. Hematol. 2002, 43, 33–56. DOI: 10.1016/s1040-8428(01)00179-2.
  • Liu, C.; Qin, H.; Mather, P. T. Review of Progress in Shape-Memory Polymers. J. Mater. Chem. 2007, 17, 1543.
  • Huang, W. M.; Yang, B.; An, L.; Li, C.; Chan, Y. S. Water-Driven Programmable Polyurethane Shape Memory Polymer: Demonstration and Mechanism. Appl. Phys. Lett. 2005, 86, 114105. DOI: 10.1063/1.1880448.
  • Huang, W. M.; Zhao, Y.; Wang, C. C.; Ding, Z.; Purnawali, H.; Tang, C.; Zhang, J. L. Thermo/Chemo-Responsive Shape Memory Effect in Polymers: A Sketch of Working Mechanisms, Fundamentals and Optimization. J. Polym. Res. 2012, 19, 9952.
  • Rose, A.; Zhu, Z.; Madigan, C. F.; Swager, T. M.; Bulovic, V. Sensitivity Gains in Chemosensing by Lasing Action in Organic Polymers. Nature 2005, 434, 876–879. DOI: 10.1038/nature03438.
  • Xie, T. Tunable Polymer Multi-Shape Memory Effect. Nature 2010, 464, 267–270. DOI: 10.1038/nature08863.
  • Sun, L.; Huang, W. M. Mechanisms of the Multi-Shape Memory Effect and Temperature Memory Effect in Shape Memory Polymers. Soft Matter 2010, 6, 4403. DOI: 10.1039/c0sm00236d.
  • Xie, T. Recent Advances in Polymer Shape Memory. Polymer 2011, 52, 4985–5000. DOI: 10.1016/j.polymer.2011.08.003.
  • Wu, X. L.; Huang, W. M.; Lu, H. B.; Wang, C. C.; Cui, H. P. Characterization of Polymeric Shape Memory Materials. J. Polym. Eng. 2017, 37, 1–20. DOI: 10.1515/polyeng-2015-0370.
  • Liu, T. Z.; Zhou, T. Y.; Yao, Y. T.; Zhang, F. H.; Liu, L. W.; Liu, Y. J.; Leng, J. S. Stimulus Methods of Multi-Functional Shape Memory Polymer Nanocomposites: A Review. Compos. Part A-Appl. Sci. Manuf. 2017, 100, 20–30. DOI: 10.1016/j.compositesa.2017.04.022.
  • Andreas, L.; Kelch, S. Shape-Memory Polymers. Angew. Chem. Int. Ed. 2002, 41, 2034–2057.
  • Behl, M.; Razzaq, M. Y.; Lendlein, A. Multifunctional Shape-Memory Polymers. Adv. Mater. Weinheim. 2010, 22, 3388–3410.
  • Liu, Y.; Gall, K.; Dunn, M. L.; Greenberg, A. R.; Diani, J. Thermomechanics of Shape Memory Polymers: Uniaxial Experiments and Constitutive Modeling. Int. J. Plast. 2006, 22, 279–313. [Database] DOI: 10.1016/j.ijplas.2005.03.004.
  • Kim, Y.-J.; Matsunaga, Y. T. Thermo-Responsive Polymers and Their Application as Smart Biomaterials. J. Mater. Chem. B. 2017, 5, 4307–4321. DOI: 10.1039/c7tb00157f.
  • Small, W.; Singhal, P.; Wilson, T. S.; Maitland, D. J. Biomedical Applications of Thermally Activated Shape Memory Polymers. J. Mater. Chem. 2010, 20, 3356–3366. DOI: 10.1039/B923717H.
  • Heuchel, M.; Sauter, T.; Kratz, K.; Lendlein, A. Thermally Induced Shape-Memory Effects in Polymers: Quantification and Related Modeling Approaches. J. Polym. Sci. B Polym. Phys. 2013, 51, 621–637. [Database] DOI: 10.1002/polb.23251.
  • Lendlein, A.; Gould, O. E. C. Reprogrammable Recovery and Actuation Behaviour of Shape-Memory Polymers. Nat. Rev. Mater. 2019, 4, 116–133. DOI: 10.1038/s41578-018-0078-8.
  • Chen, H.; Li, L.; Ou-Yang, W.; Hwang, J.; Wong, W. Spherulitic Crystallization Behavior of Poly(ε-Caprolactone) with a Wide Range of Molecular Weight. Macromolecules 1997, 30, 1718–1722. DOI: 10.1021/ma960673v.
  • Erndt-Marino, J. D.; Munoz-Pinto, D. J.; Samavedi, S.; Jimenez-Vergara, A. C.; Diaz-Rodriguez, P.; Woodard, L.; Zhang, D.; Grunlan, M. A.; Hahn, M. S. Evaluation of the Osteoinductive Capacity of Polydopamine-Coated Poly(ε-Caprolactone) Diacrylate Shape Memory Foams. ACS Biomater. Sci. Eng. 2015, 1, 1220–1230. DOI: 10.1021/acsbiomaterials.5b00445.
  • Zhang, D.; George, O. J.; Petersen, K. M.; Jimenez-Vergara, A. C.; Hahn, M. S.; Grunlan, M. A. A Bioactive "Self-Fitting" Shape Memory Polymer Scaffold with Potential to Treat Cranio-Maxillo Facial Bone Defects. Acta Biomater. 2014, 10, 4597–4605. DOI: 10.1016/j.actbio.2014.07.020.
  • Neuss, S.; Blomenkamp, I.; Stainforth, R.; Boltersdorf, D.; Jansen, M.; Butz, N.; Perez-Bouza, A.; Knuchel, R. The Use of a Shape-Memory Poly(Epsilon-Caprolactone)Dimethacrylate Network as a Tissue Engineering Scaffold. Biomaterials 2009, 30, 1697–1705. DOI: 10.1016/j.biomaterials.2008.12.027.
  • Zarek, M.; Mansour, N.; Shapira, S.; Cohn, D. 4D Printing of Shape Memory-Based Personalized Endoluminal Medical Devices. Macromol. Rapid Commun. 2017, 38, 1600628. DOI: 10.1002/marc.201600628.
  • Gong, T.; Zhao, K.; Yang, G.; Li, J.; Chen, H.; Chen, Y.; Zhou, S. The Control of Mesenchymal Stem Cell Differentiation Using Dynamically Tunable Surface Microgrooves. Adv. Healthc. Mater. 2014, 3, 1608–1619. DOI: 10.1002/adhm.201300692.
  • Salvekar, A. V.; Zhou, Y.; Huang, W. M.; Wong, Y. S.; Venkatraman, S. S.; Shen, Z.; Zhu, G.; Cui, H. P. Shape/Temperature Memory Phenomena in un-Crosslinked Poly-ɛ-Caprolactone (PCL). Eur. Polym. J. 2015, 72, 282–295. DOI: 10.1016/j.eurpolymj.2015.09.027.
  • Bhanushali, S.; Ghosh, P.; Ganesh, A.; Cheng, W. 1D Copper Nanostructures: progress, Challenges and Opportunities. Small 2015, 11, 1232–1252. DOI: 10.1002/smll.201402295.
  • Nagahama, K.; Ueda, Y.; Ouchi, T.; Ohya, Y. Biodegradable Shape-Memory Polymers Exhibiting Sharp Thermal Transitions and Controlled Drug Release. Biomacromolecules 2009, 10, 1789–1794. DOI: 10.1021/bm9002078.
  • Xue, L.; D, S.; Li, Z. Synthesis and Characterization of Three-Arm Poly(ε-Caprolactone)-Based Poly(Ester-Urethanes) with Shape-Memory Effect at Body Temperature. Macromolecules 2009, 42, 964–972. DOI: 10.1021/ma802437f.
  • Langer, A.; Langer, R. BIodegradable, Elastic Shape-Memory Polymers for Potential Biomedical Applications. Science 2002, 296, 1673–1676. DOI: 10.1126/science.1066102.
  • Tian, G.; Zhu, G.; Xu, S.; Ren, T. A Novel Shape Memory Poly(ɛ-Caprolactone)/Hydroxyapatite Nanoparticle Networks for Potential Biomedical Applications. J. Solid State Chem. 2019, 272, 78–86. DOI: 10.1016/j.jssc.2019.01.029.
  • Jung, Y. C.; Cho, J. W. Application of Shape Memory Polyurethane in Orthodontic. J. Mater. Sci. Mater. Med. 2010, 21, 2881–2886. DOI: 10.1007/s10856-008-3538-7.
  • Biswas, A.; Singh, A. P.; Rana, D.; Aswal, V. K.; Maiti, P. Biodegradable Toughened Nanohybrid Shape Memory Polymer for Smart Biomedical Applications. Nanoscale 2018, 10, 9917–9934. DOI: 10.1039/c8nr01438h.
  • Ajili, S. H.; Ebrahimi, N. G.; Soleimani, M. Polyurethane/Polycaprolactane Blend with Shape Memory Effect as a Proposed Material for Cardiovascular Implants. Acta Biomater. 2009, 5, 1519–1530.
  • Yin, G.; Zhao, D.; Wang, X.; Ren, Y.; Zhang, L.; Wu, X.; Nie, S.; Li, Q. Bio-Compatible Poly(Ester-Urethane)s Based on PEG–PCL–PLLA Copolymer with Tunable Crystallization and Bio-Degradation Properties. RSC Adv. 2015, 5, 79070–79080. DOI: 10.1039/C5RA15531B.
  • Song, Q.; Xia, Y.; Hu, S.; Zhao, J.; Zhang, G. Tuning the Crystallinity and Degradability of PCL by Organocatalytic Copolymerization with δ-Hexalactone. Polymer 2016, 102, 248–255. DOI: 10.1016/j.polymer.2016.09.026.
  • Gupta, B.; Revagade, N.; Hilborn, J. Poly(Lactic Acid) Fiber: An Overview. Prog. Polym. Sci. 2007, 32, 455–482. DOI: 10.1016/j.progpolymsci.2007.01.005.
  • Nair, L. S.; Laurencin, C. T. Biodegradable Polymers as Biomaterials. Prog. Polym. Sci. 2007, 32, 762–798. DOI: 10.1016/j.progpolymsci.2007.05.017.
  • Wei, S.; Huang, Y.; Fang, J.; Cai, Q.; Yang, X. Strengthening the Shape Memory Behaviors of l-Lactide-Ased Copolymers via Its Stereocomplexation Effect with Poly(d-Lactide). Ind. Eng. Chem. Res. 2019, 58, 22021–22031. DOI: 10.1021/acs.iecr.9b04605.
  • Paakinaho, K.; Heino, H.; Pelto, M.; Hannula, M.; Tormala, P.; Kellomaki, M. Programmed Water-Induced Shape-Memory of Bioabsorbable Poly(D,L-Lactide): Activation and Properties in Physiological Temperature. J. Mater. Sci. Mater. Med. 2012, 23, 613–621. DOI: 10.1007/s10856-011-4538-6.
  • Min, C.; Cui, W.; Bei, J.; Wang, S. Biodegradable Shape-Memory Polymer—Polylactide-co-Poly(Glycolide-co-Caprolactone) Multiblock Copolymer. Polym. Adv. Technol. 2005, 16, 608–615. DOI: 10.1002/pat.624.
  • Bao, M.; Lou, X.; Zhou, Q.; Dong, W.; Yuan, H.; Zhang, Y. Electrospun Biomimetic Fibrous Scaffold from Shape Memory Polymer of PDLLA-co-TMC for Bone Tissue Engineering. ACS Appl. Mater. Interfaces 2014, 6, 2611–2621. DOI: 10.1021/am405101k.
  • Zini, E.; Scandola, M.; Dobrzynski, P.; Kasperczyk, J.; Bero, M. Shape Memory Behavior of Novel (L-Lactide-Glycolide-Trimethylene Carbonate) Terpolymers. Biomacromolecules 2007, 8, 3661–3667. DOI: 10.1021/bm700773s.
  • Venkatraman, S. S.; Tan, L. P.; Joso, J. F.; Boey, Y. C.; Wang, X. Biodegradable Stents with Elastic Memory. Biomaterials 2006, 27, 1573–1578. DOI: 10.1016/j.biomaterials.2005.09.002.
  • Cha, K. J.; Lih, E.; Choi, J.; Joung, Y. K.; Ahn, D. J.; Han, D. K. Shape-Memory Effect by Specific Biodegradable Polymer Blending for Biomedical Applications. Macromol. Biosci. 2014, 14, 667–678. DOI: 10.1002/mabi.201300481.
  • Petrovic, Z. S.; Milic, J.; Zhang, F.; Ilavsky, J. Fast-Responding Bio-Based Shape Memory Thermoplastic Polyurethanes. Polymer. (Guildf) 2017, 121, 26–37. DOI: 10.1016/j.polymer.2017.05.072.
  • Chun, B. C.; Cho, T. K.; Chung, Y.-C. Blocking of Soft Segments with Different Chain Lengths and Its Impact on the Shape Memory Property of Polyurethane Copolymer. J. Appl. Polym. Sci. 2007, 103, 1435–1441. DOI: 10.1002/app.24932.
  • Mondal, S.; Hu, J. L. Studies of Shape Memory Property on Thermoplastic Segmented Polyurethanes: Influence of PEG 3400. J. Elastom. Plast 2007, 39, 81–91. DOI: 10.1177/0095244307067423.
  • Baer, G.; Wilson, T. S.; Matthews, D. L.; Maitland, D. J. Shape-Memory Behavior of Thermally Stimulated Polyurethane for Medical Applications. J. Appl. Polym. Sci. 2007, 103, 3882–3892. [Database] DOI: 10.1002/app.25567.
  • Ansari, M.; Golzar, M.; Baghani, M.; Abbasishirsavar, M.; Taghavimehr, M. Force Recovery Evaluation of Thermo-Induced Shape-Memory Polymer Stent: material, Process and Thermo-Viscoelastic Characterization. Smart Mater. Struct. 2019, 28, 095022. DOI: 10.1088/1361-665X/ab28fc.
  • Kim, B. K.; Lee, S. Y.; Xu, M. Polyurethanes Having Shape Memory Effects. Polymer 1996, 37, 5781–5793. DOI: 10.1016/S0032-3861(96)00442-9.
  • Peponi, L.; Navarro-Baena, I.; Sonseca, A.; Gimenez, E.; Marcos-Fernandez, A.; Kenny, J. M. Synthesis and Characterization of PCL–PLLA Polyurethane with Shape Memory Behavior. Eur. Polym. J. 2013, 49, 893–903. DOI: 10.1016/j.eurpolymj.2012.11.001.
  • Zhu, Y.; Hu, J. L.; Yeung, K. W.; Liu, Y. Q.; Liem, H. M. Influence of Ionic Groups on the Crystallization and Melting Behavior of Segmented Polyurethane Ionomers. J. Appl. Polym. Sci. 2006, 100, 4603–4613. DOI: 10.1002/app.23009.
  • Ping, P.; W, W.; Chen, X.; Jing, X. Poly(E-Caprolactone) Polyurethane and Its Shape-Memory Property. Biomacromolecules 2005, 6, 587–592. DOI: 10.1021/bm049477j.
  • Ping, P.; Wang, W.; Zhang, P.; Chen, X.; Jing, X. Shape-Memory and Biocompatibility Properties of Segmented Polyurethanes Based on Poly(L-Lactide). Front. Chem. 2007, 2, 331–336.
  • Chae Jung, Y.; Hwa So, H.; Whan Cho, J. Water‐Responsive Shape Memory Polyurethane Block Copolymer Modified with Polyhedral Oligomeric Silsesquioxane. J. Macromol. Sci. B 2006, 45, 453–461. DOI: 10.1080/00222340600767513.
  • Hornat, C. C.; Urban, M. W. Entropy and Interfacial Energy Driven Self-Healable Polymers. Nat. Commun. 2020, 11, 1028. DOI: 10.1038/s41467-020-14911-y.
  • Du, H.; Yu, Y.; Jiang, G.; Zhang, J.; Bao, J. Microwave-Induced Shape-Memory Effect of Chemically Crosslinked Moist Poly(Vinyl Alcohol) Networks. Macromol. Chem. Phys. 2011, 212, 1460–1468. DOI: 10.1002/macp.201100149.
  • Yu, K.; Liu, Y.; Leng, J. Shape Memory Polymer/CNT Composites and Their Microwave Induced Shape Memory Behaviors. RSC Adv. 2014, 4, 2961–2968. DOI: 10.1039/C3RA43258K.
  • Lu, H.; Liu, Y.; Gou, J.; Leng, J.; Du, S. Electrical Properties and Shape-Memory Behavior of Self-Assembled Carbon Nanofiber Nanopaper Incorporated with Shape-Memory Polymer. Smart Mater. Struct. 2010, 19, 075021. DOI: 10.1088/0964-1726/19/7/075021.
  • Zhang, Y.; Gao, H.; Wang, H.; Xu, Z.; Chen, X.; Liu, B.; Shi, Y.; Lu, Y.; Wen, L.; Li, Y.; et al. Radiopaque Highly Stiff and Tough Shape Memory Hydrogel Microcoils for Permanent Embolization of Arteries. Adv. Funct. Mater. 2018, 28, 1705962. DOI: 10.1002/adfm.201705962.
  • Xie, Y.; Lei, D.; Wang, S.; Liu, Z.; Sun, L.; Zhang, J.; Qing, F.-L.; He, C.; You, Z. A Biocompatible, Biodegradable, and Functionalizable Copolyester and Its Application in Water-Responsive Shape Memory Scaffold. ACS Biomater. Sci. Eng. 2019, 5, 1668–1676. DOI: 10.1021/acsbiomaterials.8b01337.
  • Zhang, Y.; Zheng, N.; Cao, Y.; Wang, F.; Wang, P.; Ma, Y.; Lu, B.; Hou, G.; Fang, Z.; Liang, Z.; et al. Climbing-Inspired Twining Electrodes using Shape Memory for Peripheral Nerve Stimulation and Recording. Sci. Adv. 2019, 5, eaaw1066. DOI: 10.1126/sciadv.aaw1066.
  • Wang, Y.-J.; Jeng, U. S.; Hsu, S-h. Biodegradable Water-Based Polyurethane Shape Memory Elastomers for Bone Tissue Engineering. ACS Biomater. Sci. Eng. 2018, 4, 1397–1406. DOI: 10.1021/acsbiomaterials.8b00091.
  • Huang, W. M.; Yang, B.; Liu, N.; Phee, S. J. 2007 Water-Responsive Programmable Shape Memory Polymer Devices. International Conference on Smart Materials and Nanotechnology in Engineering. DOI: 10.1117/12.779663.
  • Schmidt, A. M. Electromagnetic Activation of Shape Memory Polymer Networks Containing Magnetic Nanoparticles. Macromol. Rapid Commun. 2006, 27, 1168–1172. [Database] DOI: 10.1002/marc.200600225.
  • Shah, R. R.; Davis, T. P.; Glover, A. L.; Nikles, D. E.; Brazel, C. S. Impact of Magnetic Field Parameters and Iron Oxide Nanoparticle Properties on Heat Generation for Use in Magnetic Hyperthermia. J. Magn. Magn. Mater. 2015, 387, 96–106. DOI: 10.1016/j.jmmm.2015.03.085.
  • Mohr, R.; Kratz, K.; Weigel, T.; Lucka-Gabor, M.; Moneke, M.; Lendlein, A. Initiation of Shape-Memory Effect by Inductive Heating of Magnetic Nanoparticles in Thermoplastic Polymers. Proc. Natl. Acad. Sci. USA. 2006, 103, 3540–3545. DOI: 10.1073/pnas.0600079103.
  • Zhang, F.; Wang, L.; Zheng, Z.; Liu, Y.; Leng, J. Magnetic Programming of 4D Printed Shape Memory Composite Structures. Compos. Part A 2019, 125, 105571.
  • Calvo-Correas, T.; Shirole, A.; Crippa, F.; Fink, A.; Weder, C.; Corcuera, M. A.; Eceiza, A. Biocompatible Thermo- and Magneto-Responsive Shape-Memory Polyurethane Bionanocomposites. Mater. Sci. Eng. C Mater. Biol. Appl. 2019, 97, 658–668. DOI: 10.1016/j.msec.2018.12.074.
  • Scheerbaum, N.; Hinz, D.; Gutfleisch, O.; Müller, K. H.; Schultz, L. Textured Polymer Bonded Composites with Ni–Mn–Ga Magnetic Shape Memory Particles. Acta Mater. 2007, 55, 2707–2713. DOI: 10.1016/j.actamat.2006.12.008.
  • Buckley, P. R.; M, G. H.; Wilson, T. S.; Small, W., IV; Benett, W. J.; Bearinger, J. P.; McElfresh, M. W.; Maitland, D. J. Inductively Heated Shape Memory Polymer for the Magnetic Actuation of Medical Devices. IEEE Trans. Biomed. Eng. 2006, 53, 2075–2083. DOI: 10.1109/TBME.2006.877113.
  • Chandrasekaran, R.; Lee, A. S.; Yap, L. W.; Jans, D. A.; Wagstaff, K. M.; Cheng, W. Tumor Cell-Specific Photothermal Killing by SELEX-Derived DNA Aptamer-Targeted Gold Nanorods. Nanoscale 2016, 8, 187–196. DOI: 10.1039/C5NR07831H.
  • Dickerson, E. B.; Dreaden, E. C.; Huang, X.; El-Sayed, I. H.; Chu, H.; Pushpanketh, S.; McDonald, J. F.; El-Sayed, M. A. Gold Nanorod Assisted near-Infrared Plasmonic Photothermal Therapy (PPTT) of Squamous Cell Carcinoma in Mice. Cancer Lett. 2008, 269, 57–66. DOI: 10.1016/j.canlet.2008.04.026.
  • Hribar, K. C.; Metter, R. B.; Ifkovits, J. L.; Troxler, T.; Burdick, J. A. Light-Induced Temperature Transitions in Biodegradable Polymer and Nanorod Composites. Small 2009, 5, 1830–1834. DOI: 10.1002/smll.200900395.
  • Zhang, H.; Zhao, Y. Polymers with Dual Light-Triggered Functions of Shape Memory and Healing Using Gold Nanoparticles. ACS Appl. Mater. Interfaces. 2013, 5, 13069–13075. DOI: 10.1021/am404087q.
  • Xiao, Z.; Wu, Q.; Luo, S.; Zhang, C.; Baur, J.; Justice, R.; Liu, T. Shape Matters: A Gold Nanoparticle Enabled Shape Memory Polymer Triggered by Laser Irradiation. Particle Particle Syst. Charact. 2013, 30, 338–345. DOI: 10.1002/ppsc.201200088.
  • Zheng, Y.; Li, J.; Lee, E.; Yang, S. Light-Induced Shape Recovery of Deformed Shape Memory Polymer Micropillar Arrays with Gold Nanorods. RSC Adv. 2015, 5, 30495–30499. DOI: 10.1039/C5RA01469G.
  • Shou, Q.; Uto, K.; Iwanaga, M.; Ebara, M.; Aoyagi, T. Near-Infrared Light-Responsive Shape-Memory Poly(ɛ-Caprolactone) Films That Actuate in Physiological Temperature Range. Polym. J. 2014, 46, 492–498. DOI: 10.1038/pj.2014.48.
  • Zhu, C.-H.; Lu, Y.; Peng, J.; Chen, J.-F.; Yu, S.-H. Photothermally Sensitive Poly(N-Isopropylacrylamide)/Graphene Oxide Nanocomposite Hydrogels as Remote Light-Controlled Liquid Microvalves. Adv. Funct. Mater. 2012, 22, 4017–4022. DOI: 10.1002/adfm.201201020.
  • Xie, H.; Shao, J.; Ma, Y.; Wang, J.; Huang, H.; Yang, N.; Wang, H.; Ruan, C.; Luo, Y.; Wang, Q. Q.; et al. Biodegradable near-Infrared-Photoresponsive Shape Memory Implants Based on Black Phosphorus Nanofillers. Biomaterials 2018, 164, 11–21. DOI: 10.1016/j.biomaterials.2018.02.040.
  • Qian, W.; Song, Y.; Shi, D.; Dong, W.; Wang, X.; Zhang, H. Photothermal-Triggered Shape Memory Polymer Prepared by Cross-Linking Porphyrin-Loaded Micellar Particles. Materials (Basel) 2019, 12, 496. DOI: 10.3390/ma12030496.
  • Lai, H. Y.; Wang, H. Q.; Lai, J. C.; Li, C. H. A Self-Healing and Shape Memory Polymer That Functions at Body Temperature. Molecules 2019, 24, 3224. DOI: 10.3390/molecules24183224.
  • Guo, Y.; Lv, Z.; Huo, Y.; Sun, L.; Chen, S.; Liu, Z.; He, C.; Bi, X.; Fan, X.; You, Z. A Biodegradable Functional Water-Responsive Shape Memory Polymer for Biomedical Applications. J. Mater. Chem. B. 2019, 7, 123–132. DOI: 10.1039/c8tb02462f.
  • Wang, J.; Luo, J.; Kunkel, R.; Saha, M.; Bohnstedt, B. N.; Lee, C.-H.; Liu, Y. Development of Shape Memory Polymer Nanocomposite Foam for Treatment of Intracranial Aneurysms. Mater. Lett. 2019, 250, 38–41. DOI: 10.1016/j.matlet.2019.04.112.
  • Dalton, E.; Chai, Q.; Shaw, M. W.; McKenzie, T. J.; Mullins, E. S.; Ayres, N. Hydrogel‐Coated Polyurethane/Urea Shape Memory Polymer Foams. J. Polym. Sci. Part A: Polym. Chem. 2019, 57, 1389–1395. DOI: 10.1002/pola.29398.
  • Wan, X.; Wei, H.; Zhang, F.; Liu, Y.; Leng, J. 3D Printing of Shape Memory Poly(d, l‐Lactide‐co‐Trimethylene Carbonate) by Direct Ink Writing for Shape‐Changing Structures. J. Appl. Polym. 2019, 136, 48177.
  • Huang, W. M.; Yang, B.; Zhao, Y.; Ding, Z. Thermo-Moisture Responsive Polyurethane Shape-Memory Polymer and Composites: A Review. J. Mater. Chem. 2010, 20, 3367. DOI: 10.1039/b922943d.
  • Xiao, R.; Huang, W. M. Heating/Solvent Responsive Shape-Memory Polymers for Implant Biomedical Devices in Minimally Invasive Surgery: Current Status and Challenge. Macromol. Biosci. 2020, 20, e2000108. DOI: 10.1002/mabi.202000108.
  • Leng, J.; Wu, X.; Liu, Y. Infrared Light-Active Shape Memory Polymer Filled with Nanocarbon Particles. J. Appl. Polym. Sci. 2009, 114, 2455–2460. [Database] DOI: 10.1002/app.30724.
  • Chen, J.; Saeki, F.; Wiley, B. J.; Cang, H.; Cobb, M. J.; Li, Z.-Y.; Au, L.; Zhang, H.; Kimmey, M. B.; Li, X.; Xia, Y. Gold Nanocages: Bioconjugation and Their Potential Use as Optical Imaging Contrast Agents. Nano Lett. 2005, 5, 473–477. DOI: 10.1021/nl047950t.
  • Rosi, N. L.; G, D. A.; Shad Thaxton, C.; Lytton-Jean, A. K. R.; Han, M. S.; M, C. A. Oligonucleotide-Modified Gold Nanoparticles for Intracellular Gene Regulation. Science 2006, 312, 1027–1030. DOI: 10.1126/science.1125559.
  • Maitland Duncan, J.; Metzger Melodie, F.; Schumann, D.; Lee, A.; Wilson Thomas, S. Photothermal Properties of Shape Memory Polymer Micro-Actuators for Treating Stroke*. Lasers Surg. Med. 2002, 30, 1–11. DOI: 10.1002/lsm.10007.
  • Ponnamma, D.; Sadasivuni, K. K.; Strankowski, M.; Moldenaers, P.; Thomas, S.; Grohens, Y. Interrelated Shape Memory and Payne Effect in Polyurethane/Graphene Oxide Nanocomposites. RSC Adv. 2013, 3, 16068. DOI: 10.1039/c3ra41395k.
  • Thakur, S.; Karak, N. Bio-Based Tough Hyperbranched Polyurethane–Graphene Oxide Nanocomposites as Advanced Shape Memory Materials. RSC Adv. 2013, 3, 9476. DOI: 10.1039/c3ra40801a.
  • Tan, L.; Gan, L.; Hu, J.; Zhu, Y.; Han, J. Functional Shape Memory Composite Nanofibers with Graphene Oxide Filler. Composites Part A 2015, 76, 115–123. DOI: 10.1016/j.compositesa.2015.04.015.
  • Davis, K. A.; Burke, K. A.; Mather, P. T.; Henderson, J. H. Dynamic Cell Behavior on Shape Memory Polymer Substrates. Biomaterials 2011, 32, 2285–2293. DOI: 10.1016/j.biomaterials.2010.12.006.
  • Le, D. M.; Kulangara, K.; Adler, A. F.; Leong, K. W.; Ashby, V. S. Dynamic Topographical Control of Mesenchymal Stem Cells by Culture on Responsive poly(ε-caprolactone) surfaces. Adv. Mater. Weinheim. 2011, 23, 3278–3283. DOI: 10.1002/adma.201100821.
  • Ebara, M.; Uto, K.; Idota, N.; Hoffman, J. M.; Aoyagi, T. Shape-Memory Surface with Dynamically Tunable Nano-Geometry Activated by Body Heat. Adv. Mater. Weinheim. 2012, 24, 273–278. DOI: 10.1002/adma.201102181.
  • Govindarajan, T.; Shandas, R. Microgrooves Encourage Endothelial Cell Adhesion and Organization on Shape-Memory Polymer Surfaces. ACS Appl. Bio Mater. 2019, 2, 1897–1906. DOI: 10.1021/acsabm.8b00833.
  • Shou, Q.; Uto, K.; Lin, W.-C.; Aoyagi, T.; Ebara, M. Near-Infrared-Irradiation-Induced Remote Activation of Surface Shape-Memory to Direct Cell Orientations. Macromol. Chem. Phys. 2014, 215, 2473–2481. DOI: 10.1002/macp.201400353.
  • Ebara, M.; Akimoto, M.; Uto, K.; Shiba, K.; Yoshikawa, G.; Aoyagi, T. Focus on the Interlude between Topographic Transition and Cell Response on Shape-Memory Surfaces. Polymer 2014, 55, 5961–5968. DOI: 10.1016/j.polymer.2014.09.009.
  • Ebara, M.; Uto, K.; Idota, N.; Hoffman, J. M.; Aoyagi, T. The Taming of the Cell: Shape-Memory Nanopatterns Direct Cell Orientation. Int. J. Nanomed. 2014, 9, 117–126.
  • Tseng, L. F.; Mather, P. T.; Henderson, J. H. Shape-Memory-Actuated Change in Scaffold Fiber Alignment Directs Stem Cell Morphology. Acta Biomater. 2013, 9, 8790–8801. DOI: 10.1016/j.actbio.2013.06.043.
  • Wang, J.; Quach, A.; Brasch, M. E.; Turner, C. E.; Henderson, J. H. On-Command on/off Switching of Progenitor Cell and Cancer Cell Polarized Motility and Aligned Morphology via a Cytocompatible Shape Memory Polymer Scaffold. Biomaterials 2017, 140, 150–161. DOI: 10.1016/j.biomaterials.2017.06.016.
  • Bao, M.; Wang, X.; Yuan, H.; Lou, X.; Zhao, Q.; Zhang, Y. HAp Incorporated Ultrafine Polymeric Fibers with Shape Memory Effect for Potential Use in Bone Screw Hole Healing. J. Mater. Chem. B. 2016, 4, 5308–5320. DOI: 10.1039/c6tb01305h.
  • Kai, D.; Prabhakaran, M. P.; Chan, B. Q.; Liow, S. S.; Ramakrishna, S.; Xu, F.; Loh, X. J. Elastic Poly(Epsilon-Caprolactone)-Polydimethylsiloxane Copolymer Fibers with Shape Memory Effect for Bone Tissue Engineering. Biomed. Mater. 2016, 11, 015007. DOI: 10.1088/1748-6041/11/1/015007.
  • Xie, R.; Hu, J.; Ng, F.; Tan, L.; Qin, T.; Zhang, M.; Guo, X. High Performance Shape Memory Foams with Isocyanate-Modified Hydroxyapatite Nanoparticles for Minimally Invasive Bone Regeneration. Ceram. Int. 2017, 43, 4794–4802. DOI: 10.1016/j.ceramint.2016.11.216.
  • Zare, M.; Parvin, N.; Prabhakaran, M. P.; Mohandesi, J. A.; Ramakrishna, S. Highly Porous 3D Sponge-like Shape Memory Polymer for Tissue Engineering Application with Remote Actuation Potential. Compos. Sci. Technol. 2019, 184, 107874.
  • Baker, R. M.; Tseng, L. F.; Iannolo, M. T.; Oest, M. E.; Henderson, J. H. Self-Deploying Shape Memory Polymer Scaffolds for Grafting and Stabilizing Complex Bone Defects: A Mouse Femoral Segmental Defect Study. Biomaterials 2016, 76, 388–398. DOI: 10.1016/j.biomaterials.2015.10.064.
  • Tan, L.; Hu, J.; Huang, H.; Han, J.; Hu, H. Study of Multi-Functional Electrospun Composite Nanofibrous Mats for Smart Wound Healing. Int. J. Biol. Macromol. 2015, 79, 469–476. DOI: 10.1016/j.ijbiomac.2015.05.014.
  • Ramaraju, H.; Solorio, L. D.; Bocks, M. L.; Hollister, S. J. Degradation Properties of a Biodegradable Shape Memory Elastomer, Poly(Glycerol Dodecanoate), for Soft Tissue Repair. PLoS One. 2020, 15, e0229112. DOI: 10.1371/journal.pone.0229112.
  • Waghmare, N. A.; Arora, A.; Bhattacharjee, A.; Katti, D. S. Sulfated Polysaccharide Mediated TGF-β1 Presentation in Pre-Formed Injectable Scaffolds for Cartilage Tissue Engineering. Carbohydr. Polym. 2018, 193, 62–72. DOI: 10.1016/j.carbpol.2018.03.091.
  • Deng, Z.; Guo, Y.; Zhao, X.; Li, L.; Dong, R.; Guo, B.; Ma, P. X. Stretchable Degradable and Electroactive Shape Memory Copolymers with Tunable Recovery Temperature Enhance Myogenic Differentiation. Acta Biomater. 2016, 46, 234–244. DOI: 10.1016/j.actbio.2016.09.019.
  • Chen, C.; Hu, J.; Huang, H.; Zhu, Y.; Qin, T. Design of a Smart Nerve Conduit Based on a Shape-Memory Polymer. Adv. Mater. Technol. 2016, 1, 1600015. DOI: 10.1002/admt.201600015.
  • Wang, J.; Zhao, Q.; Wang, Y.; Zeng, Q.; Wu, T.; Du, X. Self‐Unfolding Flexible Microelectrode Arrays Based on Shape Memory Polymers. Adv. Mater. Technol. 2019, 4, 1900566. DOI: 10.1002/admt.201900566.
  • Boyle, A. J.; Wierzbicki, M. A.; Herting, S.; Weems, A. C.; Nathan, A.; Hwang, W.; Maitland, D. J. In Vitro Performance of a Shape Memory Polymer Foam-Coated Coil Embolization Device. Med. Eng. Phys. 2017, 49, 56–62. DOI: 10.1016/j.medengphy.2017.07.009.
  • Maitland, D. J.; Small, W. t.; Ortega, J. M.; Buckley, P. R.; Rodriguez, J.; Hartman, J.; Wilson, T. S. Prototype Laser-Activated Shape Memory Polymer Foam Device for Embolic Treatment of Aneurysms. J. Biomed. Opt. 2007, 12, 030504.
  • Boyle, A. J.; Landsman, T. L.; Wierzbicki, M. A.; Nash, L. D.; Hwang, W.; Miller, M. W.; Tuzun, E.; Hasan, S. M.; Maitland, D. J. In Vitro and in Vivo Evaluation of a Shape Memory Polymer Foam-over-Wire Embolization Device Delivered in Saccular Aneurysm Models. J. Biomed. Mater. Res. Part B Appl. Biomater. 2016, 104, 1407–1415.
  • Meyer, W.; Engelhardt, S.; Novosel, E.; Elling, B.; Wegener, M.; Kruger, H. Soft Polymers for Building up Small and Smallest Blood Supplying Systems by Stereolithography. J. Funct. Biomater. 2012, 3, 257–268. DOI: 10.3390/jfb3020257.
  • Hampikian, J. M.; Heaton, B. C.; Tong, F. C.; Zhang, Z.; Wong, C. P. Mechanical and Radiographic Properties of a Shape Memory Polymer Composite for Intracranial Aneurysm Coils. Mater. Sci. Eng. C 2006, 26, 1373–1379. DOI: 10.1016/j.msec.2005.08.026.
  • Metcalfe, A.; Desfaits, A.-C.; Salazkin, I.; Yahia, L. H.; Sokolowski, W. M.; Raymond, J. Cold Hibernated Elastic Memory Foams for Endovascular Interventions. Biomaterials 2003, 24, 491–497. DOI: 10.1016/S0142-9612(02)00362-9.
  • Rodriguez, J. N.; Yu, Y. J.; Miller, M. W.; Wilson, T. S.; Hartman, J.; Clubb, F. J.; Gentry, B.; Maitland, D. J. Opacification of Shape Memory Polymer Foam Designed for Treatment of Intracranial Aneurysms. Ann. Biomed. Eng. 2012, 40, 883–897. DOI: 10.1007/s10439-011-0468-1.
  • Rodriguez, J. N.; Clubb, F. J.; Wilson, T. S.; Miller, M. W.; Fossum, T. W.; Hartman, J.; Tuzun, E.; Singhal, P.; Maitland, D. J. In Vivo Response to an Implanted Shape Memory Polyurethane Foam in a Porcine Aneurysm Model. J. Biomed. Mater. Res. 2014, 102, 1231–1242. DOI: 10.1002/jbm.a.34782.
  • Hasan, S. M.; Harmon, G.; Zhou, F.; Raymond, J. E.; Gustafson, T. P.; Wilson, T. S.; Maitland, D. J. Tungsten-Loaded SMP Foam Nanocomposites with Inherent Radiopacity and Tunable Thermo-Mechanical Properties. Polym. Adv. Technol. 2016, 27, 195–203. DOI: 10.1002/pat.3621.
  • Hasan, S. M.; Thompson, R. S.; Emery, H.; Nathan, A. L.; Weems, A. C.; Zhou, F.; Monroe, M. B.; Maitland, D. J. Modification of Shape Memory Polymer Foams Using Tungsten, Aluminum Oxide, and Silicon Dioxide Nanoparticles. RSC Adv. 2016, 6, 918–927.
  • Nash, L.; Browning Monroe, M.; Ding, Y.-H.; Ezell, K.; Boyle, A.; Kadirvel, R.; Kallmes, D.; Maitland, D. Increased X-Ray Visualization of Shape Memory Polymer Foams by Chemical Incorporation of Iodine Motifs. Polymers 2017, 9, 381. DOI: 10.3390/polym9080381.
  • Liu, Y.; Peng, X.; Qian, K.; Ma, Y.; Wan, J.; Li, H.; Zhang, H.; Zhou, G.; Xiong, B.; Zhao, Y.; et al. Temperature Sensitive p(N-Isopropylacrylamide-co-Acrylic Acid) Modified Gold Nanoparticles for Trans-Arterial Embolization and Angiography. J. Mater. Chem. B. 2017, 5, 907–916. DOI: 10.1039/c6tb02383e.
  • Nishio, S.; Kosuga, K.; Igaki, K.; Okada, M.; Kyo, E.; Tsuji, T.; Takeuchi, E.; Inuzuka, Y.; Takeda, S.; Hata, T.; et al. Long-Term (>10 Years) Clinical Outcomes of First-in-Human Biodegradable Poly-l-Lactic Acid Coronary Stents: Igaki-Tamai Stents. Circulation 2012, 125, 2343–2353. DOI: 10.1161/CIRCULATIONAHA.110.000901.
  • Tamai, H.; Igaki, K.; Kyo, E.; Kosuga, K.; Kawashima, A.; Matsui, S.; Komori, H.; Tsuji, T.; Motohara, S.; Uehata, H. Initial and 6-Month Results of Biodegradable Poly-l-Lactic Acid Coronary Stents in Humans. Circulation 2000, 102, 399–404. DOI: 10.1161/01.cir.102.4.399.
  • Shin, Y. C.; Lee, J. B.; Kim, D. H.; Kim, T.; Alexander, G.; Shin, Y. M.; Park, J. Y.; Baek, S.; Yoon, J. K.; Lee, Y. J.; et al. Development of a Shape-Memory Tube to Prevent Vascular Stenosis. Adv. Mater. Weinheim. 2019, 31, e1904476. DOI: 10.1002/adma.201904476.
  • Yakacki, C. M.; Shandas, R.; Lanning, C.; Rech, B.; Eckstein, A.; Gall, K. Unconstrained Recovery Characterization of Shape-Memory Polymer Networks for Cardiovascular Applications. Biomaterials 2007, 28, 2255–2263. DOI: 10.1016/j.biomaterials.2007.01.030.
  • Kim, J. H.; Kang, T. J.; Yu, W. R. Simulation of Mechanical Behavior of Temperature-Responsive Braided Stents Made of Shape Memory Polyurethanes. J. Biomech. 2010, 43, 632–643. DOI: 10.1016/j.jbiomech.2009.10.032.
  • Baer, G. M.; Wilson, T. S.; Small, W. t.; Hartman, J.; Benett, W. J.; Matthews, D. L.; Maitland, D. J. Thermomechanical Properties, Collapse Pressure, and Expansion of Shape Memory Polymer Neurovascular Stent Prototypes. J. Biomed. Mater. Res. Part B Appl. Biomater. 2009, 90, 421–429. DOI: 10.1002/jbm.b.31301.
  • Xue, L.; Dai, S.; Li, Z. Biodegradable Shape-Memory Block Co-Polymers for Fast Self-Expandable Stents. Biomaterials 2010, 31, 8132–8140. DOI: 10.1016/j.biomaterials.2010.07.043.
  • Zheng, Y.; Li, Y.; Hu, X.; Shen, J.; Guo, S. Biocompatible Shape Memory Blend for Self-Expandable Stents with Potential Biomedical Applications. ACS Appl. Mater. Interfaces 2017, 9, 13988–13998. DOI: 10.1021/acsami.7b04808.
  • Zeng, B.; Li, Y.; Wang, L.; Zheng, Y.; Shen, J.; Guo, S. Body Temperature-Triggered Shape-Memory Effect via Toughening Sustainable Poly(Propylene Carbonate) with Thermoplastic Polyurethane: Toward Potential Application of Biomedical Stents. ACS Sustainable Chem. Eng. 2020, 8, 1538–1547. DOI: 10.1021/acssuschemeng.9b06080.
  • Bai, Y.; Jiang, C.; Wang, Q.; Wang, T. A Novel High Mechanical Strength Shape Memory Polymer Based on Ethyl Cellulose and Polycaprolactone. Carbohydr. Polym. 2013, 96, 522–527. DOI: 10.1016/j.carbpol.2013.04.026.
  • Jing, X.; Mi, H. Y.; Huang, H. X.; Turng, L. S. Shape Memory Thermoplastic Polyurethane (TPU)/poly(ε-Caprolactone) (PCL) Blends as Self-Knotting Sutures. J. Mech. Behav. Biomed. Mater. 2016, 64, 94–103. DOI: 10.1016/j.jmbbm.2016.07.023.
  • Sharifi, S.; van Kooten, T. G.; Kranenburg, H. J.; Meij, B. P.; Behl, M.; Lendlein, A.; Grijpma, D. W. An Annulus Fibrosus Closure Device Based on a Biodegradable Shape-Memory Polymer Network. Biomaterials 2013, 34, 8105–8113. DOI: 10.1016/j.biomaterials.2013.07.061.
  • Neffe, A. T.; Hanh, B. D.; Steuer, S.; Lendlein, A. Polymer Networks Combining Controlled Drug Release, Biodegradation, and Shape Memory Capability. Adv. Mater. Weinheim. 2009, 21, 3394–3398. DOI: 10.1002/adma.200802333.
  • Wache, H. M.; Tartakowska, D. J.; Hentrich, A.; Wagner, M. H. Development of a Polymer Stent with Shape Memory Effect as a Drug Delivery System. J. Mater. Sci. Mater. Med. 2013, 14, 109–112. DOI: 10.1023/A:1022007510352.
  • Yang, C. S.; Wu, H. C.; Sun, J. S.; Hsiao, H. M.; Wang, T. W. Thermo-Induced Shape-Memory PEG-PCL Copolymer as a Dual-Drug-Eluting Biodegradable Stent. ACS Appl. Mater. Interfaces 2013, 5, 10985–10994. DOI: 10.1021/am4032295.
  • Lv, H.; Tang, D.; Sun, Z.; Gao, J.; Yang, X.; Jia, S.; Peng, J. Electrospun PCL-Based Polyurethane/HA Microfibers as Drug Carrier of Dexamethasone with Enhanced Biodegradability and Shape Memory Performances. Colloid Polym. Sci. 2020, 298, 103–111. DOI: 10.1007/s00396-019-04568-5.
  • Wischke, C.; Neffe, A. T.; Steuer, S.; Engelhardt, E.; Lendlein, A. AB-Polymer Networks with Cooligoester and Poly(n-Butyl Acrylate) Segments as a Multifunctional Matrix for Controlled Drug Release. Macromol. Biosci. 2010, 10, 1063–1072. DOI: 10.1002/mabi.201000089.
  • Jahangiri, M.; Kalajahi, A. E.; Rezaei, M.; Bagheri, M. Shape Memory Hydroxypropyl Cellulose-g-Poly (ε-Caprolactone) Networks with Controlled Drug Release Capabilities. J. Polym. Res. 2019, 26, 136.
  • Fu, X. L.; Wang, H. J. Spatial Arrangement of Polycaprolactone/Collagen Nanofiber Scaffolds Regulates the Wound Healing Related Behaviors of Human Adipose Stromal Cells. Tissue Eng Part A 2012, 18, 631–642. DOI: 10.1089/ten.TEA.2011.0069.
  • Chen, H.; Qian, Y.; Xia, Y.; Chen, G.; Dai, Y.; Li, N.; Zhang, F.; Gu, N. Enhanced Osteogenesis of ADSCs by the Synergistic Effect of Aligned Fibers Containing Collagen I. ACS Appl Mater Interfaces 2016, 8, 29289–29297. DOI: 10.1021/acsami.6b08791.
  • Hu, T.; Li, Q.; Dong, H.; Xiao, W.; Li, L.; Cao, X. Patterning Electrospun Nanofibers via Agarose Hydrogel Stamps to Spatially Coordinate Cell Orientation in Microfluidic Device. Small 2017, 13, 1602610. DOI: 10.1002/smll.201602610.
  • Sun, L.; Gao, W.; Fu, X.; Shi, M.; Xie, W.; Zhang, W.; Zhao, F.; Chen, X. Enhanced Wound Healing in Diabetic Rats by Nanofibrous Scaffolds Mimicking the Basketweave Pattern of Collagen Fibrils in Native Skin. Biomater. Sci. 2018, 6, 340–349. DOI: 10.1039/c7bm00545h.
  • Kim, J.; Hayward, R. C. Mimicking Dynamic in Vivo Environments with Stimuli-Responsive Materials for Cell Culture. Trends Biotechnol. 2012, 30, 426–439. DOI: 10.1016/j.tibtech.2012.04.003.
  • Iregui, A.; Irusta, L.; Llorente, O.; Martin, L.; Calvo-Correas, T.; Eceiza, A.; González, A. Electrospinning of Cationically Polymerized Epoxy/Polycaprolactone Blends to Obtain Shape Memory Fibers (SMF). Eur. Polym. J 2017, 94, 376–383. DOI: 10.1016/j.eurpolymj.2017.07.026.
  • Montgomery, M.; Ahadian, S.; Huyer, L. D.; Lo Rito, M.; Civitarese, R. A.; Vanderlaan, R. D.; Wu, J.; Reis, L. A.; Momen, A.; Akbari, S.; et al. Flexible Shape-Memory Scaffold for Minimally Invasive Delivery of Functional Tissues. Nat. Mater. 2017, 16, 1038–1046. +. DOI: 10.1038/nmat4956.
  • Peterson, G. I.; Dobrynin, A. V.; Becker, M. L. Biodegradable Shape Memory Polymers in Medicine. Adv. Healthc. Mater 2017, 6, 1700694.
  • Lee, T. K.; Kwon, J.; Na, K. S.; Jeong, H. S.; Hwang, H.; Oh, P. S.; Kim, D. H.; Jang, K. Y.; Lim, S. T.; Sohn, M. H.; Jeong, H. J. Evaluation of Selective Arterial Embolization Effect by Chitosan Micro-Hydrogels in Hindlimb Sarcoma Rodent Models Using Various Imaging Modalities. Nucl. Med. Mol. Imaging 2015, 49, 191–199. DOI: 10.1007/s13139-014-0316-y.
  • Henkes, H.; Fischer, S.; Liebig, T.; Weber, W.; Reinartz, J.; Miloslavski, E.; Kühne, D. Repeated Endovascular Coil Occlusion in 350 of 2759 Intracranial Aneurysms: Safety and Effectiveness Aspects. Neurosurgery 2006, 58, 224–232. DOI: 10.1227/01.NEU.0000194831.54183.3F.
  • Murayama, Y.; Tateshima, S.; Gonzalez, N. R.; Vinuela, F. Matrix and Bioabsorbable Polymeric Coils Accelerate Healing of Intracranial Aneurysms: long-Term Experimental Study. Stroke 2003, 34, 2031–2037. DOI: 10.1161/01.STR.0000083394.33633.C2.
  • Herting, S. M.; Ding, Y.; Boyle, A. J.; Dai, D.; Nash, L. D.; Asnafi, S.; Jakaitis, D. R.; Johnson, C. R.; Graul, L. M.; Yeh, C.; et al. In Vivo Comparison of Shape Memory Polymer Foam-Coated and Bare Metal Coils for Aneurysm Occlusion in the Rabbit Elastase Model. J. Biomed. Mater. Res. Part B Appl. Biomater. 2019, 107, 2466–2475. DOI: 10.1002/jbm.b.34337.
  • Wei, H.; Zhang, Q.; Yao, Y.; Liu, L.; Liu, Y.; Leng, J. Direct-Write Fabrication of 4D Active Shape-Changing Structures Based on a Shape Memory Polymer and Its Nanocomposite. ACS Appl. Mater. Interfaces 2017, 9, 876–883. DOI: 10.1021/acsami.6b12824.
  • Meng, B.; Wang, J.; Zhu, N.; Meng, Q. Y.; Cui, F. Z.; Xu, Y. X. Study of Biodegradable and Self-Expandable PLLA Helical Biliary Stent in Vivo and in Vitro. J. Mater. Sci. Mater. Med. 2006, 17, 611–617. DOI: 10.1007/s10856-006-9223-9.
  • Höer, J.; Klinge, U.; Schachtrupp, A.; Töns, C.; Schumpelick, V. Influence of Suture Technique on Laparotomy Wound Healing: An Experimental Study in the Rat. Langenbeck's Arch. Surg. 2001, 386, 218–223. DOI: 10.1007/s004230000196.
  • Xue, L.; Dai, S.; Li, Z. Synthesis and Characterization of Elastic Star Shape-Memory Polymers as Self-Expandable Drug-Eluting Stents. J. Mater. Chem. 2012, 22, 7403. DOI: 10.1039/c2jm15918j.
  • Wischke, C.; Neffe, A. T.; Steuer, S.; Lendlein, A. Evaluation of a Degradable Shape-Memory Polymer Network as Matrix for Controlled Drug Release. J Control Release 2009, 138, 243–250. DOI: 10.1016/j.jconrel.2009.05.027.
  • Tsugawa, C.; NIshijim, E.; Muraji, T.; Yoshimur, M.; Tsubot, N.; Asano, H. A Shape Memory Airway Stent for Tracheobronchomalacia in Children: An Experimental and Clinical Study. J. Pediatr. Surg. 1997, 32, 50–53. DOI: 10.1016/s0022-3468(97)90092-0.
  • Xiao, R.; Nguyen, T. D. Modeling the Solvent-Induced Shape-Memory Behavior of Glassy Polymers. Soft Matter 2013, 9, 9455. DOI: 10.1039/c3sm51210j.
  • Lubner, M. G.; Brace, C. L.; Hinshaw, J. L.; Lee, F. T. Jr. Microwave Tumor Ablation: mechanism of Action, Clinical Results, and Devices. J. Vasc. Interv. Radiol. 2010, 21, S192–S203. DOI: 10.1016/j.jvir.2010.04.007.
  • Ze, Q. J.; Kuang, X.; Wu, S.; Wong, J.; Montgomery, S. M.; Zhang, R. D.; Kovitz, J. M.; Yang, F. Y.; Qi, H. J.; Zhao, R. K. Magnetic Shape Memory Polymers with Integrated Multifunctional Shape Manipulation. Adv. Mater. 2020, 32, 1906657. DOI: 10.1002/adma.201906657.
  • Nelson, B. J.; Kaliakatsos, I. K.; Abbott, J. J. Microrobots for Minimally Invasive Medicine. Annu. Rev. Biomed. Eng. 2010, 12, 55–85.
  • Palagi, S.; Fischer, P. Bioinspired Microrobots. Nat. Rev. Mater. 2018, 3, 113–124. DOI: 10.1038/s41578-018-0016-9.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.