1,099
Views
2
CrossRef citations to date
0
Altmetric
Reviews

Systems Based on Biobased Thermoplastics: From Bioresources to Biodegradable Packaging Applications

&
Pages 653-721 | Received 28 Jun 2021, Accepted 27 Nov 2021, Published online: 09 Dec 2021

References

  • Eriksen, M. K.; Damgaard, A.; Boldrin, A.; Astrup, T. F. Quality Assessment and Circularity Potential of Recovery Systems for Household Plastic Waste. J. Ind. Ecol. 2019, 23, 156–168. DOI: 10.1111/jiec.12822.
  • Edjabou, M. E.; Jensen, M. B.; Götze, R.; Pivnenko, K.; Petersen, C.; Scheutz, C.; Astrup, T. F. Municipal Solid Waste Composition: Sampling Methodology, Statistical Analyses, and Case Study Evaluation. Waste Manag. 2015, 36, 12–23. DOI: 10.1016/j.wasman.2014.11.009.
  • Garcia, J. M.; Robertson, M. L. The Future of Plastics Recycling. Science 2017, 358, 870–872. DOI: 10.1126/science.aaq0324.
  • Singh, S. P.; Chonhenchob, V.; Singh, J. Life Cycle Inventory and Analysis of Re-Usable Plastic Containers and Display-Ready Corrugated Containers Used for Packaging Fresh Fruits and Vegetables. Packag. Technol. Sci. 2006, 19, 279–293. DOI: 10.1002/pts.731.
  • Abejón, R.; Bala, A.; Vázquez-Rowe, I.; Aldaco, R.; Fullana-I-Palmer, P. When Plastic Packaging Should Be Preferred: Life Cycle Analysis of Packages for Fruit and Vegetable Distribution in the Spanish Peninsular Market. Resour. Conserv. Recycl. 2020, 155, 104666. DOI: 10.1016/j.resconrec.2019.104666.
  • Zanghelini, G. M.; Cherubini, E.; Dias, R.; Kabe, Y. H. O.; Delgado, J. J. S. Comparative Life Cycle Assessment of Drinking Straws in Brazil. J. Clean. Prod. 2020, 276, 123070. DOI: 10.1016/j.jclepro.2020.123070.
  • Agarwal, S. Biodegradable Polymers: Present Opportunities and Challenges in Providing a Microplastic-Free Environment. Macromol. Chem. Phys. 2020, 221, 2000017. DOI: 10.1002/macp.202000017.
  • Furtwengler, P.; Avérous, L. Renewable Polyols for Advanced Polyurethane Foams from Diverse Biomass Resources. Polym. Chem. 2018, 9, 4258–4287. DOI: 10.1039/C8PY00827B.
  • Chinthapalli, R.; Skoczinski, P.; Carus, M.; Baltus, W.; de Guzman, D.; Käb, H.; Raschka, A.; Ravenstijn, J. Biobased Building Blocks and Polymers—Global Capacities, Production and Trends, 2018–2023. Ind. Biotechnol. 2019, 15, 237–241. DOI: 10.1089/ind.2019.29179.rch.
  • Peyrton, J.; Avérous, L. Structure-Properties Relationships of Cellular Materials from Biobased Polyurethane Foams. Mater. Sci. Eng. R Rep. 2021, 145, 100608. DOI: 10.1016/j.mser.2021.100608.
  • RameshKumar, S.; Shaiju, P.; O'Connor, K. E.; P, R. B. Bio-Based and Biodegradable Polymers - State-of-the-Art, Challenges and Emerging Trends. Curr. Opin. Green Sustain. Chem. 2020, 21, 75–81. DOI: 10.1016/j.cogsc.2019.12.005.
  • Vert, M.; Doi, Y.; Hellwich, K.-H.; Hess, M.; Hodge, P.; Kubisa, P.; Rinaudo, M.; Schué, F. Terminology for Biorelated Polymers and Applications (IUPAC Recommendations 2012). Pure Appl. Chem. 2012, 84, 377–410. DOI: 10.1351/PAC-REC-10-12-04.
  • Wendels, S.; Avérous, L. Biobased Polyurethanes for Biomedical Applications. Bioact. Mater. 2021, 6, 1083–1106. DOI: 10.1016/j.bioactmat.2020.10.002.
  • Norton, G. A.; Devlin, S. L. Determining the Modern Carbon Content of Biobased Products Using Radiocarbon Analysis. Bioresour. Technol. 2006, 97, 2084–2090. DOI: 10.1016/j.biortech.2005.08.017.
  • Heux, S.; Meynial-Salles, I.; O'Donohue, M. J.; Dumon, C. White Biotechnology: State of the Art Strategies for the Development of Biocatalysts for Biorefining. Biotechnol. Adv. 2015, 33, 1653–1670. DOI: 10.1016/j.biotechadv.2015.08.004.
  • Yadav, A. N.; Mishra, S.; Singh, S.; Gupta, A. Recent Advancement in White Biotechnology through Fungi: Volume 1: Diversity and Enzymes Perspectives; Springer: Cham, 2019.
  • European Parliament, Council of the European Union. European Parliament and Council Directive 94/62/EC of 20 December 1994 on Packaging and Packaging Waste. https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX%3A31994L0062. (accessed May 06, 2020).
  • Hekkert, M. P.; Joosten, L. A. J.; Worrell, E.; Turkenburg, W. C. Reduction of CO2 Emissions by Improved Management of Material and Product Use: The Case of Primary Packaging. Resour. Conserv. Recycl. 2000, 29, 33–64. DOI: 10.1016/S0921-3449(99)00056-7.
  • Dixon-Hardy, D. W.; Curran, B. A. Types of Packaging Waste from Secondary Sources (Supermarkets) – The Situation in the UK. Waste Manag. 2009, 29, 1198–1207. DOI: 10.1016/j.wasman.2008.06.045.
  • Biron, M. Thermoplastics and Thermoplastic Composites; William Andrew: Kidlington, 2018.
  • Emblem, A.; Emblem, H. Packaging Technology: Fundamentals, Materials and Processes; Elsevier: Cambridge, 2012.
  • Rosato, D. V.; Rosato, M. G. Injection Molding Handbook; Springer: Boston, MA, 2012.
  • Thomas, S.; Yang, W. Advances in Polymer Processing: From Macro- To Nano- Scales; Elsevier: Cambridge, 2009.
  • Jabarin, S. A.; Kollen, W. J. Polyolefin Properties for Rigid Food Packaging. Polym. Eng. Sci. 1988, 28, 1156–1161. DOI: 10.1002/pen.760281804.
  • Wagner, J. R. J. Multilayer Flexible Packaging; William Andrew: Kidlington, 2016.
  • Mokwena, K. K.; Tang, J. Ethylene Vinyl Alcohol: A Review of Barrier Properties for Packaging Shelf Stable Foods. Crit. Rev. Food Sci. Nutr. 2012, 52, 640–650. DOI: 10.1080/10408398.2010.504903.
  • Park, H. C.; Ashcraft, C. R. The Use of Polyacrylonitrile Film in Barrier Food Packaging. J. Plast. Film Sheeting 1985, 1, 95–103. DOI: 10.1177/875608798500100203.
  • Rastogi, V.; Samyn, P. Bio-Based Coatings for Paper Applications. Coatings 2015, 5, 887–930. DOI: 10.3390/coatings5040887.
  • Wu, F.; Misra, M.; Mohanty, A. K. Challenges and New Opportunities on Barrier Performance of Biodegradable Polymers for Sustainable Packaging. Prog. Polym. Sci. 2021, 117, 101395. DOI: 10.1016/j.progpolymsci.2021.101395.
  • Zhang, Y.; Rempel, C.; Liu, Q. Thermoplastic Starch Processing and Characteristics—A Review. Crit. Rev. Food Sci. Nutr. 2014, 54, 1353–1370. DOI: 10.1080/10408398.2011.636156.
  • Ahmed, I.; Lin, H.; Zou, L.; Brody, A. L.; Li, Z.; Qazi, I. M.; Pavase, T. R.; Lv, L. A Comprehensive Review on the Application of Active Packaging Technologies to Muscle Foods. Food Control 2017, 82, 163–178. DOI: 10.1016/j.foodcont.2017.06.009.
  • Ahvenainen, R. Novel Food Packaging Techniques; Elsevier: Cambridge, 2003.
  • Fang, Z.; Zhao, Y.; Warner, R. D.; Johnson, S. K. Active and Intelligent Packaging in Meat Industry. Trends Food Sci. Technol. 2017, 61, 60–71. DOI: 10.1016/j.tifs.2017.01.002.
  • Jideani, V. A.; Vogt, K. Antimicrobial Packaging for Extending the Shelf Life of Bread—A Review. Crit. Rev. Food Sci. Nutr. 2016, 56, 1313–1324. DOI: 10.1080/10408398.2013.768198.
  • Ozdemir, M.; Floros, J. D. Active Food Packaging Technologies. Crit. Rev. Food Sci. Nutr. 2004, 44, 185–193. DOI: 10.1080/10408690490441578.
  • Suppakul, P.; Miltz, J.; Sonneveld, K.; Bigger, S. W. Active Packaging Technologies with an Emphasis on Antimicrobial Packaging and Its Applications. J. Food Sci. 2003, 68, 408–420. DOI: 10.1111/j.1365-2621.2003.tb05687.x.
  • Vermeiren, L.; Devlieghere, F.; van Beest, M.; de Kruijf, N.; Debevere, J. Developments in the Active Packaging of Foods. Trends Food Sci. Technol. 1999, 10, 77–86. DOI: 10.1016/S0924-2244(99)00032-1.
  • Bag, D. S.; Kumar, V. P.; Maiti, S. Chemical Modification of LDPE Film. J. Appl. Polym. Sci. 1999, 71, 1041–1048. DOI: 10.1002/(SICI)1097-4628(19990214)71:7 < 1041::AID-APP1 > 3.0.CO;2-R.
  • Ozdemir, M.; Yurteri, C. U.; Sadikoglu, H. Physical Polymer Surface Modification Methods and Applications in Food Packaging Polymers. Crit. Rev. Food Sci. Nutr. 1999, 39, 457–477. DOI: 10.1080/10408699991279240.
  • Yousif, E.; Haddad, R. Photodegradation and Photostabilization of Polymers, Especially Polystyrene: Review. Springerplus. 2013, 2, 398. DOI: 10.1186/2193-1801-2-398.
  • Finnveden, G.; Hauschild, M. Z.; Ekvall, T.; Guinée, J.; Heijungs, R.; Hellweg, S.; Koehler, A.; Pennington, D.; Suh, S. Recent Developments in Life Cycle Assessment. J. Environ. Manage. 2009, 91, 1–21. DOI: 10.1016/j.jenvman.2009.06.018.
  • Rossi, V.; Cleeve-Edwards, N.; Lundquist, L.; Schenker, U.; Dubois, C.; Humbert, S.; Jolliet, O. Life Cycle Assessment of End-of-Life Options for Two Biodegradable Packaging Materials: Sound Application of the European Waste Hierarchy. J. Clean. Prod. 2015, 86, 132–145. DOI: 10.1016/j.jclepro.2014.08.049.
  • Magnin, A.; Pollet, E.; Phalip, V.; Avérous, L. Evaluation of Biological Degradation of Polyurethanes. Biotechnol. Adv. 2020, 39. 107457. DOI: 10.1016/j.biotechadv.2019.107457.
  • Kleeberg, I.; Welzel, K.; VandenHeuvel, J.; Müller, R.-J.; Deckwer, W.-D. Characterization of a New Extracellular Hydrolase from Thermobifida Fusca Degrading Aliphatic-Aromatic Copolyesters. Biomacromolecules 2005, 6, 262–270. 10.1021/bm049582t.
  • Jarerat, A.; Tokiwa, Y.; Tanaka, H. Production of Poly(l-Lactide)-Degrading Enzyme by Amycolatopsis Orientalis for Biological Recycling of Poly(l-Lactide). Appl. Microbiol. Biotechnol. 2006, 72, 726–731. 10.1007/s00253-006-0343-4.
  • Tomita, K.; Kuroki, Y.; Nagai, K. Isolation of Thermophiles Degrading Poly(L-Lactic Acid). J. Biosci. Bioeng. 1999, 87, 752–755. 10.1016/s1389-1723(99)80148-0.
  • Tomita, K.; Tsuji, H.; Nakajima, T.; Kikuchi, Y.; Ikarashi, K.; Ikeda, N. Degradation of Poly(d-Lactic Acid) by a Thermophile. Polym. Degrad. Stab. 2003, 81, 167–171. DOI: 10.1016/S0141-3910(03)00086-7.
  • Tomita, K.; Kuroki, Y.; Hayashi, N.; Komukai, Y. Isolation of a Thermophile Degrading Poly(Butylene Succinate-Co-Butylene Adipate). J. Biosci. Bioeng. 2000, 90, 350–352. 10.1016/S1389-1723(00)80096-1.
  • Teeraphatpornchai, T.; Nakajima-Kambe, T.; Shigeno-Akutsu, Y.; Nakayama, M.; Nomura, N.; Nakahara, T.; Uchiyama, H. Isolation and Characterization of a Bacterium That Degrades Various Polyester-Based Biodegradable Plastics. Biotechnol. Lett. 2003, 25, 23–28. 10.1023/A:1021713711160.
  • Klingbeil, B.; Kroppenstedt, R. M.; Jendrossek, D. Taxonomic Identification of Streptomyces Exfoliatus K10 and Characterization of Its Poly(3-Hydroxybutyrate) Depolymerase Gene. FEMS Microbiol. Lett. 1996, 142, 215–221. 10.1111/j.1574-6968.1996.tb08433.x.
  • Gangoiti, J.; Santos, M.; Prieto, M. A.; I. de la, M.; Serra, J. L.; Llama, M. J. Characterization of a Novel Subgroup of Extracellular Medium-Chain-Length Polyhydroxyalkanoate Depolymerases from Actinobacteria. Appl. Environ. Microbiol. 2012, 78, 7229–7237. DOI: 10.1128/AEM.01707-12.
  • Williams, D. F. Enzymic Hydrolysis of Polylactic Acid. Eng. Med. 1981, 10, 5–7. DOI: 10.1243/EMED_JOUR_1981_010_004_02.
  • Andersen, M. R.; Giese, M.; de Vries, R. P.; Nielsen, J. Mapping the Polysaccharide Degradation Potential of Aspergillus niger. BMC Genomics. 2012, 13, 313. 10.1186/1471-2164-13-313.
  • Maeda, H.; Yamagata, Y.; Abe, K.; Hasegawa, F.; Machida, M.; Ishioka, R.; Gomi, K.; Nakajima, T. Purification and Characterization of a Biodegradable Plastic-Degrading Enzyme from Aspergillus oryzae. Appl. Microbiol. Biotechnol. 2005, 67, 778–788. 10.1007/s00253-004-1853-6.
  • Liu, Z.; Gosser, Y.; Baker, P. J.; Ravee, Y.; Lu, Z.; Alemu, G.; Li, H.; Butterfoss, G. L.; Kong, X.-P.; Gross, R.; Montclare, J. K. Structural and Functional Studies of Aspergillus oryzae Cutinase: Enhanced Thermostability and Hydrolytic Activity of Synthetic Ester and Polyester Degradation. J. Am. Chem. Soc. 2009, 131, 15711–15716. 10.1021/ja9046697.
  • Murphy, C. A.; Cameron, J. A.; Huang, S. J.; Vinopal, R. T. Fusarium Polycaprolactone Depolymerase is Cutinase. Appl. Environ. Microbiol. 1996, 62, 456–460. DOI: 10.1128/aem.62.2.456-460.1996.
  • Shi, K.; Jing, J.; Song, L.; Su, T.; Wang, Z. Enzymatic Hydrolysis of Polyester: Degradation of Poly(ε-Caprolactone) by Candida Antarctica Lipase and Fusarium solani Cutinase. Int. J. Biol. Macromol. 2020, 144, 183–189. 10.1016/j.ijbiomac.2019.12.105.
  • Chandra, R. Environmental Waste Management; CRC Press: Boca Raton, FL, 2016.
  • Kale, G.; Kijchavengkul, T.; Auras, R.; Rubino, M.; Selke, S. E.; Singh, S. P. Compostability of Bioplastic Packaging Materials: An Overview. Macromol. Biosci. 2007, 7, 255–277. 10.1002/mabi.200600168.
  • Kijchavengkul, T.; Auras, R. Compostability of Polymers. Polym. Int. 2008, 57, 793–804. DOI: 10.1002/pi.2420.
  • Briassoulis, D.; Dejean, C.; Picuno, P. Critical Review of Norms and Standards for Biodegradable Agricultural Plastics Part II: Composting. J. Polym. Environ. 2010, 18, 364–383. DOI: 10.1007/s10924-010-0222-z.
  • De Wilde, B.; Mortier, N.; Verstichel, S.; Briassoulis, D.; Babou, M.; Mistriotis, A.; Hiskakis, M. Report on Current Relevant Biodegradation and Ecotoxicity Standards; OWS: Ghent, 2013.
  • Bellia, G.; Tosin, M.; Floridi, G.; Degli-Innocenti, F. Activated Vermiculite, a Solid Bed for Testing Biodegradability under Composting Conditions. Polym. Degrad. Stab. 1999, 66, 65–79. DOI: 10.1016/S0141-3910(99)00053-1.
  • Bellia, G.; Tosin, M.; Degli-Innocenti, F. The Test Method of Composting in Vermiculite is Unaffected by the Priming Effect. Polym. Degrad. Stab. 2000, 69, 113–120. DOI: 10.1016/S0141-3910(00)00048-3.
  • Barrena, R.; Font, X.; Gabarrell, X.; Sánchez, A. Home Composting versus Industrial Composting: Influence of Composting System on Compost Quality with Focus on Compost Stability. Waste Manag. 2014, 34, 1109–1116. 10.1016/j.wasman.2014.02.008.
  • Gallant, D. J.; Bouchet, B.; Buléon, A.; Pérez, S. Physical Characteristics of Starch Granules and Susceptibility to Enzymatic Degradation. Eur. J. Clin. Nutr. 1992, 46, S3–S16.
  • Evren, M.; Ozgun, H.; Kaan, R.; Ozturk, I. Anaerobic Treatment of Industrial Effluents: An Overview of Applications. In Waste Water - Treatment and Reutilization; Garca Einschlag, F. S., Ed.; InTech, 2011; pp 3–28.
  • Herout, M.; Malaťák, J.; Kučera, L.; Dlabaja, T. Biogas Composition Depending on the Type of Plant Biomass Used. Res. Agr. Eng. 2011, 57, 137–143. DOI: 10.17221/41/2010-RAE.
  • Awe, O. W.; Zhao, Y.; Nzihou, A.; Minh, D. P.; Lyczko, N. A Review of Biogas Utilisation, Purification and Upgrading Technologies. Waste Biomass Valor. 2017, 8, 267–283. DOI: 10.1007/s12649-016-9826-4.
  • Peng, W.; Lü, F.; Hao, L.; Zhang, H.; Shao, L.; He, P. Digestate Management for High-Solid Anaerobic Digestion of Organic Wastes: A Review. Bioresour. Technol. 2020, 297, 122485. 10.1016/j.biortech.2019.122485.
  • Jambeck, J. R.; Geyer, R.; Wilcox, C.; Siegler, T. R.; Perryman, M.; Andrady, A.; Narayan, R.; Law, K. L. Marine Pollution. Plastic Waste Inputs from Land into the Ocean. Science 2015, 347, 768–771. 10.1126/science.1260352.
  • Law, K. L.; Morét-Ferguson, S.; Maximenko, N. A.; Proskurowski, G.; Peacock, E. E.; Hafner, J.; Reddy, C. M. Plastic Accumulation in the North Atlantic Subtropical Gyre. Science 2010, 329, 1185–1188. 10.1126/science.1192321.
  • Skoczinski, P.; Krause, L.; Raschka, A.; Dammer, L.; Carus, M. Current Status and Future Development of Plastics: Solutions for a Circular Economy and Limitations of Environmental Degradation. Methods Enzymol. 2021, 648, 1–26. 10.1016/bs.mie.2020.11.001.
  • nova-Institut; IKT Stuttgart; OWS; HYDRA Marine Sciences. Biodegradable Polymers in Various Environments According to Established Standards and Certification Schemes https://renewable-carbon.eu/publications/product/biodegradable-polymers-in-various-environments-according-to-established-standards-and-certification-schemes-graphic-png/ (accessed May 21, 2021).
  • Avérous, L. Biodegradable Multiphase Systems Based on Plasticized Starch: A Review. J. Macromol. Sci. Part C Polym. Rev. 2004, 44, 231–274. DOI: 10.1081/MC-200029326.
  • Halley, P. J., Avérous, L., Eds. Starch Polymers: From Genetic Engineering to Green Applications; Elsevier: Burlington, MA, 2014.
  • Wu, H.-C. H.; Sarko, A. The Double-Helical Molecular Structure of Crystalline a-Amylose. Carbohydr. Res. 1978, 61, 27–40. DOI: 10.1016/S0008-6215(00)84464-X.
  • Bowen, S. E.; Gray, D. A.; Giraud, C.; Majzoobi, M.; Testa, C. E. M.; Pérez, L. A. B.; Hill, S. E. Lipid Oxidation and Amylopectin Molecular Weight Changes Occurring during Storage of Extruded Starch Samples. J. Cereal Sci. 2006, 43, 275–283. DOI: 10.1016/j.jcs.2005.08.010.
  • Ong, M. H.; Jumel, K.; Tokarczuk, P. F.; Blanshard, J. M. V.; Harding, S. E. Simultaneous Determinations of the Molecular Weight Distributions of Amyloses and the Fine Structures of Amylopectins of Native Starches. Carbohydr. Res. 1994, 260, 99–117. DOI: 10.1016/0008-6215(94)80025-1.
  • Ogunsona, E.; Ojogbo, E.; Mekonnen, T. Advanced Material Applications of Starch and Its Derivatives. Eur. Polym. J. 2018, 108, 570–581. DOI: 10.1016/j.eurpolymj.2018.09.039.
  • Lopez-Rubio, A.; Flanagan, B. M.; Gilbert, E. P.; Gidley, M. J. A Novel Approach for Calculating Starch Crystallinity and Its Correlation with Double Helix Content: A Combined XRD and NMR Study. Biopolymers 2008, 89, 761–768. 10.1002/bip.21005.
  • Vergnes, B.; Villemaire, J. P. Rheological Behaviour of Low Moisture Molten Maize Starch. Rheol. Acta 1987, 26, 570–576. DOI: 10.1007/BF01333742.
  • Della Valle, G.; Boché, Y.; Colonna, P.; Vergnes, B. The Extrusion Behaviour of Potato Starch. Carbohydr. Polym. 1995, 28, 255–264. DOI: 10.1016/0144-8617(95)00111-5.
  • Della Valle, G.; Colonna, P.; Patria, A.; Vergnes, B. Influence of Amylose Content on the Viscous Behavior of Low Hydrated Molten Starches. J. Rheol. 1996, 40, 347–362. DOI: 10.1122/1.550747.
  • Della Valle, G.; Vergnes, B.; Colonna, P.; Patria, A. Relations between Rheological Properties of Molten Starches and Their Expansion Behaviour in Extrusion. J. Food Eng. 1997, 31, 277–295. DOI: 10.1016/S0260-8774(96)00080-5.
  • Della Valle, G.; Buleon, A.; Carreau, P. J.; Lavoie, P.-A.; Vergnes, B. Relationship between Structure and Viscoelastic Behavior of Plasticized Starch. J. Rheol. 1998, 42, 507–525. DOI: 10.1122/1.550900.
  • Xie, F.; Halley, P. J.; Avérous, L. Rheology to Understand and Optimize Processibility, Structures and Properties of Starch Polymeric Materials. Prog. Polym. Sci. 2012, 37, 595–623. DOI: 10.1016/j.progpolymsci.2011.07.002.
  • Jacobsen, S.; Fritz, H. G. Filling of Poly(Lactic Acid) with Native Starch. Polym. Eng. Sci. 1996, 36, 2799–2804. DOI: 10.1002/pen.10680.
  • Ge, X. C.; Li, X. H.; Zhu, Q.; Li, L.; Meng, Y. Z. Preparation and Properties of Biodegradable Poly(Propylene Carbonate)/Starch Composites. Polym. Eng. Sci. 2004, 44, 2134–2140. DOI: 10.1002/pen.20219.
  • Lauer, M. K.; Smith, R. C. Recent Advances in Starch-Based Films toward Food Packaging Applications: Physicochemical, Mechanical, and Functional Properties. Compr. Rev. Food Sci. Food Saf. 2020, 19, 3031–3083. DOI: 10.1111/1541-4337.12627.
  • Coffin, D. R.; Fishman, M. L.; Cooke, P. H. Mechanical and Microstructural Properties of Pectin/Starch Films. J. Appl. Polym. Sci. 1995, 57, 663–670. DOI: 10.1002/app.1995.070570602.
  • Kaisangsri, N.; Kerdchoechuen, O.; Laohakunjit, N. Biodegradable Foam Tray from Cassava Starch Blended with Natural Fiber and Chitosan. Ind. Crops Prod. 2012, 37, 542–546. DOI: 10.1016/j.indcrop.2011.07.034.
  • Averous, L. Properties of Thermoplastic Blends: Starch–Polycaprolactone. Polymer 2000, 41, 4157–4167. DOI: 10.1016/S0032-3861(99)00636-9.
  • Avérous, L.; Fringant, C. Association between Plasticized Starch and Polyesters: Processing and Performances of Injected Biodegradable Systems. Polym. Eng. Sci. 2001, 41, 727–734. DOI: 10.1002/pen.10768.
  • Laftah, W. A. Starch Based Biodegradable Blends: A Review. Int. J. Eng. Res. 2017, 6, 19.
  • Kaseem, M.; Hamad, K.; Deri, F. Thermoplastic Starch Blends: A Review of Recent Works. Polym. Sci. Ser. A 2012, 54, 165–176. DOI: 10.1134/S0965545X1202006X.
  • Koh, J. J.; Zhang, X.; He, C. Fully Biodegradable Poly(Lactic Acid)/Starch Blends: A Review of Toughening Strategies. Int. J. Biol. Macromol. 2018, 109, 99–113. 10.1016/j.ijbiomac.2017.12.048.
  • Zaaba, N. F.; Ismail, H. A Review on Tensile and Morphological Properties of Poly (Lactic Acid) (PLA)/ Thermoplastic Starch (TPS) Blends. Polym.-Plast. Technol. Mater. 2019, 58, 1945–1964. DOI: 10.1080/25740881.2019.1599941.
  • Nossa, T. S.; Belgacem, N. M.; Gandini, A.; Carvalho, A. J. Thermoreversible Crosslinked Thermoplastic Starch. Polym. Int. 2015, 64, 1366–1372. DOI: 10.1002/pi.4925.
  • Haroon, M.; Wang, L.; Yu, H.; Abbasi, N. M.; Zain-Ul-Abdin, Z.-A.; Saleem, M.; Khan, R. U.; Ullah, R. S.; Chen, Q.; Wu, J. Chemical Modification of Starch and Its Application as an Adsorbent Material. RSC Adv. 2016, 6, 78264–78285. DOI: 10.1039/C6RA16795K.
  • Masina, N.; Choonara, Y. E.; Kumar, P.; Du Toit, L. C.; Govender, M.; Indermun, S.; Pillay, V. A Review of the Chemical Modification Techniques of Starch. Carbohydr. Polym. 2017, 157, 1226–1236. 10.1016/j.carbpol.2016.09.094.
  • Zia-Ud-Din, X.H.; Fei, P. Physical and Chemical Modification of Starches: A Review. Crit. Rev. Food Sci. Nutr. 2017, 57, 2691–2705. DOI: 10.1080/10408398.2015.1087379.
  • Ojogbo, E.; Ogunsona, E. O.; Mekonnen, T. H. Chemical and Physical Modifications of Starch for Renewable Polymeric Materials. Mater. Today Sustain. 2020, 7–8, 100028. DOI: 10.1016/j.mtsust.2019.100028.
  • Meimoun, J.; Wiatz, V.; Saint-Loup, R.; Parcq, J.; Favrelle, A.; Bonnet, F.; Zinck, P. Modification of Starch by Graft Copolymerization: Starch Graft Copolymerization. Starch - Stärke 2018, 70, 1600351. DOI: 10.1002/star.201600351.
  • Yin, P.; Chen, C.; Ma, H.; Gan, H.; Guo, B.; Li, P. Surface Cross-Linked Thermoplastic Starch with Different UV Wavelengths: Mechanical, Wettability, Hygroscopic and Degradation Properties. RSC Adv. 2020, 10, 44815–44823. DOI: 10.1039/D0RA07549C.
  • Hablot, E.; Dewasthale, S.; Zhao, Y.; Zhiguan, Y.; Shi, X.; Graiver, D.; Narayan, R. Reactive Extrusion of Glycerylated Starch and Starch–Polyester Graft Copolymers. Eur. Polym. J. 2013, 49, 873–881. DOI: 10.1016/j.eurpolymj.2012.12.005.
  • Detduangchan, N.; Sridach, W.; Wittaya, T. Enhancement of the Properties of Biodegradable Rice Starch Films by Using Chemical Crosslinking Agents. Int. Food Res. J. 2014, 21, 1225–1235.
  • Keshk, S. M. Bacterial Cellulose Production and Its Industrial Applications. J. Bioprocess. Biotech. 2014, 04, 1000150. DOI: 10.4172/2155-9821.1000150.
  • Avérous, L.; Fringant, C.; Moro, L. Plasticized Starch–Cellulose Interactions in Polysaccharide Composites. Polymer 2001, 42, 6565–6572. DOI: 10.1016/S0032-3861(01)00125-2.
  • Schroeter, J.; Felix, F. Melting Cellulose. Cellulose 2005, 12, 159–165. DOI: 10.1007/s10570-004-0344-3.
  • Doelker, E. Cellulose Derivatives. In Biopolymers I; Langer, R. S., Peppas, N. A., Eds.; Advances in Polymer Science; Springer: Berlin, 1993; pp 199–265.
  • Zugenmaier, P. Characteristics of Cellulose Acetates 4.1 Characterization and Physical Properties of Cellulose Acetates. Macromol. Symp. 2004, 208, 81–166. DOI: 10.1002/masy.200450407.
  • Miyashita, Y.; Suzuki, T.; Nishio, Y. Miscibility of Cellulose Acetate with Vinyl Polymers. Cellulose 2002, 9, 215–223. DOI: 10.1023/A:1021144827845.
  • Puls, J.; Wilson, S. A.; Hölter, D. Degradation of Cellulose Acetate-Based Materials: A Review. J. Polym. Environ. 2011, 19, 152–165. DOI: 10.1007/s10924-010-0258-0.
  • Meier, M. M.; Kanis, L. A.; Lima, J. C.; de, Pires, A. T. N.; Soldi, V. Poly(Caprolactone Triol) as Plasticizer Agent for Cellulose Acetate Films: Influence of the Preparation Procedure and Plasticizer Content on the Physico-Chemical Properties. Polym. Adv. Technol. 2004, 15, 593–600. DOI: 10.1002/pat.517.
  • Mohanty, A. K.; Wibowo, A.; Misra, M.; Drzal, L. T. Development of Renewable Resource–Based Cellulose Acetate Bioplastic: Effect of Process Engineering on the Performance of Cellulosic Plastics. Polym. Eng. Sci. 2003, 43, 1151–1161. DOI: 10.1002/pen.10097.
  • Liu, Y.; Ahmed, S.; Sameen, D. E.; Wang, Y.; Lu, R.; Dai, J.; Li, S.; Qin, W. A Review of Cellulose and Its Derivatives in Biopolymer-Based for Food Packaging Application. Trends Food Sci. Technol. 2021, 112, 532–546. DOI: 10.1016/j.tifs.2021.04.016.
  • Rajeswari, A.; Christy, E. J. S.; Swathi, E.; Pius, A. Fabrication of Improved Cellulose Acetate-Based Biodegradable Films for Food Packaging Applications. Environ. Chem. Ecotoxicol. 2020, 2, 107–114. DOI: 10.1016/j.enceco.2020.07.003.
  • Saha, B. C. Hemicellulose Bioconversion. J. Ind. Microbiol. Biotechnol. 2003, 30, 279–291. DOI: 10.1007/s10295-003-0049-x.
  • Farhat, W.; Venditti, R. A.; Hubbe, M.; Taha, M.; Becquart, F.; Ayoub, A. A Review of Water-Resistant Hemicellulose-Based Materials: Processing and Applications. ChemSusChem 2017, 10, 305–323. DOI: 10.1002/cssc.201601047.
  • Gírio, F. M.; Fonseca, C.; Carvalheiro, F.; Duarte, L. C.; Marques, S.; Bogel-Łukasik, R. Hemicelluloses for Fuel Ethanol: A Review. Bioresour. Technol. 2010, 101, 4775–4800. DOI: 10.1016/j.biortech.2010.01.088.
  • Zhou, X.; Li, W.; Mabon, R.; Broadbelt, L. J. A Critical Review on Hemicellulose Pyrolysis. Energy Technol. 2017, 5, 52–79. DOI: 10.1002/ente.201600327.
  • Farhat, W.; Venditti, R.; Ayoub, A.; Prochazka, F.; Fernández-de-Alba, C.; Mignard, N.; Taha, M.; Becquart, F. Towards Thermoplastic Hemicellulose: Chemistry and Characteristics of Poly-(ε-Caprolactone) Grafting onto Hemicellulose Backbones. Mater. Des. 2018, 153, 298–307. DOI: 10.1016/j.matdes.2018.05.013.
  • Zhang, X.; Wang, H.; Liu, C.; Zhang, A.; Ren, J. Synthesis of Thermoplastic Xylan-Lactide Copolymer with Amidine-Mediated Organocatalyst in Ionic Liquid. Sci. Rep. 2017, 7, 551 10.1038/s41598-017-00464-6.
  • Mikkonen, K. S.; Tenkanen, M. Sustainable Food-Packaging Materials Based on Future Biorefinery Products: Xylans and Mannans. Trends Food Sci. Technol. 2012, 28, 90–102. DOI: 10.1016/j.tifs.2012.06.012.
  • Azeredo, H. M. C.; Kontou-Vrettou, C.; Moates, G. K.; Wellner, N.; Cross, K.; Pereira, P. H. F.; Waldron, K. W. Wheat Straw Hemicellulose Films as Affected by Citric Acid. Food Hydrocoll. 2015, 50, 1–6. DOI: 10.1016/j.foodhyd.2015.04.005.
  • Hansen, N. M. L.; Plackett, D. Sustainable Films and Coatings from Hemicelluloses: A Review. Biomacromolecules 2008, 9, 1493–1505. DOI: 10.1021/bm800053z.
  • Chen, J.; Liu, W.; Liu, C.-M.; Li, T.; Liang, R.-H.; Luo, S.-J. Pectin Modifications: A Review. Crit. Rev. Food Sci. Nutr. 2015, 55, 1684–1698. DOI: 10.1080/10408398.2012.718722.
  • Makaremi, M.; Pasbakhsh, P.; Cavallaro, G.; Lazzara, G.; Aw, Y. K.; Lee, S. M.; Milioto, S. Effect of Morphology and Size of Halloysite Nanotubes on Functional Pectin Bionanocomposites for Food Packaging Applications. ACS Appl. Mater. Interfaces. 2017, 9, 17476–17488. DOI: 10.1021/acsami.7b04297.
  • Bierhalz, A. C. K.; da Silva, M. A.; Kieckbusch, T. G. Natamycin Release from Alginate/Pectin Films for Food Packaging Applications. J. Food Eng. 2012, 110, 18–25. DOI: 10.1016/j.jfoodeng.2011.12.016.
  • Thakur, B. R.; Singh, R. K.; Handa, A. K.; Rao, M. A. Chemistry and Uses of Pectin — A Review. Crit. Rev. Food Sci. Nutr. 1997, 37, 47–73. DOI: 10.1080/10408399709527767.
  • Gorrasi, G.; Bugatti, V.; Viscusi, G.; Vittoria, V. Physical and Barrier Properties of Chemically Modified Pectin with Polycaprolactone through an Environmentally Friendly Process. Colloid Polym. Sci. 2021, 299, 429–437. DOI: 10.1007/s00396-020-04699-0.
  • Bayarri, M.; Oulahal, N.; Degraeve, P.; Gharsallaoui, A. Properties of Lysozyme/Low Methoxyl (LM) Pectin Complexes for Antimicrobial Edible Food Packaging. J. Food Eng. 2014, 131, 18–25. DOI: 10.1016/j.jfoodeng.2014.01.013.
  • Pasini Cabello, S. D.; Takara, E. A.; Marchese, J.; Ochoa, N. A. Influence of Plasticizers in Pectin Films: Microstructural Changes. Mater. Chem. Phys. 2015, 162, 491–497. DOI: 10.1016/j.matchemphys.2015.06.019.
  • Alves, V. D.; Castelló, R.; Ferreira, A. R.; Costa, N.; Fonseca, I. M.; Coelhoso, I. M. Barrier Properties of Carrageenan/Pectin Biodegradable Composite Films. Proc. Food Sci. 2011, 1, 240–245. DOI: 10.1016/j.profoo.2011.09.038.
  • Shahidi, F.; Arachchi, J. K. V.; Jeon, Y.-J. Food Applications of Chitin and Chitosans. Trends Food Sci. Technol. 1999, 10, 37–51. DOI: 10.1016/S0924-2244(99)00017-5.
  • Ramesh, H. P.; Tharanathan, R. N. Carbohydrates—The Renewable Raw Materials of High Biotechnological Value. Crit. Rev. Biotechnol. 2003, 23, 149–173. DOI: 10.1080/713609312.
  • Meyer, K. H.; Wehrli, H. Comparaison Chimique de la Chitine et de la Cellulose. Helv. Chim. Acta 1937, 20, 353–362. DOI: 10.1002/hlca.19370200156.
  • Roberts, G. A. F. Chitin Chemistry; Macmillan International Higher Education, 1992.
  • Harish Prashanth, K. V.; Tharanathan, R. N. Chitin/Chitosan: Modifications and Their Unlimited Application Potential—An Overview. Trends Food Sci. Technol. 2007, 18, 117–131. DOI: 10.1016/j.tifs.2006.10.022.
  • Srinivasa, P. C.; Tharanathan, R. N. Chitin/Chitosan — Safe, Ecofriendly Packaging Materials with Multiple Potential Uses. Food Rev. Int. 2007, 23, 53–72. DOI: 10.1080/87559120600998163.
  • Ilium, L. Chitosan and Its Use as a Pharmaceutical Excipient. Pharm. Res. 1998, 15, 1326–1331. DOI: 10.1023/A:1011929016601.
  • Rinaudo, M. Chitin and Chitosan: Properties and Applications. Prog. Polym. Sci. 2006, 31, 603–632. DOI: 10.1016/j.progpolymsci.2006.06.001.
  • Chang, K. L. B.; Tsai, G.; Lee, J.; Fu, W.-R. Heterogeneous N-Deacetylation of Chitin in Alkaline Solution. Carbohydr. Res. 1997, 303, 327–332. DOI: 10.1016/S0008-6215(97)00179-1.
  • Epure, V.; Griffon, M.; Pollet, E.; Avérous, L. Structure and Properties of Glycerol-Plasticized Chitosan Obtained by Mechanical Kneading. Carbohydr. Polym. 2011, 83, 947–952. DOI: 10.1016/j.carbpol.2010.09.003.
  • Matet, M.; Heuzey, M.-C.; Pollet, E.; Ajji, A.; Avérous, L. Innovative Thermoplastic Chitosan Obtained by Thermo-Mechanical Mixing with Polyol Plasticizers. Carbohydr. Polym. 2013, 95, 241–251. DOI: 10.1016/j.carbpol.2013.02.052.
  • Bhatnagar, A.; Sillanpää, M. Applications of Chitin- and Chitosan-Derivatives for the Detoxification of Water and Wastewater — A Short Review. Adv. Colloid Interface Sci. 2009, 152, 26–38. DOI: 10.1016/j.cis.2009.09.003.
  • Cheba, B. A. Chitin and Chitosan: Marine Biopolymers with Unique Properties and Versatile Applications. Glob. J. Biotechnol. Biochem. 2011, 6, 149–153.
  • Hirano, S.; Chitin Biotechnology Applications. In Biotechnology Annual Review; El-Gewely, M. R., Ed.; Elsevier: Amsterdam, 1996; Vol. 2, pp 237–258. DOI: 10.1016/S1387-2656(08)70012-7.
  • Jayakumar, R.; Menon, D.; Manzoor, K.; Nair, S. V.; Tamura, H. Biomedical Applications of Chitin and Chitosan Based Nanomaterials—A Short Review. Carbohydr. Polym. 2010, 82, 227–232. DOI: 10.1016/j.carbpol.2010.04.074.
  • Ravi Kumar, M. N. V. A Review of Chitin and Chitosan Applications. React. Funct. Polym. 2000, 46, 1–27. DOI: 10.1016/S1381-5148(00)00038-9.
  • Chien, P.-J.; Sheu, F.; Yang, F.-H. Effects of Edible Chitosan Coating on Quality and Shelf Life of Sliced Mango Fruit. J. Food Eng. 2007, 78, 225–229. DOI: 10.1016/j.jfoodeng.2005.09.022.
  • Devlieghere, F.; Vermeulen, A.; Debevere, J. Chitosan: Antimicrobial Activity, Interactions with Food Components and Applicability as a Coating on Fruit and Vegetables. Food Microbiol. 2004, 21, 703–714. DOI: 10.1016/j.fm.2004.02.008.
  • Jiang, Y.; Li, Y. Effects of Chitosan Coating on Postharvest Life and Quality of Longan Fruit. Food Chem. 2001, 73, 139–143. DOI: 10.1016/S0308-8146(00)00246-6.
  • Smidsrod, O.; Skjakbrk, G. Alginate as Immobilization Matrix for Cells. Trends Biotechnol. 1990, 8, 71–78. DOI: 10.1016/0167-7799(90)90139-O.
  • Gacesa, P. Bacterial Alginate Biosynthesis - Recent Progress and Future Prospects. Microbiology 1998, 144, 1133–1143. DOI: 10.1099/00221287-144-5-1133.
  • Lee, K. Y.; Mooney, D. J. Alginate: Properties and Biomedical Applications. Prog. Polym. Sci. 2012, 37, 106–126. DOI: 10.1016/j.progpolymsci.2011.06.003.
  • Gao, C.; Pollet, E.; Avérous, L. Properties of Glycerol-Plasticized Alginate Films Obtained by Thermo-Mechanical Mixing. Food Hydrocoll. 2017, 63, 414–420. DOI: 10.1016/j.foodhyd.2016.09.023.
  • Pavlath, A. E.; Orts, W. Edible Films and Coatings: Why, What, and How?. In Edible Films and Coatings for Food Applications; Huber, K. C., Embuscado, M. E., Eds.; Springer: New York, NY, 2009; pp 1–23.
  • Senturk Parreidt, T.; Müller, K.; Schmid, M. Alginate-Based Edible Films and Coatings for Food Packaging Applications. Foods 2018, 7, 170. DOI: 10.3390/foods7100170.
  • Patel, P. Edible Packaging. ACS Cent. Sci. 2019, 5, 1907–1910. DOI: 10.1021/acscentsci.9b01251.
  • Paslier, P.-Y.; García González. R. Method of Encapsulating Liquid Products. WO/2018/172781, September 27, 2018.
  • Kasaai, M. R. Zein and Zein -Based Nano-Materials for Food and Nutrition Applications: A Review. Trends Food Sci. Technol. 2018, 79, 184–197. DOI: 10.1016/j.tifs.2018.07.015.
  • Shukla, R.; Cheryan, M. Z. The Industrial Protein from Corn. Ind. Crops Prod. 2001, 13, 171–192. DOI: 10.1016/S0926-6690(00)00064-9.
  • Momany, F. A.; Sessa, D. J.; Lawton, J. W.; Selling, G. W.; Hamaker, S. A. H.; Willett, J. L. Structural Characterization of Alpha-Zein. J. Agric. Food Chem. 2006, 54, 543–547. DOI: 10.1021/jf058135h.
  • Righetti, P. G.; Gianazza, E.; Viotti, A.; Soave, C. Heterogeneity of Storage Proteins in Maize. Planta 1977, 136, 115–123. 10.1007/BF00396186.
  • Gorissen, S. H. M.; Crombag, J. J. R.; Senden, J. M. G.; Waterval, W. A. H.; Bierau, J.; Verdijk, L. B.; van Loon, L. J. C. Protein Content and Amino Acid Composition of Commercially Available Plant-Based Protein Isolates. Amino Acids. 2018, 50, 1685–1695. 10.1007/s00726-018-2640-5.
  • Kinsella, J. E. Functional Properties of Soy Proteins. J. Am. Oil Chem. Soc. 1979, 56, 242–258. DOI: 10.1007/BF02671468.
  • Renkema, J. M. S.; Knabben, J. H. M.; van Vliet, T. Gel Formation by β-Conglycinin and Glycinin and Their Mixtures. Food Hydrocoll. 2001, 15, 407–414. DOI: 10.1016/S0268-005X(01)00051-0.
  • Macritchie, F. Physicochemical Properties of Wheat Proteins in Relation to Functionality. In Advances in Food and Nutrition Research; Kinsella, J. E., Ed.; Academic Press: San Diego, CA, 1992; Vol. 36, pp 1–87.
  • Soares, R. M. D.; Patzer, V. L.; Dersch, R.; Wendorff, J.; da Silveira, N. P.; Pranke, P. A Novel Globular Protein Electrospun Fiber Mat with the Addition of Polysilsesquioxane. Int. J. Biol. Macromol. 2011, 49, 480–486. 10.1016/j.ijbiomac.2011.05.025.
  • Wieser, H. Chemistry of Gluten Proteins. Food Microbiol. 2007, 24, 115–119. 10.1016/j.fm.2006.07.004.
  • Chobert, J.-M.; Touati, A.; Bertrand‐Harb, C.; Dalgalarrondo, M.; Nicolas, M.-G. Solubility and Emulsifying Properties of Kappa Casein and Its Caseinomacropeptide. J. Food Biochem. 1989, 13, 457–473. DOI: 10.1111/j.1745-4514.1989.tb00413.x.
  • Atamer, Z.; Post, A. E.; Schubert, T.; Holder, A.; Boom, R. M.; Hinrichs, J. Bovine β-Casein: Isolation, Properties and Functionality. A Review. Int. Dairy J. 2017, 66, 115–125. DOI: 10.1016/j.idairyj.2016.11.010.
  • Steinert, P. M.; Idler, W. W. The Polypeptide Composition of Bovine Epidermal Alpha-Keratin. Biochem. J. 1975, 151, 603–614. 10.1042/bj1510603.
  • Rouse, J. G.; Van Dyke, M. E. A Review of Keratin-Based Biomaterials for Biomedical Applications. Materials 2010, 3, 999–1014. DOI: 10.3390/ma3020999.
  • Szpak, P. Fish Bone Chemistry and Ultrastructure: Implications for Taphonomy and Stable Isotope Analysis. J. Archaeol. Sci. 2011, 38, 3358–3372. DOI: 10.1016/j.jas.2011.07.022.
  • Yang, X.; Yu, X.; Yagoub, A.-G. A.; Chen, L.; Wahia, H.; Osae, R.; Zhou, C. Structure and Stability of Low Molecular Weight Collagen Peptide (Prepared from White Carp Skin) -Calcium Complex. LWT 2021, 136, 110335. DOI: 10.1016/j.lwt.2020.110335.
  • Zhang, Z.; Li, G.; Shi, B. Physicochemical Properties of Collagen, Gelatin and Collagen Hydrolysate Derived from Bovine Limed Split Wastes. J. Soc. Leath Tech. Ch. 2006, 90, 23–28.
  • Verbeek, C. J. R.; Berg, L. E. v. d. Extrusion Processing and Properties of Protein-Based Thermoplastics. Macromol. Mater. Eng. 2010, 295, 10–21. DOI: 10.1002/mame.200900167.
  • Hernandez-Izquierdo, V. M.; Reid, D. S.; McHugh, T. H.; Berrios, J. D. J.; Krochta, J. M. Thermal Transitions and Extrusion of Glycerol-Plasticized Whey Protein Mixtures. J. Food Sci. 2008, 73, E169–E175. DOI: 10.1111/j.1750-3841.2008.00735.x.
  • Lawton, J. W. Zein: A History of Processing and Use. Cereal Chem. J. 2002, 79, 1–18. DOI: 10.1094/CCHEM.2002.79.1.1.
  • Lawton, J. W. Plasticizers for Zein: Their Effect on Tensile Properties and Water Absorption of Zein Films. Cereal Chem. J. 2004, 81, 1–5. DOI: 10.1094/CCHEM.2004.81.1.1.
  • Huo, W.; Wei, D.; Zhu, W.; Li, Z.; Jiang, Y. High-Elongation Zein Films for Flexible Packaging by Synergistic Plasticization: Preparation, Structure and Properties. J. Cereal Sci. 2018, 79, 354–361. DOI: 10.1016/j.jcs.2017.11.021.
  • Gómez‐Heincke, D.; Martínez, I.; Partal, P.; Guerrero, A.; Gallegos, C. Development of Antimicrobial Active Packaging Materials Based on Gluten Proteins. J. Sci. Food Agric. 2016, 96, 3432–3438. DOI: 10.1002/jsfa.7525.
  • Guillaume, C.; Schwab, I.; Gastaldi, E.; Gontard, N. Biobased Packaging for Improving Preservation of Fresh Common Mushrooms (Agaricus Bisporus L.). Innov. Food Sci. Emerg. Technol. 2010, 11, 690–696. DOI: 10.1016/j.ifset.2010.05.007.
  • Cuq, B.; Gontard, N.; Guilbert, S. Proteins as Agricultural Polymers for Packaging Production. Cereal Chem. 1998, 75, 1–9. DOI: 10.1094/CCHEM.1998.75.1.1.
  • Domenek, S.; Feuilloley, P.; Gratraud, J.; Morel, M.-H.; Guilbert, S. Biodegradability of Wheat Gluten Based Bioplastics. Chemosphere 2004, 54, 551–559. 10.1016/S0045-6535(03)00760-4.
  • Borková, M.; Snášelová, J. Possibilities of Different Animal Milk Detection in Milk and Dairy Products – A Review. Czech J. Food Sci. 2011, 23, 41–50. DOI: 10.17221/3371-CJFS.
  • Belyamani, I.; Prochazka, F.; Assezat, G. Production and Characterization of Sodium Caseinate Edible Films Made by Blown-Film Extrusion. J. Food Eng. 2014, 121, 39–47. DOI: 10.1016/j.jfoodeng.2013.08.019.
  • Brother, G. H. Casein Plastics. Ind. Eng. Chem. 1940, 32, 31–33. DOI: 10.1021/ie50361a006.
  • Picchio, M. L.; Linck, Y. G.; Monti, G. A.; Gugliotta, L. M.; Minari, R. J.; Alvarez Igarzabal, C. I. Alvarez Igarzabal, C. I. Casein Films Crosslinked by Tannic Acid for Food Packaging Applications. Food Hydrocoll. 2018, 84, 424–434. DOI: 10.1016/j.foodhyd.2018.06.028.
  • Ma, J.; An, W.; Xu, Q.; Fan, Q.; Wang, Y. Antibacterial Casein-Based ZnO Nanocomposite Coatings with Improved Water Resistance Crafted via Double In Situ Route. Prog. Org. Coat. 2019, 134, 40–47. DOI: 10.1016/j.porgcoat.2019.05.007.
  • Wang, Y.; Ma, J.; Xu, Q.; Zhang, J. Fabrication of Antibacterial Casein-Based ZnO Nanocomposite for Flexible Coatings. Mater. Des. 2017, 113, 240–245. DOI: 10.1016/j.matdes.2016.09.082.
  • Durmaz, B. U.; Aytac, A. Development and Characterization of Poly(Vinyl Alcohol) and Casein Blend Films. Polym. Int. 2019, 68, 1140–1145. DOI: 10.1002/pi.5804.
  • Ucpinar Durmaz, B.; Aytac, A. Effects of Polyol-Based Plasticizer Types and Concentration on the Properties of Polyvinyl Alcohol and Casein Blend Films. J. Polym. Environ. 2021, 29, 313–322. DOI: 10.1007/s10924-020-01881-x.
  • Pellá, M. C. G.; Silva, O. A.; Pellá, M. G.; Beneton, A. G.; Caetano, J.; Simões, M. R.; Dragunski, D. C. Effect of Gelatin and Casein Additions on Starch Edible Biodegradable Films for Fruit Surface Coating. Food Chem. 2020, 309, 125764. 10.1016/j.foodchem.2019.125764.
  • Pool, R. Have Your Packing and Eat It. Eng. Technol. 2019, 14, 36–38. DOI: 10.1049/et.2019.0305.
  • Mariod, A. A.; Adam, H. F. Review: Gelatin, Source, Extraction and Industrial Applications. Acta Sci. Pol. Technol. Aliment. 2013, 12, 135–147.
  • Hosseini, S. F.; Gómez-Guillén, M. C. A State-of-the-Art Review on the Elaboration of Fish Gelatin as Bioactive Packaging: Special Emphasis on Nanotechnology-Based Approaches. Trends Food Sci. Technol. 2018, 79, 125–135. DOI: 10.1016/j.tifs.2018.07.022.
  • Ramos, M.; Valdés, A.; Beltrán, A.; Garrigós, M. C. Gelatin-Based Films and Coatings for Food Packaging Applications. Coatings 2016, 6, 41. DOI: 10.3390/coatings6040041.
  • Isarankura Na Ayutthaya, S.; Tanpichai, S.; Wootthikanokkhan, J. Keratin Extracted from Chicken Feather Waste: Extraction, Preparation, and Structural Characterization of the Keratin and Keratin/Biopolymer Films and Electrospuns. J. Polym. Environ. 2015, 23, 506–516. DOI: 10.1007/s10924-015-0725-8.
  • Schrooyen, P. M. M.; Dijkstra, P. J.; Oberthür, R. C.; Bantjes, A.; Feijen, J. Partially Carboxymethylated Feather Keratins. 2. Thermal and Mechanical Properties of Films. J. Agric. Food Chem. 2001, 49, 221–230. 10.1021/jf0004154.
  • Barone, J. R.; Schmidt, W. F.; Liebner, C. F. E. Thermally Processed Keratin Films. J. Appl. Polym. Sci. 2005, 97, 1644–1651. DOI: 10.1002/app.21901.
  • Ramirez, D. O. S.; Carletto, R. A.; Tonetti, C.; Giachet, F. T.; Varesano, A.; Vineis, C. Wool Keratin Film Plasticized by Citric Acid for Food Packaging. Food Packag. Shelf Life 2017, 12, 100–106. DOI: 10.1016/j.fpsl.2017.04.004.
  • Assad, I.; Bhat, S. U.; Gani, A.; Shah, A. Protein Based Packaging of Plant Origin: Fabrication, Properties, Recent Advances and Future Perspectives. Int. J. Biol. Macromol. 2020, 164, 707–716. 10.1016/j.ijbiomac.2020.07.140.
  • Tan, G.-Y.; Chen, C.-L.; Li, L.; Ge, L.; Wang, L.; Razaad, I.; Li, Y.; Zhao, L.; Mo, Y.; Wang, J.-Y. Start a Research on Biopolymer Polyhydroxyalkanoate (PHA): A Review. Polymers 2014, 6, 706–754. DOI: 10.3390/polym6030706.
  • Ling, C.; Qiao, G.-Q.; Shuai, B.-W.; Olavarria, K.; Yin, J.; Xiang, R.-J.; Song, K.-N.; Shen, Y.-H.; Guo, Y.; Chen, G.-Q. Engineering NADH/NAD + Ratio in Halomonas Bluephagenesis for Enhanced Production of Polyhydroxyalkanoates (PHA). Metab. Eng. 2018, 49, 275–286. DOI: 10.1016/j.ymben.2018.09.007.
  • Dobrogojski, J.; Spychalski, M.; Luciński, R.; Borek, S. Transgenic Plants as a Source of Polyhydroxyalkanoates. Acta Physiol. Plant 2018, 40, 162. DOI: 10.1007/s11738-018-2742-4.
  • Amass, W.; Amass, A.; Tighe, B. A Review of Biodegradable Polymers: Uses, Current Developments in the Synthesis and Characterization of Biodegradable Polyesters, Blends of Biodegradable Polymers and Recent Advances in Biodegradation Studies. Polym. Int. 1998, 47, 89–144. DOI: 10.1002/(SICI)1097-0126(1998100)47:2 < 89::AID-PI86 > 3.0.CO;2-F.
  • Tanadchangsaeng, N.; Yu, J. Microbial Synthesis of Polyhydroxybutyrate from Glycerol: Gluconeogenesis, Molecular Weight and Material Properties of Biopolyester. Biotechnol. Bioeng. 2012, 109, 2808–2818. 10.1002/bit.24546.
  • Martin, D. P.; Williams, S. F. Medical Applications of Poly-4-Hydroxybutyrate: A Strong Flexible Absorbable Biomaterial. Biochem. Eng. J. 2003, 16, 97–105. DOI: 10.1016/S1369-703X(03)00040-8.
  • Malagurski, I.; Frison, R.; Maurya, A. K.; Neels, A.; Andjelkovic, B.; Senthamaraikannan, R.; Babu, R. P.; O'Connor, K. E.; Witko, T.; Solarz, D.; Nikodinovic-Runic, J. Polyhydroxyoctanoate Films Reinforced with Titanium Dioxide Microfibers for Biomedical Application. Mater. Lett. 2021, 285, 129100. DOI: 10.1016/j.matlet.2020.129100.
  • Sofińska, K.; Barbasz, J.; Witko, T.; Dryzek, J.; Haraźna, K.; Witko, M.; Kryściak‐Czerwenka, J.; Guzik, M. Structural, Topographical, and Mechanical Characteristics of Purified Polyhydroxyoctanoate Polymer. J. Appl. Polym. Sci. 2019, 136, 47192. DOI: 10.1002/app.47192.
  • Kotnis, M. A.; O'Brien, G. S.; Willett, J. L. Processing and Mechanical Properties of Biodegradable Poly(Hydroxybutyrate-Co-Valerate)-Starch Compositions. J. Environ. Polym. Degr. 1995, 3, 97–105. DOI: 10.1007/BF02067485.
  • El-Hadi, A.; Schnabel, R.; Straube, E.; Müller, G.; Henning, S. Correlation between Degree of Crystallinity, Morphology, Glass Temperature, Mechanical Properties and Biodegradation of Poly (3-Hydroxyalkanoate) PHAs and Their Blends. Polym. Test. 2002, 21, 665–674. DOI: 10.1016/S0142-9418(01)00142-8.
  • Poirier, Y.; Nawrath, C.; Somerville, C. Production of Polyhydroxyalkanoates, a Family of Biodegradable Plastics and Elastomers, in. Nat. Biotechnol. 1995, 13, 142–150. DOI: 10.1038/nbt0295-142.
  • Kurusu, R. S.; Siliki, C. A.; David, É.; Demarquette, N. R.; Gauthier, C.; Chenal, J.-M. Incorporation of Plasticizers in Sugarcane-Based Poly(3-Hydroxybutyrate)(PHB): Changes in Microstructure and Properties through Ageing and Annealing. Ind. Crops Prod. 2015, 72, 166–174. DOI: 10.1016/j.indcrop.2014.12.040.
  • Rivera-Briso, A.; Serrano-Aroca, Á. Poly(3-Hydroxybutyrate-Co-3-Hydroxyvalerate): Enhancement Strategies for Advanced Applications. Polymers 2018, 10, 732. DOI: 10.3390/polym10070732.
  • Shogren, R. Water Vapor Permeability of Biodegradable Polymers. J. Environ. Polym. Degr. 1997, 5, 91–95. DOI: 10.1007/BF02763592.
  • Malafaya, P. B.; Silva, G. A.; Reis, R. L. Natural-Origin Polymers as Carriers and Scaffolds for Biomolecules and Cell Delivery in Tissue Engineering Applications. Adv. Drug Deliv. Rev. 2007, 59, 207–233. DOI: 10.1016/j.addr.2007.03.012.
  • Poltronieri, P.; Kumar, P. Polyhydroxyalcanoates (PHAs) in Industrial Applications. In Handbook of Ecomaterials; Martínez, L. M. T., Kharissova, O. V., Kharisov, B. I., Eds.; Springer International Publishing: Cham, 2017; pp 1–30.
  • Reddy, C. S. K.; Ghai, R.; Kalia, V. C. Polyhydroxyalkanoates: An Overview. Bioresour. Technol. 2003, 87, 137–146. DOI: 10.1016/S0960-8524(02)00212-2.
  • Raza, Z. A.; Abid, S.; Banat, I. M. Polyhydroxyalkanoates: Characteristics, Production, Recent Developments and Applications. Int. Biodeterior. Biodegrad. 2018, 126, 45–56. DOI: 10.1016/j.ibiod.2017.10.001.
  • Meereboer, K. W.; Misra, M.; Mohanty, A. K. Review of Recent Advances in the Biodegradability of Polyhydroxyalkanoate (PHA) Bioplastics and Their Composites. Green Chem. 2020, 22, 5519–5558. DOI: 10.1039/D0GC01647K.
  • Brigham, C. J.; Riedel, S. L. The Potential of Polyhydroxyalkanoate Production from Food Wastes. Appl. Food Biotechnol. 2019, 6, 7–18. DOI: 10.22037/afb.v6i1.22542.
  • Alves, M. I.; Macagnan, K. L.; Rodrigues, A. A.; de Assis, D. A.; Torres, M. M.; de Oliveira, P. D.; Furlan, L.; Vendruscolo, C. T.; Moreira, A. d S. Poly(3-Hydroxybutyrate)-P(3HB): Review of Production Process Technology. Ind. Biotechnol. 2017, 13, 192–208. DOI: 10.1089/ind.2017.0013.
  • Utsunomia, C.; Ren, Q.; Zinn, M. Poly(4-Hydroxybutyrate): Current State and Perspectives. Front. Bioeng. Biotechnol. 2020, 8, 257. DOI: 10.3389/fbioe.2020.00257.
  • European Bioplastics. Bioplastics Market Development Update 2020. https://docs.european-bioplastics.org/conference/Report_Bioplastics_Market_Data_2020_short_version.pdf. (accessed Jun 24, 2021).
  • Arrieta, M. P.; López, J.; Rayón, E.; Jiménez, A. Disintegrability under Composting Conditions of Plasticized PLA–PHB Blends. Polym. Degrad. Stab. 2014, 108, 307–318. DOI: 10.1016/j.polymdegradstab.2014.01.034.
  • Saadi, Z.; Rasmont, A.; Cesar, G.; Bewa, H.; Benguigui, L. Fungal Degradation of Poly(l-Lactide) in Soil and in Compost. J. Polym. Environ. 2012, 20, 273–282. DOI: 10.1007/s10924-011-0399-9.
  • Quecholac-Piña, X.; Hernández-Berriel, M. d. C.; Mañón-Salas, M. d. C.; Espinosa-Valdemar, R. M.; Vázquez-Morillas, A. Degradation of Plastics under Anaerobic Conditions: A Short Review. Polymers 2020, 12, 109. DOI: 10.3390/polym12010109.
  • Castillo Martinez, F. A.; Balciunas, E. M.; Salgado, J. M.; Domínguez González, J. M.; Converti, A.; Oliveira, R. P. d. S. Lactic Acid Properties, Applications and Production: A Review. Trends Food Sci. Technol. 2013, 30, 70–83. DOI: 10.1016/j.tifs.2012.11.007.
  • Jem, K. J.; Tan, B. The Development and Challenges of Poly (Lactic Acid) and Poly (Glycolic Acid). Adv. Ind. Eng. Polym. Res. 2020, 3, 60–70. DOI: 10.1016/j.aiepr.2020.01.002.
  • Madhavan Nampoothiri, K.; Nair, N. R.; John, R. P. An Overview of the Recent Developments in Polylactide (PLA) Research. Bioresour. Technol. 2010, 101, 8493–8501. 10.1016/j.biortech.2010.05.092.
  • John, R. P.; Nampoothiri, K. M.; Pandey, A. Fermentative Production of Lactic Acid from Biomass: An Overview on Process Developments and Future Perspectives. Appl. Microbiol. Biotechnol. 2007, 74, 524–534. 10.1007/s00253-006-0779-6.
  • Masutani, K.; Kimura, Y. Chapter 1 PLA Synthesis. From the Monomer to the Polymer. In Poly(Lactic Acid) Science and Technology: Processing, Properties, Additives and Applications; Jiménez, A., Peltzer, M., Ruseckaite, R., Eds.; Royal Society of Chemistry: Cambridge, 2014; pp 1–36.
  • Othman, N.; Xu, C.; Mehrkhodavandi, P.; Hatzikiriakos, S. G. Thermorheological and Mechanical Behavior of Polylactide and Its Enantiomeric Diblock Copolymers and Blends. Polymer 2012, 53, 2443–2452. DOI: 10.1016/j.polymer.2012.03.068.
  • Buntara, T.; Noel, S.; Phua, P. H.; Melián-Cabrera, I.; de Vries, J. G.; Heeres, H. J. Caprolactam from Renewable Resources: Catalytic Conversion of 5-Hydroxymethylfurfural into Caprolactone. Angew. Chem. Int. Ed. Engl. 2011, 50, 7083–7087. 10.1002/anie.201102156.
  • Bigg, D. M. Polylactide Copolymers: Effect of Copolymer Ratio and End Capping on Their Properties. Adv. Polym. Technol. 2005, 24, 69–82. DOI: 10.1002/adv.20032.
  • Martin, O.; Avérous, L. Poly(Lactic Acid): Plasticization and Properties of Biodegradable Multiphase Systems. Polymer 2001, 42, 6209–6219. DOI: 10.1016/S0032-3861(01)00086-6.
  • Ali, F.; Chang, Y.-W.; Kang, S. C.; Yoon, J. Y. Thermal, Mechanical and Rheological Properties of Poly (Lactic Acid)/Epoxidized Soybean Oil Blends. Polym. Bull. 2009, 62, 91–98. DOI: 10.1007/s00289-008-1012-9.
  • Darie-Niţă, R. N.; Vasile, C.; Irimia, A.; Lipşa, R.; Râpă, M. Evaluation of Some Eco-Friendly Plasticizers for PLA Films Processing. J. Appl. Polym. Sci. 2016, 133. DOI: 10.1002/app.43223.
  • Tee, Y. B.; Talib, R. A.; Abdan, K.; Chin, N. L.; Kadir Basha, R.; Md Yunos, K. F. Comparative Study of Chemical, Mechanical, Thermal, and Barrier Properties of Poly(Lactic Acid) Plasticized with Epoxidized Soybean Oil and Epoxidized Palm Oil. BioResources 2015, 11, 1518–1540. DOI: 10.15376/biores.11.1.1518-1540.
  • Rai, P.; Mehrotra, S.; Priya, S.; Gnansounou, E.; Sharma, S. K. Recent Advances in the Sustainable Design and Applications of Biodegradable Polymers. Bioresour. Technol. 2021, 325, 124739. DOI: 10.1016/j.biortech.2021.124739.
  • Ema, Y.; Ikeya, M.; Okamoto, M. Foam Processing and Cellular Structure of Polylactide-Based Nanocomposites. Polymer 2006, 47, 5350–5359. DOI: 10.1016/j.polymer.2006.05.050.
  • Lee, S. T.; Kareko, L.; Jun, J. Study of Thermoplastic PLA Foam Extrusion. J. Cell. Plast. 2008, 44, 293–305. DOI: 10.1177/0021955X08088859.
  • Oever, M. v. d.; Molenveld, K.; Zee, M. v. d.; Bos, H. Bio-Based and Biodegradable Plastics : Facts and Figures : Focus on Food Packaging in The Netherlands; Wageningen Food & Biobased Research: Wageningen, 2017.
  • Madival, S.; Auras, R.; Singh, S. P.; Narayan, R. Assessment of the Environmental Profile of PLA, PET and PS Clamshell Containers Using LCA Methodology. J. Clean. Prod. 2009, 17, 1183–1194. DOI: 10.1016/j.jclepro.2009.03.015.
  • Vink, E. T. H.; Rábago, K. R.; Glassner, D. A.; Gruber, P. R. Applications of Life Cycle Assessment to NatureWorksTM Polylactide (PLA) Production. Polym. Degrad. Stab. 2003, 80, 403–419. DOI: 10.1016/S0141-3910(02)00372-5.
  • Song, H.; Lee, S. Y. Production of Succinic Acid by Bacterial Fermentation. Enzyme Microb. Technol. 2006, 39, 352–361. DOI: 10.1016/j.enzmictec.2005.11.043.
  • Zeikus, J. G.; Jain, M. K.; Elankovan, P. Biotechnology of Succinic Acid Production and Markets for Derived Industrial Products. Appl. Microbiol. Biotechnol. 1999, 51, 545–552. DOI: 10.1007/s002530051431.
  • Bechthold, I.; Bretz, K.; Kabasci, S.; Kopitzky, R.; Springer, A. Succinic Acid: A New Platform Chemical for Biobased Polymers from Renewable Resources. Chem. Eng. Technol. 2008, 31, 647–654. DOI: 10.1002/ceat.200800063.
  • Litsanov, B.; Brocker, M.; Oldiges, M.; Bott, M. Succinic Acid. In Bioprocessing of Renewable Resources to Commodity Bioproducts; Wiley: Hoboken, NJ, 2014; pp 435–472.
  • Delhomme, C.; Weuster-Botz, D.; Kühn, F. E. Succinic Acid from Renewable Resources as a C4 Building-Block Chemical—A Review of the Catalytic Possibilities in Aqueous Media. Green Chem. 2009, 11, 13–26. DOI: 10.1039/B810684C.
  • Le, S. D.; Nishimura, S. Highly Selective Synthesis of 1,4-Butanediol via Hydrogenation of Succinic Acid with Supported Cu–Pd Alloy Nanoparticles. ACS Sustain. Chem. Eng. 2019, 7, 18483–18492. DOI: 10.1021/acssuschemeng.9b04447.
  • Yim, H.; Haselbeck, R.; Niu, W.; Pujol-Baxley, C.; Burgard, A.; Boldt, J.; Khandurina, J.; Trawick, J. D.; Osterhout, R. E.; Stephen, R.; et al. Metabolic Engineering of Escherichia coli for Direct Production of 1,4-Butanediol. Nat. Chem. Biol. 2011, 7, 445–452. DOI: 10.1038/nchembio.580.
  • Dani, M.; Ruggiero, G.; Perini, D.; Bianchi, A. Process for the Production of 1,4-Butanediol. U.S. 20170029852A1, February 2, 2017.
  • Burgard, A.; Burk, M. J.; Osterhout, R.; Van Dien, S.; Yim, H. Development of a Commercial Scale Process for Production of 1,4-Butanediol from Sugar. Curr. Opin. Biotechnol. 2016, 42, 118–125. 10.1016/j.copbio.2016.04.016.
  • Xu, J.; Guo, B.-H. Poly(Butylene Succinate) and Its Copolymers: Research, Development and Industrialization. Biotechnol. J. 2010, 5, 1149–1163. 10.1002/biot.201000136.
  • Siracusa, V.; Lotti, N.; Munari, A.; Dalla Rosa, M. Dalla Rosa, M. Poly(Butylene Succinate) and Poly(Butylene Succinate-Co-Adipate) for Food Packaging Applications: Gas Barrier Properties after Stressed Treatments. Polym. Degrad. Stab. 2015, 119, 35–45. DOI: 10.1016/j.polymdegradstab.2015.04.026.
  • Pivsa-Art, W.; Chaiyasat, A.; Pivsa-Art, S.; Yamane, H.; Ohara, H. Preparation of Polymer Blends between Poly(Lactic Acid) and Poly(Butylene Adipate-Co-Terephthalate) and Biodegradable Polymers as Compatibilizers. Energy Proc. 2013, 34, 549–554. DOI: 10.1016/j.egypro.2013.06.784.
  • Gigli, M.; Fabbri, M.; Lotti, N.; Gamberini, R.; Rimini, B.; Munari, A. Poly(Butylene Succinate)-Based Polyesters for Biomedical Applications: A Review. Eur. Polym. J. 2016, 75, 431–460. DOI: 10.1016/j.eurpolymj.2016.01.016.
  • Uesaka, T. Structure and Physical Properties of Poly(Butylene Succinate)/Cellulose Acetate Blends. Polymer 2000, 41, 8449–8454. DOI: 10.1016/S0032-3861(00)00206-8.
  • Nikolic, M. S.; Djonlagic, J. Synthesis and Characterization of Biodegradable Poly(Butylene Succinate-Co-Butylene Adipate)s. Polym. Degrad. Stab. 2001, 74, 263–270. DOI: 10.1016/S0141-3910(01)00156-2.
  • Vyver, S. V.; de; Román-Leshkov, Y. Emerging Catalytic Processes for the Production of Adipic Acid. Catal. Sci. Technol. 2013, 3, 1465–1479. DOI: 10.1039/C3CY20728E.
  • Gilkey, M. J.; Mironenko, A. V.; Vlachos, D. G.; Xu, B. Adipic Acid Production via Metal-Free Selective Hydrogenolysis of Biomass-Derived Tetrahydrofuran-2,5-Dicarboxylic Acid. ACS Catal. 2017, 7, 6619–6634. DOI: 10.1021/acscatal.7b01753.
  • Beerthuis, R.; Rothenberg, G.; Shiju, N. R. Catalytic Routes towards Acrylic Acid, Adipic Acid and ε-Caprolactam Starting from Biorenewables. Green Chem. 2015, 17, 1341–1361. DOI: 10.1039/C4GC02076F.
  • Skoog, E.; Shin, J. H.; Saez-Jimenez, V.; Mapelli, V.; Olsson, L. Biobased Adipic Acid - The Challenge of Developing the Production Host. Biotechnol. Adv. 2018, 36, 2248–2263. 10.1016/j.biotechadv.2018.10.012.
  • Debuissy, T.; Pollet, E.; Avérous, L. Synthesis and Characterization of Biobased Poly(Butylene Succinate- Ran -Butylene Adipate). Analysis of the Composition-Dependent Physicochemical Properties. Eur. Polym. J. 2017, 87, 84–98. DOI: 10.1016/j.eurpolymj.2016.12.012.
  • Aeschelmann, F.; Carus, M. Biobased Building Blocks and Polymers in the World: Capacities, Production, and Applications–Status Quo and Trends towards 2020. Ind. Biotechnol. 2015, 11, 154–159. DOI: 10.1089/ind.2015.28999.fae.
  • Zhao, P.; Liu, W.; Wu, Q.; Ren, J. Preparation, Mechanical, and Thermal Properties of Biodegradable Polyesters/Poly(Lactic Acid) Blends. J. Nanomater. 2010, 2010, 1–8. DOI: 10.1155/2010/287082.
  • Jian, J.; Xiangbin, Z.; Xianbo, H. An Overview on Synthesis, Properties and Applications of Poly(Butylene-Adipate-Co-Terephthalate)–PBAT. Adv. Ind. Eng. Polym. Res. 2020, 3, 19–26. DOI: 10.1016/j.aiepr.2020.01.001.
  • Pang, J.; Zheng, M.; Sun, R.; Wang, A.; Wang, X.; Zhang, T. Synthesis of Ethylene Glycol and Terephthalic Acid from Biomass for Producing PET. Green Chem. 2016, 18, 342–359. DOI: 10.1039/C5GC01771H.
  • Volanti, M.; Cespi, D.; Passarini, F.; Neri, E.; Cavani, F.; Mizsey, P.; Fozer, D. Terephthalic Acid from Renewable Sources: Early-Stage Sustainability Analysis of a Bio-PET Precursor. Green Chem. 2019, 21, 885–896. DOI: 10.1039/C8GC03666G.
  • Akanuma, Y.; Selke, S. E. M.; Auras, R. A Preliminary LCA Case Study: Comparison of Different Pathways to Produce Purified Terephthalic Acid Suitable for Synthesis of 100 % Bio-Based PET. Int. J. Life Cycle Assess. 2014, 19, 1238–1246. DOI: 10.1007/s11367-014-0725-2.
  • Smith, P. B. Bio-Based Sources for Terephthalic Acid. In Green Polymer Chemistry: Biobased Materials and Biocatalysis; ACS Symposium Series; American Chemical Society: Washington, DC, 2015; Vol. 1192, pp 453–469.
  • Collias, D. I.; Harris, A. M.; Nagpal, V.; Cottrell, I. W.; Schultheis, M. W. Biobased Terephthalic Acid Technologies: A Literature Review. Ind. Biotechnol. 2014, 10, 91–105. DOI: 10.1089/ind.2014.0002.
  • Fukushima, K.; Wu, M.-H.; Bocchini, S.; Rasyida, A.; Yang, M.-C. PBAT Based Nanocomposites for Medical and Industrial Applications. Mater. Sci. Eng. C 2012, 32, 1331–1351. DOI: 10.1016/j.msec.2012.04.005.
  • Chivrac, F.; Kadlecová, Z.; Pollet, E.; Avérous, L. Aromatic Copolyester-Based Nano-Biocomposites: Elaboration, Structural Characterization and Properties. J. Polym. Environ. 2006, 14, 393–401. DOI: 10.1007/s10924-006-0033-4.
  • Li, X.; Tan, D.; Xie, L.; Sun, H.; Sun, S.; Zhong, G.; Ren, P. Effect of Surface Property of Halloysite on the Crystallization Behavior of PBAT. Appl. Clay Sci. 2018, 157, 218–226. DOI: 10.1016/j.clay.2018.02.005.
  • Mohanty, S.; Nayak, S. K. Biodegradable Nanocomposites of Poly(Butylene Adipate-Co-Terephthalate) (PBAT) and Organically Modified Layered Silicates. J. Polym. Environ. 2012, 20, 195–207. DOI: 10.1007/s10924-011-0408-z.
  • Pinheiro, I. F.; Ferreira, F. V.; Souza, D. H. S.; Gouveia, R. F.; Lona, L. M. F.; Morales, A. R.; Mei, L. H. I. Rheological and Degradation Properties of PBAT Nanocomposites Reinforced by Functionalized Cellulose Nanocrystals. Eur. Polym. J. 2017, 97, 356–365. DOI: 10.1016/j.eurpolymj.2017.10.026.
  • Son, S. Y.; Kim, J.-H.; Song, E.; Choi, K.; Lee, J.; Cho, K.; Kim, T.-S.; Park, T. Exploiting π–π Stacking for Stretchable Semiconducting Polymers. Macromolecules 2018, 51, 2572–2579. DOI: 10.1021/acs.macromol.8b00093.
  • Ren, J.; Fu, H.; Ren, T.; Yuan, W. Preparation, Characterization and Properties of Binary and Ternary Blends with Thermoplastic Starch, Poly(Lactic Acid) and Poly(Butylene Adipate-Co-Terephthalate). Carbohydr. Polym. 2009, 77, 576–582. DOI: 10.1016/j.carbpol.2009.01.024.
  • Signori, F.; Coltelli, M.-B.; Bronco, S. Thermal Degradation of Poly(Lactic Acid) (PLA) and Poly(Butylene Adipate-Co-Terephthalate) (PBAT) and their Blends upon Melt Processing. Polym. Degrad. Stab. 2009, 94, 74–82. DOI: 10.1016/j.polymdegradstab.2008.10.004.
  • Bordes, P.; Pollet, E.; Averous, L. Nano-Biocomposites: Biodegradable Polyester/Nanoclay Systems. Prog. Polym. Sci. 2009, 34, 125–155. DOI: 10.1016/j.progpolymsci.2008.10.002.
  • Yamamoto, M.; Witt, U.; Skupin, G.; Beimborn, D.; Müller, R.-J. Biodegradable Aliphatic-Aromatic Polyesters: “Ecoflex®. In Biopolymers Online; Steinbüchel, A., Ed.; Wiley: New York, NY, 2005.
  • Ferreira, F. V.; Cividanes, L. S.; Gouveia, R. F.; Lona, L. M. F. An Overview on Properties and Applications of Poly(Butylene Adipate-Co-Terephthalate)–PBAT Based Composites. Polym. Eng. Sci. 2019, 59, E7–E15. DOI: 10.1002/pen.24770.
  • Natta, F. J. v.; Hill, J. W.; Carothers, W. H. Studies of Polymerization and Ring Formation. XXIII.1 ε-Caprolactone and Its Polymers. J. Am. Chem. Soc. 1934, 56, 455–457. DOI: 10.1021/ja01317a053.
  • Labet, M.; Thielemans, W. Synthesis of Polycaprolactone: A Review. Chem. Soc. Rev. 2009, 38, 3484–3504. DOI: 10.1039/b820162p.
  • Varma, I. K.; Albertsson, A.-C.; Rajkhowa, R.; Srivastava, R. K. Enzyme Catalyzed Synthesis of Polyesters. Prog. Polym. Sci. 2005, 30, 949–981. DOI: 10.1016/j.progpolymsci.2005.06.010.
  • Bamoharram, F. F.; Heravi, M. M.; Roshani, M.; Gharib, A.; Jahangir, M. A Catalytic Method for Synthesis of γ-Butyrolactone, ɛ-Caprolactone and 2-Cumaranone in the Presence of Preyssler’s Anion, [NaP5W30O110]14−, as a Green and Reusable Catalyst. J. Mol. Catal. Chem. 2006, 252, 90–95. DOI: 10.1016/j.molcata.2006.01.067.
  • Ishii, Y.; Yamawaki, K.; Yoshida, T.; Ura, T.; Ogawa, M. Oxidation of Olefins and Alcohols by Peroxo-Molybdenum Complex Derived from Tris(Cetylpyridinium) 12-Molybdophosphate and Hydrogen Peroxide. J. Org. Chem. 1987, 52, 1868–1870. DOI: 10.1021/jo00385a042.
  • Nicklaus, C. M.; Phua, P. H.; Buntara, T.; Noel, S.; Heeres, H. J.; Vries, J. G. d. Ruthenium/1,1′-Bis(Diphenylphosphino)Ferrocene-Catalysed Oppenauer Oxidation of Alcohols and Lactonisation of α,ω-Diols Using Methyl Isobutyl Ketone as Oxidant. Adv. Synth. Catal. 2013, 355, 2839–2844. DOI: 10.1002/adsc.201300438.
  • Endo, Y.; Bäckvall, J.-E. Aerobic Lactonization of Diols by Biomimetic Oxidation. Chemistry 2011, 17, 12596–12601. DOI: 10.1002/chem.201102168.
  • Chung, K.; Banik, S. M.; De Crisci, A. G.; Pearson, D. M.; Blake, T. R.; Olsson, J. V.; Ingram, A. J.; Zare, R. N.; Waymouth, R. M. Chemoselective Pd-Catalyzed Oxidation of Polyols: Synthetic Scope and Mechanistic Studies. J. Am. Chem. Soc. 2013, 135, 7593–7602. 10.1021/ja4008694.
  • Pyo, S.-H.; Park, J. H.; Srebny, V.; Hatti-Kaul, R. A Sustainable Synthetic Route for Biobased 6-Hydroxyhexanoic Acid, Adipic Acid and ε-Caprolactone by Integrating Bio- and Chemical Catalysis. Green Chem. 2020, 22, 4450–4455. DOI: 10.1039/D0GC01454K.
  • Thaore, V.; Chadwick, D.; Shah, N. Sustainable Production of Chemical Intermediates for Nylon Manufacture: A Techno-Economic Analysis for Renewable Production of Caprolactone. Chem. Eng. Res. Des. 2018, 135, 140–152. DOI: 10.1016/j.cherd.2018.05.026.
  • Jenkins, M. J.; Harrison, K. L. The Effect of Crystalline Morphology on the Degradation of Polycaprolactone in a Solution of Phosphate Buffer and Lipase. Polym. Adv. Technol. 2008, 19, 1901–1906. DOI: 10.1002/pat.1227.
  • Jenkins, M. J.; Harrison, K. L. The Effect of Molecular Weight on the Crystallization Kinetics of Polycaprolactone. Polym. Adv. Technol. 2006, 17, 474–478. DOI: 10.1002/pat.733.
  • López, O. V.; Ninago, M. D.; Lencina, M. M. S.; Ciolino, A. E.; Villar, M. A.; Andreucetti, N. A. Starch/Poly(ε-Caprolactone) Graft Copolymers Synthetized by γ-Radiation and Their Application as Compatibilizer in Polymer Blends. J. Polym. Environ. 2019, 27, 2906–2914. DOI: 10.1007/s10924-019-01568-y.
  • Liu, L.; Li, Y.; Liu, H.; Fang, Y. Synthesis and Characterization of Chitosan-Graft-Polycaprolactone Copolymers. Eur. Polym. J. 2004, 40, 2739–2744. DOI: 10.1016/j.eurpolymj.2004.07.016.
  • Mi, H.-Y.; Jing, X.; Napiwocki, B. N.; Hagerty, B. S.; Chen, G.; Turng, L.-S. Biocompatible, Degradable Thermoplastic Polyurethane Based on Polycaprolactone-Block-Polytetrahydrofuran-Block-Polycaprolactone Copolymers for Soft Tissue Engineering. J. Mater. Chem. B 2017, 5, 4137–4151. 10.1039/C7TB00419B.
  • Siparsky, G. L.; Voorhees, K. J.; Dorgan, J. R.; Schilling, K. Water Transport in Polylactic Acid (PLA), PLA/ Polycaprolactone Copolymers, and PLA/Polyethylene Glycol Blends. J. Environ. Polym. Degrad. 1997, 5, 125–136. DOI: 10.1007/BF02763656.
  • Mohamed, R. M.; Yusoh, K. A Review on the Recent Research of Polycaprolactone (PCL). AMR. 2015, 1134, 249–255. DOI: 10.4028/www.scientific.net/AMR.1134.249.
  • Woodruff, M. A.; Hutmacher, D. W. The Return of a Forgotten Polymer—Polycaprolactone in the 21st Century. Prog. Polym. Sci. 2010, 35, 1217–1256. DOI: 10.1016/j.progpolymsci.2010.04.002.
  • Muthuraj, R.; Misra, M.; Mohanty, A. K. Biodegradable Compatibilized Polymer Blends for Packaging Applications: A Literature Review. J. Appl. Polym. Sci. 2018, 135, 45726. DOI: 10.1002/app.45726.
  • Dammak, M.; Fourati, Y.; Tarrés, Q.; Delgado-Aguilar, M.; Mutjé, P.; Boufi, S. Blends of PBAT with Plasticized Starch for Packaging Applications: Mechanical Properties, Rheological Behaviour and Biodegradability. Ind. Crops Prod. 2020, 144, 112061. DOI: 10.1016/j.indcrop.2019.112061.
  • Fourati, Y.; Tarrés, Q.; Mutjé, P.; Boufi, S. PBAT/Thermoplastic Starch Blends: Effect of Compatibilizers on the Rheological, Mechanical and Morphological Properties. Carbohydr. Polym. 2018, 199, 51–57. DOI: DOI: 10.1016/j.carbpol.2018.07.008.
  • Schrader, J. A.; Srinivasan, G.; Grewell, D.; McCabe, K. G.; Graves, W. R. Fertilizer Effects of Soy-Plastic Containers during Crop Production and Transplant Establishment. Horts. 2013, 48, 724–731. DOI: 10.21273/HORTSCI.48.6.724.
  • Ferri, J. M.; Garcia-Garcia, D.; Sánchez-Nacher, L.; Fenollar, O.; Balart, R. The Effect of Maleinized Linseed Oil (MLO) on Mechanical Performance of Poly(Lactic Acid)-Thermoplastic Starch (PLA-TPS) Blends. Carbohydr. Polym. 2016, 147, 60–68. 10.1016/j.carbpol.2016.03.082.
  • Palai, B.; Biswal, M.; Mohanty, S.; Nayak, S. K. In Situ Reactive Compatibilization of Polylactic Acid (PLA) and Thermoplastic Starch (TPS) Blends; Synthesis and Evaluation of Extrusion Blown Films Thereof. Ind. Crops Prod. 2019, 141, 111748. DOI: 10.1016/j.indcrop.2019.111748.
  • Collazo-Bigliardi, S.; Ortega-Toro, R.; Chiralt, A. Using Grafted Poly(ε-Caprolactone) for the Compatibilization of Thermoplastic Starch-Polylactic Acid Blends. React. Funct. Polym. 2019, 142, 25–35. DOI: 10.1016/j.reactfunctpolym.2019.05.013.
  • Guarás, M. P.; Alvarez, V. A.; Ludueña, L. N. Processing and Characterization of Thermoplastic Starch/Polycaprolactone/Compatibilizer Ternary Blends for Packaging Applications. J. Polym. Res. 2015, 22, 165. DOI: 10.1007/s10965-015-0817-0.
  • Przybysz, M.; Marć, M.; Klein, M.; Saeb, M. R.; Formela, K. Mechanical and Thermal Behavior Assessments of PCL/PHB Blends Reactively Compatibilized with Organic Peroxides. Polym. Test. 2018, 67, 513–521. DOI: 10.1016/j.polymertesting.2018.03.014.
  • Nicolino, M. V. B.; Lucas, A. d A.; Branciforti, M. C. Reactive Extrusion of Poly (Butylene Succinate-Co-Adipate) and Poly (ε-Caprolactone) Biodegradable Blends through Titanium-Based Transesterification Catalyst. Polym. Degrad. Stab. 2020, 181, 109320. DOI: 10.1016/j.polymdegradstab.2020.109320.
  • Hu, X.; Su, T.; Li, P.; Wang, Z. Blending Modification of PBS/PLA and Its Enzymatic Degradation. Polym. Bull. 2018, 75, 533–546. DOI: 10.1007/s00289-017-2054-7.
  • Srimalanon, P.; Prapagdee, B.; Markpin, T.; Sombatsompop, N. Effects of DCP as a Free Radical Producer and HPQM as a Biocide on the Mechanical Properties and Antibacterial Performance of In Situ Compatibilized PBS/PLA Blends. Polym. Test. 2018, 67, 331–341. DOI: 10.1016/j.polymertesting.2018.03.017.
  • Livi, S.; Duchet-Rumeau, J.; Gerard, J.-F. Materiau Polymerique Biodegradable et Biosource. FR3060014A1, June 15, 2018.
  • Livi, S.; Bugatti, V.; Marechal, M.; Soares, B. G.; Barra, G. M. O.; Duchet-Rumeau, J.; Gérard, J.-F. Ionic Liquids–Lignin Combination: An Innovative Way to Improve Mechanical Behaviour and Water Vapour Permeability of Eco-Designed Biodegradable Polymer Blends. RSC Adv. 2015, 5, 1989–1998. DOI: 10.1039/C4RA11919C.
  • Ding, Y.; Lu, B.; Wang, P.; Wang, G.; Ji, J. PLA-PBAT-PLA Tri-Block Copolymers: Effective Compatibilizers for Promotion of the Mechanical and Rheological Properties of PLA/PBAT Blends. Polym. Degrad. Stab. 2018, 147, 41–48. DOI: 10.1016/j.polymdegradstab.2017.11.012.
  • Kilic, N. T.; Can, B. N.; Kodal, M.; Ozkoc, G. Compatibilization of PLA/PBAT Blends By Using Epoxy-POSS. J. Appl. Polym. Sci. 2019, 136, 47217. DOI: 10.1002/app.47217.
  • Wang, X.; Peng, S.; Chen, H.; Yu, X.; Zhao, X. Mechanical Properties, Rheological Behaviors, and Phase Morphologies of High-Toughness PLA/PBAT Blends by In-Situ Reactive Compatibilization. Compos. Part B Eng. 2019, 173, 107028. DOI: 10.1016/j.compositesb.2019.107028.
  • Nunes, E. d. C. D.; Souza, A. G. d.; Rosa, D. d. S. Effect of the Joncryl® ADR Compatibilizing Agent in Blends of Poly(Butylene Adipate-Co-Terephthalate)/Poly(Lactic Acid). Macromol. Symp. 2019, 383, 1800035. DOI: 10.1002/masy.201800035.
  • Lin, K.-W.; Lan, C.-H.; Sun, Y.-M. Poly[(R)3-Hydroxybutyrate] (PHB)/Poly(l-Lactic Acid) (PLLA) Blends with Poly(PHB/PLLA Urethane) as a Compatibilizer. Polym. Degrad. Stab. 2016, 134, 30–40. DOI: 10.1016/j.polymdegradstab.2016.09.017.
  • Zytner, P.; Wu, F.; Misra, M.; Mohanty, A. K. Toughening of Biodegradable Poly(3-Hydroxybutyrate-Co-3-Hydroxyvalerate)/Poly(ε-Caprolactone) Blends by In Situ Reactive Compatibilization. ACS Omega. 2020, 5, 14900–14910. 10.1021/acsomega.9b04379.
  • Xiao, X.; Chevali, V. S.; Song, P.; Yu, B.; Yang, Y.; Wang, H. Enhanced Toughness of PLLA/PCL Blends Using Poly(d-Lactide)-Poly(ε-Caprolactone)-Poly(d-Lactide) as Compatibilizer. Compos. Commun. 2020, 21, 100385. DOI: 10.1016/j.coco.2020.100385.
  • Garcia-Campo, M. J.; Quiles-Carrillo, L.; Masia, J.; Reig-Pérez, M. J.; Montanes, N.; Balart, R. Environmentally Friendly Compatibilizers from Soybean Oil for Ternary Blends of Poly(Lactic Acid)-PLA, Poly(ε-Caprolactone)-PCL and Poly(3-Hydroxybutyrate)-PHB. Materials 2017, 10, 1339. DOI: 10.3390/ma10111339.
  • Quiles-Carrillo, L.; Montanes, N.; Lagaron, J. M.; Balart, R.; Torres-Giner, S. In Situ Compatibilization of Biopolymer Ternary Blends by Reactive Extrusion with Low-Functionality Epoxy-Based Styrene–Acrylic Oligomer. J. Polym. Environ. 2019, 27, 84–96. DOI: 10.1007/s10924-018-1324-2.
  • Liu, D.; Qi, Z.; Zhang, Y.; Xu, J.; Guo, B. Poly(Butylene Succinate) (PBS)/Ionic Liquid Plasticized Starch Blends: Preparation, Characterization, and Properties. Starch ‐ Stärke 2015, 67, 802–809. DOI: 10.1002/star.201500060.
  • Imre, B.; Pukánszky, B. P. Compatibilization in Bio-Based and Biodegradable Polymer Blends. Eur. Polym. J. 2013, 49, 1215–1233. DOI: 10.1016/j.eurpolymj.2013.01.019.
  • Satyanarayana, K. G.; Arizaga, G. G. C.; Wypych, F. Biodegradable Composites Based on Lignocellulosic Fibers—An Overview. Prog. Polym. Sci. 2009, 34, 982–1021. DOI: 10.1016/j.progpolymsci.2008.12.002.
  • Dixit, S.; Goel, R.; Dubey, A.; Shivhare, P. R.; Bhalavi, T. Natural Fibre Reinforced Polymer Composite Materials - A Review. Polym. Renew. Resour. 2017, 8, 71–78. DOI: 10.1177/204124791700800203.
  • Singh, H.; Inder Preet, S.J.; Singh, S.; Dhawan, V.; Kumar Tiwari, S. A Brief Review of Jute Fibre and Its Composites. Mater. Today Proc. 2018, 5, 28427–28437. DOI: 10.1016/j.matpr.2018.10.129.
  • Biagiotti, J.; Puglia, D.; Kenny, J. M. A Review on Natural Fibre-Based Composites-Part I: Structure, Processing and Properties of Vegetable Fibres. J. Nat. Fibers 2004, 1, 37–68. DOI: 10.1300/J395v01n02_04.
  • Puglia, D.; Biagiotti, J.; Kenny, J. M. A Review on Natural Fibre-Based Composites—Part II: Application of Natural Reinforcements in Composite Materials for Automotive Industry. J. Nat. Fibers 2005, 1, 23–65. DOI: 10.1300/J395v01n03_03.
  • Mohammed, L.; Ansari, M. N. M.; Pua, G.; Jawaid, M.; Islam, M. S. A Review on Natural Fiber Reinforced Polymer Composite and Its Applications. Int. J. Polym. Sci. 2015, 2015, 1–15. DOI: 10.1155/2015/243947.
  • Faruk, O.; Bledzki, A. K.; Fink, H.-P.; Sain, M. Biocomposites Reinforced with Natural Fibers: 2000–2010. Prog. Polym. Sci. 2012, 37, 1552–1596. DOI: 10.1016/j.progpolymsci.2012.04.003.
  • Yang, J.; Ching, Y.; Chuah, C. Applications of Lignocellulosic Fibers and Lignin in Bioplastics: A Review. Polymers 2019, 11, 751. DOI: 10.3390/polym11050751.
  • Sanadi, A. R.; Caulfield, D. F.; Jacobson, R. E.; Rowell, R. M. Renewable Agricultural Fibers as Reinforcing Fillers in Plastics: Mechanical Properties of Kenaf Fiber-Polypropylene Composites. Ind. Eng. Chem. Res. 1995, 34, 1889–1896. DOI: 10.1021/ie00044a041.
  • Chtourou, H.; Riedl, B.; Ait-Kadi, A. Reinforcement of Recycled Polyolefins with Wood Fibers. J. Reinf. Plast. Compos. 1992, 11, 372–394. DOI: 10.1177/073168449201100402.
  • Gallos, A.; Paës, G.; Allais, F.; Beaugrand, J. Lignocellulosic Fibers: A Critical Review of the Extrusion Process for Enhancement of the Properties of Natural Fiber Composites. RSC Adv. 2017, 7, 34638–34654. DOI: 10.1039/C7RA05240E.
  • Le Digabel, F.; Boquillon, N.; Dole, P.; Monties, B.; Averous, L. Properties of Thermoplastic Composites Based on Wheat-Straw Lignocellulosic Fillers. J. Appl. Polym. Sci. 2004, 93, 428–436. DOI: 10.1002/app.20426.
  • Cheng, W. Preparation and Properties of Lignocellulosic Fiber/CaCO3/Thermoplastic Starch Composites. Carbohydr. Polym. 2019, 211, 204–208. 10.1016/j.carbpol.2019.01.062.
  • Collazo-Bigliardi, S.; Ortega-Toro, R.; Chiralt Boix, A. Reinforcement of Thermoplastic Starch Films with Cellulose Fibres Obtained from Rice and Coffee Husks. J. Renew. Mater. 2018, 6, 599–610. DOI: 10.32604/JRM.2018.00127.
  • Smitthipong, W.; Tantatherdtam, R.; Chollakup, R. Effect of Pineapple Leaf Fiber-Reinforced Thermoplastic Starch/Poly(Lactic Acid) Green Composite: Mechanical, Viscosity, and Water Resistance Properties. J. Thermoplast. Compos. Mater. 2015, 28, 717–729. DOI: 10.1177/0892705713489701.
  • Güven, O.; Monteiro, S. N.; Moura, E. A. B.; Drelich, J. W. Re-Emerging Field of Lignocellulosic Fiber – Polymer Composites and Ionizing Radiation Technology in Their Formulation. Polym. Rev. 2016, 56, 702–736. DOI: 10.1080/15583724.2016.1176037.
  • Bari, S. S.; Chatterjee, A.; Mishra, S. Biodegradable Polymer Nanocomposites: An Overview. Polym. Rev. 2016, 56, 287–328. DOI: 10.1080/15583724.2015.1118123.
  • Shamsuri, A. A.; Jamil, S. N. A. M. A Short Review on the Effect of Surfactants on the Mechanico-Thermal Properties of Polymer Nanocomposites. Appl. Sci. 2020, 10, 4867. DOI: 10.3390/app10144867.
  • Chivrac, F.; Pollet, E.; Schmutz, M.; Avérous, L. Starch Nano-Biocomposites Based on Needle-like Sepiolite Clays. Carbohydr. Polym. 2010, 80, 145–153. DOI: 10.1016/j.carbpol.2009.11.004.
  • Olivato, J. B.; Marini, J.; Pollet, E.; Yamashita, F.; Grossmann, M. V. E.; Avérous, L. Elaboration, Morphology and Properties of Starch/Polyester Nano-Biocomposites Based on Sepiolite Clay. Carbohydr. Polym. 2015, 118, 250–256. 10.1016/j.carbpol.2014.11.014.
  • Olivato, J. B.; Marini, J.; Yamashita, F.; Pollet, E.; Grossmann, M. V. E.; Avérous, L. Sepiolite as a Promising Nanoclay for Nano-Biocomposites Based on Starch and Biodegradable Polyester. Mater. Sci. Eng. C 2017, 70, 296–302. DOI: 10.1016/j.msec.2016.08.077.
  • Giannelis, E. P. Polymer Layered Silicate Nanocomposites. Advanced Materials 1996, 8, 29–35.DOI: 10.1002/adma.19960080104
  • Tan, B.; Thomas, N. L. A Review of the Water Barrier Properties of Polymer/Clay and Polymer/Graphene Nanocomposites. J. Membr. Sci. 2016, 514, 595–612. DOI: 10.1016/j.memsci.2016.05.026.
  • Nielsen, L. E. Models for the Permeability of Filled Polymer Systems. J. Macromol. Sci. Part – Chem. 1967, 1, 929–942. DOI: 10.1080/10601326708053745.
  • Bharadwaj, R. K. Modeling the Barrier Properties of Polymer-Layered Silicate Nanocomposites. Macromolecules 2001, 34, 9189–9192. DOI: 10.1021/ma010780b.
  • Duan, Z.; Thomas, N. L. Water Vapour Permeability of Poly(Lactic Acid): Crystallinity and the Tortuous Path Model. J. Appl. Phys. 2014, 115, 064903. DOI: 10.1063/1.4865168.
  • Sinha Ray, S.; Okamoto, M. Polymer/Layered Silicate Nanocomposites: A Review from Preparation to Processing. Prog. Polym. Sci. 2003, 28, 1539–1641. DOI: 10.1016/j.progpolymsci.2003.08.002.
  • Chivrac, F.; Gueguen, O.; Pollet, E.; Ahzi, S.; Makradi, A.; Averous, L. Micromechanical Modeling and Characterization of the Effective Properties in Starch-Based Nano-Biocomposites. Acta Biomater. 2008, 4, 1707–1714. 10.1016/j.actbio.2008.05.002.
  • Vergnes, B. Influence of Processing Conditions on the Preparation of Clay-Based Nanocomposites by Twin-Screw Extrusion. Int. Polym. Process. 2019, 34, 482–501. DOI: 10.3139/217.3827.
  • SeriesBiswas, M.; Ray, S. S. Recent Progress in Synthesis and Evaluation of Polymer-Montmorillonite Nanocomposites. In New Polymerization Techniques and Synthetic Methodologies; Abe, A., Albertsson, A.-C., Cantow, H.-J., Dušek, K., Edwards, S., Höcker, H., Joanny, J.-F., Kausch, H.-H., Kobayashi, T., Lee, K.-S., McGrath, J. E., Monnerie, L., Stupp, S. I., Suter, U. W., Wegner, G., Young, R. J., Eds.; Springer Berlin Heidelberg: Berlin, Heidelberg, 2001; Vol. 155, pp 167–221.
  • Wang, S. F.; Shen, L.; Tong, Y. J.; Chen, L.; Phang, I. Y.; Lim, P. Q.; Liu, T. X. Biopolymer Chitosan/Montmorillonite Nanocomposites: Preparation and Characterization. Polym. Degrad. Stab. 2005, 90, 123–131. DOI: 10.1016/j.polymdegradstab.2005.03.001.
  • Madhumitha, G.; Fowsiya, J.; Roopan, S. M.; Thakur, V. K. Recent Advances in Starch–Clay Nanocomposites. Int. J. Polym. Anal. Charact. 2018, 23, 331–345. DOI: 10.1080/1023666X.2018.1447260.
  • Mangiacapra, P.; Gorrasi, G.; Sorrentino, A.; Vittoria, V. Biodegradable Nanocomposites Obtained by Ball Milling of Pectin and Montmorillonites. Carbohydr. Polym. 2006, 64, 516–523. DOI: 10.1016/j.carbpol.2005.11.003.
  • Bruzaud, S.; Bourmaud, A. Thermal Degradation and (Nano)Mechanical Behavior of Layered Silicate Reinforced Poly(3-Hydroxybutyrate-Co-3-Hydroxyvalerate) Nanocomposites. Polym. Test. 2007, 26, 652–659. DOI: 10.1016/j.polymertesting.2007.04.001.
  • Vandewijngaarden, J.; Wauters, R.; Murariu, M.; Dubois, P.; Carleer, R.; Yperman, J.; D’Haen, J.; Ruttens, B.; Schreurs, S.; Lepot, N.; et al. Poly(3-Hydroxybutyrate-Co-3-Hydroxyhexanoate)/Organomodified Montmorillonite Nanocomposites for Potential Food Packaging Applications. J. Polym. Environ. 2016, 24, 104–118. DOI: 10.1007/s10924-016-0751-1.
  • Paul, M.-A.; Delcourt, C.; Alexandre, M.; Degée, P.; Monteverde, F.; Dubois, P. Polylactide/Montmorillonite Nanocomposites: Study of the Hydrolytic Degradation. Polym. Degrad. Stab. 2005, 87, 535–542. DOI: 10.1016/j.polymdegradstab.2004.10.011.
  • Lal, S.; Perwez, A.; Rizvi, M. A.; Datta, M. Design and Development of a Biocompatible Montmorillonite PLGA Nanocomposites to Evaluate in Vitro Oral Delivery of Insulin. Appl. Clay Sci. 2017, 147, 69–79. DOI: 10.1016/j.clay.2017.06.031.
  • Lee, S.-R.; Park, H.-M.; Lim, H.; Kang, T.; Li, X.; Cho, W.-J.; Ha, C.-S. Microstructure, Tensile Properties, and Biodegradability of Aliphatic Polyester/Clay Nanocomposites. Polymer 2002, 43, 2495–2500. DOI: 10.1016/S0032-3861(02)00012-5.
  • Chiu, F.-C. Fabrication and Characterization of Biodegradable Poly(Butylene Succinate-Co-Adipate) Nanocomposites with Halloysite Nanotube and Organo-Montmorillonite as Nanofillers. Polym. Test. 2016, 54, 1–11. DOI: 10.1016/j.polymertesting.2016.06.018.
  • Tan, L.; He, Y.; Qu, J. Structure and Properties of Polylactide/Poly(Butylene Succinate)/Organically Modified Montmorillonite Nanocomposites with High-Efficiency Intercalation and Exfoliation Effect Manufactured via Volume Pulsating Elongation Flow. Polymer 2019, 180, 121656. DOI: 10.1016/j.polymer.2019.121656.
  • Habibi, S.; Saket, M.; Nazockdast, H.; Hajinasrollah, K. Fabrication and Characterization of Exfoliated Chitosan–Gelatin–Montmorillonite Nanocomposite Nanofibers. J. Text. Inst. 2019, 110, 1672–1677. DOI: 10.1080/00405000.2019.1613029.
  • Chieng, B. W.; Ibrahim, N. A.; Wan Yunus, W. M. Z. Effect of Organo-Modified Montmorillonite on Poly(Butylene Succinate)/Poly(Butylene Adipate-Co-Terephthalate) Nanocomposites. Express Polym. Lett. 2010, 4, 404–414. DOI: 10.3144/expresspolymlett.2010.51.
  • Chivrac, F.; Pollet, E.; Schmutz, M.; Avérous, L. New Approach to Elaborate Exfoliated Starch-Based Nanobiocomposites. Biomacromolecules 2008, 9, 896–900. 10.1021/bm7012668.
  • Bordes, P.; Pollet, E.; Bourbigot, S.; Avérous, L. Structure and Properties of PHA/Clay Nano‐Biocomposites Prepared by Melt Intercalation. Macromol. Chem. Phys. 2008, 209, 1473–1484. DOI: 10.1002/macp.200800022.
  • Adrar, S.; Habi, A.; Ajji, A.; Grohens, Y. Combined Effect of Epoxy Functionalized Graphene and Organomontmorillonites on the Morphology, Rheological and Thermal Properties of Poly (Butylenes Adipate-Co-Terephtalate) with or without a Compatibilizer. Appl. Clay Sci. 2017, 146, 306–315. DOI: 10.1016/j.clay.2017.06.009.
  • Rhim, J.-W.; Hong, S.-I.; Park, H.-M.; Ng, P. K. W. Preparation and Characterization of Chitosan-Based Nanocomposite Films with Antimicrobial Activity. J. Agric. Food Chem. 2006, 54, 5814–5822. 10.1021/jf060658h.
  • Rhim, J.-W.; Hong, S.-I.; Ha, C.-S. Tensile, Water Vapor Barrier and Antimicrobial Properties of PLA/Nanoclay Composite Films. LWT - Food Sci. Technol. 2009, 42, 612–617. DOI: 10.1016/j.lwt.2008.02.015.
  • Castro-Aguirre, E.; Auras, R.; Selke, S.; Rubino, M.; Marsh, T. Impact of Nanoclays on the Biodegradation of Poly(Lactic Acid) Nanocomposites. Polymers 2018, 10, 202. DOI: 10.3390/polym10020202.
  • Camani, P. H.; Toguchi, J. P. M.; Fiori, A. P. S. M.; Rosa, D.; dos, S. Impact of Unmodified (PGV) and Modified (Cloisite20A) Nanoclays into Biodegradability and Other Properties of (Bio)Nanocomposites. Appl. Clay Sci. 2020, 186, 105453. DOI: 10.1016/j.clay.2020.105453.
  • Someya, Y.; Kondo, N.; Shibata, M. Biodegradation of Poly(Butylene Adipate-Co-Butylene Terephthalate)/Layered-Silicate Nanocomposites. J. Appl. Polym. Sci. 2007, 106, 730–736. DOI: 10.1002/app.24174.
  • Rhim, J.-W.; Park, H.-M.; Ha, C.-S. Bio-Nanocomposites for Food Packaging Applications. Prog. Polym. Sci. 2013, 38, 1629–1652. DOI: 10.1016/j.progpolymsci.2013.05.008.
  • Wyser, Y.; Adams, M.; Avella, M.; Carlander, D.; Garcia, L.; Pieper, G.; Rennen, M.; Schuermans, J.; Weiss, J. Outlook and Challenges of Nanotechnologies for Food Packaging: Outlook and Challenges of Nanotechnologies for Food Packaging. Packag. Technol. Sci. 2016, 29, 615–648. DOI: 10.1002/pts.2221.
  • Bandyopadhyay, J.; Ray, S. S. Are Nanoclay-Containing Polymer Composites Safe for Food Packaging Applications?—An Overview. J. Appl. Polym. Sci. 2019, 136, 47214. DOI: 10.1002/app.47214.
  • Morris, B. A. The Science and Technology of Flexible Packaging: Multilayer Films from Resin and Process to End Use; William Andrew: Kidlington, 2016.
  • Anukiruthika, T.; Sethupathy, P.; Wilson, A.; Kashampur, K.; Moses, J. A.; Anandharamakrishnan, C. Multilayer Packaging: Advances in Preparation Techniques and Emerging Food Applications. Compr. Rev. Food Sci. Food Saf. 2020, 19, 1156–1186. DOI: 10.1111/1541-4337.12556.
  • Moreno, D. D. P.; Saron, C. Influence of Compatibilizer on the Properties of Low-Density Polyethylene/Polyamide 6 Blends Obtained by Mechanical Recycling of Multilayer Film Waste. Waste Manag. Res. 2018, 36, 729–736. 10.1177/0734242X18777795.
  • Kaiser, K.; Schmid, M.; Schlummer, M. Recycling of Polymer-Based Multilayer Packaging: A Review. Recycling 2017, 3, 1. DOI: 10.3390/recycling3010001.
  • Horodytska, O.; Valdés, F. J.; Fullana, A. Plastic Flexible Films Waste Management - A State of Art Review. Waste Manag. 2018, 77, 413–425. DOI: 10.1016/j.wasman.2018.04.023.
  • Vidal, R.; Martínez, P.; Mulet, E.; González, R.; López-Mesa, B.; Fowler, P.; Fang, J. M. Environmental Assessment of Biodegradable Multilayer Film Derived from Carbohydrate Polymers. J. Polym. Environ. 2007, 15, 159–168. DOI: 10.1007/s10924-007-0056-5.
  • Martin, O.; Avérous, L. Comprehensive Experimental Study of a Starch/Polyesteramide Coextrusion: Starch/Polyesteramide Coextrusion. J. Appl. Polym. Sci. 2002, 86, 2586–2600. DOI: 10.1002/app.11191.
  • Cheng, J.; Li, H.; Cao, Z.; Wu, D.; Liu, C.; Pu, H. Nanolayer Coextrusion: An Efficient and Environmentally Friendly Micro/Nanofiber Fabrication Technique. Mater. Sci. Eng. C 2019, 95, 292–301. DOI: 10.1016/j.msec.2018.11.011.
  • Messin, T.; Follain, N.; Guinault, A.; Sollogoub, C.; Gaucher, V.; Delpouve, N.; Marais, S. Structure and Barrier Properties of Multinanolayered Biodegradable PLA/PBSA Films: Confinement Effect via Forced Assembly Coextrusion. ACS Appl. Mater. Interfaces 2017, 9, 29101–29112. 10.1021/acsami.7b08404.
  • Messin, T.; Marais, S.; Follain, N.; Guinault, A.; Gaucher, V.; Delpouve, N.; Sollogoub, C. Biodegradable PLA/PBS Multinanolayer Membrane with Enhanced Barrier Performances. J. Membr. Sci. 2020, 598, 117777. DOI: 10.1016/j.memsci.2019.117777.
  • Boufarguine, M.; Guinault, A.; Miquelard‐Garnier, G.; Sollogoub, C. PLA/PHBV Films with Improved Mechanical and Gas Barrier Properties. Macromol. Mater. Eng. 2013, 298, 1065–1073. DOI: 10.1002/mame.201200285.
  • Martin, O.; Schwach, E.; Avérous, L.; Couturier, Y. Properties of Biodegradable Multilayer Films Based on Plasticized Wheat Starch. Starch - Stärke 2001, 53, 372–380. DOI: 10.1002/1521-379X(200108)53:8 < 372::AID-STAR372 > 3.0.CO;2-F.
  • Martucci, J. F.; Ruseckaite, R. A. Three-Layer Sheets Based on Gelatin and Poly(Lactic Acid), Part 1: Preparation and Properties. J. Appl. Polym. Sci. 2010, 118, 3102–3110. DOI: 10.1002/app.32751.
  • Rocca-Smith, J. R.; Pasquarelli, R.; Lagorce-Tachon, A.; Rousseau, J.; Fontaine, S.; Aguié-Béghin, V.; Debeaufort, F.; Karbowiak, T. Toward Sustainable PLA-Based Multilayer Complexes with Improved Barrier Properties. ACS Sustain. Chem. Eng. 2019, 7, 3759–3771. DOI: 10.1021/acssuschemeng.8b04064.
  • Mahieu, A.; Terrie, C.; Leblanc, N. Role of Ascorbic Acid and Iron in Mechanical and Oxygen Absorption Properties of Starch and Polycaprolactone Multilayer Film. Packag. Res. 2017, 2, 1–11. DOI: 10.1515/pacres-2017-0001.
  • Scaffaro, R.; Maio, A.; Gulino, F. E.; Di Salvo, C.; Arcarisi, A. Bilayer Biodegradable Films Prepared by Co-Extrusion Film Blowing: Mechanical Performance, Release Kinetics of an Antimicrobial Agent and Hydrolytic Degradation. Compos. Part Appl. Sci. Manuf. 2020, 132, 105836. 105836. DOI: 10.1016/j.compositesa.2020.105836.
  • González, A.; Alvarez Igarzabal, C. I. Soy Protein – Poly (Lactic Acid) Bilayer Films as Biodegradable Material for Active Food Packaging. Food Hydrocoll. 2013, 33, 289–296. DOI: 10.1016/j.foodhyd.2013.03.010.
  • Ortega-Toro, R.; Morey, I.; Talens, P.; Chiralt, A. Active Bilayer Films of Thermoplastic Starch and Polycaprolactone Obtained by Compression Molding. Carbohydr. Polym. 2015, 127, 282–290. DOI: 10.1016/j.carbpol.2015.03.080.
  • Din, M. I.; Ghaffar, T.; Najeeb, J.; Hussain, Z.; Khalid, R.; Zahid, H. Potential Perspectives of Biodegradable Plastics for Food Packaging Application-Review of Properties and Recent Developments. Food Addit. Contam. Part A 2020, 37, 665–680. DOI: 10.1080/19440049.2020.1718219.
  • Aung, D. Biodegradable Packaging Film. WO1993006013A2, April 1, 1993.
  • 贾超, 王.; 卢立新, 赵.; 章俊祥, 郑. Potato Starch-Based Edible Composite Food Packaging Film and Preparation Method Thereof. CN102702579B, April 16, 2014.
  • Umaraw, P.; Verma, A. K. Comprehensive Review on Application of Edible Film on Meat and Meat Products: An Eco-Friendly Approach. Crit. Rev. Food Sci. Nutr. 2017, 57, 1270–1279. 10.1080/10408398.2014.986563.
  • Gilleland, G. M.; Turner, J. L.; Patton, P. A.; Harrison, M. D. Highly Flexible Starch-Based Films. U.S. 6649188B2, November 18, 2003.
  • Han, J. H. Physical and Mechanical Properties of Pea Starch Edible Films Containing Beeswax Emulsions. CA2552179A1, January 6, 2008.
  • 穆畅道, 李.; 郭佶慜, 林. Edible Collagen Food Packaging Film and Preparation Method Thereof. CN102093722B, July 11, 2012.
  • 宋林霞. Edible Chocolate Film. CN103589170A, February 19, 2014.
  • Brown, S. E.; Verrall, A. P. Carboxymethyl Cellulose-Based Films, Edible Food Casings Made Therefrom, and Method of Using Same. EP2178966A1, April 28, 2010.
  • Zagrodzki, A. Multi-Layer Biodegradable Laminated Structures Intended for the Production Especially of Food Packaging and Food Packaging Obtained Therefrom. EP3266608A1, January 10, 2018.
  • Castillo, H. S. V.; Porras, D. P. N.; Niño, J. P. C. Biodegradable Films Obtained from Cassava Starch and Their Manufacture Process. WO2013042083A1, March 28, 2013.
  • Abdul Khalil, H. P. S.; Banerjee, A.; Saurabh, C. K.; Tye, Y. Y.; Suriani, A. B.; Mohamed, A.; Karim, A. A.; Rizal, S.; Paridah, M. T. Biodegradable Films for Fruits and Vegetables Packaging Application: Preparation and Properties. Food Eng. Rev. 2018, 10, 139–153. DOI: 10.1007/s12393-018-9180-3.
  • US EPA. Plastics: Material-Specific Data. https://www.epa.gov/facts-and-figures-about-materials-waste-and-recycling/plastics-material-specific-data. (accessed Jun 24, 2021).
  • Barletta, M.; Aversa, C.; Puopolo, M.; Vesco, S. Extrusion Blow Molding of Environmentally Friendly Bottles in Biodegradable Polyesters Blends. Polym. Test. 2019, 77, 105885. DOI: 10.1016/j.polymertesting.2019.05.001.
  • Kale, G.; Auras, R.; Singh, S. P.; Narayan, R. Biodegradability of Polylactide Bottles in Real and Simulated Composting Conditions. Polym. Test. 2007, 26, 1049–1061. DOI: 10.1016/j.polymertesting.2007.07.006.
  • Papong, S.; Malakul, P.; Trungkavashirakun, R.; Wenunun, P.; Chom-In, T.; Nithitanakul, M.; Sarobol, E. Comparative Assessment of the Environmental Profile of PLA and PET Drinking Water Bottles from a Life Cycle Perspective. J. Clean. Prod. 2014, 65, 539–550. DOI: 10.1016/j.jclepro.2013.09.030.
  • Barletta, M.; Aversa, C.; Puopolo, M.; Vesco, S. Ultra-Flexible PLA-Based Blends for the Manufacturing of Biodegradable Tamper-Evident Screw Caps by Injection Molding. J. Appl. Polym. Sci. 2020, 137, 49428. DOI: 10.1002/app.49428.
  • Philip, S.; Keshavarz, T.; Roy, I. Polyhydroxyalkanoates: Biodegradable Polymers with a Range of Applications. J. Chem. Technol. Biotechnol. 2007, 82, 233–247. DOI: 10.1002/jctb.1667.
  • Hamade, R.; Hadchiti, R.; Ammouri, A. Making the Environmental Case for Reusable PET Bottles. Proc. Manuf. 2020, 43, 201–207. DOI: 10.1016/j.promfg.2020.02.137.
  • Rodriguez-Perez, S.; Serrano, A.; Pantión, A. A.; Alonso-Fariñas, B. Challenges of Scaling-up PHA Production from Waste Streams. A Review. J. Environ. Manage. 2018, 205, 215–230. 10.1016/j.jenvman.2017.09.083.
  • Pohjakallio, M.; Chapter 18 - Secondary Plastic Products—Examples and Market Trends. In Plastic Waste and Recycling; Letcher, T. M. Ed.; Academic Press, 2020; pp 467–479. DOI: 10.1016/B978-0-12-817880-5.00018-9.
  • Kochańska, E.; Łukasik, R. M.; Dzikuć, M. New Circular Challenges in the Development of Take-Away Food Packaging in the COVID-19 Period. Energies 2021, 14, 4705. DOI: 10.3390/en14154705.
  • Murakami, K.; Ueda, A.; 村上邦夫, 植. Biodegradable Food Tray. JP2000327031A, November 28, 2000.
  • Chomel, J.-Y.; Mas, O. Procédé de Fabrication D’un Emballage Biodégradable et Compostable. EP2987623A1, February 24, 2016.
  • Davies, P. Method and Apparatus for Manufacturing a Food Packaging Container. WO2009013489A1, January 29, 2009.
  • Hilbish, J. M. Disposable Food Tray. U.S. 8741443B2, June 3, 2014.
  • Ozasa, A.; Hashimoto, A.; Shinohara, R.; Tanaka, S. Biodegradable Molded Articles, Process for Producing the Same and Compositions for Foam Molding. EP1321289B1, July 12, 2006.
  • Bowden, J. A.; Johnston, C. C. Biodegradable or Compostable Containers. U.S. 7967904B2, June 28, 2011.
  • Scheer, F. Bio Based Biodegradable Polymer Compositions and Use of Same. WO2007063361A1, June 7, 2007.
  • Beal, C.; Chivrac, F. Article Comprising Polylactic Acid and a Filler. U.S. 20160319098A1, November 3, 2016.
  • Briganti, C. F.; Tucker, L. A. Sugar-Free Edible Vessel. WO2019046789A1, March 7, 2019.
  • Miozzo, V.; Planchard, H.; Vidal, F.; Roux, M. Compostable Lid Intended to Seal a Capsule and a Capsule Sealed by the Lid. WO2017187024A1, November 2, 2017.
  • Foss, S. W.; Turra, J.-M. Use of Polylactic Acid Powders in the Manufacturing of Beverage Filter Fibers. U.S. 20160264346A1, September 15, 2016.
  • Huang, Y.-K.; Huang, C.-M. Manufacturing Method of Biodegradable Net-Shaped Articles. U.S. 9017587B2, April 28, 2015.
  • Huang, C.-M.; Huang, Y.-K. Biodegradable Net-Shaped and Filament-Shaped Articles. U.S. 20120017387A1, January 26, 2012.
  • Miksic, B. A.; Vela, P.; Berg, R.; Boyle, R. Biodegradable Bag. U.S. 6984426B2, January 10, 2006.
  • 陈景清, 陈. Bio-Based Biological Decomposition Plastics Bag Material. CN104194289B, March 30, 2016.
  • Erk, G. D.; Hinkel, R.; Hummel, M.; Maser, F. D. Biologisch Abbaubare Sammel- Oder Transportbehältnisse. EP0646087B1, May 30, 2001.
  • Giori, C.; Udayakumar, B. S.; Pedersen, O. Flushable Body Waste Collection Pouches, Pouch-in Pouch Appliances Using the Same, and Methods Pertaining Thereto. U.S. 8118797B2, February 21, 2012.
  • 辻孝弘. Waterproof sheet and disposable bag using the same. JP4484418B2, June 16, 2010.
  • Patel, S. Biodegradable Pharmacy Container and Safety Cap. U.S. 9527619B2, December 27, 2016.
  • Wilke, J.; Kaiser, C.; Schuster, P. Biologisch Abbaubare Folienverpackung für orale Biologika. EP2589366A1, May 8, 2013.
  • Abhyankar, C. R.; Banerjee, M. K. Polymer Composition for Manufacturing Biodegradable Articles and Process Thereof. EP2718076B1, January 3, 2018.
  • Nascimento, J. F.; Pachekoski, W. M.; Agnelli, J. A. M. Environmentally Degradable Polymeric Blend and Process for Obtaining an Environmentally Degradable Polymeric Blend. U.S. 20090082491A1, March 26, 2009.
  • Atis, B.; Pradier, F.; Kanji, M.; Brereton, E.; Gavin, L. Biodegradable Moisture-Impermeable Packages for Consumer Goods. U.S. 8481134B2, July 9, 2013.
  • Rydz, J. Forensic Engineering of Advanced Polymeric Materials. Part 1 – Degradation Studies of Polylactide Blends with Atactic Poly[(R,S)-3-Hydroxybutyrate] in Paraffin. Chembiochemengq 2015, 29, 247–259. DOI: 10.15255/CABEQ.2014.2258.
  • Rydz, J.; Adamus, G.; Wolna-Stypka, K.; Marcinkowski, A.; Misiurska-Marczak, M.; Kowalczuk, M. M. Degradation of Polylactide in Paraffin and Selected Protic Media. Polym. Degrad. Stab. 2013, 98, 316–324. DOI: 10.1016/j.polymdegradstab.2012.09.010.
  • Rydz, J.; Wolna-Stypka, K.; Musioł, M.; Szeluga, U.; Janeczek, H.; Kowalczuk, M. Further Evidence of Polylactide Degradation in Paraffin and in Selected Protic Media. A Thermal Analysis of Eroded Polylactide Films. Polym. Degrad. Stab. 2013, 98, 1450–1457. DOI: 10.1016/j.polymdegradstab.2013.05.005.
  • Sikorska, W.; Rydz, J.; Wolna-Stypka, K.; Musioł, M.; Adamus, G.; Kwiecień, I.; Janeczek, H.; Duale, K.; Kowalczuk, M. Forensic Engineering of Advanced Polymeric Materials—Part V: Prediction Studies of Aliphatic–Aromatic Copolyester and Polylactide Commercial Blends in View of Potential Applications as Compostable Cosmetic Packages. Polymers 2017, 9, 257. DOI: 10.3390/polym9070257.
  • Dituro, J.; Dauksevicz, E.; Furze, B.; Juckett, M. Biodegradable Package for Detergent. U.S. 20130053293A1, February 28, 2013.
  • Hornstein, R. R.; Landrum, G. F. Molded Biodegradable Packaging. U.S. 5826725A, October 27, 1998.
  • Kannankeril, C.; Conroy, P.; Shankaranarayan, N. Cushioning Assembly. U.S. 20140117071A1, May 1, 2014.
  • Bauchmüller, V.; Carus, M.; Chinthapalli, R.; Dammer, L.; Hark, N.; Partanen, A.; Ruiz, P.; Lajewski, S. BioSinn - Products for Which Biodegradation Makes Sense; nova-Institut für politische und ökologische Innovation GmbH: Hürth, 2021.
  • Cameron, G.; Styles, P. Biodegradable Plant Pots. U.S. 20090249688A1, October 8, 2009.
  • Wei, D.; Wang, H.; Xiao, H.; Zheng, A.; Yang, Y. Morphology and Mechanical Properties of Poly(Butylene Adipate-Co-Terephthalate)/Potato Starch Blends in the Presence of Synthesized Reactive Compatibilizer or Modified Poly(Butylene Adipate-Co-Terephthalate). Carbohydr. Polym. 2015, 123, 275–282. 10.1016/j.carbpol.2015.01.058.
  • Yang, S.; Madbouly, S. A.; Schrader, J. A.; Srinivasan, G.; Grewell, D.; McCabe, K. G.; Kessler, M. R.; Graves, W. R. Characterization and Biodegradation Behavior of Bio-Based Poly(Lactic Acid) and Soy Protein Blends for Sustainable Horticultural Applications. Green Chem. 2015, 17, 380–393. DOI: 10.1039/C4GC01482K.
  • Tremblay-Parrado, K.-K.; García-Astrain, C.; Avérous, L. Click Chemistry for the Synthesis of Biobased Polymers and Networks Derived from Vegetable Oils. Green Chem. 2021, 23, 4296–4327. DOI: 10.1039/D1GC00445J.
  • Denissen, W.; Rivero, G.; Nicolaÿ, R.; Leibler, L.; Winne, J. M.; Du Prez, F. E. Vinylogous Urethane Vitrimers. Adv. Funct. Mater. 2015, 25, 2451–2457. DOI: 10.1002/adfm.201404553.
  • Capelot, M.; Montarnal, D.; Tournilhac, F.; Leibler, L. Metal-Catalyzed Transesterification for Healing and Assembling of Thermosets. J. Am. Chem. Soc. 2012, 134, 7664–7667. 10.1021/ja302894k.
  • Scheutz, G. M.; Lessard, J. J.; Sims, M. B.; Sumerlin, B. S. Adaptable Crosslinks in Polymeric Materials: Resolving the Intersection of Thermoplastics and Thermosets. J. Am. Chem. Soc. 2019, 141, 16181–16196. 10.1021/jacs.9b07922.
  • Krishnakumar, B.; Sanka, R. V. S. P.; Binder, W. H.; Parthasarthy, V.; Rana, S.; Karak, N. Vitrimers: Associative Dynamic Covalent Adaptive Networks in Thermoset Polymers. Chem. Eng. J. 2020, 385, 123820. DOI: 10.1016/j.cej.2019.123820.
  • Dhers, S.; Vantomme, G.; Avérous, L. A Fully Bio-Based Polyimine Vitrimer Derived from Fructose. Green Chem. 2019, 21, 1596–1601. DOI: 10.1039/C9GC00540D.
  • Ocando, C.; Ecochard, Y.; Decostanzi, M.; Caillol, S.; Avérous, L. Dynamic Network Based on Eugenol-Derived Epoxy as Promising Sustainable Thermoset Materials. Eur. Polym. J. 2020, 135, 109860. DOI: 10.1016/j.eurpolymj.2020.109860.
  • Song, L.; Zhang, B.; Gao, G.; Xiao, C.; Li, G. Single Component Pluronic F127-Lipoic Acid Hydrogels with Self-Healing and Multi-Responsive Properties. Eur. Polym. J. 2019, 115, 346–355. DOI: 10.1016/j.eurpolymj.2019.03.051.
  • Irigoyen, M.; Fernández, A.; Ruiz, A.; Ruipérez, F.; Matxain, J. M. Diselenide Bonds as an Alternative to Outperform the Efficiency of Disulfides in Self-Healing Materials. J. Org. Chem. 2019, 84, 4200–4210. 10.1021/acs.joc.9b00014.
  • Liu, J.; Ma, X.; Tong, Y.; Lang, M. Self-Healing Polyurethane Based on Ditelluride Bonds. Appl. Surf. Sci. 2018, 455, 318–325. DOI: 10.1016/j.apsusc.2018.05.159.
  • An, X.; Aguirresarobe, R. H.; Irusta, L.; Ruipérez, F.; Matxain, J. M.; Pan, X.; Aramburu, N.; Mecerreyes, D.; Sardon, H.; Zhu, J. Aromatic Diselenide Crosslinkers to Enhance the Reprocessability and Self-Healing of Polyurethane Thermosets. Polym. Chem. 2017, 8, 3641–3646. DOI: 10.1039/C7PY00448F.
  • Duval, A.; Couture, G.; Caillol, S.; Avérous, L. Biobased and Aromatic Reversible Thermoset Networks from Condensed Tannins via the Diels − Alder Reaction. ACS Sustainable Chem. Eng. 2017, 5, 1199–1207. DOI: 10.1021/acssuschemeng.6b02596.
  • Duval, A.; Lange, H.; Lawoko, M.; Crestini, C. Reversible Crosslinking of Lignin via the Furan–Maleimide Diels–Alder Reaction. Green Chem. 2015, 17, 4991–5000. DOI: 10.1039/C5GC01319D.
  • Tremblay-Parrado, K.-K.; Bordin, C.; Nicholls, S.; Heinrich, B.; Donnio, B.; Avérous, L. Renewable and Responsive Cross-Linked Systems Based on Polyurethane Backbones from Clickable Biobased Bismaleimide Architecture. Macromolecules 2020, 53, 5869–5880. DOI: 10.1021/acs.macromol.0c01115.
  • Tremblay-Parrado, K.-K.; Avérous, L. Synthesis and Behavior of Responsive Biobased Polyurethane Networks Cross-Linked by Click Chemistry: Effect of the Cross-Linkers and Backbone Structures. Eur. Polym. J. 2020, 135, 109840. DOI: 10.1016/j.eurpolymj.2020.109840.
  • Yeh, C.-M.; Lin, C.-H.; Han, T.-Y.; Xiao, Y.-T.; Chen, Y.-A.; Chou, H.-H. Disulfide Bond and Diels–Alder Reaction Bond Hybrid Polymers with High Stretchability, Transparency, Recyclability, and Intrinsic Dual Healability for Skin-like Tactile Sensing. J. Mater. Chem. A 2021, 9, 6109–6116. DOI: 10.1039/D0TA10135D.
  • Behera, P. K.; Raut, S. K.; Mondal, P.; Sarkar, S.; Singha, N. K. Self-Healable Polyurethane Elastomer Based on Dual Dynamic Covalent Chemistry Using Diels–Alder “Click” and Disulfide Metathesis Reactions. ACS Appl. Polym. Mater. 2021, 3, 847–856. DOI: 10.1021/acsapm.0c01179.
  • Lee, S.-H.; Shin, S.-R.; Lee, D.-S. Self-Healing of Cross-Linked PU via Dual-Dynamic Covalent Bonds of a Schiff Base from Cystine and Vanillin. Mater. Des. 2019, 172, 107774. DOI: 10.1016/j.matdes.2019.107774.
  • Liu, M.; Zhong, J.; Li, Z.; Rong, J.; Yang, K.; Zhou, J.; Shen, L.; Gao, F.; Huang, X.; He, H. A High Stiffness and Self-Healable Polyurethane Based on Disulfide Bonds and Hydrogen Bonding. Eur. Polym. J. 2020, 124, 109475. DOI: 10.1016/j.eurpolymj.2020.109475.
  • Carus, M.; Dammer, L.; Raschka, A., & Skoczinski, P. Nova-Paper#12: Renewable Carbon: Key to a Sustainable and Future‐oriented Chemical and Plastic Industry: Definition, Strategy, Measures and Potential; nova-Institut für politische und ökologische Innovation GmbH: Hürth, 2020.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.