5,347
Views
6
CrossRef citations to date
0
Altmetric
Reviews

Surface Activation of High Performance Polymer Fibers: A Review

, ORCID Icon, ORCID Icon & ORCID Icon
Pages 757-788 | Received 14 Jun 2021, Accepted 22 Dec 2021, Published online: 10 Jan 2022

References

  • Sabir, T. 2 - Fibers Used for High-Performance Apparel. In High-Performance Apparel : Woodhead Publishing Series in Textiles; McLoughlin, J., Sabir, T., Eds.; Woodhead Publishing: Duxford, UK, 2018; pp 7–32.
  • Dai, X.-Q. 10 - Fibers. In Biomechanical Engineering of Textiles and Clothing : Woodhead Publishing Series in Textiles; Li, Y., Dai, X.-Q., Eds.; Woodhead Publishing: Duxford, UK, 2006; pp 163–177.
  • Griffin, B. A. High Performance Winch and Synthetic Rope Systems for Workboats, Tug Boats, and Commercial Marine Applications. In Oceans ’04 MTS/IEEE Techno-Ocean ’04 (IEEE Cat. No.04CH37600); 2004, IEEE; Vol. 4, pp 1900–1903.
  • van der Werff, H.; Heisserer, U. High-Performance Ballistic Fibers. In Advanced Fibrous Composite Materials for Ballistic Protection; Woodhead Publishing: Duxford, UK, 2016; pp 71–107
  • Wangxi, Z.; Jie, L.; Gang, W. Evolution of Structure and Properties of PAN Precursors during Their Conversion to Carbon Fibers. Carbon N. Y 2003, 41, 2805–2812. DOI: 10.1016/S0008-6223(03)00391-9.
  • Yusof, N.; Ismail, A. F. Post Spinning and Pyrolysis Processes of Polyacrylonitrile (PAN)-Based Carbon Fiber and Activated Carbon Fiber: A Review. J. Anal. Appl. Pyrolysis 2012, 93, 1–13. DOI: 10.1016/j.jaap.2011.10.001.
  • Chen, J.; Wang, C.; Dong, X.; Liu, H. Study on the Coagulation Mechanism of Wet-Spinning PAN Fibers. J. Polym. Res. 2006, 13, 515–519. DOI: 10.1007/s10965-006-9075-5.
  • Tan, L.; Chen, H.; Pan, D.; Pan, N. Investigating the Spinnability in the Dry-Jet Wet Spinning of PAN Precursor Fiber. J. Appl. Polym. Sci. 2008, 110, 1997–2000. DOI: 10.1002/app.28029.
  • Ahmad, Z.; Naeem, M. S.; Jabbar, A.; Irfan, M. 10 - Fibers for Other Technical Textiles Applications.In Fibers for Technical Textiles; Ahmad, S.; Rasheed, A. Nawab, Y.; Eds.; Springer International Publishing: Cham, CH, 2020, pp 201–220.
  • Zuo, P.; Tcharkhtchi, A.; Shirinbayan, M.; Fitoussi, J.; Bakir, F. Overall Investigation of Poly (Phenylene Sulfide) from Synthesis and Process to Applications—A Review. Macromol. Mater. Eng. 2019, 304, 1800686. DOI: 10.1002/mame.201800686.
  • Yu, Y.; Xiong, S.; Huang, H.; Zhao, L.; Nie, K.; Chen, S.; Xu, J.; Yin, X.; Wang, H.; Wang, L. Fabrication and Application of Poly (Phenylene Sulfide) Ultrafine Fiber. React. Funct. Polym 2020, 150, 104539. DOI: 10.1016/j.reactfunctpolym.2020.104539.
  • Zhang, M.; Niu, H.; Wu, D. Polyimide Fibers with High Strength and High Modulus: Preparation, Structures, Properties, and Applications. Macromol. Rapid Commun. 2018, 39, 1800141. DOI: 10.1002/marc.201800141.
  • Li, F.; Huang, L.; Shi, Y.; Jin, X.; Wu, Z.; Shen, Z.; Chuang, K.; Lyon, R. E.; Harris, F. w.; Cheng, S. Z. D. Thermal Degradation Mechanism and Thermal Mechanical Properties of Two High-Performance Aromatic Polyimide Fibers. J. Macromol. Sci. Part B 1999, 38, 107–122. DOI: 10.1080/00222349908248109.
  • Xu, Y.; Wang, S.; Li, Z.; Xu, Q.; Zhang, Q. Polyimide Fibers Prepared by Dry-Spinning Process: Imidization Degree and Mechanical Properties. J. Mater. Sci. 2013, 48, 7863–7868. DOI: 10.1007/s10853-013-7310-0.
  • Jassal, M.; Ghosh, S. Aramid.Pdf. Indian J. Fibre Text. Res 2020, 27, 290–306.
  • Ertekin, M. 7—Aramid Fibers. In Fiber Technology for Fiber-Reinforced Composites: Woodhead Publishing Series in Composites Science and Engineering; Seydibeyoğlu, M. Ö., Mohanty, A. K., Misra, M., Eds.; Woodhead Publishing: Duxford, UK, 2017; pp 153–167
  • Fink, J. K. T. S.-R. I. S. M.-C., Ed.; High Performance Polymers (Second Edition): Plastics Design Library; William Andrew Publishing, 2014.
  • Domininghaus, H.; Elsner, P.; Eyerer, P.; Hirth, T. Kunststoffe; Springer Berlin Heidelberg: Berlin, Heidelberg, 2012.
  • Deopura, B. L.; Padaki, N. V. Chapter 5—Synthetic Textile Fibres: Polyamide, Polyester and Aramid Fibres. In Textiles and Fashion; Sinclair, R., Ed.; Woodhead Publishing Series in Textiles; Woodhead Publishing: Duxford, UK, 2015; pp 97–114
  • Kemkes, J. F. Direct Esterification of Terephthalic Acid with Ethylene Glycol under Atmospheric Pressure. J. Polym. Sci, C Polym. Symp. 2007, 22, 713–720. DOI: 10.1002/polc.5070220213.
  • Smirnov, P. V.; Repina, L. P.; Bunigina, N. S.; Aizenshtein, M.; Kvasha, N. M.; Kiselev, V. V. Transesterification of Dimethyl Terephthalate with Ethylene Glycol. Fibre Chem. 1984, 15, 332–336. DOI: 10.1007/BF00548126.
  • Militky, J. 9—The Chemistry, Manufacture and Tensile Behaviour of Polyester Fibers. In Handbook of Tensile Properties of Textile and Technical Fibres : Woodhead Publishing Series in Textiles; Bunsell, A. R., Ed.; Woodhead Publishing: Duxford, UK, 2009; pp 223–314.
  • Montazer, M.; Komeily Nia, Z. Conductive Nylon Fabric through in Situ Synthesis of Nano-Silver: Preparation and Characterization. Mater Sci Eng C Mater Biol Appl. 2015, 56, 341–347. DOI: 10.1016/j.msec.2015.06.044.
  • Lee, J.; Kwon, H.; Seo, J.; Shin, S.; Koo, J. H.; Pang, C.; Son, S.; Kim, J. H.; Jang, Y. H.; Kim, D. E.; Lee, T. Conductive Fiber-Based Ultrasensitive Textile Pressure Sensor for Wearable Electronics. Adv. Mater. 2015, 27, 2433–2439.
  • Root, W.; Aguiló-Aguayo, N.; Pham, T.; Bechtold, T. Conductive Layers through Electroless Deposition of Copper on Woven Cellulose Lyocell Fabrics. Surf. Coatings Technol. 2018, 348, 13–21. DOI: 10.1016/j.surfcoat.2018.05.033.
  • Tavanai, H. A New Look at the Modification of Polyethylene Terephthalate by Sodium Hydroxide. J. Text. Inst. 2009, 100, 633–639. DOI: 10.1080/00405000802128489.
  • Musale, R. M.; Shukla, S. R. Weight Reduction of Polyester Fabric Using Sodium Hydroxide Solutions with Additives Cetyltrimethylammonium Bromide and [BMIM]Cl. J. Text. Inst. 2017, 108, 467–471. DOI: 10.1080/00405000.2016.1171029.
  • Shukla, S. R.; Mathur, M. R. Action of Alkali on Polybutylene Terephthalate and Polyethylene Terephthalate Polyesters. J. Appl. Polym. Sci. 2000, 75, 1097–1102. DOI: 10.1002/(SICI)1097-4628(20000228)75:9<1097::AID-APP2>3.0.CO;2-7.
  • Collins, M. J.; Zeronian, S. H.; Semmelmeyer, M. The Use of Aqueous Alkaline Hydrolysis to Reveal the Fine Structure of Poly(Ethylene Terephthalate) Fibers. J. Appl. Polym. Sci. 1991, 42, 2149–2162. DOI: 10.1002/app.1991.070420805.
  • Yang Liu, G. L. Surface Modification and Interface Properties of Enzyme-Mediated Grafting Kevlar Fibers. Chinese J. Mater. Res 2015, 29, 794.
  • Han, M. S.; Park, Y.; Park, C. H. Development of Superhydrophobic Polyester Fabrics Using Alkaline Hydrolysis and Coating with Fluorinated Polymers. Fibers Polym. 2016, 17, 241–247. DOI: 10.1007/s12221-016-5693-7.
  • Vecchiato, S.; Ahrens, J.; Pellis, A.; Scaini, D.; Mueller, B.; Herrero Acero, E.; Guebitz, G. M. Enzymatic Functionalization of HMLS-Polyethylene Terephthalate Fabrics Improves the Adhesion to Rubber. ACS Sustainable Chem. Eng. 2017, 5, 6456–6465. DOI: 10.1021/acssuschemeng.7b00475.
  • Zeronian, S. H.; Collins, M. J. Surface Modification of Polyester by Alkali Treatments. Text. Prog 1989, 20, 1–26. DOI: 10.1080/00405168908688948.
  • Liebminger, S.; Eberl, A.; Sousa, F.; Heumann, S.; Fischer-Colbrie, G.; Cavaco-Paulo, A.; Guebitz, G. M. Hydrolysis of PET and Bis-(Benzoyloxyethyl) Terephthalate with a New Polyesterase from Penicillium Citrinum. Biocatal. Biotransformation 2007, 25, 171–177. DOI: 10.1080/10242420701379734.
  • Ronkvist, Å. M.; Xie, W.; Lu, W.; Gross, R. A. Cutinase-Catalyzed Hydrolysis of Poly(Ethylene Terephthalate). Macromolecules 2009, 42, 5128–5138. DOI: 10.1021/ma9005318.
  • Herrero Acero, E.; Ribitsch, D.; Steinkellner, G.; Gruber, K.; Greimel, K.; Eiteljoerg, I.; Trotscha, E.; Wei, R.; Zimmermann, W.; Zinn, M.; et al. Enzymatic Surface Hydrolysis of PET: Effect of Structural Diversity on Kinetic Properties of Cutinases from Thermobifida. Macromolecules 2011, 44, 4632–4640. DOI: 10.1021/ma200949p.
  • Eberl, A.; Heumann, S.; Brückner, T.; Araujo, R.; Cavaco-Paulo, A.; Kaufmann, F.; Kroutil, W.; Guebitz, G. M. Enzymatic Surface Hydrolysis of Poly(Ethylene Terephthalate) and Bis(Benzoyloxyethyl) Terephthalate by Lipase and Cutinase in the Presence of Surface Active Molecules. J. Biotechnol. 2009, 143, 207–212.
  • Periyasamy, S.; Prasad, G. K.; Chattopadhyay, S. K.; Raja, A. S. M.; Kumar, K. R.; Jagadale, S. Micro-Roughening of Polyamide Fabric Using Protease Enzyme for Improving Adhesion Strength of Rubber-Polyamide Composite. J. Polym. Eng 2017, 37, 297–306. DOI: 10.1515/polyeng-2015-0541.
  • El-Ola, S. A.; Moharam, M.; ElAdwi, M. M.; El-Bendary, M. A. Optimum Conditions for Polyamide Fabric Modification by Protease Enzyme Produced by Bacillus Sp. 2014.
  • Begum, S.; Wu, J.; Takawira, C. M.; Wang, J. Surface Modification of Polyamide 6,6 Fabrics with an Alkaline Protease—Subtilisin. J. Eng. Fiber. Fabr 2016, 11, 64–74.DOI: 10.1177/155892501601100100.
  • Song, A. R.; Kim, H. R. Effectiveness of Flavourzyme Treatment on Polyamide Fabric. Fibers Polym. 2013, 14, 2212–2220. DOI: 10.1007/s12221-013-2212-y.
  • Kanelli, M.; Vasilakos, S.; Ladas, S.; Symianakis, E.; Christakopoulos, P.; Topakas, E. Surface Modification of Polyamide 6.6 Fibers by Enzymatic Hydrolysis. Process Biochem. (Oxford, U. K) 2017, 59, 97–103. DOI: 10.1016/j.procbio.2016.06.022.
  • Kim, H. R.; Seo, H. Y. Enzymatic Hydrolysis of Polyamide Fabric by Using Acylase. Text. Res. J 2013, 83, 1181–1189. DOI: 10.1177/0040517512471747.
  • Steven, D.; Burke, R. L. D. Handbook of Reagents for Organic Synthesis; Wiley: Chichester, 2003.
  • Trahanovsky, W. S. Oxidation in Organic Chemistry. Pt.D, Edited by Walter S. Trahanovsky; Academic Press: New York; London, 1982.
  • Lu, Z.; Hu, W.; Xie, F.; Zhuo, L.; Yang, B. Sol–Gel Synthesis of Nanosilica-Coated Para-Aramid Fibers and Their Application in the Preparation of Paper-Based Friction Materials. RSC Adv. 2017, 7, 30632–30639. DOI: 10.1039/C7RA05142E.
  • Chen, J.; Zhu, Y.; Ni, Q.; Fu, Y.; Fu, X. Surface Modification and Characterization of Aramid Fibers with Hybrid Coating. Appl. Surf. Sci 2014, 321, 103–108. DOI: 10.1016/j.apsusc.2014.09.196.
  • Li, G.; Zhang, C.; Wang, Y.; Li, P.; Yu, Y.; Jia, X.; Liu, H.; Yang, X.; Xue, Z.; Ryu, S. Interface Correlation and Toughness Matching of Phosphoric Acid Functionalized Kevlar Fiber and Epoxy Matrix for Filament Winding Composites. Compos. Sci. Technol 2008, 68, 3208–3214. DOI: 10.1016/j.compscitech.2008.08.006.
  • Sun, Y.; Sun, G. Novel Refreshable N -Halamine Polymeric Biocides: N-Chlorination of Aromatic Polyamides. Ind. Eng. Chem. Res. 2004, 43, 5015–5020. DOI: 10.1021/ie030846m.
  • Barassi, G.; Borrmann, T. N-Chlorination and Orton Rearrangement of Aromatic Polyamides, Revisited. J. Membr. Sci. Technol 2012, 02, 1-3, DOI: 10.4172/2155-9589.1000115
  • Hardy, F. E.; Robson, P. The Formation and Hydrolysis of Substituted N-Chloro-N-Methylbenzamides in Aqueous Alkali. J. Chem. Soc, B: 1967, 1151. DOI: 10.1039/j29670001151.
  • Lu, W.; Yi, Y.; Ning, C.; Ge, M.; S M, J. A. Chlorination Treatment of Meta-Aramid Fibrids and Its Effects on Mechanical Properties of Polytetramethylene Ether Glycol/Toluene Diisocyanate (PTMEG/TDI)-Based Polyurethane Composites. Polymers (Basel) 2019, 11, 1–12. DOI: 10.3390/polym11111794.
  • Jenekhe, S. A.; Roberts, M. F. Effects of Intermolecular Forces on the Glass Transition of Polymers. Macromolecules 1993, 26, 4981–4983. DOI: 10.1021/ma00070a041.
  • Vasanthan, N.; Kotek, R.; Jung, D.-W.; Shin, D.; Tonelli, A. E.; Salem, D. R. Acid–Base Complexation of Polyamide 66 to Control Hydrogen Bonding. Extensibility and Crystallinity. Polymer (Guildf) 2004, 45, 4077–4085. DOI: 10.1016/j.polymer.2004.03.074.
  • Roberts, M. F.; Jenekhe, S. A. Site-Specific Reversible Scission of Hydrogen Bonds in Polymers. An Investigation of Polyamides and Their Lewis Acid-Base Complexes by Infrared Spectroscopy. Macromolecules 1991, 24, 3142–3146. DOI: 10.1021/ma00011a017.
  • Roberts, M. F.; Jenekhe, S. A. Lewis Acid Complexation of Polymers: Gallium Chloride Complex of Nylon 6. Chem. Mater. 1990, 2, 224–226. DOI: 10.1021/cm00009a006.
  • Jenekhe, S. A.; Johnson, P. O. Complexation-Mediated Solubilization and Processing of Rigid-Chain and Ladder Polymers in Aprotic Organic Solvents. Macromolecules 1990, 23, 4419–4429. DOI: 10.1021/ma00222a015.
  • Rietzler, B.; Bechtold, T.; Pham, T. Controlled Surface Modification of Polyamide 6.6 Fibres Using CaCl2/H2O/EtOH Solutions. Polymers (Basel) 2018, 10, 207. DOI: 10.3390/polym10020207.
  • Rietzler, B.; Bechtold, T.; Pham, T. Spatial Structure Investigation of Porous Shell Layer Formed by Swelling of PA66 Fibers in CaCl2/H2O/EtOH Mixtures. Langmuir 2019, 35, 4902–4908. DOI: 10.1021/acs.langmuir.8b03741.
  • Rietzler, B.; Manian, A. P.; Rhomberg, D.; Bechtold, T.; Pham, T. Investigation of the Decomplexation of Polyamide/CaCl2 Complex toward a Green, Nondestructive Recovery of Polyamide from Textile Waste. J. Appl. Polym. Sci 2021, 138. DOI: 10.1002/app.51170
  • Rietzler, B.; Caven, B.; Bechtold, T.; Pham, T. Treatment of Polyamide 66 Fabric for Increased Ultraviolet Protection. Text. Res. J 2020, 90, 1881–1888. DOI: 10.1177/0040517519896752.
  • Ellison, M. S.; Fisher, L. D.; Alger, K. W.; Zeronian, S. H. Physical Properties of Polyester Fibers Degraded by Aminolysis and by Alkalin Hydrolysis. J. Appl. Polym. Sci. 1982, 27, 247–257. DOI: 10.1002/app.1982.070270126.
  • Zhao, Z.; Zhou, J.; Fan, T.; Li, L.; Liu, Z.; Liu, Y.; Lu, M. An Effective Surface Modification of Polyester Fabrics for Improving the Interfacial Deposition of Polypyrrole Layer. Mater. Chem. Phys 2018, 203, 89–96. DOI: 10.1016/j.matchemphys.2017.09.062.
  • Li, C.; Zhen, Q.; Luo, Z.; Lu, S. Effect of Calcium Chloride on the Surface Properties of Kevlar Fiber. J. Appl. Polym. Sci. 2015, 132, n/a–n/a. DOI: 10.1002/app.41358.
  • Brandenburg, R. Dielectric Barrier Discharges: Progress on Plasma Sources and on the Understanding of Regimes and Single Filaments. Plasma Sources Sci. Technol. 2017, 26, 053001. DOI: 10.1088/1361-6595/aa6426.
  • Neděla, O.; Slepička, P.; Švorčík, V. Surface Modification of Polymer Substrates for. Biomedical Applications. Mater. (Basel, Switzerland ) 2017, 10, 1-22. DOI:10.3390/ma10101115
  • Jelil, R. A. A Review of Low-Temperature Plasma Treatment of Textile Materials. J. Mater. Sci. 2015, 50, 5913–5943. DOI: 10.1007/s10853-015-9152-4.
  • Flor, C.; Hinestroza, J. Surface Modification of Polyester Fabrics Using Low Pressure Air Radio Frequency Plasma. Int. J. Fash. Des. Technol. Educ 2010, 3, 119–127. DOI: 10.1080/17543266.2010.510483.
  • Riccardi, C.; Barni, R.; Selli, E.; Mazzone, G.; Massafra, M. R.; Marcandalli, B.; Poletti, G. Surface Modification of Poly(Ethylene Terephthalate) Fibers Induced by Radio Frequency Air Plasma Treatment. Appl. Surf. Sci 2003, 211, 386–397. DOI: 10.1016/S0169-4332(03)00265-4.
  • Cioffi, M. O. H.; Voorwald, H. J. C.; Mota, R. P. Surface Energy Increase of Oxygen-Plasma-Treated PET. Mater. Charact 2003, 50, 209–215. DOI: 10.1016/S1044-5803(03)00094-9.
  • Wang, C.; Wang, C. Surface Pretreatment of Polyester Fabric for Ink Jet Printing with Radio Frequency O2 Plasma. Fibers Polym. 2010, 11, 223–228. DOI: 10.1007/s12221-010-0223-5.
  • Hossain, M. M.; Herrmann, A. S.; Hegemann, D. Plasma Hydrophilization Effect on Different Textile Structures. Plasma Process. Polym. 2006, 3, 299–307. DOI: 10.1002/ppap.200500152.
  • Öteyaka, M. Ö.; Chevallier, P.; Turgeon, S.; Robitaille, L.; Laroche, G. Low Pressure Radio Frequency Ammonia Plasma Surface Modification on Poly(Ethylene Terephthalate) Films and Fibers: Effect of the Polymer Forming Process. Plasma Chem. Plasma Process. 2012, 32, 17–33. DOI: 10.1007/s11090-011-9330-3.
  • Selli, E.; Mazzone, G.; Oliva, C.; Martini, F.; Riccardi, C.; Barni, R.; Marcandalli, B.; Massafra, M. R. Characterisation of Poly(Ethylene Terephthalate) and Cotton Fibres after Cold SF6 Plasma Treatment. J. Mater. Chem. 2001, 11, 1985–1991. DOI: 10.1039/b101360m.
  • Timoshina, Y. A.; Voznesensky, E. F.; Tskhay, E. S.; Sysoev, V. A.; Krasina, I. V.; Kulevtsov, G. N. Surface Activation of Polyamide Fibers by Radio-Frequency Capacitive Plasma for Application of Functional Coatings. J. Phys. Conf. Ser 2019, 1328, 12084.
  • Nejman, A.; Kamińska, I.; Jasińska, I.; Celichowski, G.; Cieślak, M. Influence of Low-Pressure RF Plasma Treatment on Aramid Yarns Properties. Molecules 2020, 25, 3476. DOI: 10.3390/molecules25153476.
  • Wang, J.; Chen, P.; Lu, C.; Yu, Q.; Li, W.; Ren, R. Improvement of Aramid Fiber III Reinforced Bismaleimide Composite Interfacial Adhesion by Oxygen Plasma Treatment. Compos. Interfaces 2018, 25, 771–783. DOI: 10.1080/09276440.2018.1439630.
  • Su, M.; Gu, A.; Liang, G.; Yuan, L. The Effect of Oxygen-Plasma Treatment on Kevlar Fibers and the Properties of Kevlar Fibers/Bismaleimide Composites. Appl. Surf. Sci 2011, 257, 3158–3167. DOI: 10.1016/j.apsusc.2010.10.133.
  • Zhang, X.; Chen, P.; Yu, Q.; Ma, K.; Ding, Z.; Zhu, X. Effects of Plasma-Induced Epoxy Coatings on Surface Properties of Twaron Fibers and Improved Adhesion with PPESK Resins. Vacuum 2013, 97, 1–8. DOI: 10.1016/j.vacuum.2013.03.005.
  • Li, S.; Han, K.; Rong, H.; Li, X.; Yu, M. Surface Modification of Aramid Fibers via Ammonia-Plasma Treatment. J. Appl. Polym. Sci. 2014, 131, n/a–n/a. n/a-n/a. DOI: 10.1002/app.40250.
  • Kan, C. W.; Yuen, C. W. M. Effect of Atmospheric Pressure Plasma Treatment on Wettability and Dryability of Synthetic Textile Fibres. Surf. Coatings Technol 2013, 228, S607–S610. DOI: 10.1016/j.surfcoat.2011.10.061.
  • Gotoh, K.; Yasukawa, A. Atmospheric Pressure Plasma Modification of Polyester Fabric for Improvement of Textile-Specific Properties. Text. Res. J 2011, 81, 368–378. DOI: 10.1177/0040517510387207.
  • Gotoh, K.; Akiko, K.; Aya, H.; Yasuyuki, K. Textile Performance of Polyester. Nylon 6 and Acetate Fabrics Treated with Atmospheric Pressure Plasma Jet 2013, 69, 169–176.
  • Wang, C. X.; Du, M.; Lv, J. C.; Zhou, Q. Q.; Ren, Y.; Liu, G. L.; Gao, D. W.; Jin, L. M. Surface Modification of Aramid Fiber by Plasma Induced Vapor Phase Graft Polymerization of Acrylic Acid. I. Influence of Plasma Conditions. Appl. Surf. Sci 2015, 349, 333–342. DOI: 10.1016/j.apsusc.2015.05.036.
  • Li, X.; Lin, J.; Qiu, Y. Influence of He/O2 Atmospheric Pressure Plasma Jet Treatment on Subsequent Wet Desizing of Polyacrylate on PET Fabrics. Appl. Surf. Sci 2012, 258, 2332–2338. DOI: 10.1016/j.apsusc.2011.10.009.
  • Cheng, C.; Liye, Z.; Zhan, R.-J. Surface Modification of Polymer Fibre by the New Atmospheric Pressure Cold Plasma Jet. Surf. Coatings Technol. 2006, 200, 6659–6665. DOI: 10.1016/j.surfcoat.2005.09.033.
  • Ilić, V.; Šaponjić, Z.; Vodnik, V.; Molina, R.; Dimitrijević, S.; Jovančić, P.; Nedeljković, J.; Radetić, M. Antifungal Efficiency of Corona Pretreated Polyester and Polyamide Fabrics Loaded with Ag Nanoparticles. J. Mater. Sci. 2009, 44, 3983–3990. DOI: 10.1007/s10853-009-3547-z.
  • Susan, A. I.; Widodo, M.; Nur, M. Corona Glow Discharge Plasma Treatment for Hidrophylicity Improvement of Polyester and Cotton Fabrics. IOP Conf. Ser. Mater. Sci. Eng. 2017, 214, 12031.
  • Oliveira, F. R.; Zille, A.; Souto, A. P. Dyeing Mechanism and Optimization of Polyamide 6,6 Functionalized with Double Barrier Discharge (DBD) Plasma in Air. Appl. Surf. Sci 2014, 293, 177–186. DOI: 10.1016/j.apsusc.2013.12.126.
  • Šimor, M.; Ráhel’, J.; Černák, M.; Imahori, Y.; Štefečka, M.; Kando, M. Atmospheric-Pressure Plasma Treatment of Polyester Nonwoven Fabrics for Electroless Plating. Surf. Coatings Technol 2003, 172, 1–6. DOI: 10.1016/S0257-8972(03)00313-X.
  • Labay, C.; Canal, C.; García-Celma, M. J. Influence of Corona Plasma Treatment on Polypropylene and Polyamide 6.6 on the Release of a Model Drug. Plasma Chem. Plasma Process. 2010, 30, 885–896. DOI: 10.1007/s11090-010-9255-2.
  • Radetić, M.; Ilić, V.; Vodnik, V.; Dimitrijević, S.; JovančIć, P.; ŠAponjić, Z.; Nedeljković, J. M.; Antibacterial Effect of Silver Nanoparticles Deposited on Corona-Treated Polyester and Polyamide Fabrics. Polym. Adv. Technol. 2008, 19, 1816–1821. DOI: 10.1002/pat.1205.
  • McCord, M. G.; Hwang, Y. J.; Hauser, P. J.; Qiu, Y.; Cuomo, J. J.; Hankins, O. E.; Bourham, M. A.; Canup, L. K. Modifying Nylon and Polypropylene Fabrics with Atmospheric Pressure Plasmas. Text. Res. J 2002, 72, 491–498. DOI: 10.1177/004051750207200605.
  • Pappas, D.; Bujanda, A.; Demaree, J. D.; Hirvonen, J. K.; Kosik, W.; Jensen, R.; McKnight, S. Surface Modification of Polyamide Fibers and Films Using Atmospheric Plasmas. Surf. Coatings Technol 2006, 201, 4384–4388. DOI: 10.1016/j.surfcoat.2006.08.068.
  • Lange, P. J.; Akker, P. G. Adhesion Activation of Twaron Aramid Fibers for Application in Rubber. Plasma versus Chemical Treatment. J. Adhes. Sci. Technol 2012, 26, 827–839. DOI: 10.1163/016942411X580036.
  • Ren, Y.; Wang, C.; Qiu, Y. Influence of Aramid Fiber Moisture Regain during Atmospheric Plasma Treatment on Aging of Treatment Effects on Surface Wettability and Bonding Strength to Epoxy. Appl. Surf. Sci 2007, 253, 9283–9289. DOI: 10.1016/j.apsusc.2007.05.054.
  • Nejman, A.; Kamińska, I.; Cieślak, M. Influence of Corona Discharge on the Surface and Thermal Properties of Aramid Fabrics. Plasma Process. Polym. 2019, 16, 1800194. DOI: 10.1002/ppap.201800194.
  • Hwang, Y. J.; Qiu, Y.; Zhang, C.; Jarrard, B.; Stedeford, R.; Tsai, J.; Park, Y. C.; McCord, M. Effects of Atmospheric Pressure Helium/Air Plasma Treatment on Adhesion and Mechanical Properties of Aramid Fibers. J. Adhes. Sci. Technol 2003, 17, 847–860. DOI: 10.1163/156856103321645194.
  • Onsuratoom, S.; Rujiravanit, R.; Sreethawong, T.; Tokura, S.; Chavadej, S. Silver Loading on DBD Plasma-Modified Woven PET Surface for Antimicrobial Property Improvement. Plasma Chem. Plasma Process. 2010, 30, 191–206. DOI: 10.1007/s11090-009-9199-6.
  • Leroux, F.; Perwuelz, A.; Campagne, C.; Behary, N. Atmospheric Air-Plasma Treatments of Polyester Textile Structures. J. Adhes. Sci. Technol 2006, 20, 939–957. DOI: 10.1163/156856106777657788.
  • Zille, A.; Fernandes, M. M.; Francesko, A.; Tzanov, T.; Fernandes, M.; Oliveira, F. R.; Almeida, L.; Amorim, T.; Carneiro, N.; Esteves, M. F.; Souto, A. P. Size and Aging Effects on Antimicrobial Efficiency of Silver Nanoparticles Coated on Polyamide Fabrics Activated by Atmospheric DBD Plasma. ACS Appl. Mater. Interfaces 2015, 7, 13731–13744. DOI: 10.1021/acsami.5b04340.
  • Jia, C.; Chen, P.; Liu, W.; Li, B.; Wang, Q. Surface Treatment of Aramid Fiber by Air Dielectric Barrier Discharge Plasma at Atmospheric Pressure. Appl. Surf. Sci 2011, 257, 4165–4170. DOI: 10.1016/j.apsusc.2010.11.190.
  • Biswas, M. K.; Shayed, M. A.; Hund, R. D.; Cherif, C. Surface Modification of Twaron Aramid Fiber by the Atmospheric Air Plasma Technique. Text. Res. J 2012, 83, 406–417. DOI: 10.1177/0040517512464291.
  • Xi, M.; Li, Y.-L.; Shang, S.; Li, D.-H.; Yin, Y.-X.; Dai, X.-Y. Surface Modification of Aramid Fiber by Air DBD Plasma at Atmospheric Pressure with Continuous on-Line Processing. Surf. Coatings Technol 2008, 202, 6029–6033. DOI: 10.1016/j.surfcoat.2008.06.181.
  • Yuan, H.; Wang, W.; Yang, D.; Zhou, X.; Zhao, Z.; Zhang, L.; Wang, S.; Feng, J. Hydrophilicity Modification of Aramid Fiber Using a Linear Shape Plasma Excited by Nanosecond Pulse. Surf. Coatings Technol 2018, 344, 614–620. DOI: 10.1016/j.surfcoat.2018.03.057.
  • Gu, R.; Yu, J.; Hu, C.; Chen, L.; Zhu, J.; Hu, Z. Surface Treatment of Para-Aramid Fiber by Argon Dielectric Barrier Discharge Plasma at Atmospheric Pressure. Appl. Surf. Sci 2012, 258, 10168–10174. DOI: 10.1016/j.apsusc.2012.06.100.
  • Luo, S.; van Ooij, W. J. Surface Modification of Textile Fibers for Improvement of Adhesion to Polymeric Matrices: A Review. J. Adhes. Sci. Technol 2002, 16, 1715–1735. DOI: 10.1163/156856102320396102.
  • Desmet, T.; Morent, R.; Geyter, N.; Leys, C.; Schacht, E.; Dubruel, P. Nonthermal Plasma Technology as a Versatile Strategy for Polymeric Biomaterials Surface Modification: A Review. Biomacromolecules 2009, 10, 2351–2378. DOI: 10.1021/bm900186s.
  • Fridman, A. Plasma Chemistry; Cambridge University Press: Cambridge, UK, 2008.
  • Friedrich, J. The Plasma Chemistry of Polymer Surfaces; Wiley-VCH: Weinheim, 2012.
  • Nageswaran, G.; Jothi, L.; Jagannathan, S. Plasma Assisted Polymer Modifications. In Non-Thermal Plasma Technology for Polymeric Materials; Elsevier: Amsterdam, NL, 2019; pp 95–127.
  • Narushima, K.; Matsuda, N.; Mizutani, C.; Yamashita, N.; Inagaki, N.; Iio, K.; Isono, Y.; Islam, M. R. Possibility of Solid-State Graft Copolymerization on Poly(Ethylene Terephthalate) Films by Plasma Irradiation and Effects of Surface Modification. Jpn. J. Appl. Phys. 2007, 46, 4252–4259. DOI: 10.1143/JJAP.46.4252.
  • Narushima, K.; Yamashita, N.; Fukuoka, M.; Inagaki, N.; Isono, Y.; Islam, M. R. Surface Modifications of Polyester Films by Ammonia Plasma. Jpn. J. Appl. Phys. 2007, 46, 4238–4245. DOI: 10.1143/JJAP.46.4238.
  • Wu, S. R.; Sheu, G. S.; Shyu, S. S. Kevlar Fiber–Epoxy Adhesion and Its Effect on Composite Mechanical and Fracture Properties by Plasma and Chemical Treatment. J. Appl. Polym. Sci. 1996, 62, 1347–1360. DOI: 10.1002/(SICI)1097-4628(19961128)62:9<1347::AID-APP5>3.0.CO;2-H.
  • Inagaki, N.; Narushim, K.; Tuchida, N.; Miyazaki, K. Surface Characterization of Plasma-Modified Poly(Ethylene Terephthalate) Film Surfaces. J. Polym. Sci. B Polym. Phys. 2004, 42, 3727–3740. DOI: 10.1002/polb.20234.
  • Gao, Z. Modification of Surface Properties of Polyamide 6 Films with Atmospheric Pressure Plasma. Appl. Surf. Sci 2011, 257, 6068–6072. DOI: 10.1016/j.apsusc.2011.01.132.
  • Olde Riekerink, M. B.; Terlingen, J. G. A.; Engbers, G. H. M.; Feijen, J. Selective Etching of Semicrystalline Polymers: CF4 Gas Plasma Treatment of Poly(Ethylene). Langmuir 1999, 15, 4847–4856. DOI: 10.1021/la990020i.
  • Gao, Z.; Peng, S.; Sun, J.; Yao, L.; Qiu, Y. Influence of Processing Parameters on Atmospheric Pressure Plasma Etching of Polyamide 6 Films. Appl. Surf. Sci 2009, 255, 7683–7688. DOI: 10.1016/j.apsusc.2009.04.137.
  • Borcia, G.; Dumitrascu, N.; Popa, G. Influence of Helium-Dielectric Barrier Discharge Treatments on the Adhesion Properties of Polyamide-6 Surfaces. Surf. Coatings Technol 2005, 197, 316–321. DOI: 10.1016/j.surfcoat.2005.01.104.
  • Hwang, Y. J.; Matthews, S.; McCord, M.; Bourham, M. Surface Modification of Organic Polymer Films Treated in Atmospheric Plasmas. J. Electrochem. Soc. 2004, 151, C495. DOI: 10.1149/1.1756891.
  • Kim, J.; Kim, H.; Park, C. H. Contribution of Surface Energy and Roughness to the Wettability of Polyamide 6 and Polypropylene Film in the Plasma-Induced Process. Text. Res. J 2016, 86, 461–471. DOI: 10.1177/0040517515580511.
  • Károly, Z.; Kalácska, G.; Zsidai, L.; Mohai, M.; Klébert, S. Improvement of Adhesion Properties of Polyamide 6 and Polyoxymethylene-Copolymer by Atmospheric Cold Plasma Treatment. Polymers (Basel 2018, 10, 1380. DOI: 10.3390/polym10121380.
  • Upadhyay, D. J.; Cui, N.-Y.; Anderson, C. A.; Brown, N. M. D. A Comparative Study of the Surface Activation of Polyamides Using an Air Dielectric Barrier Discharge. Colloids Surfaces A Physicochem. Eng. Asp 2004, 248, 47–56. DOI: 10.1016/j.colsurfa.2004.08.016.
  • Fridman, A.; Chirokov, A.; Gutsol, A. Non-Thermal Atmospheric Pressure Discharges. J. Phys. D: Appl. Phys. 2005, 38, R1–R24. DOI: 10.1088/0022-3727/38/2/R01.
  • Farris, S.; Pozzoli, S.; Biagioni, P.; Duó, L.; Mancinelli, S.; Piergiovanni, L. The Fundamentals of Flame Treatment for the Surface Activation of Polyolefin Polymers – a Review. Polymer (Guildf ). 2010, 51, 3591–3605. DOI: 10.1016/j.polymer.2010.05.036.
  • Strobel, M.; Branch, M. C.; Ulsh, M.; Kapaun, R. S.; Kirk, S.; Lyons, C. S. Flame Surface Modification of Polypropylene Film. J. Adhes. Sci. Technol 1996, 10, 515–539. DOI: 10.1163/156856196X00562.
  • Pascoe, R. D.; O'Connell, B. Flame Treatment for the Selective Wetting and Separation of PVC and PET. Waste Manag. 2003, 23, 845–850.
  • Kim, J. G.; Choi, I.; Lee, D. G.; Seo, I. S. Flame and Silane Treatments for Improving the Adhesive Bonding Characteristics of Aramid/Epoxy Composites. Compos. Struct 2011, 93, 2696–2705. DOI: 10.1016/j.compstruct.2011.06.002.
  • Prabha, V.; Barma, D.; Singh, R.; Madan, A. Ozone Technology in Food Processing: A Review. 2015.
  • Korzec, D.; Hoppenthaler, F.; Burger, D.; Andres, T.; Nettesheim, S. Atmospheric Pressure Plasma Jet Powered by Piezoelectric Direct Discharge. Plasma Process. Polym. 2020, 17, 2000053. DOI: 10.1002/ppap.202000053.
  • Körlü, A. Use of Ozone in the Textile Industry. In Textile Industry and Environment; https://www.intechopen.com/chapters/64467 (last accessed 15.3.2021))
  • Dong, Y.; Jang, J. The Enhanced Cationic Dyeability of Ultraviolet/Ozone-Treated Meta-Aramid Fabrics. Color. Technol 2011, 127, 173–178. DOI: 10.1111/j.1478-4408.2011.00295.x.
  • Kim, E.-M.; Jang, J. Surface Modification of Meta-Aramid Films by UV/Ozone Irradiation. Fibers Polym. 2010, 11, 677–682. DOI: 10.1007/s12221-010-0677-5.
  • Elnagar, K.; Abou Elmaaty, T.; Raouf, S.; Molina, R. Dyeing of Polyester and Polyamide Synthetic Fabrics with Natural Dyes Using Ecofriendly Technique. J. Text 2014, 2014, 363079.
  • Wang, Y.; Wiener, J.; Militky, J.; Mishra, R.; Zhu, G. Ozone Effect on the Properties of Aramid Fabric. Autex Res. J 2017, 17, 164–169. DOI: 10.1515/aut-2016-0027.
  • Kłonica, M.; Kuczmaszewski, J.; Kwiatkowski, M. P.; Ozonek, J. Polyamide 6 Surface Layer following Ozone Treatment. Int. J. Adhes. Adhes 2016, 64, 179–187. DOI: 10.1016/j.ijadhadh.2015.10.017.
  • Balci, N.; Ömeroğullari, Z.; Kut, D.; Eren, H. A. Effects of Plasma and Ozone Treatments on Tensile and Whiteness Properties of 100% Silk. Uludağ Univ. J. Fac. Eng 2015, 20, 43. DOI: 10.17482/uujfe.33090.
  • Büttler, J. R.; Bechtold, T.; Pham, T. Investigation of Interfacial Diffusion in PA/PP-g-MAH Laminates Using Nanoscale Infrared Spectroscopy. Langmuir 2020, 36, 9886–9893. DOI: 10.1021/acs.langmuir.0c01447.
  • Cordin, M.; Büttler, J. R.; Bechtold, T.; Pham, T. Polymer Interface Reactions. In Reactive and Functional Polymers Volume Four; Tomy J. Gutiérrez, Ed.; Springer International Publishing: Cham, CH, 2020; pp 55–96
  • Jia, C.; Zhang, R.; Yuan, C.; Ma, Z.; Du, Y.; Liu, L.; Huang, Y. Surface Modification of Aramid Fibers by Amino Functionalized Silane Grafting to Improve Interfacial Property of Aramid Fibers Reinforced Composite. Polym. Compos 2020, 41, 2046–2053. DOI: 10.1002/pc.25519.
  • Lin, G.; Wang, H.; Yu, B.; Qu, G.; Chen, S.; Kuang, T.; Yu, K.; Liang, Z. Combined Treatments of Fiber Surface Etching/Silane-Coupling for Enhanced Mechanical Strength of Aramid Fiber-Reinforced Rubber Blends. Mater. Chem. Phys 2020, 255, 123486.
  • Wang, L.; Zhang, B.; Li, X.; Wang, W.; Tian, M.; Fan, Z.; Zhang, L. Enhanced Adhesion Property of Aramid Fibers by Polyphenol-Metal Iron Complexation and Silane Grafting. J. Adhes 2021, 97, 346–360. DOI: 10.1080/00218464.2019.1666368.
  • Landsiedel, J.; Root, W.; Schramm, C.; Menzel, A.; Witzleben, S.; Bechtold, T.; Pham, T. Tunable Colors and Conductivity by Electroless Growth of Cu/Cu2O Particles on Sol-Gel Modified Cellulose. Nano Res. 2020, 13, 2658–2664. DOI: 10.1007/s12274-020-2907-5.
  • Yu, D.; Mu, S.; Liu, L.; Wang, W. Preparation of Electroless Silver Plating on Aramid Fiber with Good Conductivity and Adhesion Strength. Colloids Surfaces A Physicochem. Eng. Asp 2015, 483, 53–59. DOI: 10.1016/j.colsurfa.2015.07.021.
  • Wang, W.; Li, R.; Tian, M.; Liu, L.; Zou, H.; Zhao, X.; Zhang, L. Surface Silverized meta-aramid fibers prepared by bio-inspired poly(dopamine) functionalization . ACS Appl Mater Interfaces 2013, 5, 2062–2069. DOI: 10.1021/am302956h.
  • Onggar, T.; Cheng, T.; Hund, H.; Hund, R.-D.; Cherif, C. Metallization of Inert Polyethylene Terephthalate Textile Materials: Wet-Chemical Silvering with Natural and Synthetic Polyamine, Part I. Text. Res. J 2011, 81, 2017–2032. DOI: 10.1177/0040517511413323.
  • Sa, R.; Yan, Y.; Wei, Z.; Zhang, L.; Wang, W.; Tian, M. Surface Modification of Aramid Fibers by Bio-Inspired Poly(Dopamine) and Epoxy Functionalized Silane Grafting. ACS Appl Mater Interfaces 2014, 6, 21730–21738. DOI: 10.1021/am507087p.
  • Lee, H.; Dellatore, S. M.; Miller, W. M.; Messersmith, P. B. Mussel-Inspired Surface Chemistry for Multifunctional Coatings. Science 2007, 318, 426–430. DOI: 10.1126/science.1147241.
  • Schindler, S.; Bechtold, T. Mechanistic Insights into the Electrochemical Oxidation of Dopamine by Cyclic Voltammetry. J. Electroanal. Chem 2019, 836, (January), 94–101. DOI: 10.1016/j.jelechem.2019.01.069.
  • Yasuda, H.; Iriyama, Y. Plasma Polymerization. In Comprehensive Polymer Science and Supplements; Allen, G., Bevington, J. C., Eds.; Elsevier: Amsterdam, 1989; pp 357–375
  • Friedrich, J. Mechanisms of Plasma Polymerization—Reviewed from a Chemical Point of View. Plasma Processes Polym. 2011, 8, 783–802. DOI: 10.1002/ppap.201100038.
  • Cireli, A.; Kutlu, B.; Mutlu, M. Surface Modification of Polyester and Polyamide Fabrics by Low Frequency Plasma Polymerization of Acrylic Acid. J. Appl. Polym. Sci. 2007, 104, 2318–2322. DOI: 10.1002/app.25701.
  • Kale, K. H.; Palaskar, S. S. Structural Studies of Plasma Polymers Obtained in Pulsed Dielectric Barrier Discharge of TEOS and HMDSO on Nylon 66 Fabrics. Journal of the Textile Institute 2012, 103, 1088–1098. DOI: 10.1080/00405000.2012.660757.
  • Kale, K. H.; Palaskar, S. S. Plasma Enhanced Chemical Vapor Deposition of Tetraethylorthosilicate and Hexamethyldisiloxane on Polyester Fabrics under Pulsed and Continuous Wave Discharge. J. Appl. Polym. Sci. 2012, 125, 3996–4006. DOI: 10.1002/app.36601.
  • Hussain, S.; Yorucu, C.; Ahmed, I.; Hussain, R.; Chen, B.; Bilal Khan, M.; Siddique, N. A.; Rehman, I. U. Surface Modification of Aramid Fibres by Graphene Oxide Nano-Sheets for Multiscale Polymer Composites. Surf. Coatings Technol 2014, 258, 458–466. DOI: 10.1016/j.surfcoat.2014.08.054.
  • Lange, P. J.; Akker, P. G.; Willemsen, S.; Datta, R. N. The Effect of Oily Finish Components on the Adhesion between Aramid Fibers and Rubber. J. Adhes. Sci. Technol 2009, 23, 139–149. DOI: 10.1163/156856108X344568.