3,242
Views
46
CrossRef citations to date
0
Altmetric
Review

Polypyrrole-Based Composite Materials for Electromagnetic Wave Absorption

, , , , , & show all
Pages 646-687 | Received 31 May 2020, Accepted 29 Nov 2020, Published online: 18 Jan 2021

References

  • Lv, H.; Yang, Z.; Wang, P. L.; Ji, G.; Song, J.; Zheng, L.; Zeng, H.; Xu, Z. A Voltage-Boosting Strategy Enabling a Low-Frequency, Flexible Electromagnetic Wave Absorption Device. Adv. Mater. 2018, 30, 1706343. DOI: 10.1002/adma.201706343.
  • Lv, H.; Yang, Z.; Ong, S. J. H.; Wei, C.; Liao, H.; Xi, S.; Du, Y.; Ji, G.; Xu, Z. A Flexible Microwave Shield with Tunable Frequency-Transmission and Electromagnetic Compatibility. Adv. Funct. Mater. 2019, 29, 1900163. DOI: 10.1002/adfm.201900163.
  • Wu, Z.; Pei, K.; Xing, L.; Yu, X.; You, W.; Che, R. Enhanced Microwave Absorption Performance from Magnetic Coupling of Magnetic Nanoparticles Suspended within Hierarchically Tubular Composite. Adv. Funct. Mater. 2019, 29, 1901448. DOI: 10.1002/adfm.201901448.
  • Cheng, Y.; Seow, J. Z. Y.; Zhao, H.; Xu, Z. J.; Ji, G. A Flexible and Lightweight Biomass-Reinforced Microwave Absorber. Nano-Micro Lett. 2020, 12, 1–15. DOI: 10.1007/s40820-020-00461-x.
  • Liang, X.; Quan, B.; Man, Z.; Cao, B.; Li, N.; Wang, C.; Ji, G.; Yu, T. Self-Assembly Three-Dimensional Porous Carbon Networks for Efficient Dielectric Attenuation. ACS Appl. Mater. Interfaces 2019, 11, 30228–30233. DOI: 10.1021/acsami.9b08365.
  • Wang, G.; On, S. J. H.; Zhao, Y.; Xu, Z. J.; Ji, G. Integrated Multifunctional Macrostructures for Electromagnetic Wave Absorption and Shielding. J. Mater. Chem. A. 2020, 8, 24368–24387. DOI: 10.1039/D0TA08515D.
  • Liu, P.; Gao, S.; Chen, C.; Zhou, F.; Meng, Z.; Huang, Y.; Wang, Y. Vacancies-Engineered and Heteroatoms-Regulated N-Doped Porous Carbon Aerogel for Ultrahigh Microwave Absorption. Carbon 2020, 169, 276–287. DOI: 10.1016/j.carbon.2020.07.063.
  • Nautiyal, A.; Qiao, M.; Ren, T.; Huang, T.-S.; Zhang, X.; Cook, J.; Bozack, M. J.; Farag, R. High-Performance Engineered Conducting Polymer Film Towards Antimicrobial/Anticorrosion Applications. Eng. Sci. 2018, 4, 70–78. DOI: 10.30919/es8d776.
  • Chen, J.; Zhu, Y.; Guo, Z.; Nasibulin, A. G. Recent Progress on Thermo-Electrical Properties of Conductive Polymer Composites and Their Application in Temperature Sensors. Eng. Sci 2020, 12, 13–22. DOI: 10.30919/es8d1129.
  • Ingle, R. V.; Shaikh, S. F.; Bhujbal, P. K.; Pathan, H. M.; Tabhane, V. A. Polyaniline Doped with Protonic Acids: optical and Morphological Studies. ES Mater.Manuf 2020, 8, 54–59. DOI: 10.30919/esmm5f732.
  • Li, X.; Zhao, W.; Yin, R.; Huang, X.; Qian, L. A Highly Porous Polyaniline-Graphene Composite Used for Electrochemical Supercapacitors. Eng. Sci. 2018, 3, 89–95.
  • Li, S.; Yang, C.; Sarwar, S.; Nautiyal, A.; Zhang, P.; Du, H.; Liu, N.; Yin, J.; Deng, K.; Zhang, X. Facile Synthesis of Nanostructured Polyaniline in Ionic Liquids for High Solubility and Enhanced Electrochemical Properties. Adv. Compos. Hybrid Mater. 2019, 2, 279–288. DOI: 10.1007/s42114-019-00103-w.
  • Ma, Y.; Zhuang, Z.; Ma, M.; Yang, Y.; Li, W.; Lin, J.; Dong, M.; Wu, S.; Ding, T.; Guo, Z. Solid Polyaniline Dendrites Consisting of High Aspect Ratio Branches Self-Assembled Using Sodium Lauryl Sulfonate as Soft Templates: synthesis and Electrochemical Performance. Polymer 2019, 182, 121808. DOI: 10.1016/j.polymer.2019.121808.
  • Ma, Y.; Ma, M.; Yin, X.; Shao, Q.; Lu, N.; Feng, Y.; Lu, Y.; Wujcik, E. K.; Mai, X.; Wang, C.; Guo, Z. Tuning Polyaniline Nanostructures via End Group Substitutions and Their Morphology Dependent Electrochemical Performances. Polymer 2018, 156, 128–135. DOI: 10.1016/j.polymer.2018.09.051.
  • Wang, X.; Zeng, X.; Cao, D. Biomass-Derived Nitrogen-Doped Porous Carbons (NPC) and NPC/Polyaniline Composites as High Performance Supercapacitor Materials. Eng. Sci. 2018, 1, 55–63. DOI: 10.30919/es.180325.
  • Li, S.; Jasim, A.; Zhao, W.; Fu, L.; Ullah, M. W.; Shi, Z.; Yang, G. Fabrication of pH-Electroactive Bacterial Cellulose/Polyaniline Hydrogel for the Development of a Controlled Drug Release System. ES Mater. Manuf. 2018, 1, 41–49.
  • Gu, H.; Zhang, H.; Gao, C.; Liang, C.; Gu, J.; Guo, Z. New Functions of Polyaniline. ES Mater. Manuf. 2018, 1, 3–12.
  • Elayappan, V.; Murugadoss, V.; Fei, Z.; Dyson, P. J.; Angaiah, S. Influence of Polypyrrole Incorporated Electrospun Poly (Vinylidene Fluoride-co-Hexafluoropropylene) Nanofibrous Composite Membrane Electrolyte on the Photovoltaic Performance of Dye Sensitized Solar Cell. Eng. Sci. 2020, 10, 78–84.
  • Zhu, Q.; Liu, J.; Wang, X.; Huang, Y.; Ren, Y.; Song, W.; Mu, C.; Liu, X.; Wei, F.; Liu, C. Polypyrrole Functionalized Graphene Oxide Accelerated Zinc Phosphate Coating under Low-Temperature. ES Mater. Manuf. 2020, 9, 48–54.
  • Dashairya, L.; Sahu, A.; Saha, P. Stearic Acid Treated Polypyrrole-Encapsulated Melamine Formaldehyde Superhydrophobic Sponge for Oil Recovery. Adv. Compos. Hybrid Mater. 2019, 2, 70–82. DOI: 10.1007/s42114-019-00084-w.
  • Janata, J.; Josowicz, M. Conducting Polymers in Electronic Chemical Sensors. Nat. Mater. 2003, 2, 19–24. DOI: 10.1038/nmat768.
  • Sadki, S.; Schottland, P.; Brodie, N.; Sabouraud, G. The Mechanisms of Pyrrole Electropolymerization. Chem. Soc. Rev. 2000, 29, 283–293. DOI: 10.1039/a807124a.
  • Lee, K.; Cho, S.; Park, S. H.; Heeger, A.; Lee, C. W.; Lee, S. H. Metallic Transport in Polyaniline. Nature 2006, 441, 65–68. DOI: 10.1038/nature04705.
  • Wan, M. Studies on Absorption Mechanism of Microwave Absorbent of Conducting Polymers. Acta Phys. Sin. 1992, 41, 917–923.
  • Truong, V. T.; Riddell, S.; Muscat, R. Polypyrrole Based Microwave Absorbers. Journal of Mater. Sci. 1998, 33, 4971–4976. DOI: 10.1023/A:1004498705776.
  • Lyu, L.; Liu, J.; Liu, H.; Liu, C.; Lu, Y.; Sun, K.; Fan, R.; Wang, N.; Lu, N.; Guo, Z. An Overview of Electrically Conductive Polymer Nanocomposites toward Electromagnetic Interference Shielding. Eng. Sci. 2018, 2, 26–42.
  • Zhao, B.; Deng, J.; Zhang, R.; Liang, L.; Fan, B.; Bai, Z.; Shao, G.; Park, C. B. Recent Advances on the Electromagnetic Wave Absorption Properties of Ni Based Materials. Eng. Sci. 2018, 3, 5–40.
  • Wu, N.; Du, W.; Hu, Q.; Vupputuri, S.; Jiang, Q. Recent Development in Fabrication of Co Nanostructures and Their Carbon Nanocomposites for Electromagnetic Wave Absorption. Eng. Sci 2020, DOI: 10.30919/es8d1149.
  • Asmatulu, R.; Bollavaram, P. K.; Patlolla, V. R.; Alarifi, I. M.; Khan, W. S. Investigating the Effects of Metallic Submicron and Nanofilms on Fiber-Reinforced Composites for Lightning Strike Protection and EMI Shielding. Adv. Compos. Hybrid Mater. 2020, 3, 66–83. DOI: 10.1007/s42114-020-00135-7.
  • Zhang, Y.; Huang, Y.; Zhang, T.; Chang, H.; Xiao, P.; Chen, H.; Huang, Z.; Chen, Y. Broadband and Tunable High-Performance Microwave Absorption of an Ultralight and Highly Compressible Graphene Foam. Adv. Mater. 2015, 27, 2049–2053. DOI: 10.1002/adma.201405788.
  • Cao, M.; Han, C.; Wang, X.; Zhang, M.; Zhang, Y.; Shu, J.; Yang, H.; Fang, X.; Yuan, J. Graphene Nanohybrids: excellent Electromagnetic Properties for the Absorbing and Shielding of Electromagnetic Waves. J. Mater. Chem. C. 2018, 6, 4586–4602. DOI: 10.1039/C7TC05869A.
  • López-Rodríguez, F.; Naumis, G. Analytic Solution for Electrons and Holes in Graphene under Electromagnetic Waves: Gap Appearance and Nonlinear Effects. Phys. Rev. B. 2008, 78, 201406. DOI: 10.1103/PhysRevB.78.201406.
  • Mikhailov, S. A.; Ziegler, K. New Electromagnetic Mode in Graphene. Phys. Rev. Lett. 2007, 99, 016803. DOI: 10.1103/PhysRevLett.99.016803.
  • Chen, H.; Ma, W.; Huang, Z.; Zhang, Y.; Huang, Y.; Chen, Y. Graphene-Based Materials toward Microwave and Terahertz Absorbing Stealth Technologies. Adv. Opt. Mater. 2019, 7, 1801318. DOI: 10.1002/adom.201801318.
  • Nam, I.; Lee, H.-K.; Jang, J. Electromagnetic Interference Shielding/Absorbing Characteristics of CNT-Embedded Epoxy Composites. Compos. A: Appl. Sci. Manuf. 2011, 42, 1110–1118. DOI: 10.1016/j.compositesa.2011.04.016.
  • Wei, L.; Wang, Y. Electromagnetic Wave Propagation in Single-Wall Carbon Nanotubes. Phys. Lett. A. 2004, 333, 303–309. DOI: 10.1016/j.physleta.2004.10.048.
  • Zhao, T.; Hou, C.; Zhang, H.; Zhu, R.; She, S.; Wang, J.; Li, T.; Liu, Z.; Wei, B. Electromagnetic Wave Absorbing Properties of Amorphous Carbon Nanotubes. Sci. Rep. 2014, 4, 5619 DOI: 10.1038/srep05619.
  • Wu, Z. P.; Li, M. M.; Hu, Y. Y.; Li, Y. S.; Wang, Z. X.; Yin, Y. H.; Chen, Y. S.; Zhou, X. Electromagnetic Interference Shielding of Carbon Nanotube Macrofilms. Scr. Mater. 2011, 64, 809–812. DOI: 10.1016/j.scriptamat.2011.01.002.
  • Deng, L.; Han, M. Microwave Absorbing Performances of Multiwalled Carbon Nanotube Composites with Negative Permeability. Appl. Phys. Lett. 2007, 91, 023119. DOI: 10.1063/1.2755875.
  • Chen, Y.; Zhang, H.; Yang, Y.; Wang, M.; Cao, A.; Yu, Z. High-Performance Epoxy Nanocomposites Reinforced with Three-Dimensional Carbon Nanotube Sponge for Electromagnetic Interference Shielding. Adv. Funct. Mater. 2016, 26, 447–455. DOI: 10.1002/adfm.201503782.
  • Yan, J.; Huang, Y.; Wei, C.; Zhang, N.; Liu, P. Covalently Bonded Polyaniline/Graphene Composites as High-Performance Electromagnetic (EM) Wave Absorption Materials. Compos. A: Appl. Sci. Manuf. 2017, 99, 121–128. DOI: 10.1016/j.compositesa.2017.04.016.
  • Yu, H.; Wang, T.; Wen, B.; Lu, M.; Xu, Z.; Zhu, C.; Chen, Y.; Xue, X.; Sun, C.; Cao, M. Graphene/Polyaniline Nanorod Arrays: synthesis and Excellent Electromagnetic Absorption Properties. J. Mater. Chem. 2012, 22, 21679–21685. DOI: 10.1039/c2jm34273a.
  • Yuping, D.; Shunhua, L.; Hongtao, G. Investigation of Electrical Conductivity and Electromagnetic Shielding Effectiveness of Polyaniline Composite. Sci. Technol. Adv. Mater. 2005, 6, 513–518. DOI: 10.1016/j.stam.2005.01.002.
  • Oyharçabal, M.; Olinga, T.; Foulc, M. P.; Lacomme, S.; Gontier, E.; Vigneras, V. Influence of the Morphology of Polyaniline on the Microwave Absorption Properties of Epoxy Polyaniline Composites. Compos. Sci. Technol. 2013, 74, 107–112. DOI: 10.1016/j.compscitech.2012.10.016.
  • Fu, M.; Jiao, Q.; Zhao, Y.; Li, H. Vapor Diffusion Synthesis of CoFe2O4 Hollow Sphere/Graphene Composites as Absorbing Materials. J. Mater. Chem. A. 2014, 2, 735–744. DOI: 10.1039/C3TA14050D.
  • Naito, Y.; Suetake, K. Application of Ferrite to Electromagnetic Wave Absorber and Its Characteristics. IEEE Trans. Microwave Theory Technol. 1971, 19, 65–72. DOI: 10.1109/TMTT.1971.1127446.
  • Yan, S. J.; Zhen, L.; Xu, C. Y.; Jiang, J. T.; Shao, W. Z.; Tang, J. K. Synthesis, Characterization and Electromagnetic Properties of Fe1−xCox Alloy Flower-like Microparticles. J. Magn. Magn. Mater. 2011, 323, 515–520. DOI: 10.1016/j.jmmm.2010.09.056.
  • Hu, H.; Liu, H.; Zhang, D.; Wang, J.; Qin, G.; Zhang, X. pH and Electromagnetic Dual-Remoted Drug Delivery Based on Bimodal Superparamagnetic Fe3O4@Porous Silica Nanoparticles. Eng. Sci. 2018, 2, 43–48.
  • Yan, J.; Huang, Y.; Liu, P.; Wei, C. Large-Scale Controlled Synthesis of Magnetic FeCo Alloy with Different Morphologies and Their High Performance of Electromagnetic Wave Absorption. J. Mater. Sci: Mater. Electron. 2017, 28, 3159–3167. DOI: 10.1007/s10854-016-5904-4.
  • Yeh, C. Reflection and Transmission of Electromagnetic Waves by a Moving Dielectric Medium. J. Appl. Phys. 1965, 36, 3513–3517. DOI: 10.1063/1.1703029.
  • Yan, J.; Huang, Y.; Yan, Y.; Ding, L.; Liu, P. High-Performance Electromagnetic Wave Absorbers Based on Two Kinds of Nickel-Based MOF-Derived Ni@C Microspheres. ACS Appl. Mater. Interfaces 2019, 11, 40781–−40792. DOI: 10.1021/acsami.9b12850.
  • Wang, X.; Zhang, X. G.; Yu, Q.; Harmon, B. Multiple-Scattering Theory for Electromagnetic Waves. Phys. Rev. B: Condens. Matter. 1993, 47, 4161–4167. DOI: 10.1103/physrevb.47.4161.
  • Albini, F. A.; Jahn, R. G. Reflection and Transmission of Electromagnetic Waves at Electron Density Gradients. J. Appl. Phys. 1961, 32, 75–82. DOI: 10.1063/1.1735964.
  • Michielssen, E.; Sajer, J. M.; Ranjithan, S.; Mittra, R. Design of Lightweight, Broad-Band Microwave Absorbers Using Genetic Algorithms. IEEE Trans. Microwave Theory Technol. 1993, 41, 1024–1031. DOI: 10.1109/22.238519.
  • Ma, J.; Wang, X.; Cao, W.; Han, C.; Yang, H.; Yuan, J.; Cao, M. A Facile Fabrication and Highly Tunable Microwave Absorption of 3D Flower-like Co3O4-rGO Hybrid-Architectures. Chem. Eng. J. 2018, 339, 487–498. DOI: 10.1016/j.cej.2018.01.152.
  • Zhou, M.; Lu, F.; Lv, T.; Yang, X.; Xia, W.; Shen, X.; He, H.; Zeng, X. Loss Mechanism and Microwave Absorption Properties of Hierarchical NiCo2O4 Nanomaterial. J. Phys. D: Appl. Phys. 2015, 48, 215305. DOI: 10.1088/0022-3727/48/21/215305.
  • Cao, M.; Shi, X.; Fang, X.; Jin, H.; Hou, Z.; Zhou, W.; Chen, Y. Microwave Absorption Properties and Mechanism of Cagelike ZnO/SiO2 Nanocomposites. Appl. Phys. Lett. 2007, 91, 203110. DOI: 10.1063/1.2803764.
  • Liu, Q.; Cao, Q.; Bi, H.; Liang, C.; Yuan, K.; She, W.; Yang, Y.; Che, R. CoNi@ SiO2@TiO2 and CoNi@Air@TiO2 Microspheres with Strong Wideband Microwave Absorption. Adv. Mater. 2016, 28, 486–490. DOI: 10.1002/adma.201503149.
  • Liu, T.; Pang, Y.; Zhu, M.; Kobayashi, S. Microporous Co@CoO Nanoparticles with Superior Microwave Absorption Properties. Nanoscale 2014, 6, 2447–2454. DOI: 10.1039/c3nr05238a.
  • Ding, D.; Wang, Y.; Li, X.; Qiang, R.; Xu, P.; Chu, W.; Han, X.; Du, Y. Rational Design of Core-Shell Co@C Microspheres for High-Performance Microwave Absorption. Carbon 2017, 111, 722–732. DOI: 10.1016/j.carbon.2016.10.059.
  • Quan, B.; Shi, W.; Ong, S. J. H.; Lu, X.; Wang, P. L.; Ji, G.; Guo, Y.; Zheng, L.; Xu, Z. J. J. Defect Engineering in Two Common Types of Dielectric Materials for Electromagnetic Absorption Applications. Adv. Funct. Mater. 2019, 29, 1901236. DOI: 10.1002/adfm.201901236.
  • Zhang, X.; Guo, J.; Guan, P.; Qin, G.; Pennycook, S. Gigahertz Dielectric Polarization of Substitutional Single Niobium Atoms in Defective Graphitic Layers. Phys. Rev. Lett. 2015, 115, 147601 DOI: 10.1103/PhysRevLett.115.147601.
  • Natan, A.; Kuritz, N.; Kronik, L. Polarizability, Susceptibility, and Dielectric Constant of Nanometer-Scale Molecular Films: A Microscopic View. Adv. Funct. Mater. 2010, 20, 2077–2084. DOI: 10.1002/adfm.200902162.
  • Yamada, S.; Otsuki, E. Analysis of Eddy Current Loss in Mn–Zn Ferrites for Power Supplies. J. Appl. Phys. 1997, 81, 4791–4793. DOI: 10.1063/1.365465.
  • Jeong, W. H.; Han, Y. H.; Song, B. M. Effects of Grain Size on the Residual Loss of Mn-Zn Ferrites. J. Appl. Phys. 2002, 91, 7619–7621. DOI: 10.1063/1.1447506.
  • Yamazaki, K.; Fukushima, Y. Effect of Eddy-Current Loss Reduction by Magnet Segmentation in Synchronous Motors with Concentrated Windings. IEEE Trans. Ind. Appl. 2011, 47, 779–788. DOI: 10.1109/TIA.2010.2103915.
  • Brailsford, F. Rotational Hysteresis Loss in Electrical Sheet Steels. J. Instit. Elect. Eng. 1938, 83, 566–575. DOI: 10.1049/jiee-1.1938.0172.
  • Liu, P.; Gao, S.; Wang, Y.; Huang, Y.; Zhou, F.; Liu, P. Magnetic Porous N-Doped Carbon Composites with Adjusted Composition and Porous Microstructure for Lightweight Microwave Absorbers. Carbon 2021, 173, 655–666. DOI: 10.1016/j.carbon.2020.11.043.
  • Zhao, B.; Shao, G.; Fan, B.; Zhao, W.; Zhang, R. Investigation of the Electromagnetic Absorption Properties of Ni@TiO2 and Ni@SiO2 Composite Microspheres with Core-shell Structure. Phys. Chem. Chem. Phys. 2015, 17, 2531–2539. DOI: 10.1039/c4cp05031b.
  • Zhao, B.; Guo, X.; Zhao, W.; Deng, J.; Shao, G.; Fan, B.; Bai, Z.; Zhang, R. Yolk-Shell Ni@SnO2 Composites with a Designable Interspace to Improve the Electromagnetic Wave Absorption Properties. ACS Appl. Mater. Interfaces 2016, 8, 28917–28925. DOI: 10.1021/acsami.6b10886.
  • MacDiarmid, A. G. Polyaniline and Polypyrrole: Where Are We Headed? Synth. Met. 1997, 84, 27–34. DOI: 10.1016/S0379-6779(97)80658-3.
  • Berdichevsky, Y.; Lo, Y. H. Polypyrrole Nanowire Actuators. Adv. Mater. 2006, 18, 122–125. DOI: 10.1002/adma.200501621.
  • Ren, X.; Pickup, P. G. Ion Transport in Polypyrrole and a Polypyrrole/Polyanion Composite. J. Phys. Chem. 1993, 97, 5356–5362. DOI: 10.1021/j100122a029.
  • Diaz, A. F.; Castillo, J. I. A Polymer Electrode with Variable Conductivity-Polypyrrole. J. Chem. Soc, Chem. Commun. 1980, 397–398. DOI: 10.1039/c39800000397.
  • Yan, J.; Huang, Y.; Chen, C.; Liu, X. D.; Liu, H. The 3D CoNi Alloy Particles Embedded in N-Doped Porous Carbon Foams for High-Performance Microwave Absorbers. Carbon 2019, 152, 545–555. DOI: 10.1016/j.carbon.2019.06.064.
  • Huang, Y.; Li, H.; Wang, Z.; Zhu, M.; Pei, Z.; Xue, Q.; Huang, Y.; Zhi, C. Nanostructured Polypyrrole as a Flexible Electrode Material of Supercapacitor. Nano Energy 2016, 22, 422–438. DOI: 10.1016/j.nanoen.2016.02.047.
  • Huang, J.; Wang, K.; Wei, Z. Conducting Polymer Nanowire Arrays with Enhanced Electrochemical Performance. J. Mater. Chem. 2010, 20, 1117–1121. DOI: 10.1039/B919928D.
  • Yang, X.; Dai, T.; Zhu, Z.; Lu, Y. Electrochemical Synthesis of Functional Polypyrrole Nanotubes via a Self-Assembly Process. Polymer 2007, 48, 4021–4027. DOI: 10.1016/j.polymer.2007.05.023.
  • Li, K.; Zhang, H.; Tang, T.; Tang, Y.; Wang, Y.; Jia, J. Facile Electrochemical Polymerization of Polypyrrole Film Applied as Cathode Material in Dual Rotating Disk Photo Fuel Cell. J. Power Sourc. 2016, 324, 368–377. DOI: 10.1016/j.jpowsour.2016.05.109.
  • Satoh, M.; Kaneto, K.; Yoshino, K. Dependences of Electrical and Mechanical Properties of Conducting Polypyrrole Films on Conditions of Electrochemical Polymerization in an Aqueous Medium. Synth. Met. 1986, 14, 289–296. DOI: 10.1016/0379-6779(86)90042-1.
  • Dong, S.; Ding, J. Study on Polypyrrole Film by Electrochemical Polymerization in Aqueous Solution. Synth. Met. 1987, 20, 119–124. DOI: 10.1016/0379-6779(87)90551-0.
  • Zhao, J.; Zhang, S.; Liu, W.; Du, Z.; Fang, H. Fe3O4/PPy Composite Nanospheres as Anode for Lithium-Ion Batteries with Superior Cycling Performance. Electrochim. Acta 2014, 121, 428–433. DOI: 10.1016/j.electacta.2013.12.105.
  • Schmidt, V. M.; Heitbaum, J. Ion Exchange Mechanism of Polypyrrole and poly-N-Methylpyrrole with Toslylate as Doping Anion: An Electrochemical Quartz Crystal Microbalance Study. Electrochim. Acta 1993, 38, 349–356. DOI: 10.1016/0013-4686(93)85150-W.
  • Santos, M.; Brolo, A.; Girotto, E. Study of Polaron and Bipolaron States in Polypyrrole by in Situ Raman Spectroelectrochemistry. Electrochim. Acta 2007, 52, 6141–6145. DOI: 10.1016/j.electacta.2007.03.070.
  • Xu, C. H.; Sun, J.; Gao, L. Synthesis of Novel Hierarchical Graphene/Polypyrrole Nanosheet Composites and Their Superior Electrochemical Performance. J. Mater. Chem. 2011, 21, 11253–11258. DOI: 10.1039/c1jm11275a.
  • Sarı, B.; Talu, M. Electrochemical Copolymerization of Pyrrole and Aniline. Synth. Met. 1998, 94, 221–227. DOI: 10.1016/S0379-6779(98)00010-1.
  • Khulbe, K.; Mann, R.; Khulbe, C. Polymerization of Pyrrole by Potassium Persulfate. J. Polym. Sci. Polym. Chem. Ed. 1982, 20, 1089–1095. DOI: 10.1002/pol.1982.170200416.
  • Wu, A.; Kolla, H.; Manohar, S. K. Chemical Synthesis of Highly Conducting Polypyrrole Nanofiber Film. Macromolecules 2005, 38, 7873–7875. DOI: 10.1021/ma051299e.
  • Proń, A.; Kucharski, Z.; Budrowski, C.; Zagórska, M.; Krichene, S.; Suwalski, J.; Dehe, G.; Lefrant, S. Mossbaure-Spectroscopy Studies of Selected Conducting Polypyrroles. J. Chem. Phys. 1985, 83, 5923–5927. DOI: 10.1063/1.449624.
  • Armes, S. P. Optimum Reaction Conditions for the Polymerization of Pyrrole by Iron (III) Chloride in Aqueous-Solution. Synth. Met. 1987, 20, 365–371. DOI: 10.1016/0379-6779(87)90833-2.
  • Machida, S.; Miyata, S.; Techagumpuch, A. Chemical Synthesis of Highly Electrically Conductive Polypyrrole. Synth. Met. 1989, 31, 311–318. DOI: 10.1016/0379-6779(89)90798-4.
  • Kijewska, K.; Blanchard, G. J.; Szlachetko, J.; Stolarski, J.; Kisiel, A.; Michalska, A.; Maksymiuk, K.; Pisarek, M.; Majewski, P.; Krysiński, P.; Mazur, M. Photopolymerized Polypyrrole Microvessels. Chemistry 2012, 18, 310–320. DOI: 10.1002/chem.201101400.
  • Annapoorni, S.; Sundaresan, N.; Pandey, S.; Malhotra, B. Photocarrier Mobility in Processable Polyaniline. J. Appl. Phys. 1993, 74, 2109–2111. DOI: 10.1063/1.354733.
  • Zhang, S.; Zhu, K.; Lv, G.; Wang, G.; Yu, D.; Shao, J. UV-Catalytic Preparation of Polypyrrole Nanoparticles Induced by H2O2. J. Phys. Chem. C. 2015, 119, 18707–18718. DOI: 10.1021/acs.jpcc.5b03883.
  • Deng, J.; Wang, L.; Liu, L.; Yang, W. Developments and New Applications of UV-Induced Surface Graft Polymerizations. Prog. Polym. Sci. 2009, 34, 156–193. DOI: 10.1016/j.progpolymsci.2008.06.002.
  • Kumar, D.; Sharma, R. Advances in Conductive Polymers. J. Appl. Phys. 1998, 34, 1053–1060. DOI: 10.1016/S0014-3057(97)00204-8.
  • Demoustier-Champagne, S.; Stavaux, P. Y. Effect of Electrolyte Concentration and Nature on the Morphology and the Electrical Properties of Electropolymerized Polypyrrole Nanotubules. Chem. Mater. 1999, 11, 829–834. DOI: 10.1021/cm9807541.
  • Marinakos, S. M.; Brousseau, L. C.; Jones, A.; Feldheim, D. L. Template Synthesis of One-Dimensional Au, Au-Poly(Pyrrole), and Poly(Pyrrole) Nanoparticle Arrays. Chem. Mater. 1998, 10, 1214–1219. DOI: 10.1021/cm980059t.
  • Hulteen, J. C.; Martin, C. R. A General Template-Based Method for the Preparation of Nanomaterials. J. Mater. Chem. 1997, 7, 1075–1087. DOI: 10.1039/a700027h.
  • Johnson, B. J. S.; Wolf, J. H.; Zalusky, A. S.; Hillmyer, M. A. Template Syntheses of Polypyrrole Nanowires and CdS Nanoparticles in Porous Polymer Monoliths. Chem. Mater. 2004, 16, 2909–2917. DOI: 10.1021/cm0350075.
  • Lu, Y.; Ren, Y.; Wang, L.; Wang, X.; Li, C. Template Synthesis of Conducting Polyaniline Composites Based on Honeycomb Ordered Polycarbonate Film. Polymer 2009, 50, 2035–2039. DOI: 10.1016/j.polymer.2009.02.026.
  • Zhao, B.; Zhang, J.; Wu, H.; Wang, X.; Li, C. Fabrication of Honeycomb Ordered Polycarbonate Films Using Water Droplets as Template. Thin Solid Films 2007, 515, 3629–3634. DOI: 10.1016/j.tsf.2006.10.073.
  • Bera, D.; Kuiry, S.; Patil, S.; Seal, S. Palladium Nanoparticle Arrays Using Template-Assisted Electrodeposition. Appl. Phys. Lett. 2003, 82, 3089–3091. DOI: 10.1063/1.1572465.
  • Hu, W.; Gong, D.; Chen, Z.; Yuan, L.; Saito, K.; Grimes, C. A.; Kichambare, P. Growth of Well-Aligned Carbon Nanotube Arrays on Silicon Substrates Using Porous Alumina Film as a Nanotemplate. Appl. Phys. Lett. 2001, 79, 3083–3085. DOI: 10.1063/1.1415406.
  • Steinhart, M.; Wendorff, J.; Greiner, A.; Wehrspohn, R.; Nielsch, K.; Schilling, J.; Choi, J.; Gosele, U. Polymer Nanotubes by Wetting of Ordered Porous Templates. Science 2002, 296, 1997–1997. DOI: 10.1126/science.1071210.
  • Kim, K.; Lee, T.; Kwon, Y.; Seo, Y.; Song, J.; Park, J. K.; Lee, H.; Park, J. Y.; Ihee, H.; Cho, S. J.; Ryoo, R. Lanthanum-Catalysed Synthesis of Microporous 3D Graphene-like Carbons in a Zeolite Template. Nature 2016, 535, 131–135. DOI: 10.1038/nature18284.
  • Awala, H.; Gilson, J. P.; Retoux, R.; Boullay, P.; Goupil, J. M.; Valtchev, V.; Mintova, S. Template-Free Nanosized Faujasite-Type Zeolites. Nat. Mater. 2015, 14, 447–451. DOI: 10.1038/nmat4173.
  • Zhang, X. Y.; Manohar, S. K. Bulk Synthesis of Polypyrrole Nanofibers by a Seeding Approach. J. Am. Chem. Soc. 2004, 126, 12714–12715. DOI: 10.1021/ja046359v.
  • Chen, J. Y.; Chao, D. M.; Lu, X. F.; Zhang, W. J.; Manohar, S. K. General Synthesis of Two-Dimensional Patterned Conducting Polymer-Nanobowl Sheet via Chemical Polymerization. Macromol. Rapid Commun. 2006, 27, 771–775. DOI: 10.1002/marc.200600047.
  • Athawale, A. A.; Katre, P. P.; Bhagwat, S. V.; Dhamane, A. H. Synthesis of Polypyrrole Nanofibers by Ultrasonic Waves. J. Appl. Polym. Sci. 2008, 108, 2872–2875. DOI: 10.1002/app.27301.
  • Xiao, Y.; Hong, Z.; Zhao, G. C. H.; Liang, R.; Lucas, P.; Hao, Q. Thermal Studies of Three-Dimensional Printing Using Pulsed Laser Heating. ES Mater. Manuf. 2018, 1, 21–26.
  • Xia, X.; Xu, X.; Lin, C.; Yang, Y.; Zeng, L.; Zheng, Y.; Wu, X.; Li, W.; Xiao, L.; Qian, Q. Microalgal-Immobilized Biocomposite Scaffold Fabricated by Fused Deposition Modeling 3D Printing Technology for Dyes Removal. ES Mater. Manuf. 2020, 7, 40–50.
  • Wang, B.; Zhang, Z.; Pei, Z.; Qiu, J.; Wang, S. Current Progress on the 3D Printing of Thermosets. Adv. Compos. Hybrid Mater. 2020, 3, 462–472. DOI: 10.1007/s42114-020-00183-z.
  • Wang, J.; Liu, Y.; Fan, Z.; Wang, W.; Wang, B.; Guo, Z. Ink-Based 3D Printing Technologies for Graphene-Based Materials: A Review. Adv. Compos. Hybrid Mater. 2019, 2, 1–33. DOI: 10.1007/s42114-018-0067-9.
  • Mei, H.; Ali, Z.; Ali, I.; Cheng, L. Tailoring Strength and Modulus by 3D Printing Different Continuous Fibers and Filled Structures into Composites. Adv. Compos. Hybrid Mater. 2019, 2, 312–319. DOI: 10.1007/s42114-019-00087-7.
  • Zhao, W.; Chen, L.; Hu, S.; Shi, Z.; Gao, X.; Silberschmidt, V. V. Printed Hydrogel Nanocomposites: fine-Tuning Nanostructure for Anisotropic Mechanical and Conductive Properties. Adv. Compos. Hybrid Mater. 2020, 3, 315–324. DOI: 10.1007/s42114-020-00161-5.
  • Shankar, A.; Salcedo, E.; Berndt, A.; Choi, D.; Ryu, J. E. Pulsed Light Sintering of Silver Nanoparticles for Large Deformation of Printed Stretchable Electronics. Adv. Compos. Hybrid Mater. 2018, 1, 193–198. DOI: 10.1007/s42114-017-0012-3.
  • Ma, C.; Jiang, L.; Wang, Y.; Gang, F.; Xu, N.; Li, T.; Liu, Z.; Chi, Y.; Wang, X.; Zhao, L.; et al. 3D Printing of Conductive Tissue Engineering Scaffolds Containing Polypyrrole Nanoparticles with Different Morphologies and Concentrations. Materials 2019, 12, 2491. DOI: 10.3390/ma12152491.
  • Fantino, E.; Roppolo, I.; Zhang, D.; Xiao, J.; Chiappone, A.; Castellino, M.; Guo, Q.; Pirri, C. F.; Yang, J. 3D Printing/Interfacial Polymerization Coupling for the Fabrication of Conductive Hydrogel. Macromol. Mater. Eng. 2018, 303, 1700356. DOI: 10.1002/mame.201700356.
  • Panigrahi, R.; Srivastava, S. K. Trapping of Microwave Radiation in Hollow Polypyrrole Microsphere through Enhanced Internal Reflection: A Novel Approach. Sci. Rep. 2015, 5, 7638. DOI: 10.1038/srep07638.
  • Khani, O.; Nemati, F.; Farrokhi, H.; Jazirehpour, M. Synthesis and Characterization of Electromagnetic Properties of Polypyrrole Nanorods Prepared via Self-Reactive MnO2 Template. Synth. Met. 2016, 220, 567–572. DOI: 10.1016/j.synthmet.2016.07.031.
  • Farrokhi, H.; Khani, O.; Nemati, F.; Jazirehpour, M. Synthesis and Investigation of Microwave Characteristics of Polypyrrole Nanostructures Prepared via Self-Reactive Flower-like MnO2 Template. Synth. Met. 2016, 215, 142–149. DOI: 10.1016/j.synthmet.2016.02.016.
  • Xie, A. M.; Wu, F.; Jiang, W. C.; Zhang, K.; Sun, M. X.; Wang, M. Y. Chiral Induced Synthesis of Helical Polypyrrole (PPy) Nano-Structures: A Lightweight and High-Performance Material against Electromagnetic Pollution. J. Mater. Chem. C. 2017, 5, 2175–2181. DOI: 10.1039/C6TC05057C.
  • Håkansson, E.; Amiet, A.; Nahavandi, S.; Kaynak, A. Electromagnetic Interference Shielding and Radiation Absorption in Thin Polypyrrole Films. Eur. Polym. J. 2007, 43, 205–213. DOI: 10.1016/j.eurpolymj.2006.10.001.
  • Xie, A.; Wu, F.; Sun, M.; Dai, X.; Xu, Z.; Qiu, Y.; Wang, Y.; Wang, M. Self-Assembled Ultralight Three-Dimensional Polypyrrole Aerogel for Effective Electromagnetic Absorption. Appl. Phys. Lett. 2015, 106, 222902. DOI: 10.1063/1.4921180.
  • Feng, P.; Ma, L.; Wu, G.; Li, X.; Zhao, M.; Shi, L.; Wang, M.; Wang, X.; Song, G. Establishment of Multistage Gradient Modulus Intermediate Layer between Fiber and Matrix via Designing Double “Rigid-Flexible” Structure to Improve Interfacial and Mechanical Properties of Carbon Fiber/Resin Composites. Compos. Sci. Technol. 2020, 200, 108336. DOI: 10.1016/j.compscitech.2020.108336.
  • Shi, L.; Song, G.; Li, P.; Li, X.; Pan, D.; Huang, Y.; Ma, L.; Guo, Z. Enhancing Interfacial Performance of Epoxy Resin Composites via in-Situ Nucleophilic Addition Polymerization Modification of Carbon Fibers with Hyperbranched Polyimidazole. Compos. Sci. Technol. 2021, 201, 108522. DOI: 10.1016/j.compscitech.2020.108522.
  • Shao, Q.; Lu, F.; Yu, L.; Xu, X.; Huang, X.; Huang, Y.; Hu, Z. Facile Immobilization of Graphene Nanosheets onto PBO Fibers via MOF-Mediated Coagulation Strategy: Multifunctional Interface with Self-Healing and Ultraviolet-Resistance Performance. J. Colloid Interface Sci. 2020,
  • Li, T.; Gao, Y.; Zheng, K.; Ma, Y.; Ding, D.; Zhang, H. Achieving Better Greenhouse Effect than Glass: visibly Transparent and Low Emissivity Metal-Polymer Hybrid Metamaterials. ES Energy Environ. 2019, 5, 102–107. DOI: 10.30919/esee8c325.
  • Zhou, Y.; Wu, S.; Ma, Y.; Zhang, H.; Zeng, X.; Wu, F.; Liu, F.; Ryu, J. E.; Guo, Z. Recent Advances in Organic/Composite Phase Change Materials for Energy Storage. ES Energy Environ. 2020, 9, 28–40.
  • Shahc, N.; Aslam, S.; Ul Islam, M.; Arain, M. B.; Rehan, T.; Naeem, M.; Ullah, M. W.; Yang, G. Fabrication of Thermally Stable Graphite-Based Poly (Acrylonitrile-co-Acrylic Acid) Composite with Impressive Antimicrobial Properties. Eng. Sci. 2019, 6, 77–85. DOI: 10.30919/es8d758.
  • Doan, L.; Lu, Y.; Karatela, M.; Phan, V.; Jeffryes, C.; Benson, T.; Wujcik, E. K.; Smith, D. F. Surface Modifications of Superparamagnetic Iron Oxide Nanoparticles with Polylactic Acid-Polyethylene Glycol Diblock Copolymer and Graphene Oxide for a Protein Delivery Vehicle. Eng. Sci. 2019, 7, 10–16. DOI: 10.30919/es8d510.
  • Hao, S.; Shen, Y.; Wu, H.; Meng, J.; Xie, L.; Wen, T.; Gu, N.; Liu, J.; Zhang, Y.; Xu, H. Modulatory Effects of the Composition and Structure on the Osteogenic Enhancement for Superparamagnetic Scaffolds. Eng. Sci. 2018, 4, 100–110.
  • An, Y.; Feng, S.; Shao, G.; Yuan, W.; Sun, K.; Li, X.; Fan, R. Influence of the Annealing Process on Magnetic Performance of Iron Based Soft Magnetic Composites. Eng. Sci. 2020, 11, 85–91.
  • Zhang, N.; Chen, W.; Chen, P.; Wang, Y. Insight of S, N co-Doped Graphene Aerogel (Double Reduction)/Cobalt (II)-Substituted α-Keggin-Type Polyoxometalate Nanocomposites with Synergistically Enhanced Impedance Matching and Energy Conservation Performance. Compos. B: Eng. 2020, 191, 107962. DOI: 10.1016/j.compositesb.2020.107962.
  • Hao, B.; Xiang, C.; Dong, G. X. Preparation and Electrical/Magnetic Properties of Polypyrrole/Gd-Doped Copper-Zinc Ferrite Complexes. J. Chem. 2010, 2010, 583–589.
  • Li, L. C.; Xiang, C.; Liang, X. X.; Hao, B. Zn0.6Cu0.4Cr0.5Fe1.46Sm0.04O4 Ferrite and Its Nanocomposites with Polyaniline and Polypyrrole: Preparation and Electromagnetic Properties. Synth. Met. 2010, 160, 28–34. DOI: 10.1016/j.synthmet.2009.09.026.
  • Wang, Y.; Huang, Y.; Wang, Q. F.; He, Q.; Chen, L. Preparation and Electromagnetic Properties of Polyaniline(Polypyrrole)-BaFe12O19/Ni0.8Zn0.2Fe2O4 Ferrite Nanocomposites. Appl. Surf. Sci. 2012, 259, 486–493. DOI: 10.1016/j.apsusc.2012.07.072.
  • Li, Y. B.; Yi, R.; Yan, A. G.; Deng, L. W.; Zhou, K. C.; Liu, X. H. Facile Synthesis and Properties of ZnFe2O4 and ZnFe2O4/Polypyrrole Core-Shell Nanoparticles. Solid State Sci. 2009, 11, 1319–1324. DOI: 10.1016/j.solidstatesciences.2009.04.014.
  • Li, Y. B.; Chen, G.; Li, Q. H.; Qiu, G. Z.; Liu, X. H. Facile Synthesis, Magnetic and Microwave Absorption Properties of Fe3O4/Polypyrrole Core/Shell Nanocomposite. J. Alloys Compd. 2011, 509, 4104–4107. DOI: 10.1016/j.jallcom.2010.12.100.
  • Azadmanjiri, J.; Hojati-Talemi, P.; Simon, G. P.; Suzuki, K.; Selomulya, C. Synthesis and Electromagnetic Interference Shielding Properties of Iron Oxide/Polypyrrole Nanocomposites. Polym. Eng. Sci. 2011, 51, 247–253. DOI: 10.1002/pen.21813.
  • Qiao, M. T.; Lei, X. F.; Ma, Y.; Tian, L. D.; Su, K. H.; Zhang, Q. Y. Well-Defined Core-Shell Fe3O4@Polypyrrole Composite Microspheres with Tunable Shell Thickness: Synthesis and Their Superior Microwave Absorption Performance in the Ku Band. Ind. Eng. Chem. Res. 2016, 55, 6263–6275. DOI: 10.1021/acs.iecr.5b04814.
  • Zhang, B.; Wang, J.; Su, X. G.; Duan, H. J.; Cai, H. P.; Wang, J. P.; Yang, S.; Huo, S. Q. Enhanced Microwave Absorption Properties of Epoxy Composites Containing Graphene Decorated with Core-Shell Fe3O4@Polypyrrole Nanoparticles. J. Mater. Sci: Mater. Electron. 2017, 28, 12122–12131. DOI: 10.1007/s10854-017-7026-z.
  • Jiang, W. C.; Sun, M. X.; Zhang, K.; Dai, X. Q.; Xia, Y. L.; Wang, D. R.; Xie, A. M.; Wu, F. Using gamma-Fe2O3 to Tune the Electromagnetic Properties of Three-Dimensional (3D) Polypyrrole (PPy) and Its Broadband Eletromagnetic Absorber. RSC Adv. 2016, 6, 68128–68133. DOI: 10.1039/C6RA11235H.
  • Wu, N.; Qiao, J.; Liu, J.; Du, W.; Xu, D.; Liu, W. Strengthened Electromagnetic Absorption Performance Derived from Synergistic Effect of Carbon Nanotube Hybrid with Co@C Beads. Adv. Compos. Hybrid Mater. 2018, 1, 149–159. DOI: 10.1007/s42114-017-0008-z.
  • Xu, P.; Han, X. J.; Wang, C.; Zhou, D. H.; Lv, Z. S.; Wen, A. H.; Wang, X. H.; Zhang, B. Synthesis of Electromagnetic Functionalized Nickel/Polypyrrole Core/Shell Composites. J. Phys. Chem. B. 2008, 112, 10443–10448. DOI: 10.1021/jp804327k.
  • Wang, H. C.; Ma, N.; Yan, Z. R.; Deng, L.; He, J.; Hou, Y. L.; Jiang, Y.; Yu, G. H. Cobalt/Polypyrrole Nanocomposites with Controllable Electromagnetic Properties. Nanoscale 2015, 7, 7189–7196. DOI: 10.1039/C4NR06978A.
  • Li, D. A.; Wang, H. B.; Zhao, J. M.; Yang, X. L. Fabrication and Electromagnetic Characteristics of Microwave Absorbers Containing PPY and Carbonyl Iron Composite. Mater. Chem. Phys. 2011, 130, 437–441. DOI: 10.1016/j.matchemphys.2011.07.005.
  • Wang, Y.; Dai, X. Q.; Jiang, W. C.; Wu, F.; Xie, A. M. The Hybrid of SnO2 Nanoparticle and Polypyrrole Aerogel: An Excellent Electromagnetic Wave Absorbing Materials. Mater. Res. Express 2016, 3, 075023. DOI: 10.1088/2053-1591/3/7/075023.
  • Jiang, W. C.; Wang, Y.; Xie, A. M.; Wu, F. Microwave Absorption of a TiO2@PPy Hybrid and Its Nonlinear Dielectric Resonant Attenuation Mechanism. J. Phys. D–Appl. Phys. 2016, 49, 385502.
  • Shan, L. M.; Chen, X. N.; Tian, X.; Chen, J. J.; Zhou, Z. W.; Jiang, M.; Xu, X. L.; Hui, D. Fabrication of Polypyrrole/Nano-Exfoliated Graphite Composites by in Situ Intercalation Polymerization and Their Microwave Absorption Properties. Compos. B—Eng. 2015, 73, 181–187. DOI: 10.1016/j.compositesb.2014.11.042.
  • Wu, F.; Xie, A. M.; Sun, M. X.; Wang, Y.; Wang, M. Y. Reduced Graphene Oxide (RGO) Modified Spongelike Polypyrrole (PPy) Aerogel for Excellent Electromagnetic Absorption. J. Mater. Chem. A. 2015, 3, 14358–14369. DOI: 10.1039/C5TA01577D.
  • Liu, B.; Li, J. H.; Wang, L. F.; Ren, J. H.; Xu, Y. F. Ultralight Graphene Aerogel Enhanced with Transformed Micro-Structure Led by Polypyrrole Nano-Rods and Its Improved Microwave Absorption Properties. Compos. Part A: Appl. Sci. Manuf. 2017, 97, 141–150. DOI: 10.1016/j.compositesa.2017.03.001.
  • Naguib, M.; Mochalin, V. N.; Barsoum, M. W.; Gogotsi, Y. 25th Anniversary Article: MXenes: A New Family of Two-Dimensional Materials. Adv. Mater. 2014, 26, 992–1005. DOI: 10.1002/adma.201304138.
  • Anasori, B.; Lukatskaya, M. R.; Gogotsi, Y. 2D Metal Carbides and Nitrides (MXenes) for Energy Storage. Nat. Rev. Mater. 2017, 2, 1–17. DOI: 10.1038/natrevmats.2016.98.
  • Gao, G.; O’Mullane, A. P.; Du, A. 2D MXenes: A New Family of Promising Catalysts for the Hydrogen Evolution Reaction. ACS Catal. 2017, 7, 494–500. DOI: 10.1021/acscatal.6b02754.
  • Zhu, J.; Ha, E.; Zhao, G.; Zhou, Y.; Huang, D.; Yue, G.; Hu, L.; Sun, N.; Wang, Y.; Lee, L. Y. S.; et al. Recent Advance in MXenes: A Promising 2D Material for Catalysis, Sensor and Chemical Adsorption. Coord. Chem. Rev. 2017, 352, 306–327. DOI: 10.1016/j.ccr.2017.09.012.
  • Li, Z.; Wu, Y. 2D Early Transition Metal Carbides (MXenes) for Catalysis. Small 2019, 15, 1804736. DOI: 10.1002/smll.201804736.
  • Ma, Y.; Liu, N.; Li, L.; Hu, X.; Zou, Z.; Wang, J.; Luo, S.; Gao, Y. A Highly Flexible and Sensitive Piezoresistive Sensor Based on MXene with Greatly Changed Interlayer Distances. Nat. Commun. 2017, 8, 1–8. DOI: 10.1038/s41467-017-01136-9.
  • Li, T.; Chen, L.; Yang, X.; Chen, X.; Zhang, Z.; Zhao, T.; Li, X.; Zhang, J. A Flexible Pressure Sensor Based on an MXene-Textile Network Structure. J. Mater. Chem. C. 2019, 7, 1022–1027. DOI: 10.1039/C8TC04893B.
  • Gund, G. S.; Park, J. H.; Harpalsinh, R.; Kota, M.; Shin, J. H.; Kim, T. I.; Gogotsi, Y.; Park, H. S. MXene/Polymer Hybrid Materials for Flexible AC-Filtering Electrochemical Capacitors. Joule 2019, 3, 164–176. DOI: 10.1016/j.joule.2018.10.017.
  • Couly, C.; Alhabeb, M.; Van Aken, K. L.; Kurra, N.; Gomes, L.; Navarro Suárez, A. M.; Anasori, B.; Alshareef, H. N.; Gogotsi, Y. Asymmetric Flexible MXene-Reduced Graphene Oxide Micro-Supercapacitor. Adv. Electron. Mater. 2018, 4, 1700339. DOI: 10.1002/aelm.201700339.
  • Zhang, C.; Anasori, B.; Seral-Ascaso, A.; Park, S. H.; McEvoy, N.; Shmeliov, A.; Duesberg, G. S.; Coleman, J. N.; Gogotsi, Y.; Nicolosi, V. Transparent, Flexible, and Conductive 2D Titanium Carbide (MXene) Films with High Volumetric Capacitance. Adv. Mater. 2017, 29, 1702678. DOI: 10.1002/adma.201702678.
  • Hatter, C. B.; Shah, J.; Anasori, B.; Gogotsi, Y. Micromechanical Response of Two-Dimensional Transition Metal Carbonitride (MXene) Reinforced Epoxy Composites. Compos. B: Eng. 2020, 182, 107603. DOI: 10.1016/j.compositesb.2019.107603.
  • Malaki, M.; Varma, R. S. Mechanotribological Aspects of MXene-Reinforced Nanocomposites. Adv. Mater. 2020, 32, 2003154. DOI: 10.1002/adma.202003154.
  • Xu, H.; Yin, X.; Li, X.; Li, M.; Liang, S.; Zhang, L.; Cheng, L. Lightweight Ti2CT x MXene/Poly(vinyl alcohol) Composite Foams for Electromagnetic Wave Shielding with Absorption-Dominated Feature . ACS Appl. Mater. Interfaces 2019, 11, 10198–10207. DOI: 10.1021/acsami.8b21671.
  • Cao, M. S.; Cai, Y. Z.; He, P.; Shu, J. C.; Cao, W. Q.; Yuan, J. 2D MXenes: electromagnetic Property for Microwave Absorption and Electromagnetic Interference Shielding. Chem. Eng. J. 2019, 359, 1265–1302. DOI: 10.1016/j.cej.2018.11.051.
  • Tong, Y.; He, M.; Zhou, Y. M.; Zhong, X.; Fan, L. D.; Huang, T. Y.; Liao, Q.; Wang, Y. J. Hybridizing Polypyrrole Chains with Laminated and Two-Dimensional Ti(3)C(2)Tx toward High-Performance Electromagnetic Wave Absorption. Appl. Surf. Sci. 2018, 434, 283–293. DOI: 10.1016/j.apsusc.2017.10.140.
  • Yan, J.; Huang, Y.; Zhou, S.; Han, X.; Liu, P. Preparation and Microwave Absorption Properties of Nanomesh Poly (3, 4-Ethylenedioxythiophene) Covalently Functionalized Graphene Oxide. J. Mater. Sci: Mater. Electron. 2019, 30, 5273–5283. DOI: 10.1007/s10854-019-00827-x.
  • Tian, C. H.; Du, Y. C.; Xu, P.; Qiang, R.; Wang, Y.; Ding, D.; Xue, J. L.; Ma, J.; Zhao, H. T.; Han, X. J. Constructing Uniform Core-Shell PPy@PANI Composites with Tunable Shell Thickness toward Enhancement in Microwave Absorption. ACS Appl. Mater. Interfaces 2015, 7, 20090–20099. DOI: 10.1021/acsami.5b05259.
  • Wu, F.; Sun, M. X.; Jiang, W. C.; Zhang, K.; Xie, A. I.; Wang, Y.; Wang, M. Y. A Self-Assembly Method for the Fabrication of a Three-Dimensional (3D) Polypyrrole (PPy)/Poly(3,4-Ethylenedioxythiophene) (PEDOT) Hybrid Composite with Excellent Absorption Performance against Electromagnetic Pollution. J. Mater. Chem. C. 2016, 4, 82–88. DOI: 10.1039/C5TC02887F.
  • De Ting, W.; Xian-Chao, W.; Xiao, Z.; Hao Ran, Y.; Yu Jin, C. Tunable Dielectric Properties of Carbon Nanotube@Polypyrrole Core-Shell Hybrids by the Shell Thickness for Electromagnetic Wave Absorption. Chin. Phys. Lett. 2020, 37, 045201.
  • Zhang, K.; Xie, A. M.; Wu, F.; Jiang, W. C.; Wang, M. Y.; Dong, W. Carboxyl Multiwalled Carbon Nanotubes Modified Polypyrrole (PPy) Aerogel for Enhanced Electromagnetic Absorption. Mater. Res. Express 2016, 3, 055008. DOI: 10.1088/2053-1591/3/5/055008.
  • Xie, A.; Wu, F.; Xu, Z. H.; Wang, M. Y. In Situ Preparation of Ultralight Three-Dimensional Polypyrrole/Nano SiO2 Composite Aerogels with Enhanced Electromagnetic Absorption. Compos. Sci. Technol. 2015, 117, 32–38. DOI: 10.1016/j.compscitech.2015.05.010.
  • Jin, J. H.; Song, J.; Deng, S. S.; Li, G. Synthesis and Microwave Absorbing Characteristics of Flake-Like Polypyrrole Filled Composites in X-Band. Polym. Compos. 2016, 37, 532–538. DOI: 10.1002/pc.23209.
  • Zhang, K.; Sun, M. X.; Jiang, W. C.; Wang, Y.; Wang, D. R.; Wu, F.; Xie, A. M.; Dong, W. A Core-Shell Polypyrrole@Silicon Carbide Nanowire (PPy@SiC) Nanocomposite for the Broadband Elimination of Electromagnetic Pollution. RSC Adv. 2016, 6, 43056–43059. DOI: 10.1039/C6RA06663A.
  • Vu, Q. T.; Duong, N. T.; Duong, N. H. Polypyrrole/Al2O3 Nanocomposites: preparation, Characterisation and Electromagnetic Shielding Properties. J. Exp. Nanosci. 2009, 4, 213–219.
  • Yu, L. J.; Yang, Q. X.; Liao, J. L.; Zhu, Y. F.; Li, X.; Yang, W. T.; Fu, Y. Q. A Novel 3D Silver Nanowires@Polypyrrole Sponge Loaded with Water Giving Excellent Microwave Absorption Properties. Chem. Eng. J. 2018, 352, 490–500. DOI: 10.1016/j.cej.2018.07.047.
  • Xiao, H. M.; Zhang, W. D.; Fu, S. Y. One-Step Synthesis, Electromagnetic and Microwave Absorbing Properties of alpha-FeOOH/Polypyrrole Nanocomposites. Compos. Sci. Technol. 2010, 70, 909–915. DOI: 10.1016/j.compscitech.2010.02.002.
  • Liu, P. B.; Huang, Y.; Zhang, X. Synthesis and Excellent Microwave Absorption Properties of Graphene/Polypyrrole Composites with Fe3O4 Particles Prepared via a co-Precipitation Method. Mater. Lett. 2014, 129, 35–38. DOI: 10.1016/j.matlet.2014.04.194.
  • Yang, R. B.; Reddy, P. M.; Chang, C. J.; Chen, P. A.; Chen, J. K.; Chang, C. C. Synthesis and Characterization of Fe3O4/Polypyrrole/Carbon Nanotube Composites with Tunable Microwave Absorption Properties: Role of Carbon Nanotube and Polypyrrole Content. Chem. Eng. J. 2016, 285, 497–507. DOI: 10.1016/j.cej.2015.10.031.
  • Li, S. P.; Huang, Y.; Zhang, N.; Zong, M.; Liu, P. B. Synthesis of Polypyrrole Decorated FeCo@SiO2 as a High-Performance Electromagnetic Absorption Material. J. Alloys Compd. 2019, 774, 532–539. DOI: 10.1016/j.jallcom.2018.09.349.
  • Yan, J.; Huang, Y.; Chen, X. F.; Wei, C. Conducting polymers-NiFe2O4 Coated on Reduced Graphene Oxide Sheets as Electromagnetic (EM) Wave Absorption Materials. Synth. Met. 2016, 221, 291–298. DOI: 10.1016/j.synthmet.2016.09.018.
  • Zhang, Y. J.; Zhang, Z. M.; Xu, S. C.; Yu, L. M.; Long, Y. Z.; Tang, Q. W. Synthesis of gamma-Fe2O3@SiO2@Polypyrrole Core/Shell/Shell Nanospheres with Flexible Controllability of Electromagnetic Properties. RSC Adv. 2016, 6, 6623–6630. DOI: 10.1039/C5RA25576G.
  • Han, S. J.; Wang, S. Y.; Li, W. H.; Lai, Y. R.; Zhang, N.; Yang, N.; Wang, Q. H.; Jiang, W. Synthesis of PPy/Ni/RGO and Enhancement on Its Electromagnetic Wave Absorption Performance. Ceram. Int. 2018, 44, 10352–10361. DOI: 10.1016/j.ceramint.2018.03.046.
  • Tiwari, D. C.; Dipak, P.; Dwivedi, S. K.; Shami, T. C.; Dwivedi, P. PPy/TiO2(np)/CNT Polymer Nanocomposite Material for Microwave Absorption. J. Mater. Sci: Mater. Electron. 2018, 29, 1643–1650. DOI: 10.1007/s10854-017-8076-y.
  • Olad, A.; Shakoori, S. Electromagnetic Interference Attenuation and Shielding Effect of Quaternary Epoxy-PPy/Fe3O4-ZnO Nanocomposite as a Broad Band Microwave-Absorber. J. Magn. Magn. Mater. 2018, 458, 335–345. DOI: 10.1016/j.jmmm.2018.03.050.
  • Li, Y. N.; Zhao, Y.; Lu, X. Y.; Zhu, Y.; Jiang, L. Self-Healing Superhydrophobic Polyvinylidene Fluoride/Fe3O4@Polypyrrole Fiber with Core-Sheath Structures for Superior Microwave Absorption. Nano Res. 2016, 9, 2034–2045. DOI: 10.1007/s12274-016-1094-x.
  • Li, W. Z.; Qiu, T.; Wang, L. L.; Ren, S. S.; Zhang, J. R.; He, L. F.; Li, X. Y. Preparation and Electromagnetic Properties of Core/Shell Polystyrene@Polypyrrole@Nickel Composite Microspheres. ACS Appl. Mater. Interfaces 2013, 5, 883–891. DOI: 10.1021/am302551d.
  • Zhang, B.; Lin, S.; Zhang, J.; Li, X.; Sun, X. Facile Synthesis of Sandwich-Like rGO/CuS/Polypyrrole Nanoarchitectures for Efficient Electromagnetic Absorption. Materials 2020, 13, 446. DOI: 10.3390/ma13020446.
  • Zhang, N.; Wang, Y.; Chen, P.; Chen, W. A Rational Route towards Dual Wave-Transparent Type of Carbonyl Iron@SiO2@Heterogeneous State Polypyrrole@Paraffin Composites for Electromagnetic Wave Absorption Application. J. Colloid Interface Sci. 2021, 581, 84–95. DOI: 10.1016/j.jcis.2020.07.087.
  • Wang, X. W.; Yan, H. X.; Xue, R.; Qi, S. H. A Polypyrrole/CoFe2O4/Hollow Glass Microspheres Three-Layer Sandwich Structure Microwave Absorbing Material with Wide Absorbing Bandwidth and Strong Absorbing Capacity. J. Mater. Sci: Mater. Electron. 2017, 28, 519–525. DOI: 10.1007/s10854-016-5553-7.
  • Yan, J.; Huang, Y.; Han, X. P.; Gao, X. G.; Liu, P. B. Metal Organic Framework (ZIF-67)-Derived Hollow CoS2/N-Doped Carbon Nanotube Composites for Extraordinary Electromagnetic Wave Absorption. Compos. B – Eng. 2019, 163, 67–76. DOI: 10.1016/j.compositesb.2018.11.008.
  • Liang, X.; Man, Z.; Quan, B.; Zheng, J.; Gu, W.; Zhang, Z.; Ji, G. Environment-Stable CoxNiy Encapsulation in Stacked Porous Carbon Nanosheets for Enhanced Microwave Absorption. Nano-Micro Lett. 2020, 12, 1–12. DOI: 10.1007/s40820-020-00432-2.
  • Liu, P.; Gao, S.; Wang, Y.; Zhou, F.; Huang, Y.; Huang, W.; Chang, N. Core-Shell Ni@C Encapsulated by N-Doped Carbon Derived from Nickel-Organic Polymer Coordination Composites with Enhanced Microwave Absorption. Carbon 2020, 170, 503–516. DOI: 10.1016/j.carbon.2020.08.043.
  • Liu, P.; Gao, S.; Wang, Y.; Zhou, F.; Huang, Y.; Luo, J. Metal-Organic Polymer Coordination Materials Derived Co/N-Doped Porous Carbon Composites for Frequency-Selective Microwave Absorption. Compos. B: Eng. 2020, 202, 108406. DOI: 10.1016/j.compositesb.2020.108406.
  • Wang, Y.; Di, X.; Wu, X.; Li, X. MOF-Derived Nanoporous Carbon/Co/Co3O4/CNTs/RGO Composite with Hierarchical Structure as a High-Efficiency Electromagnetic Wave Absorber. J. Alloys Compd. 2020, 846, 156215. DOI: 10.1016/j.jallcom.2020.156215.
  • Wang, L.; Wen, B.; Bai, X.; Liu, C.; Yang, H. NiCo Alloy/Carbon Nanorods Decorated with Carbon Nanotubes for Microwave Absorption. ACS Appl. Nano Mater. 2019, 2, 7827–7838. DOI: 10.1021/acsanm.9b01842.
  • Wang, L.; Wen, B.; Yang, H.; Qiu, Y.; He, N. Hierarchical Nest-like Structure of Co/Fe MOF Derived CoFe@C Composite as Wide-Bandwidth Microwave Absorber. Compos. A: Appl. Sci. Manuf. 2020, 135, 105958.
  • Yan, J.; Huang, Y.; Yan, Y.; Zhao, X.; Liu, P. The Composition Design of MOF-Derived Co-Fe Bimetallic Autocatalysis Carbon Nanotubes with Controllable Electromagnetic Properties. Compos. A: Appl. Sci. Manuf. 2020, 139, 106107. DOI: 10.1016/j.compositesa.2020.106107.
  • Wang, Y. L.; Yang, S. H.; Wang, H. Y.; Wang, G. S.; Sun, X. B.; Yin, P. G. Hollow Porous CoNi/C Composite Nanomaterials Derived from MOFs for Efficient and Lightweight Electromagnetic Wave Absorber. Carbon 2020, 167, 485–494. DOI: 10.1016/j.carbon.2020.06.014.
  • Ur Rehman, S.; Sun, M.; Xu, M.; Liu, J.; Ahmed, R.; Aslam, M. A.; Ahmad, R. A.; Bi, H. Carbonized Zeolitic Imidazolate Framework-67/Polypyrrole: A Magnetic-Dielectric Interface for Enhanced Microwave Absorption Properties. J. Colloid Interface Sci. 2020, 574, 87–96. DOI: 10.1016/j.jcis.2020.04.053.
  • Sun, X. D.; Lv, X. L.; Sui, M. X.; Weng, X. D.; Li, X. P.; Wang, J. J. Decorating MOF-Derived Nanoporous Co/C in Chain-Like Polypyrrole (PPy) Aerogel: A Lightweight Material with Excellent Electromagnetic Absorption. Materials 2018, 11, 781. DOI: 10.3390/ma11050781.
  • Hakansson, E.; Amiet, A.; Kaynak, A. Electromagnetic Shielding Properties of Polypyrrole/Polyester Composites in the 1-18 GHz Frequency Range. Synth. Met. 2006, 156, 917–925.
  • Xu, J. Y.; Jin, X. A Study on the Properties of Polypyrrole Coated Polyester Fiber. AMR. 2011, 221, 48–53. DOI: 10.4028/www.scientific.net/AMR.221.48.
  • Ramoa, S.; Barra, G. M. O.; Merlini, C.; Livi, S.; Soares, B. G.; Pegoretti, A. Electromagnetic Interference Shielding Effectiveness and Microwave Absorption Properties of Thermoplastic Polyurethane/Montmorillonite-Polypyrrole Nanocomposites. Polym. Adv. Technol. 2018, 29, 1377–1384. DOI: 10.1002/pat.4249.
  • Rezazadeh, N.; Kianvash, A.; Palmeh, P. Microwave Absorption Properties of Double-Layer Nanocomposites Based on Polypyrrole/Natural Rubber. J. Appl. Polym. Sci. 2018, 135, 46565. DOI: 10.1002/app.46565.
  • Duan, W.; Yin, X.; Cao, F.; Jia, Y.; Xie, Y.; Greil, P.; Travitzky, N. Absorption Properties of Twinned SiC Nanowires Reinforced Si3N4 Composites Fabricated by 3d-Prining. Mater. Lett. 2015, 159, 257–260. DOI: 10.1016/j.matlet.2015.06.106.
  • Zuo, Y.; Yao, Z.; Lin, H.; Zhou, J.; Lu, J.; Ding, J. Digital Light Processing 3D Printing of Graphene/Carbonyl Iron/Polymethyl Methacrylate Nanocomposites for Efficient Microwave Absorption. Compos. B: Eng. 2019, 179, 107533. DOI: 10.1016/j.compositesb.2019.107533.
  • Zuo, Y.; Su, X.; Li, X.; Yao, Z.; Yu, T.; Zhou, J.; Li, J.; Lu, J.; Ding, J. Multimaterial 3D-Printing of Graphene/Li0.35Zn0.3Fe2.35O4 and Graphene/Carbonyl Iron Composites with Superior Microwave Absorption Properties and Adjustable Bandwidth. Carbon 2020, 167, 62–74. DOI: 10.1016/j.carbon.2020.05.071.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.