2,040
Views
11
CrossRef citations to date
0
Altmetric
Reviews

Chain-Extending Modification for Value-Added Recycled PET: A Review

, & ORCID Icon
Pages 860-889 | Received 30 Nov 2021, Accepted 08 Jan 2022, Published online: 31 Jan 2022

References

  • Tiseo, I. Demand for Polyethylene Terephthalate Worldwide from 2010 to 2020, with a Forecast for 2021 to 2030, 2021. https://www.statista.com/statistics/1128658/polyethylene-terephthalate-demand-worldwide/ (accessed Nov 24, 2021).
  • Hopewell, J.; Dvorak, R.; Kosior, E. Plastics Recycling: Challenges and Opportunities. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2009, 364, 2115–2126. DOI: 10.1098/rstb.2008.0311.
  • Market Research Future. Global Amorphous Polyethylene Terephthalate Market Information: By Additives (Chain Extenders, Solid Stating Accelerators), Application (Bottles, Packaging), End-Use Industries (Food & Beverage, Pharmaceuticals, Automotive), Region-Forecast Till 2027, 2021. https://www.marketresearchfuture.com/reports/amorphous-polyethylene-terephthalate-market-5936 (accessed Nov 24, 2021).
  • Gupta, V.; Bashir, Z. PET Fibers, Films, and Bottles: Sections 5–7. In Handbook of Thermoplastic Polyesters: Homopolymers, Copolymers, Blends, and Composites; Adewale, O. O., Ed.; FL, USA: CRC Press, 2002; pp 362–388.
  • Grand View Research. Polyethylene Terephthalate Compounding Market Size, Share & Trends Analysis Report by Application (Packaging, Electrical & Electronics, Industrial Machinery, Automotive, Construction, Material Handling), by Region, and Segment Forecasts, 2016-2024, 2016. https://www.grandviewresearch.com/industry-analysis/polyethylene-terephthalate-pet-compounding-market (accessed Nov 24, 2021).
  • Irfan, M.; Ahmad, M.; Fareed, Z.; Iqbal, N.; Sharif, A.; Wu, H. On the Indirect Environmental Outcomes of COVID-19: Short-Term Revival with Futuristic Long-Term Implications. Int. J. Environ. Res. Public Health 2021, 31, 1–11. DOI: 10.1080/09603123.2021.1874888.
  • Stachowiak, T.; Łukasik, K. The Management of Polymer and Biodegradable Composite Waste in Relation to Petroleum-Based Thermoplastic Polymer Waste—In Terms of Energy Consumption and Processability. Sustainability 2021, 13, 3701. DOI: 10.3390/su13073701.
  • Recycling Magazine. PET Recycling: Towards a Circular Economy, Recycling Magazine: Germany, August 6, 2020. https://www.recycling-magazine.com/2020/06/08/pet-recycling-towards-a-circular-economy/ (accessed Nov 24, 2021).
  • Plastic for Change. What Are the Regulations for the Use of Recycled Plastic? Plastics for Change, 2020. https://www.plasticsforchange.org/blog/category/what-are-the-current-regulations-for-the-use-of-recycled-plastic (accessed Nov 24, 2021).
  • Commission Eurostat How Much Plastic Packaging Waste Do We Recycle? Ed.; Eurostat Your Key to European Statistics. https://ec.europa.eu/eurostat/web/products-eurostat-news/-/DDN-20191105-2 (accessed Nov 24, 2021).
  • F. D. A. Administration, U. S. F. D. A. Packaging & Food Contact Substances (FCS). Recycled Plastics in Food Packaging. https://www.fda.gov/food/packaging-food-contact-substances-fcs/recycled-plastics-food-packaging (accessed Nov 24, 2021).
  • Forrest, M. Regulations and Guidance Documents from the European Union and U. S. Food and Drug Administration. In Recycling of Polyethylene Trerephthalate; Garmson, E., Chavaroche, H., Eds.; Shropshire, UK: Smithers, 2016; pp 79–105.
  • Neo, P. No Colour, on PVC: South Korea Bans Hard-to-Recycle Plastic Materials for F&B Packaging, Food Navigator Asia.com; William Reed Incorming Business Growth, January 31, 2020. https://www.foodnavigator-asia.com/Article/2020/01/31/No-colour-no-PVC-South-Korea-bans-hard-to-recycle-plastic-materials-for-F-B-packaging (accessed Nov 24, 2021).
  • Boucher, J. China Outlines Restrictions on Single Use Plasitcs. Food Packaging Forum. September 16, 2020. https://www.foodpackagingforum.org/news/china-outlines-restrictions-on-single-use-plastics (accessed Nov 24, 2021).
  • The Council for PET Bottle Recycling. Voluntary Design Guidelines for Designated PET bottles. https://www.petbottle-rec.gr.jp/english/design.html (accessed Nov 24, 2021).
  • Hernández-Sarabia, M.; Carpio-Aguilar, J. C.; Franco-García, M.-L.; Rincón-Moreno, J. Share, Optimise, Closed Loop for Food Waste (Sol4 Food Waste): The Case of Walmart-Mexico. In Towards. Zero. Waste, Franco-G., M. L., Garpio-A, J. C., Eds.; NY, USA: Springer, 2019; Vol. 6, pp. 165–190.
  • Lamberti, F. M.; Román-Ramírez, L. A.; Wood, J. Recycling of Bioplastics: Routes and Benefits. J. Polym. Environ. 2020, 28, 2551–2571. DOI: 10.1007/s10924-020-01795-8.
  • Ragaert, K.; Delva, L.; Van Geem, K. Mechanical and Chemical Recycling of Solid Plastic Waste. Waste. Manage. 2017, 69, 24–58. DOI: 10.1016/j.wasman.2017.07.044.
  • Briassoulis, D.; Hiskakis, M.; Babou, E. Technical Specifications for Mechanical Recycling of Agricultural Plastic Waste. Waste. Manage. 2013, 33, 1516–1530. DOI: 10.1016/j.wasman.2013.03.004.
  • Antelava, A.; Damilos, S.; Hafeez, S.; Manos, G.; Al-Salem, S. M.; Sharma, B. K.; Kohli, K.; Constantinou, A. Plastic Solid Waste (PSW) in the Context of Life Cycle Assessment (LCA) and Sustainable Management. Environ. Manage. 2019, 64, 230–244.
  • Awaja, F.; Pavel, D. Recycling of PET. Eur. Polym. J. 2005, 41, 1453–1477. DOI: 10.1016/j.eurpolymj.2005.02.005.
  • Karayannidis, G. P.; Achilias, D. S. Chemical Recycling of Poly (Ethylene Terephthalate). Macromol. Mater. Eng. 2007, 292, 128–146. DOI: 10.1002/mame.200600341.
  • Baliga, S.; Wong, W. T. Depolymerization of Poly (Ethylene Terephthalate) Recycled from Post‐Consumer Soft‐Drink Bottles. J. Polym. Sci. A Polym. Chem. 1989, 27, 2071–2082. DOI: 10.1002/pola.1989.080270625.
  • Al-AbdulRazzak, S.; Jabarin, S. A. Processing Characteristics of Poly (Ethylene Terephthalate): Hydrolytic and Thermal Degradation. Polym. Int. 2002, 51, 164–173. DOI: 10.1002/pi.813.
  • Sclavons, M.; Carlier, V.; Legras, R. Anhydride Chain Ends Functionalization of Poly (Ethylene Terephthalate). Polym. Eng. Sci. 1999, 39, 789–803. DOI: 10.1002/pen.11467.
  • Daniela Held, P. K. Tips & Tricks GPC/SEC: How GPC/SEC Can Help to Reduce PET Plastic Waste. https://www.chromatographyonline.com/view/tips-tricks-gpcsec-how-gpcsec-can-help-reduce-pet-plastic-waste (accessed Nov 17, 2021).
  • Nofar, M.; Oğuz, H. Development of PBT/Recycled-PET Blends and the Influence of Using Chain Extender. J. Polym. Environ. 2019, 27, 1404–1417. DOI: 10.1007/s10924-019-01435-w.
  • Bikiaris, D. N.; Karayannidis, G. P. Chain Extension of Polyesters PET and PBT with Two New Diimidodiepoxides. II. J. Polym. Sci. A Polym. Chem. 1996, 34, 1337–1342. [Database] DOI: 10.1002/(SICI)1099-0518(199605)34:7<1337::AID-POLA22>3.0.CO;2-9.
  • Pesetskii, S.; Jurkowski, B.; Filimonov, O.; Koval, V.; Golubovich, V. PET/PC Blends: Effect of Chain Extender and Impact Strength Modifier on Their Structure and Properties. J. Appl. Polym. Sci. 2011, 119, 225–234. DOI: 10.1002/app.32532.
  • Chen, R. S.; Ab Ghani, M. H.; Salleh, M. N.; Ahmad, S.; Gan, S. Influence of Blend Composition and Compatibilizer on Mechanical and Morphological Properties of Recycled HDPE/PET Blends. Mater. Sci. Appl. 2014, 5, 943.
  • Matias, Á. A.; Lima, M. S.; Pereira, J.; Pereira, P.; Barros, R.; Coelho, J. F.; Serra, A. C. Use of Recycled Polypropylene/Poly (Ethylene Terephthalate) Blends to Manufacture Water Pipes: An Industrial Scale Study. Waste. Manage. 2020, 101, 250–258. DOI: 10.1016/j.wasman.2019.10.001.
  • Masmoudi, F.; Alix, S.; Buet, S.; Mehri, A.; Bessadok, A.; Jaziri, M.; Ammar, E. Design and Characterization of a New Food Packaging Material by Recycling Blends Virgin and Recovered Polyethylene Terephthalate. Polym. Eng. Sci. 2020, 60, 250–256. DOI: 10.1002/pen.25278.
  • Standau, T.; Nofar, M.; Dörr, D.; Ruckdäschel, H.; Altstädt, V. A Review on Multifunctional Epoxy-Based Joncryl® ADR Chain Extended Thermoplastics. Polym. Rev. 2021, 61, 1–55. DOI: 10.1080/15583724.2021.1918710.
  • Inata, H.; Matsumura, S. Chain Extenders for Polyesters. III. Addition‐Type Nitrogen‐Containing Chain Extenders Reactive with Hydroxyl End Groups of Polyesters. J. Appl. Polym. Sci. 1986, 32, 4581–4594. DOI: 10.1002/app.1986.070320423.
  • Tavares, A. A.; Silva, D. F.; Lima, P. S.; Andrade, D. L.; Silva, S. M.; Canedo, E. L. Chain Extension of Virgin and Recycled Polyethylene Terephthalate. Polym. Test. 2016, 50, 26–32. DOI: 10.1016/j.polymertesting.2015.11.020.
  • Raffa, P.; Coltelli, M.-B.; Savi, S.; Bianchi, S.; Castelvetro, V. Chain Extension and Branching of Poly (Ethylene Terephthalate) (PET) with Di- and Multifunctional Epoxy or Isocyanate Additives: An Experimental and Modelling Study. React. Funct. Polym. 2012, 72, 50–60. DOI: 10.1016/j.reactfunctpolym.2011.10.007.
  • Haralabakopoulos, A.; Tsiourvas, D.; Paleos, C. Chain Extension of Poly (Ethylene Terephthalate) by Reactive Blending Using Diepoxides. J. Appl. Polym. Sci. 1999, 71, 2121–2127. DOI: 10.1002/(SICI)1097-4628(19990328)71:13<2121::AID-APP1>3.0.CO;2-Y.
  • Zhao, Y.; Li, Y.; Xie, D.; Chen, J. Effect of Chain Extrender on the Compatibility, Mechanical and Gas Barrier Properties of Poly (Butylene Adipate‐co‐Terephthalate)/Poly (Propylene Carbonate) Bio‐Composites. J. Appl. Polym. Sci. 2021, 138, 50487. DOI: 10.1002/app.50487.
  • Joncryl Functional Additives Joncryl ADR 4468 Technical Information; BASF the Chemical Company, 2014. https://pic.dginfo.com/upfile/file/2020/01/07/10/ori/6371399111773954075835672.pdf (accessed Nov 24, 2021).
  • Xanthos, M.; Wan, C.; Dhavalikar, R.; Karayannidis, G.; Bikiaris, D. Identification of Rheological and Structural Characteristics of Foamable Poly (Ethylene Terephthalate) by Reactive Extrusion. Polym. Int. 2004, 53, 1161–1168. DOI: 10.1002/pi.1526.
  • Härth, M.; Dörnhöfer, A.; Kaschta, J.; Münstedt, H.; Schubert, D. W. Molecular Structure and Rheological Properties of a Poly (Ethylene Terephthalate) Modified by Two Different Chain Extenders. J. Appl. Polym. Sci. 2021, 138, 50110. DOI: 10.1002/app.50110.
  • Arayesh, H.; Golshan Ebrahimi, N.; Khaledi, B.; Khabazian Esfahani, M. Introducing Four Different Branch Structures in PET by Reactive Processing. –– J. Appl. Polym. Sci. 2020, 137, 49243. DOI: 10.1002/app.49243.
  • Srithep, Y.; Pholharn, D.; Dassakorn, A.; Morris, J. Effect of Chain Extenders on Mechanical and Thermal Properties of Recycled Poly (Ethylene Terephthalate) and Polycarbonate Blends. IOP Conf. Ser.: Mater. Sci. Eng. 2017, 213, 012008. DOI: 10.1088/1757-899X/213/1/012008.
  • Joncryl ADR-4368C Polymeric Chain Extedner for Food Applications; BASF the Chemical Company, 2008. http://www2.basf.us/additives/pdfs/4368C_TDS.pdf (accessed Nov 24, 2021).
  • Qian, Z.; Chen, X.; Xu, J.; Guo, B. Chain Extension of PA1010 by Reactive Extrusion by Diepoxide 711 and Diepoxide TDE85 as Chain Extenders. J. Appl. Polym. Sci. 2004, 94, 2347–2355. DOI: 10.1002/app.21043.
  • Karsli, N. G. A Study on the Fracture, Mechanical and Thermal Properties of Chain Extended Recycled Poly (Ethylene Terephthalate). J. Thermoplast. Compos. Mater. 2017, 30, 1157–1172. DOI: 10.1177/0892705715618740.
  • Makkam, S.; Harnnarongchai, W. Rheological and Mechanical Properties of Recycled PET Modified by Reactive Extrusion. Energy Proc. 2014, 56, 547–553. DOI: 10.1016/j.egypro.2014.07.191.
  • Dhavalikar, R.; Xanthos, M. Parameters Affecting the Chain Extension and Branching of PET in the Melt State by Polyepoxides. J. Appl. Polym. Sci. 2003, 87, 643–652. DOI: 10.1002/app.11425.
  • Yan, H.; Yuan, H.; Gao, F.; Zhao, L.; Liu, T. Modification of Poly (Ethylene Terephthalate) by Combination of Reactive Extrusion and Followed Solid‐State Polycondensation for Melt Foaming. J. Appl. Polym. Sci. 2015, 132. DOI: 10.1002/app.42708.
  • Yang, Z.; Xin, C.; Mughal, W.; Li, X.; He, Y. High‐Melt‐Elasticity Poly (Ethylene Terephthalate) Produced by Reactive Extrusion with a Multi‐Functional Epoxide for Foaming. J. Appl. Polym. Sci. 2018, 135, 45805. DOI: 10.1002/app.45805.
  • May, C. Introduction to Epoxy Resins. In Epoxy Resins: Chemistry and Technology, 2nd ed.; May, C-A., Ed.; NY, USA: Marcel Dekker, 1988; pp 1–8 .
  • Zhang, Y.; Zhang, C.; Li, H.; Du, Z.; Li, C. Chain Extension of Poly (Ethylene Terephthalate) with Bisphenol‐a Dicyanate. J. Appl. Polym. Sci. 2010, 117, 2003–2008. DOI: 10.1002/app.32136.
  • Tang, X.; Guo, W.; Yin, G.; Li, B.; Wu, C. Reactive Extrusion of Recycled Poly (Ethylene Terephthalate) with Polycarbonate by Addition of Chain Extender. J. Appl. Polym. Sci. 2007, 104, 2602–2607. DOI: 10.1002/app.24410.
  • Torres, N.; Robin, J.; Boutevin, B. Chemical Modification of Virgin and Recycled Poly (Ethylene Terephthalate) by Adding of Chain Extenders during Processing. J. Appl. Polym. Sci. 2001, 79, 1816–1824. DOI: 10.1002/1097-4628(20010307)79:10<1816::AID-APP100>3.0.CO;2-R.
  • Lee, T-Y.; Lee, C-H.; Cho, S.; Lee, D-H.; Yoon, K.-B. Enhancement of Physical Properties of Thermoplastic Polyether-Ester Elastomer by Reactive Extrusion with Chain Extender. Polym. Bull. 2011, 66, 979–990. DOI: 10.1007/s00289-010-0405-8.
  • Li, B. H.; Yang, M. C. Improvement of Thermal and Mechanical Properties of Poly (L‐Lactic Acid) with 4, 4‐Methylene Diphenyl Diisocyanate. Polym. Adv. Technol. 2006, 17, 439–443. DOI: 10.1002/pat.731.
  • Zhang, Y.; Guo, W.; Zhang, H.; Wu, C. Influence of Chain Extension on the Compatibilization and Properties of Recycled Poly (Ethylene Terephthalate)/Linear Low Density Polyethylene Blends. Polym. Degrad. Stab. 2009, 94, 1135–1141. DOI: 10.1016/j.polymdegradstab.2009.03.010.
  • Liu, Y.; Wirasaputra, A.; Jiang, Z.; Liu, S.; Zhao, J.; Fu, Y. Fabrication of Improved Overall Properties of Poly (Ethylene Terephthalate) by Simultaneous Chain Extension and Crystallization Promotion. J. Therm. Anal. Calorim. 2018, 133, 1447–1454. DOI: 10.1007/s10973-018-7179-x.
  • Nascimento, C. R.; Azuma, C.; Bretas, R.; Farah, M.; Dias, M. L. Chain Extension Reaction in Solid‐State Polymerization of Recycled PET: The Influence of 2, 2′‐Bis‐2‐Oxazoline and Pyromellitic Anhydride. J. Appl. Polym. Sci. 2010, 115, 3177–3188. DOI: 10.1002/app.31400.
  • Liu, B.; Xu, Q. Effects of Bifunctional Chain Extender on the Crystallinity and Thermal Stability of PET. J. Mater. Sci. Chem. Eng. 2013, 1, 9–15.
  • Inata, H.; Matsumura, S. Chain Extenders for Polyesters. I. Addition‐Type Chain Extenders Reactive with Carboxyl End Groups of Polyesters. J. Appl. Polym. Sci. 1985, 30, 3325–3337. DOI: 10.1002/app.1985.070300815.
  • Shokubai, N. Oxazoline Functionalized Reactive Copolymers Epocros Novel Low Toxic Polymer Crosslinker and Adhesion Promoting Agent for Waterborne; Nippon Shokubai, 2021. https://www.shokubai.co.jp/en/products/detail/epocros.html (accessed Nov 24, 2021).
  • Berg, D.; Schaefer, K.; Moeller, M. Impact of the Chain Extension of Poly (Ethylene Terephthalate) with 1, 3‐Phenylene‐Bis‐Oxazoline and N, N′‐Carbonylbiscaprolactam by Reactive Extrusion on Its Properties. Polym. Eng. Sci. 2019, 59, 284–294. DOI: 10.1002/pen.24903.
  • Veselova, E.; Andreeva, T.; Strelkova, M. Reaction Modification of Recycled Polyethylene Terephthalate with 1, 3-Phenylene-Bis-Oxazoline. Int. Polym. Sci. Technol. 2014, 41, 37–40. DOI: 10.1177/0307174X1404100910.
  • Inata, H.; Matsumura, S. Chain Extenders for Polyester. II. Reactivities of Carboxyl‐Addition-Type Chain Extenders; Bis Cyclic‐Imino‐Ethers. J. Appl. Polym. Sci. 1986, 32, 5193–5202. DOI: 10.1002/app.1986.070320534.
  • Inata, H.; Matsumura, S. Chain Extenders for Polyesters. IV. Properties of the Polyesters Chain‐Extended by 2, 2′‐Bis (2‐Oxazoline). J. Appl. Polym. Sci. 1987, 33, 3069–3079. DOI: 10.1002/app.1987.070330838.
  • Cardi, N.; Po, R.; Giannotta, G.; Occhiello, E.; Garbassi, F.; Messina, G. Chain Extension of Recycled Poly (Ethylene Terephthalate) with 2, 2′‐Bis (2‐Oxazoline). J. Appl. Polym. Sci. 1993, 50, 1501–1509. DOI: 10.1002/app.1993.070500903.
  • Karayannidis, G. P.; Psalida, E. A. Chain Extension of Recycled Poly (Ethylene Terephthalate) with 2, 2′‐(1, 4‐Phenylene) Bis (2‐Oxazoline). J. Appl. Polym. Sci. 2000, 77, 2206–2211. DOI: 10.1002/1097-4628(20000906)77:10<2206::AID-APP14>3.0.CO;2-D.
  • Gouissem, L.; Douibi, A.; Benachour, D. The Evolution of Properties of Recycled Poly (Ethylene Terephthalate) as Function of Chain Extenders, the Extrusion Cycle and Heat Treatment. Polym. Sci. Ser. A 2014, 56, 844–855. DOI: 10.1134/S0965545X14060157.
  • Incarnato, L.; Scarfato, P.; Di Maio, L.; Acierno, D. Structure and Rheology of Recycled PET Modified by Reactive Extrusion. Polymer 2000, 41, 6825–6831. DOI: 10.1016/S0032-3861(00)00032-X.
  • Bimestre, B. H.; Saron, C. Chain Extension of Poly (Ethylene Terephthalate) by Reactive Extrusion with Secondary Stabilizer. Mat. Res. 2012, 15, 467–472. DOI: 10.1590/S1516-14392012005000058.
  • Moghanlou, S.; Khamseh, M.; Aghjeh, M. R.; Pourabbas, B. Influence of Chain Extension and Blending on Crystallinity and Morphological Behavior of Recycled-PET/Ethylene Vinyl Acetate Blends. J. Polym. Environ. 2020, 28, 1–8.
  • Coccorullo, I.; Di Maio, L.; Montesano, S.; Incarnato, L. Theoretical and Experimental Study of Foaming Process with Chain Extended Recycled PET. Express Polym. Lett. 2009, 3, 84–96. DOI: 10.3144/expresspolymlett.2009.12.
  • Awaja, F.; Daver, F.; Kosior, E. Recycled Poly (Ethylene Terephthalate) Chain Extension by a Reactive Extrusion Process. Polym. Eng. Sci. 2004, 44, 1579–1587. DOI: 10.1002/pen.20155.
  • Ge, Y.; Yao, S.; Xu, M.; Gao, L.; Fang, Z.; Zhao, L.; Liu, T. Improvement of Poly (Ethylene Terephthalate) Melt-Foamability by Long-Chain Branching with the Combination of Pyromellitic Dianhydride and Triglycidyl Isocyanurate. Ind. Eng. Chem. Res. 2019, 58, 3666–3678. DOI: 10.1021/acs.iecr.8b04157.
  • Härth, M.; Kaschta, J.; Schubert, D. W. Shear and Elongational Flow Properties of Long-Chain Branched Poly (Ethylene Terephthalates) and Correlations to Their Molecular Structure. Macromolecules 2014, 47, 4471–4478. DOI: 10.1021/ma5002657.
  • Cavalcanti, F.; Teofilo, E.; Rabello, M.; Silva, S. Chain Extension and Degradation during Reactive Processing of PET in the Presence of Triphenyl Phosphite. Polym. Eng. Sci. 2007, 47, 2155–2163. DOI: 10.1002/pen.20912.
  • Qin, D.; Wang, C.; Wang, H.; Jiang, X. Chain Extension and Thermal Behavior of Recycled Poly (Ethylene Terephthalate) Modified by Reactive Extrusion with Triphenyl Phosphite. MATEC Web Conf. EDP Sci., 2016, 67, 06052. DOI: 10.1051/matecconf/20166706052.
  • Wang, K.; Qian, J.; Lou, F.; Yan, W.; Wu, G.; Guo, W. The Effects of Two-Step Reactive Processing on the Properties of Recycled Poly (Ethylene Terephthalate). Polym. Bull. 2017, 74, 2479–2496. DOI: 10.1007/s00289-016-1850-9.
  • Pang, K.; Kotek, R.; Tonelli, A. Review of Conventional and Novel Polymerization Processes for Polyesters. Prog. Polym. Sci. 2006, 31, 1009–1037. DOI: 10.1016/j.progpolymsci.2006.08.008.
  • Scheirs, J. Polymerization and Polycondensation. In Polymer Recycling: Science, Technology, and Applications Wiley Series in Polymer Science; Scheirs, J., Long T. E., Eds.; NJ, NY: Wiley, 2003; pp 31–116.
  • Mihucz, V. G.; Záray, G. Occurrence of Antimony and Phthalate Esters in Polyethylene Terephthalate Bottled Drinking Water. Appl. Spectrosc. Rev. 2016, 51, 183–209. DOI: 10.1080/05704928.2015.1105243.
  • Bartolome, L.; Imran, M.; Cho, B. G.; Almasry, W. A.; Kim, D. H. Recent Developments in the Chemical Recycling of PET. In Material Recycling-Trends and Perspectives; Achilias, D. S., Ed.; London, UK: Intech, 2012; pp 65–84.
  • A. S. T. M International. D7209-06 Standard Guide for Waste Reduction, Resource Recovery, and Use of Recycled Polymeric Materials and Products. https://standards.globalspec.com/std/119581/astm-d7209 (accessed Nov 24, 2021).
  • International Organization for Standardization. I. S. O. 15270 Plastics-Guidelines for the Recovery and Recycling of Plastics Waste. https://www.iso.org/obp/ui/#iso:std:iso:15270:ed-2:v1:en (accessed Nov 24, 2021).
  • Maris, J.; Bourdon, S.; Brossard, J. M.; Cauret, L.; Fontaine, L.; Montembault, V. Mechanical Recycling: Compatibilization of Mixed Thermoplastic Wastes. Polym. Degrad. Stab. 2018, 147, 245–266. DOI: 10.1016/j.polymdegradstab.2017.11.001.
  • Polyethylene Terephthalate (PET): A Comprehensive Review. https://omnexus.specialchem.com/selection-guide/polyethylene-terephthalate-pet-plastic (accessed Nov 24, 2021).
  • Al-Azzawi, F. Degradation Studies on Recycled Polyethylene Terephthalate. London, UK: London Metropolitan University, 2015.
  • Al-Salem, S.; Lettieri, P.; Baeyens, J. Recycling and Recovery Routes of Plastic Solid Waste (PSW): A Review. Waste Manage. 2009, 29, 2625–2643. [Database] DOI: 10.1016/j.wasman.2009.06.004.
  • Thiounn, T.; Smith, R. C. Advances and Approaches for Chemical Recycling of Plastic Waste. J. Polym. Sci. 2020, 58, 1347–1364. DOI: 10.1002/pol.20190261.
  • Sinha, V.; Patel, M. R.; Patel, J. V. PET Waste Management by Chemical Recycling: A Review. J. Polym. Environ. 2010, 18, 8–25. [Database] DOI: 10.1007/s10924-008-0106-7.
  • Grigore, M. E. Methods of Recycling, Properties and Applications of Recycled Thermoplastic Polymers. Recycling 2017, 2, 24. DOI: 10.3390/recycling2040024.
  • Takenaka, N.; Tominaga, A.; Sekiguchi, H.; Nakano, R.; Takatori, E.; Yao, S. Creation of Advanced Recycle Process to Waste Container and Packaging Plastic—Polypropylene Sorted Recycle Plastic Case. J. Soc. Rheol. Japan 2017, 45, 139–143.
  • Raheem, A. B.; Noor, Z. Z.; Hassan, A.; Abd Hamid, M. K.; Samsudin, S. A.; Sabeen, A. H. Current Developments in Chemical Recycling of Post-Consumer Polyethylene Terephthalate Wastes for New Materials Production: A Review. J. Clean. Prod. 2019, 225, 1052–1064. DOI: 10.1016/j.jclepro.2019.04.019.
  • Gurgul, A.; Szczepaniak, W.; Zabłocka-Malicka, M. Incineration and Pyrolysis vs. Steam Gasification of Electronic Waste. Sci. Total Environ. 2018, 624, 1119–1124.
  • Hwang, K.-L.; Choi, S.-M.; Kim, M.-K.; Heo, J.-B.; Zoh, K.-D. Emission of Greenhouse Gases from Waste Incineration in Korea. J. Environ. Manage. 2017, 196, 710–718.
  • Al-Salem, S.; Lettieri, P.; Baeyens, J. The Valorization of Plastic Solid Waste (PSW) by Primary to Quaternary Routes: From Re-Use to Energy and Chemicals. Prog. Energy Combust. Sci. 2010, 36, 103–129. DOI: 10.1016/j.pecs.2009.09.001.
  • Barnard, E.; Arias, J. J. R.; Thielemans, W. Chemolytic Depolymerisation of PET: A Review. Green Chem. 2021, 23, 3765–3789. DOI: 10.1039/D1GC00887K.
  • Achilias, D.; Karayannidis, G. The Chemical Recycling of PET in the Framework of Sustainable Development. Water Air Soil Pollut. 2004, 4, 385–396. [Database] DOI: 10.1023/B:WAFO.0000044812.47185.0f.
  • Han, M. Depolymerization of PET Bottle via Methanolysis and Hydrolysis. In Recycling of Polyethylene Terephthalate Bottles; Thomas, S., Rane, A., Kanny, K., Abitha, V. K., Thomas, M. G., Eds.; Amsterdam, Netherland: Elsevier, 2019; pp 85–108.
  • Schyns, Z. O.; Shaver, M. P. Mechanical Recycling of Packaging Plastics: A Review. Macromol. Rapid Commun. 2021, 42, 2000415. DOI: 10.1002/marc.202000415.
  • Larrain, M.; Van Passel, S.; Thomassen, G.; Van Gorp, B.; Nhu, T. T.; Huysveld, S.; Van Geem, K. M.; De Meester, S.; Billen, P. Techno-Economic Assessment of Mechanical Recycling of Challenging Post-Consumer Plastic Packaging Waste. Resour. Conserv. Recycl. 2021, 170, 105607. DOI: 10.1016/j.resconrec.2021.105607.
  • Jeswani, H.; Krüger, C.; Russ, M.; Horlacher, M.; Antony, F.; Hann, S.; Azapagic, A. Life Cycle Environmental Impacts of Chemical Recycling via Pyrolysis of Mixed Plastic Waste in Comparison with Mechanical Recycling and Energy Recovery. Sci. Total Environ. 2021, 769, 144483.
  • Al-Sabagh, A.; Yehia, F.; Eshaq, G.; Rabie, A.; ElMetwally, A. Greener Routes for Recycling of Polyethylene Terephthalate. Egypt. J. Pet. 2016, 25, 53–64. DOI: 10.1016/j.ejpe.2015.03.001.
  • Wang, C.-Q.; Wang, H.; Liu, Y.-N. Separation of Polyethylene Terephthalate from Municipal Waste Plastics by Froth Flotation for Recycling Industry. Waste Manag. 2015, 35, 42–47.
  • Wang, K.; Zhang, Y.; Zhong, Y.; Luo, M.; Du, Y.; Wang, L.; Wang, H. Flotation Separation of Polyethylene Terephthalate from Waste Packaging Plastics through Ethylene Glycol Pretreatment Assisted by Sonication. Waste Manage. 2020, 105, 309–316. DOI: 10.1016/j.wasman.2020.02.021.
  • Wang, C.; Wang, H.; Fu, J.; Zhang, L.; Luo, C.; Liu, Y. Flotation Separation of Polyvinyl Chloride and Polyethylene Terephthalate Plastics Combined with Surface Modification for Recycling. Waste Manage. 2015, 45, 112–117. DOI: 10.1016/j.wasman.2015.07.053.
  • Muthu, S. S. Properties of Recycled Polyester. In Recycled Polyester: Manufacturing, Properties, Test Methods, and Identification; Muthu, S. S., Ed. London, UK: Springer Nature, 2019; pp 1–14.
  • Frounchi, M. Studies on Degradation of PET in Mechanical Recycling. Macromol. Symp. 1999, 144, 465–469. DOI: 10.1002/masy.19991440142.
  • Badia, J.; Vilaplana, F.; Karlsson, S.; Ribes-Greus, A. Thermal Analysis as a Quality Tool for Assessing the Influence of Thermo-Mechanical Degradation on Recycled Poly (Ethylene Terephthalate). Polym. Test. 2009, 28, 169–175. DOI: 10.1016/j.polymertesting.2008.11.010.
  • Wu, H.; Lv, S.; He, Y.; Qu, J.-P. The Study of the Thermomechanical Degradation and Mechanical Properties of PET Recycled by Industrial-Scale Elongational Processing. Polym. Test. 2019, 77, 105882. DOI: 10.1016/j.polymertesting.2019.04.029.
  • Ravindranath, K.; Mashelkar, R. Polyethylene Terephthalate—I. Chemistry, Thermodynamics and Transport Properties. Chem. Eng. Sci. 1986, 41, 2197–2214. DOI: 10.1016/0009-2509(86)85070-9.
  • Coats, A.; Redfern, J. Thermogravimetric Analysis. A Review. Analyst 1963, 88, 906–924. DOI: 10.1039/an9638800906.
  • Chiu, S.; Cheng, W. Thermal Degradation and Catalytic Cracking of Poly (Ethylene Terephthalate). Polym. Degrad. Stab. 1999, 63, 407–412. DOI: 10.1016/S0141-3910(98)00121-9.
  • Hosseini, S. S.; Taheri, S.; Zadhoush, A.; Mehrabani-Zeinabad, A. Hydrolytic Degradation of Poly (Ethylene Terephthalate). J. Appl. Polym. Sci. 2007, 103, 2304–2309. DOI: 10.1002/app.24142.
  • Paci, M.; La Mantia, F. Influence of Small Amounts of Polyvinylchloride on the Recycling of Polyethylene Terephthalate. Polym. Degrad. Stab. 1999, 63, 11–14. DOI: 10.1016/S0141-3910(98)00053-6.
  • Paszun, D.; Spychaj, T. Chemical Recycling of Poly (Ethylene Terephthalate). Ind. Eng. Chem. Res. 1997, 36, 1373–1383. [Database] DOI: 10.1021/ie960563c.
  • Spaseska, D.; Civkaroska, M. Alkaline Hydrolysis of Poly (Ethylene Terephthalate) Recycled from the Postconsumer Soft-Drink Bottles. J. Univ. Chem. Technol. Metall. 2010, 45, 379–384.
  • Carta, D.; Cao, G.; D'Angeli, C. Chemical Recycling of Poly (Ethylene Terephthalate) (PET) by Hydrolysis and Glycolysis. Environ. Sci. Pollut. Res. Int. 2003, 10, 390–394.
  • Vaidya, U.; Nadkarni, V. Unsaturated Polyesters from PET Waste: Kinetics of Polycondensation. J. Appl. Polym. Sci. 1987, 34, 235–245. DOI: 10.1002/app.1987.070340120.
  • Campanelli, J.; Kamal, M.; Cooper, D. Kinetics of Glycolysis of Poly (Ethylene Terephthalate) Melts. J. Appl. Polym. Sci. 1994, 54, 1731–1740. DOI: 10.1002/app.1994.070541115.
  • Yue, Q. F.; Xiao, L. F.; Zhang, M. L.; Bai, X. F. The Glycolysis of Poly (Ethylene Terephthalate) Waste: Lewis Acidic Ionic Liquids as High Efficient Catalysts. Polymers 2013, 5, 1258–1271. DOI: 10.3390/polym5041258.
  • Braun, C. S. Development in the Commercial Methods of Recycling Poly (Ethylene Terephthalate). McGill. Green. Chem. J. 2015, 39–43.
  • Shukla, S.; Harad, A. M. Aminolysis of Polyethylene Terephthalate Waste. Polym. Degrad. Stab. 2006, 91, 1850–1854. DOI: 10.1016/j.polymdegradstab.2005.11.005.
  • Gupta, P.; Bhandari, S. Chemical Depolymerization of PET Bottles via Ammonolysis and Aminolysis. In Recycling of Polyethylene Terephthalate Bottles; Thomas, S., Rane, A., Kanny, K., Abitha, V. K., Thomas, M. G., Eds.; Amsterdam, Netherland: Elsevier, 2019; pp 109–134.
  • Ellison, M.; Fisher, L.; Alger, K.; Zeronian, S. Physical Properties of Polyester Fibers Degraded by Aminolysis and by Alkalin Hydrolysis. J. Appl. Polym. Sci. 1982, 27, 247–257. DOI: 10.1002/app.1982.070270126.
  • U. S. Food and Drug Administration. CFR-Code of Federal Regulations Title 21. https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/cfrsearch.cfm (accessed Nov 24, 2021).
  • Japon, S.; Boogh, L.; Leterrier, Y.; Månson, J.-A. Reactive Processing of Poly (Ethylene Terephthalate) Modified with Multifunctional Epoxy-Based Additives. Polymers 2000, 41, 5809–5818. DOI: 10.1016/S0032-3861(99)00768-5.
  • Li, Z.; Mayer, R. J.; Ofial, A. R.; Mayr, H. From Carbodiimides to Carbon Dioxide: Quantification of the Electrophilic Reactivities of Heteroallenes. J. Am. Chem. Soc. 2020, 142, 8383–8402. DOI: 10.1021/jacs.0c01960.
  • Relevance, E. Commission Regulation on Plastic Materials and Articles Intended to Come into Contact with Food. https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=celex%3A32011R0010 (accessed Nov 24, 2021).
  • Mehta, P. S.; Mehta, A. S.; Mehta, S. J.; Makhijani, A. B. Bhopal Tragedy's Health Effects: A Review of Methyl Isocyanate Toxicity. JAMA Network 1990, 264, 2781–2787.
  • Trinh, L. T.; Lambermont-Thijs, H. M.; Schubert, U. S.; Hoogenboom, R.; Kjøniksen, A.-L. Thermoresponsive Poly (2-Oxazoline) Block Copolymers Exhibiting Two Cloud Points: Complex Multistep Assembly Behavior. Macromolecules 2012, 45, 4337–4345. DOI: 10.1021/ma300570j.
  • Luxenhofer, R.; Huber, S.; Hytry, J.; Tong, J.; Kabanov, A. V.; Jordan, R. Chiral and Water‐Soluble Poly (2‐Oxazoline) s. J. Polym. Sci. A Polym. Chem. 2013, 51, 732–738. DOI: 10.1002/pola.26437.
  • Colombo, A.; Gherardi, F.; Goidanich, S.; Delaney, J.; De La Rie, E.; Ubaldi, M.; Toniolo, L.; Simonutti, R. Highly Transparent Poly (2-Ethyl-2-Oxazoline)-TiO2 Nanocomposite Coatings for the Conservation of Matte Painted Artworks. RSC Adv. 2015, 5, 84879–84888. DOI: 10.1039/C5RA10895K.
  • Svoboda, J.; SedláčEk, O. e.; Riedel, T. s.; Hrubý, M.; Pop-Georgievski, O. Poly, (2.; Poly(2-oxazoline)s One-Pot Polymerization and Surface Coating: From Synthesis to Antifouling Properties Out-Performing Poly(ethylene oxide)). Biomacromolecules 2019, 20, 3453–3463.
  • Gaifami, C. M.; Zanini, S.; Zoia, L.; Riccardi, C. Plasma Enhanced-Chemical Vapor Deposition of 2-Isopropenyl-2-Oxazoline to Promote the Adhesion between a Polyethylene Terephthalate Monofilament and the Rubber in a Tire. Coatings 2021, 11, 708. DOI: 10.3390/coatings11060708.
  • Tauhardt, L.; Kempe, K.; Gottschaldt, M.; Schubert, U. S. Poly (2-Oxazoline) Functionalized Surfaces: From Modification to Application. Chem. Soc. Rev. 2013, 42, 7998–8011.
  • Hrdlička, L.; Šrámková, P.; Prousek, J.; Kronek, J. Environmental Toxicity Study of Poly (2-Oxazoline) s. Chem. Pap. 2018, 72, 1543–1547. DOI: 10.1007/s11696-018-0410-1.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.