977
Views
16
CrossRef citations to date
0
Altmetric
Review

Poly(l-Lactic Acid)/Poly(Butylene Succinate) Biobased Biodegradable Blends

Pages 457-492 | Received 15 Jun 2020, Accepted 09 Nov 2020, Published online: 03 Dec 2020

References

  • Geyer, R.; Jambeck, J. R.; Lavender Law, K. Production, Use, and Fate of All Plastics Ever Made. Sci. Adv. 2017, 3, e1700782. DOI: 10.1126/sciadv.1700782.
  • Di Lorenzo, M. L.; Androsch, R., Eds. Thermal Properties of Bio-Based Polymers. Advances in Polymer Science; Springer: Cham, 2019; Vol. 283. DOI: 10.1007/978-3-030-39962-7.
  • Di Lorenzo, M. L.; Androsch, R., Eds. Synthesis, Structure and Properties of Poly(Lactic Acid). Advances in Polymer Science; Springer: Cham, 2018; Vol. 279. DOI: 10.1007/978-3-319-64230-7.
  • Biopolymers Facts and Statistics. Institute for Bioplastics and Biocomposites, IfBB. http://d-nb.info/1097422666/34/. 2015 (accessed 20 May 2020).
  • Bautista, J.; Jover, M.; Gutierrez, J. F.; Corpas, R.; Cremades, O.; Fontiveros, E.; Iglesias, F.; Vega, J. Preparation of Crayfish Chitin by in Situ Lactic Acid Production. Process. Biochem. 2001, 37, 229–234. DOI: 10.1016/S0032-9592(01)00202-3.
  • Bogaert, J. C.; Coszac, P. Poly(Lactic Acids): a Potential Solution to Plastic Waste Dilemma. Macromol. Symp. 2000, 153, 287–303. DOI: 10.1002/1521-3900(200003)153:1 < 287::AID-MASY287 > 3.0.CO;2-E.
  • Di Lorenzo, M. L.; Cocca, M.; Malinconico, M. Crystal Polymorphism of Poly(l-Lactic Acid) and Its Influence on Thermal Properties. Thermoch. Acta 2011, 522, 110–117. DOI: 10.1016/j.tca.2010.12.027.
  • Cocca, M.; Di Lorenzo, M. L.; Malinconico, M.; Frezza, V. Influence of Crystal Polymorphism on Mechanical and Barrier Properties of Poly(l-Lactic Acid). Eur. Polym. J. 2011, 47, 1073–1080. DOI: 10.1016/j.eurpolymj.2011.02.009.
  • Di Lorenzo, M. L.; Rubino, P.; Luijkx, R.; Hélou, M. Influence of Chain Structure on Crystal Polymorphism of Poly(Lactic Acid). Part 1: Effect of Optical Purity of the Monomer. Colloid Polym. Sci. 2014, 292, 399–409. DOI: 10.1007/s00396-013-3081-z.
  • Di Lorenzo, M. L.; Androsch, R. Influence of α'-/α-Crystal Polymorphism on Properties of Poly(l-Lactic Acid. ). Polym. Int. 2019, 68, 320–334. DOI: 10.1002/pi.5707.
  • Di Lorenzo, M. L.; Androsch, R., Eds. Industrial Applications of Poly(Lactic Acid). Advances in Polymer Science; Springer: Cham, 2018; Vol. 282. DOI: 10.1007/978-3-319-75459-8.
  • Auras, R; Lim, L. T.; Selke, S. E. M.; Tsuji, H., Eds. Poly(Lactic Acid): Synthesis, Structures, Properties, Processing, and Applications; John Wiley & Sons: Hoboken, NJ, 2010. DOI: 10.1002/9780470649848.
  • Jamshidian, M.; Tehrany, E. A.; Imran, M.; Jacquot, M.; Desobry, S. Poly-Lactic Acid: Production, Applications, Nanocomposites, and Release Studies. Compr. Rev. Food Sci. Food Saf. 2010, 9, 552–571. DOI: 10.1111/j.1541-4337.2010.00126.x.
  • Saeidlou, S.; Huneault, M. A.; Li, H.; Park, C. B. Poly (Lactic Acid) Crystallization. Progr. Polym. Sci. 2012, 37, 1657–1677. DOI: 10.1016/j.progpolymsci.2012.07.005.
  • Nofar, M.; Sacligil, D.; Carreau, P. J.; Kamal, M. R.; Heuzey, M. C. Poly (lactic acid) blends: Processing, properties and applications. Int. J. Biol. Macromol. 2019, 125, 307–460. DOI: 10.1016/j.ijbiomac.2018.12.002.
  • Fujimaki, T. Processability and Properties of Aliphatic Polyesters, ‘BIONOLLE’, Synthesized by Polycondensation Reaction. Polym. Degrad. Stab. 1998, 59, 209–214. DOI: 10.1016/S0141-3910(97)00220-6.
  • Xu, J.; Guo, B. H. Poly(Butylene Succinate) and Its Copolymers: Research, Development and Industrialization. Biotechnol. J. 2010, 5, 1149–1463. DOI: 10.1002/biot.201000136.
  • Mallardo, S.; De Vito, V.; Malinconico, M.; Volpe, M. G.; Santagata, G.; Di Lorenzo, M. L. Poly(Butylene Succinate)-Based Composites Containing β-Cyclodextrin/d-Limonene Inclusion Complex. Eur. Polym. J. 2016, 79, 82–96. DOI: 10.1016/j.eurpolymj.2016.04.024.
  • Zhang, S.; He, Y.; Yin, Y.; Jiang, G. Fabrication of Innovative Thermoplastic Starch Bio-Elastomer to Achieve High Toughness Poly(Butylene Succinate) Composites. Carbohydr. Polym. 2019, 206, 827–836. DOI: 10.1016/j.carbpol.2018.11.036.
  • Su, S.; Kopitzky, R.; Tolga, S.; Kabasci, S. Polylactide (PLA) and Its Blends with Poly(Butylene Succinate) (PBS): a Brief Review. Polymers 2019, 11, 1193. DOI: 10.3390/polym11071193.
  • Mehta, R.; Kumar, V.; Bhunia, H.; Upadhyay, S. N. Synthesis of Poly(Lactic Acid): a Review. Polym. Rev. 2005, 45, 325–349. DOI: 10.1080/15321790500304148.
  • Tan, J.; Abdel-Rahman, M. A.; Sonomoto, K. Biorefinery-Based Lactic Acid Fermentation: Microbial Production of Pure Monomer Product. In Synthesis, Structure and Properties of Poly(Lactic Acid). Advances in Polymer Science; Di Lorenzo, M. L., Androsch, R. Eds.; Springer: Cham, 2018; Vol. 279, pp 27–66. DOI: 10.1007/12_2016_11.
  • Byers, J. A.; Biernesser, A. B.; Delle Chiaie, K. R.; Kaur, A.; Kehl, J. A. Catalytic Systems for the Production of Poly(Lactic Acid). In Synthesis, Structure and Properties of Poly(Lactic Acid). Advances in Polymer Science; Di Lorenzo, M. L., Androsch, R. Eds.; Springer: Cham, 2018; Vol. 279, pp 67–118 DOI: 10.1007/12_2017_2.
  • Wang, Y.; Tashiro, Y.; Sonomoto, K. Fermentative Production of Lactic Acid from Renewable Materials: recent Achievements, Prospects, and Limits. J. Biosci. Bioeng. 2015, 119, 10–18. DOI: 10.1016/j.jbiosc.2014.06.003.
  • Di Lorenzo, M. L.; Androsch, R. Stability and Reorganization of α'-Crystals in Random l-/d-Lactide Copolymers. Macromol. Chem. Phys. 2016, 217, 1534–1538. DOI: 10.1002/macp.201600073.
  • Di Lorenzo, M. L.; Androsch, R. Accelerated Crystallization of High Molar Mass Poly (l/d-Lactic Acid) by Blending with Low Molar Mass Poly (l-Lactic Acid). Eur. Polym. J. 2018, 100, 172–177. DOI: 10.1016/j.eurpolymj.2018.01.030.
  • Androsch, R.; Schick, C.; Di Lorenzo, M. L. Melting of Conformationally Disordered Crystals (α'-Phase) of Poly(l-Lactic Acid). Macromol. Chem. Phys. 2014, 215, 1134–1139. DOI: 10.1002/macp.201400126.
  • Androsch, R.; Di Lorenzo, M. L. Effect of Molar Mass on the α′/α-Transition in Poly (L-Lactic Acid). Polymer 2017, 114, 144–148. DOI: 10.1016/j.polymer.2017.02.063.
  • Urayama, H.; Moon, S. I.; Kimura, Y. Microstructure and Thermal Properties of Polylactides with Different l- and d-Unit Sequences: importance of the Helical Nature of the l-Sequenced Segments. Macromol. Mat. Eng. 2003, 288, 137–143. DOI: 10.1002/mame.200390006.
  • Kobayashi, J.; Asahi, T.; Ichiki, M.; Oikawa, A.; Suzuki, H.; Watanabe, T.; Fukada, E.; Shikinami, Y. Structural and Optical Properties of Poly Lactic Acids. J. Appl. Phys. 1995, 77, 2957–2973. DOI: 10.1063/1.358712.
  • Di Lorenzo, M. L. Calorimetric Analysis of the Multiple Melting Behavior of Poly(l-Lactic Acid). J. Appl. Polym. Sci. 2006, 100, 3145–3151. DOI: 10.1002/app.23136.
  • Domenek, S.; Fernandes-Nassar, S.; Ducruet, V. Rheology, Mechanical Properties, and Barrier Properties of Poly(Lactic Acid). In Synthesis, Structure and Properties of Poly(Lactic Acid). Advances in Polymer Science; Di Lorenzo, M. L., Androsch, R. Eds.; Springer: Cham, 2018; Vol. 279, pp 303–341. DOI: 10.1007/12_2016_17.
  • Kühnert, I.; Spörer, Y.; Brünig, H.; Tran, N. H. A.; Rudolph, N. Processing of Poly(Lactic Acid). In Industrial Applications of Poly(Lactic Acid). Advances in Polymer Science; Di Lorenzo, M. L., Androsch, R. Eds.; Springer: Cham, 2018; Vol. 282, pp 1–33. DOI: 10.1007/12_2017_30.
  • Gigli, M.; Fabbri, M.; Lotti, N.; Gamberini, R.; Rimini, B.; Munari, A. Poly(Butylene Succinate)-Based Polyesters for Biomedical Applications: A Review. Eur. Polym. J. 2016, 75, 431–460. DOI: 10.1016/j.eurpolymj.2016.01.016.
  • Gigli, M.; Lotti, N.; Gazzano, M.; Finelli, L.; Munari, A. Novel Eco-Friendly Random Copolyesters of Poly(Butylene Succinate) Containing Ether-Linkages. React. Funct. Polym. 2012, 72, 303–310. DOI: 10.1016/j.reactfunctpolym.2012.02.013.
  • Lim, S. K.; Lee, J. J.; Jang, S. G.; Lee, S. I.; Lee, K. H.; Choi, H. J.; Chin, I. J. Synthetic Aliphatic Biodegradable Poly(Butylene Succinate)/Clay Nanocomposite Foams with High Blowing Ratio and Their Physical Characteristics. Polym. Eng. Sci. 2011, 51, 1316–1324. DOI: 10.1002/pen.21927.
  • Wang, R.; Wang, S.; Zhang, Y.; Wan, C.; Ma, P. Toughening Modification of PLLA/PBS Blends via in Situ Compatibilization. Polym. Eng. Sci. 2009, 49, 26–33. DOI: 10.1002/pen.21210.
  • Luo, S.; Li, F.; Yu, J.; Cao, A. Synthesis of Poly(Butylene Succinate-co-Butylene Terephthalate) (PBST) Copolyesters with High Molecular Weights via Direct Esterification and Polycondensation. J. Appl. Polym. Sci. 2010, 115, 2203–2211. DOI: 10.1002/app.31346.
  • Wecke, J.; Horbach, I. Ultrastructural Characterization of Anaerobiospirillum succiniciproducens and Its Differentiation from Campylobacter Species. FEMS Microbiol. Lett. 1999, 170, 83–88. DOI: 10.1111/j.1574-6968.1999.tb13358.x.
  • Lee, P. C.; Lee, W. G.; Lee, S. Y.; Chang, H. N. Succinic Acid Production with Reduced by-Product Formation in the Fermentation of Anaerobiospirillum succiniciproducens Using Glycerol as a Carbon Source. Biotechnol. Bioeng. 2001, 72, 41–48. DOI: 10.1002/1097-0290(20010105)72:1.
  • Cheng, K. K.; Zhao, X. B.; Zeng, J.; Zhang, J. A. Biotechnological Production of Succinic Acid: current State and Perspectives. Biofuels, Bioprod. Bioref. 2012, 6, 302–318. DOI: 10.1002/bbb.1327.
  • Bretz, K.; Kabasci, S. Feed-Control Development for Succinic Acid Production with Anaerobiospirillum succiniciproducens. Biotechnol. Bioeng. 2012, 109, 1187–1192. DOI: 10.1002/bit.24387.
  • Borges, E. R.; Pereira, N. Succinic Acid Production from Sugarcane Bagasse Hemicellulose Hydrolysate by Actinobacillus succinogenes. J. Ind. Microbiol. Biotechnol. 2011, 38, 1001–1111. DOI: 10.1007/s10295-010-0874-7.
  • Azim, H.; Dekhterman, A.; Jiang, Z.; Gross, R. A. Candida antarctica Lipase B-Catalyzed Synthesis of Poly(Butylene Succinate): Shorter Chain Building Blocks Also Work. Biomacromolecules 2006, 7, 3093–3097. DOI: 10.1021/bm060574h.
  • Jacquel, N.; Freyermouth, F.; Fenouillot, F.; Rousseau, A.; Pascault, J. P.; Fuertes, P.; Saint-Loup, R. Synthesis and Properties of Poly(Butylene Succinate): Efficiency of Different Transesterification Catalysts. J. Polym. Sci. A Polym. Chem. 2011, 49, 5301–5312. DOI: 10.1002/pola.25009.
  • Ren, L.; Wang, Y.; Ge, J.; Lu, D.; Liu, Z. Enzymatic Synthesis of High-Molecular-Weight Poly(Butylene Succinate) and Its Copolymers. Macromol. Chem. Phys. 2015, 216, 636–640. DOI: 10.1002/macp.201400550.
  • Ferreira, L. P.; Moreira, A. N.; Pinto, J. C.; de Souza, F. G. Synthesis of Poly(Butylene Succinate) Using Metal Catalysts Synthesis of Poly(Butylene Succinate) Using Metal Catalysts. Polym. Eng. Sci. 2015, 55, 1889–1896. DOI: 10.1002/macp.201400550.
  • Ichikawa, Y.; Suzuki, J.; Washiyama, J.; Moteki, Y.; Noguchi, K.; Okuyama, K. Strain-Induced Crystal Modification in Poly(Tetramethylene Succinate). Polymer 1994, 35, 3338–3339. DOI: 10.1016/0032-3861(94)90144-9.
  • Ichikawa, Y.; Kondo, H.; Igarashi, Y.; Noguchi, K.; Okuyama, K.; Washiyama, J. Crystal Structures of α and β Forms of Poly(Tetramethylene Succinate). Polymer 2000, 41, 4719–4727. DOI: 10.1016/S0032-3861(99)00659-X.
  • Di Lorenzo, M. L.; Androsch, R.; Righetti, M. C. Low-Temperature Crystallization of Poly(Butylene Succinate). Eur. Polym. J. 2017, 94, 384–391. DOI: 10.1016/j.eurpolymj.2017.07.025.
  • Papageorgiou, D. G.; Zhuravlev, E.; Papageorgiou, G. Z.; Bikiaris, D.; Chrissafis, K.; Schick, C. Kinetics of Nucleation and Crystallization in Poly(Butylene Succinate) Nanocomposites. Polymer 2014, 55, 6725–6734. DOI: 10.1016/j.polymer.2014.11.014.
  • Yun, I. S.; Hwang, S. W.; Shim, J. K.; Seo, K. H. A Study on the Thermal and Mechanical Properties of Poly (Butylene Succinate)/Thermoplastic Starch Binary Blends. Int. J. of Precis. Eng. and Manuf-Green. Tech. 2016, 3, 289–296. DOI: 10.1007/s40684-016-0037-z.
  • Totaro, G.; Sisti, L.; Celli, A.; Askanian, H.; Verney, V.; Leroux, F. Poly(Butylene Succinate) Bionanocomposites: A Novel Bio-Organo-Modified Layered Double Hydroxide for Superior Mechanical Properties. RSC Adv. 2016, 6, 4780–4791. DOI: 10.1039/C5RA24031J.
  • Xu, J.; Guo, B. H. Microbial Succinic Acid, Its Polymer Poly(Butylene Succinate), and Applications. In Plastics from Bacteria. Microbiology Monographs; Chen, G. Q, Ed. Springer: Berlin, 2010; vol 14, pp 347–388. DOI: 10.1007/978-3-642-03287-5_14.
  • Puchalski, M.; Szparaga, G.; Biela, T.; Gutowska, A.; Sztajnowski, S.; Krucińska, I. Molecular and Supramolecular Changes in Polybutylene Succinate (PBS) and Polybutylene Succinate Adipate (PBSA) Copolymer during Degradation in Various Environmental Conditions. Polymers 2018, 10, 251. DOI: 10.3390/polym10030251.
  • Utracki, L. A. Polymer Alloys and Blends; Hanser Gardner Publications: Munich, 1990.
  • Hildebrand, J. H.; Scott, R. L. Solubility of Nonelectrolytes, 3rd Edn; Reinhold Publishing, New York, 1950.
  • Paul, D. R.; Newman, S. Polymer Blends Vols I and II; Academic Press: London, 1978.
  • Kraus, S. Polymer Compatibility. J. Macromol. Sci. Rev. Macromol. Chem. 1972, C7, 251–314. DOI: 10.1080/15321797208068166.
  • Ruellan, A.; Guinault, A.; Sollogoub, C.; Ducruet, V.; Domenek, S. Solubility Factors as Screening Tools of Biodegradable Toughening Agents of Polylactide. J. Appl. Polym. Sci. 2015, 132, 42476. DOI: 10.1002/app.424.
  • Valerio, O.; Misra, M.; Mohanty, A. K. Statistical Design of Sustainable Thermoplastic Blends of Poly(Glycerol Succinate-co-Maleate) (PGSMA), Poly(Lactic Acid) (PLA) and Poly(Butylene Succinate) (PBS). Polym. Test 2018, 65, 420–428. DOI: 10.1016/j.polymertesting.2017.12.018.
  • Muthuraj, R.; Misra, M.; Mohanty, A. K. Biodegradable Poly(Butylene Succinate) and Poly(Butylene Adipate-co-Terephthalate) Blends: reactive Extrusion and Performance Evaluation. J. Polym. Environ. 2014, 22, 336–349. http://dx.doi.org/10.100. DOI: 10.1007/s10924-013-0636-5.
  • Nishi, T.; Wang, T. T. Melting Point Depression and Kinetic Effects of Cooling on Crystallization in Poly(Vinylidene Fluoride)-Poly(Methyl Methacrylate) Mixtures. Macromolecules 1975, 8, 909–915. DOI: 10.1021/ma60048a040.
  • Wunderlich, B. Macromolecular Physics, Volume 3: Crystal Melting; Academic Press: New York; 1980.
  • Park, J. W.; Im, S. S. Phase Behavior and Morphology in Blends of Poly(l-Lactic Acid) and Poly(Butylene Succinate). J. Appl. Polym. Sci. 2002, 86, 647–655. DOI: 10.1002/app.10923.
  • Park, S. B.; Hwang, S. Y.; Moon, C. W.; Im, S. S.; Yoo, E. S. Plasticizer Effect of Novel PBS Ionomer in PLA/PBS Ionomer Blends. Macromol. Res. 2010, 18, 463–471. DOI: 10.1002/app.10923.
  • Gordon, M.; Taylor, J. S. Ideal Copolymers and the Second-Order Transitions of Synthetic Rubbers. I. Non-Crystalline Copolymers. J. Appl. Chem. 2007, 2, 493–500. DOI: 10.1002/jctb.5010020901.
  • Fox, T. G. Influence of Diluent and of Copolymer Composition on the Glass Temperature of a Polymer System. Bull. Am. Phys. Soc. 1956, 1, 123.
  • Kwei, T. K. The Effect of Hydrogen Bonding on the Glass Transition Temperatures of Polymer Mixtures. J. Polym. Sci. B Polym. Lett. Ed. 1984, 22, 307–313. DOI: 10.1002/pol.1984.130220603.
  • Kwei, T. K.; Pearce, E. M.; Pennacchia, J. R.; Charton, M. Correlation between the Glass Transition Temperatures of Polymer Mixtures and Intermolecular Force Parameters. Macromolecules 1987, 20, 1174–1176. DOI: 10.1021/ma00171a055.
  • Couchman, P. R. Compositional Variation of Glass-Transition Temperatures. 2. Application of the Thermodynamic Theory to Compatible Polymer Blends. Macromolecules 1978, 11, 1156–1161. DOI: 10.1021/ma60066a018.
  • Couchman, P. R.; Karasz, F. E. A Classical Thermodynamic Discussion of the Effect of Composition on Glass-Transition Temperatures. Macromolecules 1978, 11, 117–119. DOI: 10.1021/ma60061a021.
  • Wu, D.; Yuan, L.; Laredo, E.; Zhang, M.; Zhou, W. Interfacial Properties, Viscoelasticity, and Thermal Behaviors of Poly(Butylene Succinate)/Polylactide Blend. Ind. Eng. Chem. Res. 2012, 51, 2290–2298. DOI: 10.1021/ie2022288.
  • Deng, Y.; Thomas, N. L. Blending Poly(Butylene Succinate) with Poly(Lactic Acid): Ductility and Phase Inversion Effects. Eur. Polym. J. 2015, 71, 534–546. DOI: 10.1016/j.eurpolymj.2015.08.029.
  • Wang, Y. P.; Xiao, Y. J.; Duan, J.; Yang, J. H.; Wang, Y.; Zhang, C. L. Accelerated Hydrolytic Degradation of Poly(Lactic Acid) Achieved by Adding Poly(Butylene Succinate). Polym. Bull. 2016, 73, 1067–1083. DOI DOI: 10.1007/s00289-015-1535-9.
  • Zhang, X.; Liu, Q.; Shi, J.; Ye, H.; Zhou, Q. Distinctive Tensile Properties of the Blends of Poly(l-Lactic Acid) (PLLA) and Poly(Butylene Succinate) (PBS). J. Polym. Environ. 2018, 26, 1737–1744. DOI: 10.1007/s10924-017-1064-8.
  • Hu, X.; Su, T.; Li, P.; Wang, Z. Blending Modification of PBS/PLA and Its Enzymatic Degradation. Polym. Bull. 2018, 75, 533–546. DOI: 10.1007/s00289-017-2054-7.
  • Shibata, M.; Inoue, Y.; Miyoshi, M. Mechanical Properties, Morphology, and Crystallization Behavior of Blends of Poly(l-Lactide) with Poly(Butylene Succinate-co-l-Lactate) and Poly(Butylene Succinate). Polymer 2006, 47, 3557–3564. DOI: 10.1016/j.polymer.2006.03.065.
  • Srimalanon, P.; Prapagdee, B.; Markpin, T.; Sombatsompop, N. Effects of DCP as a Free Radical Producer and HPQM as a Biocide on the Mechanical Properties and Antibacterial Performance of in Situ Compatibilized PBS/PLA Blends. Polym. Test 2018, 67, 331–341. DOI: 10.1016/j.polymertesting.2018.03.017.
  • Yokohara, T.; Yamaguchi, M. Structure and Properties for Biomass-Based Polyester Blends of PLA and PBS. Eur. Polym. J. 2008, 44, 677–685. DOI: 10.1016/j.eurpolymj.2008.01.008.
  • Ji, D.; Liu, Z.; Lan, X.; Wu, F.; Xie, B.; Yang, M. Morphology, Rheology, Crystallization Behavior, and Mechanical Properties of Poly(Lactic Acid)/Poly(Butylene Succinate)/Dicumyl Peroxide Reactive Blends. J. Appl. Polym. Sci. 2014, 131, 39580. DOI: 10.1002/app.39580.
  • Kimble, L. D.; Bhattacharyya, D. In Vitro Degradation Effects on Strength, Stiffness, and Creep of PLLA/PBS: A Potential Stent Material. Int. J. Polym. Mat. Polym. Biomat. 2015, 64, 299–310. DOI: 10.1080/00914037.2014.945203.
  • Mallegni, N.; Phuong, T. V.; Coltelli, M. B.; Cinelli, P.; Lazzeri, A. Poly(Lactic Acid) (PLA) Based Tear Resistant and Biodegradable Flexible Films by Blown Film Extrusion. Materials 2018, 11, 148. DOI: 10.3390/ma11010148.
  • Lorenzo, D.; Frigione, M. L. M. Compatibilization Criteria and Procedures for Binary Blends: A Review. J. Polym. Eng. 1997, 17, 429–460. DOI: 10.1515/POLYENG.1997.17.6.429.
  • Takamura, M.; Nakamura, T.; Takahashi, T.; Koyama, K. Effect of Type of Peroxide on Cross-Linking of Poly(l-Lactide). Polym. Degr. Stab 2008, 93, 1909–1916. DOI: 10.1016/j.polymdegradstab.2008.07.001.
  • Wu, F.; Misra, M.; Mohanty, A. K. Rheological Monitoring of Chemical Gelation of Biodegradable Poly(Butylene Succinate): Importance of Peroxide Concentration and Temperature in Reactive Extrusion. ACS Appl. Polym. Mater. 2019, 1, 1604–1612. DOI: 10.1021/acsapm.9b00446.
  • Winter, H. H. Evolution of Rheology during Chemical Gelation. In Permanent and Transient Networks; Pietralla, M.; Kilian, H. G., Eds. Progr. Coll. Polym. Sci. Steinkopff: Darmstadt, 1987; Vol. 75, pp 104–110 DOI: 10.1007/BFb0109413.
  • Monika; Pal, A. K.; Bhasney, S. M.; Bhagabati, P.; Katiyar, V. Effect of Dicumyl Peroxide on a Poly (Lactic Acid)(PLA)/Poly (Butylene Succinate)(PBS)/Functionalized Chitosan-Based Nanobiocomposite for Packaging: A Reactive Extrusion Study. ACS Omega 2018, 3, 13298–13312. DOI: 10.1021/acsomega.8b00907.
  • Cherykhunthod, W.; Seadan, M.; Suttiruengwong, S. Effect of Peroxide and Chain Extender on Mechanical Properties and Morphology of Poly (Butylene Succinate)/Poly (Lactic Acid) Blends. IOP Conf. Ser: Mater. Sci. Eng. 2015, 87, 012073. DOI: 10.1088/1757-899X/87/1/012073.
  • Wu, F.; Misra, M.; Mohanty, A. K. Super Toughened Poly(Lactic Acid)-Based Ternary Blends via Enhancing Interfacial Compatibility. ACS Omega. 2019, 4, 1955–1968. DOI: 10.1021/acsomega.8b02587.
  • Ma, M.; Zheng, H.; Chen, S.; Wu, B.; He, H.; Chen, L.; Wang, X. Super-Toughened Poly(l-Lactic Acid) Fabricated via Reactive Blending and Interfacial Compatibilization. Polym. Int. 2016, 65, 1187–1194. DOI: 10.1002/pi.5174.
  • Chaiwutthinan, P.; Leejarkpai, T.; Kashima, D. P.; Chuayjuljit, S. Poly(Lactic Acid)/Poly(Butylene Succinate) Blends Filled with Epoxy Functionalised Polymeric Chain Extender. AMR 2013, 664, 644–648. DOI: 10.4028/www.scientific.net/AMR.664.644.
  • Zhang, B.; Sun, B.; Bian, X.; Li, G.; Chen, X. High Melt Strength and High Toughness PLLA/PBS Blends by Copolymerization and in Situ Reactive Compatibilization. Ind. Eng. Chem. Res. 2017, 56, 52–62. DOI: 10.1021/acs.iecr.6b03151.
  • Jirum, J.; Baimark, Y. Preparation of Stereocomplex Polylactide/Poly(Butylene Succinate) Blends by Melt Blending. Orient. J. Chem. 2019, 35, 958–965. DOI: 10.13005/ojc/350306.
  • Xue, B.; He, H. Z.; Huang, Z. X.; Zhu, Z.; Xue, F.; Liu, S.; Liu, B. Fabrication of Super-Tough Ternary Blends by Melt Compounding of Poly (Lactic Acid) with Poly(Butylene Succinate) and Ethylene-Methyl Acrylate-Glycidyl Methacrylate. Composites Part B 2019, 172, 743–749. DOI: 10.1016/j.compositesb.2019.05.098.
  • Meng, X.; Shi, G.; Wu, C.; Chen, W.; Xin, Z.; Shi, Y.; Sheng, Y. Chain Extension and Oxidation Stabilization of Triphenyl Phosphite (TPP) in PLA. Polym. Degrad. Stab. 2016, 124, 112–118. DOI: 10.1016/j.polymdegradstab.2015.12.003.
  • Ma, M.; Xu, L.; Liu, K.; Chen, S.; He, H.; Shi, Y.; Wang, X. Effect of Triphenyl Phosphite as a Reactive Compatibilizer on the Properties of Poly(l-Lactic Acid)/Poly(Butylene Succinate) Blends. J. Appl. Polym. Sci. 2020, 137, 48646. DOI: 10.1002/app.48646.
  • Zhang, W.; Xu, Y.; Wang, P.; Hong, J.; Liu, J.; Ji, J.; Chu, P. K. Copolymer P(BS-co-LA) Enhanced Compatibility of PBS/PLA Composite. J. Polym. Environ. 2018, 26, 3060–3068. DOI: 10.1007/s10924-018-1180-0.
  • Ding, Y.; Feng, W.; Huang, D.; Lu, B.; Wang, P.; Wang, G.; Ji, G. Compatibilization of Immiscible PLA-Based Biodegradable Polymer Blends Using Amphiphilic di-Block Copolymers. Eur. Polym. J. 2019, 118, 45–52. DOI: 10.1016/j.eurpolymj.2019.05.036.
  • Supthanyakul, R.; Kaabbuathong, N.; Chirachanchai, S. Poly(l-Lactide-b-Butylene Succinate-b-l-Lactide) Triblock Copolymer: A Multi-Functional Additive for PLA/PBS Blend with a Key Performance on Film Clarity. Polym. Degr. Stab. 2017, 142, 160–168. DOI: 10.1016/j.polymdegradstab.2017.05.029.
  • Supthanyakul, R.; Kaabbuathong, N.; Chirachanchai, S. Random Poly(Butylene Succinate-co-Lactic Acid) as a Multi-Functional Additive for Miscibility, Toughness, and Clarity of PLA/PBS Blends. Polymer 2016, 105, 1–9. DOI: 10.1016/j.polymer.2016.10.006.
  • Somsunan, R.; Noppakoon, S.; Punyodom, W. Effect of G40 Plasticizer on the Properties of Ternary Blends of Biodegradable PLA/PBS/G40. J. Polym. Res. 2019, 26, 92. DOI: 10.1007/s10965-019-1748-y.
  • Ravati, S.; Beaulieu, C.; Zolali, A. M.; Favis, B. D. High Performance Materials Based on a Self-Assembled Multiple-Percolated Ternary Blend. AIChE J. 2014, 60, 3005–3012. DOI: 10.1002/aic.14495.
  • Zolali, A. M.; Favis, B. D. Partial and Complete Wetting in Ultralow Interfacial Tension Multiphase Blends with Polylactide. J. Phys. Chem. B. 2016, 120, 12708–12719. DOI: 10.1021/acs.jpcb.6b08800.
  • Zolali, A. M.; Favis, B. D. Partial to Complete Wetting Transitions in Immiscible Ternary Blends with PLA: The Influence of Interfacial Confinement. Soft Matter 2017, 13, 2844–2856. DOI: 10.1039/c6sm02386j.
  • Tan, L. C.; Qu, J. P. Characterization of Poly(Butylene Succinate)/Poly(Lactic Acid) Blends with in-Situ Sub-Micron Fibers and Intercalation Structure Manufacturing by Volumetric Pulsating Elongation Flow. Polym. Test 2019, 77, 105889. DOI: 10.1016/j.polymertesting.2019.05.005.
  • Evstatiev, M.; Fakirov, S. Microfibrillar Reinforcement of Polymer Blends. Polymer 1992, 33, 877–880. https://doi.org/10.1016/0032-3861. (92)90354-Y DOI: 10.1016/0032-3861(92)90354-Y.
  • Fakirov, S.; Evstatiev, M.; Petrovich, S. Microfibrillar Reinforced Composites from Binary and Ternary Blends of Polyesters and Nylon 6. Macromolecules 1993, 26, 5219–5226. DOI: 10.1021/ma00071a038.
  • Evstatiev, M.; Nicolov, N.; Fakirov, S. Morphology of Microfibrillar Reinforced Composites PET/PA 6 Blend. Polymer 1996, 37, 4455–4463. https://doi.org/10.1016/0032-3861. (96)00137-1 DOI: 10.1016/0032-3861(96)00137-1.
  • Fakirov, S.; Evstatiev, M. Microfibrillar Reinforced composites - New Materials from Polymer Blends. Adv. Mater. 1994, 6, 395–398. DOI: 10.1002/adma.19940060513.
  • Shields, R. J.; Bhattacharyya, D.; Fakirov, S. Fibrillar Polymer–Polymer Composites: morphology, Properties and Application. J. Mater. Sci. 2008, 43, 6758–6770. DOI: 10.1007/s10853-008-2693-z.
  • Fakirov, S.; Bhattacharyya, D.; Shields, R. Nanofibril Reinforced Composites from Polymer Blends. J. Coll. Surf. A: Physic. Eng. Asp 2008, 313-314, 2–8. DOI: 10.1016/j.colsurfa.2007.05.038.
  • Xie, L.; Xu, H.; Niu, B.; Ji, X.; Chen, J.; Li, Z. M.; Hsiao, B. S.; Zhong, G. J. Unprecedented Access to Strong and Ductile Poly(Lactic Acid) by Introducing in Situ Nanofibrillar Poly(Butylene Succinate) for Green Packaging. Biomacromolecules 2014, 15, 4054–4064. dx.doi.org/10.1021/bm5010993. DOI: 10.1021/bm5010993.
  • Xie, L.; Xu, H.; Chen, J. B.; Zhang, Z. J.; Hsiao, B. S.; Zhong, G. J.; Chen, J.; Li, Z. M. From Nanofibrillar to Nanolaminar Poly(Butylene Succinate): Paving the Way to Robust Barrier and Mechanical Properties for Full-Biodegradable Poly(Lactic Acid) Films. ACS Appl Mater Interfaces 2015, 7, 8023–8032. DOI: 10.1021/acsami.5b00294.
  • Voznyak, Y.; Morawiec, J.; Galeski, A. Ductility of Polylactide Composites Reinforced with Poly(Butylene Succinate) Nanofibers. Composites: Part A 2016, 90, 218–224. DOI: 10.1016/j.compositesa.2016.07.011.
  • Zhu, Z.; He, H.; Xue, B.; Zhan, Z.; Wang, G.; Chen, M. Morphology, Thermal, Mechanical Properties and Rheological Behavior of Biodegradable Poly(Butylene Succinate)/Poly(Lactic Acid) in-Situ Submicrofibrillar Composites. Materials 2018, 11, 2422. DOI: 10.3390/ma11122422.
  • Zhou, S. Y.; Huang, H. D.; Xu, L.; Yan, Z.; Zhong, G. J.; Hsiao, B. S.; Li, Z. M. In Situ Nanofibrillar Networks Composed of Densely Oriented Polylactide Crystals as Efficient Reinforcement and Promising Barrier Wall for Fully Biodegradable Poly(Butylene Succinate) Composite Films. ACS Sust. Chem. Eng. 2016, 4, 42887–42897. DOI: 10.1021/acssuschemeng.6b00590.
  • Li, Z. M.; Li, L. B.; Shen, K. Z.; Yang, W.; Huang, R.; Yang, M. B. Transcrystalline Morphology of an in Situ Microfibrillar Poly(Ethylene Terephthalate)/Poly(Propylene) Blend Fabricated through a Slit Extrusion Hot Stretching - Quenching Process. Macromol. Rapid Commun. 2004, 25, 553–558. DOI: 10.1002/marc.200300086.
  • European Bioplastics. Harmonised standards for bioplastics. https://www.european-bioplastics.org/bioplastics/standards/ (accessed 20 May 2020).
  • European Bioplastics. Home composting of compostable bioplastics. https://docs.european-bioplastics.org/2016/publications/pp/EUBP_PP_Home_Composting.pdf (accessed 20 May 2020).
  • Nova-Institute. Biodegradable, Bio-Based Polymers in Various Environments. http://biobased.eu/downloads/biodegradable-bio-based-polymers-in-various-environments/. (accessed 20 May 2020).
  • Weise, B.; Huysman, S.; Manvi, P.; Theunissen, L. PBS-Based Fibres for Renewable Textiles. Bioplatics Mag. 2018, 5, 0524–0525.
  • Gorrasi, G.; Pantani, R. Hydrolysis and Biodegradation of Poly(Lactic Acid). In Synthesis, Structure and Properties of Poly(Lactic Acid). Adv Polym Sci; Di Lorenzo, M. L., Androsch, R. Eds.; Springer: Cham, 2018; Vol. 279, pp 119–151. DOI: 10.1007/12_2016_12.
  • Tsuji, H.; Ikada, Y. Properties and Morphology of Poly(L-Lactide). II. Hydrolysis in Alkaline Solution. J. Polym. Sci. A Polym. Chem. 1998, 36, 59–66. DOI: 10.1002/(SICI)1099-0518(19980115)36:1.
  • Cho, K.; Lee, J.; Kwon, K. Hydrolytic Degradation Behavior of Poly(Butylene Succinate)s with Different Crystalline Morphologies. J. Appl. Polym. Sci. 2001, 79, 1025–1033. %3C1025::AID-APP50%3E3.0.CO;2-7. DOI: 10.1002/1097-4628(20010207)79:6.
  • Du, X. C.; Xu, X. L.; Liu, X. H.; Yang, J. H.; Wang, Y.; Gao, X. L. Graphene Oxide Induced Crystallization and Hydrolytic Degradation of Poly (Butylene Succinate). Polym. Degr. Stab. 2016, 123, 94–104. DOI: 10.1016/j.polymdegradstab.2015.11.011.
  • Shi, K.; Bai, Z.; Su, T.; Wang, Z. Selective Enzymatic Degradation and Porous Morphology of poly(butylene succinate)/poly(lactic acid) blends . Int. J. Biol. Macromol. 2019, 126, 436–442. DOI: 10.1016/j.ijbiomac.2018.12.168.
  • Phua, Y. J.; Chow, W. S.; Mohd Ishak, Z. A. The Hydrolytic Effect of Moisture and Hygrothermal Aging on Poly(Butylene Succinate)/Organo-Montmorillonite Nanocomposites. Polym. Degrad. Stab. 2011, 96, 1194–1203. DOI: 10.1016/j.polymdegradstab.2011.04.017.
  • Luzi, F.; Fortunati, E.; Jiménez, A.; Puglia, D.; Pezzolla, D.; Gigliotti, G.; Kenny, J. M.; Chiralt, A.; Torre, L. Production and Characterization of PLA_PBS Biodegradable Blends Reinforced with Cellulose Nanocrystals Extracted from Hemp Fibres. Ind. Crop. Prod 2016, 93, 276–289. DOI: 10.1016/j.indcrop.2016.01.045.
  • UN EN ISO 20200. Determination of the degree of disintegration of plastic materials under simulated composting condition in a laboratory-scale test, 2006.
  • Zhang, S. J.; Tang, Y. W.; Cheng, L. H. Biodegradation Behavior of PLA/PBS Blends. Amr. 2013, 821-822, 937–940. DOI: 10.4028/www.scientific.net/AMR.821-822.937.
  • Hirotsu, T.; Nakayama, K.; Tagaki, C.; Watanabe, T. Plasma Surface Treatments of Melt-Extruded Uniaxial Blend Sheets of PLLA/PBS. J. Photopol. Sci. Technol. 2004, 17, 179–184. DOI: 10.2494/photopolymer.17.179.
  • Park, J. W.; Im, S. S. Morphological Changes during Heating in Poly(L-Lactic Acid)/Poly(Butylene Succinate) Blend Systems as Studied by Synchrotron X-Ray Scattering. J. Polym. Sci. B Polym. Phys. 2002, 40, 1931–1939. DOI: 10.1002/polb.10240.
  • Fenni, S. E.; Cavallo, D.; Müller, A. J. Nucleation and Crystallization in Bio-Based Immiscible Polyester Blends. In Thermal Properties of Bio-Based Polymers. Advances in Polymer Science; Di Lorenzo, M. L., Androsch, R., Eds.; Springer: Cham, 2019; Vol. 283, pp 219–256 DOI: 10.1007/12_2019_48.
  • Miyata, T.; Masuko, T. Crystallization Behaviour of Poly(Tetramethylene Succinate). Polymer 1998, 39, 1399–1404. https://doi.org/10.1016/S0032-3861(97)00418-7. DOI: 10.1016/S0032-3861(97)00418-7.
  • Gan, Z.; Abe, H.; Kurokawa, H.; Doi, Y. Solid-State Microstructures, Thermal Properties, and Crystallization of Biodegradable Poly(Butylene Succinate) (PBS) and Its Copolyesters. Biomacromolecules 2001, 2, 605–613. DOI: 10.1021/bm015535e.
  • Yasuniwa, M.; Satou, T. Multiple Melting Behavior of Poly(Butylene Succinate). I. Thermal Analysis of Melt-Crystallized Sample. J. Polym. Sci. B Polym. Phys. 2002, 40, 2411–2420. DOI: 10.1002/polb.10298.
  • Qiu, Z.; Fujinami, S.; Komura, M.; Nakajima, K.; Ikehara, T.; Nishi, T. Nonisothermal Crystallization Kinetics of Poly(Butylene Succinate) and Poly(Ethylene Succinate). Polym. J. 2004, 36, 642–646. DOI: 10.1295/polymj.36.642.
  • Papageorgiou, G. Z.; Bikiaris, D. N. Crystallization and Melting Behavior of Three Biodegradable Poly(Alkylene Succinates). a Comparative Study. Polymer 2005, 46, 12081–12092. DOI: 10.1016/j.polymer.2005.10.073.
  • Yasuniwa, M.; Tsubakihara, S.; Satou, T.; Iura, K. Multiple Melting Behavior of Poly(Butylene Succinate). II. Thermal Analysis of Isothermal Crystallization and Melting Process. J. Polym. Sci. B Polym. Phys. 2005, 43, 2039–2047. DOI: 10.1002/polb.20499.
  • Papageorgiou, G. Z.; Achilias, D. S.; Bikiaris, D. N. Crystallization Kinetics of Biodegradable Poly(Butylene Succinate) under Isothermal and Non-Isothermal Conditions. Macromol. Chem. Phys. 2007, 208, 1250–1264. DOI: 10.1002/macp.200700084.
  • Signori, F.; Pelagaggi, M.; Bronco, S.; Righetti, M. C. Amorphous/Crystal and Polymer/Filler Interphases in Biocomposites from Poly(Butylene Succinate). Thermoch. Acta 2012, 543, 74–81. DOI: 10.1016/j.tca.2012.05.006.
  • Bosq, N.; Guigo, N.; Aht-Ong, D.; Sbirrazzuoli, N. Crystallization of Poly(Butylene Succinate) on Rapid Cooling and Heating: Towards Enhanced Nucleation by Graphene Nanosheets. J. Phys. Chem. C. 2017, 121, 11915–11925. DOI: 10.1021/acs.jpcc.7b02887.
  • Yoo, E. S.; Im, S. S. Melting Behavior of Poly(Butylene Succinate) during Heating Scan by DSC. J. Polym. Sci. B Polym. Phys. 1999, 37, 1357–1366. DOI: 10.1002/(SICI)1099-0488(19990701)37:13.
  • Qiu, Z.; Komura, M.; Ikehara, T.; Nishi, T. DSC and TMDSC Study of Melting Behaviour of Poly(Butylene Succinate) and Poly(Ethylene Succinate). Polymer 2003, 44, 7781–7785. DOI: 10.1016/j.polymer.2003.10.045.
  • Makhatha, M. E.; Sinha Ray, S.; Hato, J.; Luyt, A. S.; Bousmina, M. Thermal and Thermomechanical Properties of Poly(Butylene Succinate) Nanocomposites. J. Nanosci. Nanotechnol. 2007, 8, 1–11. DOI: 10.1166/jnn.2008.18231.
  • Wang, X.; Zhou, J.; Li, L. Multiple Melting Behavior of Poly(Butylene Succinate). Eur. Polym. J 2007, 43, 3163–3170. DOI: 10.1016/j.eurpolymj.2007.05.013.
  • Garin, M.; Tighzert, L.; Vroman, I.; Marinkovic, S.; Estrine, B. The Kinetics of Poly(Butylene Succinate) Synthesis and the Influence of Molar Mass on Its Thermal Properties. J. Appl. Polym. Sci. 2014, 131, n/a–n/a. DOI: 10.1002/app.40639.
  • Pan, P.; Liang, Z.; Zhu, B.; Dong, T.; Inoue, Y. Blending Effects on Polymorphic Crystallization of Poly(l-Lactide). Macromolecules 2009, 42, 3374–3380. DOI: 10.1021/ma8024943.
  • Androsch, R.; Di Lorenzo, M. L. Crystal Nucleation in Glassy Poly(l-Lactic Acid). Macromolecules 2013, 46, 6048–6056. DOI: 10.1021/ma401036j.
  • Androsch, R.; Di Lorenzo, M. L. Kinetics of Crystal Nucleation of Poly(l-Lactic Acid). Polymer 2013, 54, 6882–6885. DOI: 10.1016/j.polymer.2013.10.056.
  • Androsch, R.; Di Lorenzo, M. L.; Schick, C. Crystal Nucleation in Random l/d-Lactide Copolymers. Eur. Polym. J 2016, 75, 474–485. DOI: 10.1016/j.eurpolymj.2016.01.020.
  • Androsch, R.; Di Lorenzo, M. L.; Schick, C. Effect of Molar Mass on Enthalpy Relaxation and Crystal Nucleation of Poly (L-Lactic Acid). Eur. Polym. J 2017, 96, 361–369. DOI: 10.1016/j.eurpolymj.2017.08.058.
  • Di Lorenzo, M. L.; Androsch, R. Crystallization of Poly(Lactic Acid). In Biodegradable Polyesters; Fakirov, S, Ed. Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim 2015, pp 109–130. DOI: 10.1002/9783527656950.ch5.
  • Di Lorenzo, M. L. Crystallization Behavior of Poly(l-Lactic Acid). Eur. Polym. J. 2005, 41, 569–575. DOI: 10.1016/j.eurpolymj.2004.10.020.
  • Androsch, R.; Schick, C.; Di Lorenzo, M. L. Kinetics of Nucleation and Growth of Crystals of Poly(l-Lactic Acid). In Synthesis, Structure and Properties of Poly(Lactic Acid). Advances in Polymer Science; Di Lorenzo, M. L., Androsch, R., Eds. Springer: Cham, 2018; Vol. 279, pp 235–272. DOI: 10.1007/12_2016_13.
  • Jiang, J.; Zhuravlev, E.; Hu, W. B.; Schick, C.; Zhou, D. S. The Effect of Self-Nucleation on Isothermal Crystallization Kinetics of Poly(Butylene Succinate) (PBS) Investigated by Differential Fast Scanning Calorimetry. Chin. J. Polym. Sci. 2017, 35, 1009–1019. DOI: 10.1007/s10118-017-1942-5.
  • Fenni, S. E.; Monticelli, O.; Conzatti, L.; Doufnoune, R.; Stagnaro, P.; Haddaoui, N.; Cavallo, D. Correlating the Morphology of Poly(l-Lactide)/Poly(Butylene Succinate)/Graphene Oxide Blends Nanocomposites with Their Crystallization Behavior. Express Polym. Lett. 2018, 12, 58–70. DOI: 10.3144/expresspolymlett.2018.5.
  • Ostrowska, J.; Sadurski, W.; Paluch, M.; Tyński, P.; Bogusz, J. The Effect of Poly(Butylene Succinate) Content on the Structure and Thermal and Mechanical Properties of Its Blends with Polylactide. Polym. Int. 2019, 68, 1271–1279. DOI DOI: 10.1002/pi.5814.
  • Gałeski, A.; Bartczak, Z.; Pracella, M. Spherulite Nucleation in Polypropylene Blends with Low Density Polyethylene. Polymer 1984, 25, 1323–1326. DOI: 10.1016/0032-3861(84)90384-7.
  • Bartczak, Z.; Martuscelli, E.; Galeski, A. Primary Spherulite Nucleation in Polypropylene-Based Blends and Copolymers. In Polypropylene: Structure, Blends and Composites; Karger–Kocsis, J., Ed. Chapman & Hall: London, 1995; Vol. 2, pp 25–49. DOI: 10.1007/978-94-011-0521-7_2.
  • Bartczak, Z.; Galeski, A.; Krasnikova, N. P. Primary Nucleation and Spherulite Growth Rate in Isotactic Polypropylene-Polystyrene Blends. Polymer 1987, 28, 1627–1634. DOI: 10.1016/0032-3861(87)90002-4.
  • Wenig, W.; Fiedel, H. W. Dispersion of Trans-Polyoctenylene in Isotactic Poly(Propylene), 2. Crystallization Behaviour. Makromol. Chem. 1991, 192, 191–199. DOI: 10.1002/macp.1991.021920201.
  • Di Lorenzo, M. L.; Cimmino, S.; Silvestre, C. Nonisothermal Crystallization of Isotactic Polypropylene Blended with Poly(α-Pinene). I. Bulk Crystallization. J. Appl. Polym. Sci. 2001, 82, 358–367. DOI: 10.1002/app.1859.
  • Santana, O. O.; Müller, A. J. Homogeneous Nucleation of the Dispersed Crystallisable Component of Immiscible Polymer Blends. Polym. Bull. 1994, 32, 471–477. DOI: 10.1007/BF00587890.
  • Malinconico, M.; Vink, E. T. H.; Cain, A.; Applications of Poly(Lactic Acid) in Commodities and Specialties. In Industrial Applications of Poly(Lactic Acid). Advances in Polymer Science; Di Lorenzo, M. L.; Androsch, R. Eds.; Springer: Cham, 2018; Vol. 282, pp 35–50. DOI: 10.1007/12_2017_29.
  • Nazrin, A.; Sapuan, S. M.; Zuhri, M. Y. M.; Ilyas, R. A.; Syafiq, R.; Sherwani, S. F. K. Nanocellulose Reinforced Thermoplastic Starch (TPS), Polylactic Acid (PLA), and Polybutylene Succinate (PBS) for Food Packaging Applications. Front. Chem. 2020, 8, 213 DOI: 10.3389/fchem.2020.00213.
  • Turi, E. A. Thermal Characterization of Polymeric Materials, 2nd ed. Academic Press: New York, 1997, pp 793.
  • Zhang, K.; Mohanty, A. K.; Misra, M. Fully Biodegradable and Biorenewable Ternary Blends from Polylactide, poly(3-hydroxybutyrate-co-hydroxyvalerate) and poly(butylene succinate) with balanced properties. ACS Appl Mater Interfaces 2012, 4, 3091–3101. DOI: 10.1021/am3004522.
  • Khankrua, R.; Pivsa-Art, S.; Hiroyuki, H.; Suttiruengwong, S. Thermal and Mechanical Properties of Biodegradable Polyester/Silica Nanocomposites. Energy Procedia 2013, 34, 705–713. DOI: 10.1016/j.egypro.2013.06.803.
  • Nobile, M. R.; Cerruti, P.; Malinconico, M.; Pantani, R. Processing and Properties of Biodegradable Compounds Based on Aliphatic Polyesters. J. Appl. Polym. Sci. 2015, 132, n/a–n/a. DOI: 10.1002/app.42481.
  • Södergard, A. Lactic Acid Based Polymers for Packaging Materials for the Food Industry. In The Food Biopack Conference, Copenhagen, Denmark Aug 27-29, pp 19–22, KVL, 2000
  • Nobile, M. R.; Lucia, G.; Santella, M.; Malinconico, M.; Cerruti, P.; Pantani, R. Biodegradable Compounds: rheological, Mechanical and Thermal Properties. AIP Conf Proc, 1695, 2016 020058. DOI: 10.1063/1.4937336.
  • Gigante, V.; Coltelli, M. B.; Vannozzi, A.; Panariello, L.; Fusco, A.; Trombi, L.; Donnarumma, G.; Danti, S.; Lazzeri, A. Flat Die Extruded Biocompatible Poly(Lactic Acid) (PLA)/Poly(Butylene Succinate) (PBS) Based Films. Polymers 2019, 11, 1857. DOI: 10.3390/polym11111857.
  • Tcharkhtchi, A.; Abdallah-Elhirtsi, S.; Ebrahimi, K.; Fitoussi, J.; Shirinbayan, M.; Farzaneh, S. Some New Concepts of Shape Memory Effect of Polymers. Polymers 2014, 6, 1144–1163. DOI: 10.3390/polym6041144.
  • Manavitehrani, I.; Fathi, A.; Badr, H.; Daly, S.; Negahi Shirazi, A.; Dehghani, F. Biomedical Applications of Biodegradable Polyesters. Polymers 2016, 8, 20. DOI: 10.3390/polym8010020.
  • Kun, H.; Wei, Z.; Xuan, L.; Xiubin, Y. Biocompatibility of a Novel Poly(Butyl Succinate) and Polylactic Acid Blend. ASAIO J. 2012, 58, 262–267. DOI: 10.1097/mat.0b013e31824709ee.
  • Kanneci Altinişik, İA.; Kök, F. N.; Yücel, D.; Torun Köse, G. In Vitro Evaluation of PLLA/PBS Sponges as a Promising Biodegradable Scaffold for Neural Tissue Engineering. Turk. J. Biol. 2017, 41, 734–745. DOI: 10.3906/biy-1701-6.
  • Hasan, A.; Memic, A.; Annabi, N.; Hossain, M.; Paul, A.; Dokmeci, M. R.; Dehghani, F.; Khademhosseini, A. Electrospun Scaffolds for Tissue Engineering of Vascular Grafts. Acta Biomater. 2014, 10, 11–25. DOI: 10.1016/j.actbio.2013.08.022.
  • Ercolani, E.; Del Gaudio, C.; Bianco, A. Vascular Tissue Engineering of Small-Diameter Blood Vessels: reviewing the Electrospinning Approach. J. Tissue Eng. Regen Med. 2015, 9, 861–888. DOI: 10.1002/term.1697.
  • Yao, C. L.; Chen, J. H.; Lee, C. H. Effects of Various Monomers and Micro-Structure of Polyhydroxyalkanoates on the Behavior of Endothelial Progenitor Cells and Endothelial Cells for Vascular Tissue Engineering. J. Polym. Res. 2017, 25, 187. DOI: 10.1007/s10965-017-1341-1.
  • Bonadies, I.; Longo, A.; Androsch, R.; Jehnichen, D.; Göbel, M.; Di Lorenzo, M. L. Biodegradable Electrospun PLLA Fibers Containing the Mosquito-Repellent DEET. Eur. Polym. J 2019, 113, 377–384. DOI: 10.1016/j.eurpolymj.2019.02.001.
  • Stoyanova, N.; Paneva, D.; Mincheva, R.; Toncheva, A.; Manolova, N.; Dubois, P.; Rashkov, I. Poly(L-Lactide) and Poly(Butylene Succinate) Immiscible Blends: From Electrospinning to Biologically Active Materials. Mater. Sci. Eng. C Mater. Biol. Appl. 2014, 41, 119–126. DOI: 10.1016/j.msec.2014.04.043.
  • Abudula, T.; Saeed, U.; Memic, A.; Gauthaman, K.; Hussain, M. A.; Al-Turaif, H. Electrospun Cellulose Nano Fibril Reinforced PLA/PBS Composite Scaffold for Vascular Tissue Engineering. J. Polym. Res 2019, 26, 110. DOI: 10.1007/s10965-019-1772-y.
  • Sisti, L.; Belcari, J.; Mazzocchetti, L.; Totaro, G.; Vannini, M.; Giorgini, L.; Zucchelli, A.; Celli, A. Multicomponent Reinforcing System for Poly (Butylene Succinate): Composites Containing Poly (l-Lactide) Electrospun Mats Loaded with Graphene. Polym. Test 2016, 50, 283–291. DOI: 10.1016/j.polymertesting.2016.01.022.
  • Jiang, X.; Xiao, L.; Ai, X.; Yang, H.; Cao, Y. A Novel Bifunctional Thermo-Sensitive Poly (Lactic Acid)@ Poly (Butylene Succinate) Core–Shell Fibrous Separator Prepared by a Coaxial Electrospinning Route for Safe Lithium-Ion Batteries. J. Mater. Chem. A. 2017, 5, 23238–23242. DOI: 10.1039/C7TA08063H.
  • Lebedev, S. M.; Gefle, O. S.; Amitov, E. T.; Zhuravlev, D. V.; Berchuk, D. Y.; Mikutskiy, E. A. Mechanical Properties of PLA-Based Composites for Fused Deposition Modeling Technology. Int. J. Adv. Manuf. Technol. 2018, 97, 511–518. DOI: 10.1007/s00170-018-1953-6.
  • Ou-Yang, Q.; Guo, B.; Xu, J. Preparation and Characterization of Poly(butylene succinate)/Polylactide Blends for Fused Deposition Modeling 3D Printing. ACS Omega. 2018, 3, 14309–14317. DOI: 10.1021/acsomega.8b02549.
  • Qahtani, M.; Wu, F.; Misra, M.; Gregori, S.; Mielewski, D. F.; Mohanty, A. K. Experimental Design of Sustainable 3D-Printed Poly (Lactic Acid)/Biobased Poly (Butylene Succinate) Blends via Fused Deposition Modeling. ACS Sustainable Chem. Eng. 2019, 7, 14460–14470. DOI: 10.1021/acssuschemeng.9b01830.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.