2,775
Views
12
CrossRef citations to date
0
Altmetric
Reviews

Formulation of Biodegradable Plastic Mulch Film for Agriculture Crop Protection: A Review

&
Pages 890-918 | Received 22 Jul 2021, Accepted 06 Feb 2022, Published online: 23 Feb 2022

References

  • Prosdocimi, M.; Tarolli, P.; Cerdà, A. Mulching Practices for Reducing Soil Water Erosion: A Review. Earth-Sci. Rev. 2016, 161, 191–203. DOI: 10.1016/j.earscirev.2016.08.006.
  • Kosterna E. The Effect of Covering and Mulching on the Soil Temperature, Growth and Yield of Tomato. Folia Hortic. 2014;26(2):91–101. DOI: 10.2478/fhort-2014-0009.
  • Ni, X.; Song, W.; Zhang, H.; Yang, X.; Wang, L. Effects of Mulching on Soil Properties and Growth of Tea Olive (Osmanthus Fragrans). PLoS One. 2016, 11, e0158228–11. DOI: 10.1371/journal.pone.0158228.
  • Sintim, H. Y.; Flury, M. Is Biodegradable Plastic Mulch the Solution to Agriculture’s Plastic. Environ. Sci. Technol. 2017, 51, 1068–1069. DOI: 10.1021/acs.est.6b06042.
  • Haapala, T.; Palonen, P.; Tamminen, A.; Ahokas, J. Effects of Different Paper Mulches on Soil Temperature and Yield of Cucumber (Cucumis Sativus L.) in the Temperate Zone. Agric. Food Sci. 2015, 24, 52–58. DOI: 10.23986/afsci.47220.
  • Awodoyin, R.; Ogbeide, F.; Oluwole, O. Effects of Three Mulch Types on the Growth and Yield of Tomato (Lycopersicon esculentum Mill.) and Weed Suppression in Ibadan, Rainforest-Savanna Transition Zone of Nigeria. Trop. Agric. Res. Ext. 2010, 10, 53. DOI: 10.4038/tare.v10i0.1871.
  • Talebbeigi, R. M.; Ghadiri, H. Effects of Cowpea Living Mulch on Weed Control and Maize Yield. J. Biol. Environ. Sci. 2012, 6, 189–193.
  • Cabilovski, R.; Manojlovic, M.; Bogdanovic, D.; Magazin, N.; Keserovic, Z.; Sitaula, B. K. Mulch Type and Application of Manure and Composts in Strawberry (Fragaria × Ananassa Duch.) Production: Impact on Soil Fertility and Yield. Zemdirbyste 2014, 101, 67–74. DOI: 10.13080/z-a.2014.101.009.
  • Kasirajan, S.; Ngouajio, M. Polyethylene and Biodegradable Mulches for Agricultural Applications: A Review. Agron. Sustain. Dev. 2012, 32, 501–529. DOI: 10.1007/s13593-011-0068-3.
  • Serrano-Ruiz, H.; Martin-Closas, L.; Pelacho, A. M. Biodegradable Plastic Mulches: Impact on the Agricultural Biotic Environment. Sci. Total Environ. 2021, 750, 141228 DOI: 10.1016/j.scitotenv.2020.141228.
  • Ghatge, S.; Yang, Y.; Ahn, J. H.; Hur, H. G. Biodegradation of Polyethylene: A Brief Review. Appl. Biol. Chem. 2020, 63, 1–14. DOI: 10.1186/s13765-020-00511-3.
  • Fotopoulou, K. N.; Karapanagioti, H. K. Degradation of Various Plastics in the Environment. Handb. Environ. Chem. 2019, 78, 71–92. DOI: 10.1007/698_2017_11.
  • Otake, Y.; Kobayashi, T.; Asabe, H.; Murakami, N.; Ono, K. Biodegradation of Low‐Density Polyethylene, Polystyrene, Polyvinyl Chloride, and Urea Formaldehyde Resin Buried under Soil for over 32 Years. J. Appl. Polym. Sci. 1995, 56, 1789–1796. DOI: 10.1002/app.1995.070561309.
  • Bilck, A. P.; Grossmann, M. V. E.; Yamashita, F. Biodegradable Mulch Films for Strawberry Production. Polym. Test 2010, 29, 471–476. DOI: 10.1016/j.polymertesting.2010.02.007.
  • Geyer, R.; Jambeck, J. R.; Law, K. L. Production, Use, and Fate of All Plastics Ever made. Sci. Adv. 2017, 3, e1700782. DOI: 10.1126/sciadv.1700782.
  • Martin-Closas, L.; Pelacho, A. M.; Picuno, P.; Rodríguez, D. Properties of New Biodegradable Plastics for Mulching, and Characterization of Their Degradation in the Laboratory and in the Field. Acta Hortic. 2008, 801, 275–282. (November). DOI: 10.17660/ActaHortic.2008.801.27.
  • Li, C.; Moore-Kucera, J.; Lee, J.; Corbin, A.; Brodhagen, M.; Miles, C.; Inglis, D. Effects of Biodegradable Mulch on Soil Quality. Appl. Soil Ecol. 2014, 79, 59–69. DOI: 10.1016/j.apsoil.2014.02.012.
  • Li, C.; Moore-Kucera, J.; Miles, C.; Leonas, K.; Lee, J.; Corbin, A.; Inglis, D. Degradation of Potentially Biodegradable Plastic Mulch Films at Three Diverse U.S. Locations. Agroecol. Sustain. Food Syst. 2014, 38, 861–889. DOI: 10.1080/21683565.2014.884515.
  • Changrong, Y.; Wenqing, H.; Turner, N.; Enke, L.; Qin, L.; Shuang, L. Plastic-Film Mulch in Chinese Agriculture: Importance and Problems. World Agric. 2014, 4, 32–36. https://www.researchgate.net/publication/296353247.
  • Yang, Y.; Li, P.; Jiao, J.; Yang, Z.; Lv, M.; Li, Y.; Zhou, C.; Wang, C.; He, Z.; Liu, Y.; Song, S. Renewable Sourced Biodegradable Mulches and Their Environment Impact. Sci Hortic (Amsterdam) 2020, 268, 109375. DOI: 10.1016/j.scienta.2020.109375.
  • Pellis, A.; Malinconico, M.; Guarneri, A.; Gardossi, L. Renewable Polymers and Plastics : Performance beyond the green. New Biotechnol. 2021, 60, 146–158. DOI: 10.1016/j.nbt.2020.10.003.
  • Chen, K. Important considerations for the use of biodegradable mulch in crop production. 2018.
  • Van, L. P. Mulching for healthy tree seedlings. Folder agforward Agrofor Innov Best Pract Leafl. 2017 (613520). www.agforward.eu.
  • Shah, F.; Wu, W. Use of Plastic Mulch in Agriculture and Strategies to Mitigate the Associated Environmental Concerns. Advances in Agronomy, 1st ed.; Elsevier Inc., 2020; Vol. 164., 231-287. DOI: 10.1016/bs.agron.2020.06.005.
  • Sarkar, D. J.; Mandira, B.; Tanumoy, B.; Mriganka, D.; Dibyendu, C. Agriculture: Polymers in Crop Production Mulch and Fertilizer. In Encyclopedia of Polymer Applications. Ed. Munmaya Mishra. Boca Raton: CRC Press, 2019, 1, 28–47.
  • Liu, Q.; Chen, Y.; Li, W.; Liu, Y.; Han, J.; Wen, X.; Liao, Y. Plastic-Film Mulching and Urea Types Affect Soil CO2 Emissions and Grain Yield in Spring Maize on the Loess Plateau, China. Sci. Rep. 2016, 6, 28150. (January) DOI: 10.1038/srep28150.
  • Briassoulis, D.; Giannoulis, A. Evaluation of the Functionality of Bio-Based Plastic Mulching Films Evaluation of the Functionality of Bio-Based Plastic Mulching Films. Polym. Test 2018, 67, 99–109. DOI: 10.1016/j.polymertesting.2018.02.019.
  • Merino, D.; Gutiérrez, T. J.; Mansilla, A. Y.; Casalongué, C. A.; Alvarez, V. A. Critical Evaluation of Starch-Based Antibacterial Nanocomposites as Agricultural Mulch Films: Study on Their Interactions with Water and Light. ACS Sustain. Chem. Eng. 2018, 6, 15662–15672. DOI: 10.1021/acssuschemeng.8b04162.
  • Maréchal, F. Biodegradable Plastics. In Chiellini E, Solaro R, eds. Biodegradable Polymers and Plastics, Springer: US, 2003; pp 67–71.
  • Ferreira, F. V.; Cividanes, L. S.; Gouveia, R. F.; Lona, L. M. F. An Overview on Properties and Applications of Poly(Butylene Adipate-co-Terephthalate)–PBAT Based Composites. Polym. Eng. Sci. 2019, 59, E7–E15. DOI: 10.1002/pen.24770.
  • Yamamoto-Tamura, K.; Hiradate, S.; Watanabe, T.; Koitabashi, M.; Sameshima-Yamashita, Y.; Yarimizu, T.; Kitamoto, H. Contribution of Soil Esterase to Biodegradation of Aliphatic Polyester Agricultural Mulch Film in Cultivated Soils. AMB Express. 2015, 5, 10. DOI: 10.1186/s13568-014-0088-x.
  • Koitabashi, M.; Noguchi, M. T.; Sameshima-Yamashita, Y.; Hiradate, S.; Suzuki, K.; Yoshida, S.; Watanabe, T.; Shinozaki, Y.; Tsushima, S.; Kitamoto, H. K. Degradation of Biodegradable Plastic Mulch Films in Soil Environment by Phylloplane Fungi Isolated from Gramineous Plants. AMB Express. 2012, 2, 40. DOI: 10.1186/2191-0855-2-40.
  • Wortman, S. E.; Kadoma, I.; Crandall, M. D. Biodegradable Plastic and Fabric Mulch Performance in Field and High Tunnel Cucumber Production. Hortte. 2016, 26, 148–155. DOI: 10.21273/HORTTECH.26.2.148.
  • Garcia-Garcia, D.; Carbonell-Verdu, A.; Arrieta, M. P.; López-Martínez, J.; Samper, M. D. Improvement of PLA Film Ductility by Plasticization with Epoxidized Karanja Oil. Polym. Degrad. Stab. 2020, 179, 109259. DOI: 10.1016/j.polymdegradstab.2020.109259.
  • Liling, G.; Di, Z.; Jiachao, X.; Xin, G.; Xiaoting, F.; Qing, Z. Effects of Ionic Crosslinking on Physical and Mechanical Properties of Alginate Mulching Films. Carbohydr. Polym. 2016, 136, 259–265. DOI: 10.1016/j.carbpol.2015.09.034.
  • Zhao, Y.; Qiu, J.; Xu, J.; Gao, X.; Fu, X. Effects of Crosslinking Modes on the Film Forming Properties of Kelp Mulching Films. Algal Res 2017, 26, 74–83. DOI: 10.1016/j.algal.2017.07.006.
  • Bealer, E. J.; Onissema-Karimu, S.; Rivera-Galletti, A.; Francis, M.; Wilkowski, J.; Salas-de la Cruz, D.; Hu, X. Protein – Polysaccharide Composite Materials. Polymers (Basel) 2020, 12, 464. DOI: 10.3390/polym12020464.
  • Santos, N. L.; de Oliveira Ragazzo, G.; Cerri, B. C.; Soares, M. R.; Kieckbusch, T. G.; da Silva, M. A. Physicochemical Properties of Konjac Glucomannan/Alginate Films Enriched with Sugarcane Vinasse Intended for Mulching Applications. Int. J. Biol. Macromol. 2020,165, 1717-1726. DOI: 10.1016/j.ijbiomac.2020.10.049.
  • Zhai, X.; Wang, W.; Zhang, H.; Dai, Y.; Dong, H.; Hou, H. Effects of High Starch Content on the Physicochemical Properties of Starch/PBAT Nanocomposite Films Prepared by Extrusion Blowing. Carbohydr. Polym. 2020, 239, 116231. doi:10.1016/j.carbpol.2020.116231
  • Khan, H.; Kaur, S.; Baldwin, T. C.; Radecka, I.; Jiang, G.; Bretz, I.; Duale, K.; Adamus, G.; Kowalczuk, M. Effective Control against Broadleaf Weed Species Provided by Biodegradable PBAT/PLA Mulch Film Embedded with the Herbicide 2-Methyl-4-Chlorophenoxyacetic Acid (MCPA). ACS Sustain. Chem. Eng. 2020, 8, 5360–5370. DOI: 10.1021/acssuschemeng.0c00991.
  • França, D. C.; Almeida, T. G.; Abels, G.; Canedo, E. L.; Carvalho, L. H.; Wellen, R. M. R.; Haag, K.; Koschek, K. Tailoring PBAT/PLA/Babassu Films for Suitability of Agriculture Mulch Application. J. Nat. Fibers 2019, 16, 933–943. DOI: 10.1080/15440478.2018.1441092.
  • Yu, Y.; Xu, P.; Jia, S.; Pan, H.; Zhang, H.; Wang, D.; Dong, L. Exploring Polylactide/Poly(Butylene Adipate-co-Terephthalate)/Rare Earth Complexes Biodegradable Light Conversion Agricultural Films. Int. J. Biol. Macromol. 2019, 127, 210–221. DOI: 10.1016/j.ijbiomac.2019.01.044.
  • Wang, D.; Yu, Y.; Ai, X.; Pan, H.; Zhang, H.; Dong, L. Polylactide/Poly(Butylene Adipate-co-Terephthalate)/Rare Earth Complexes as Biodegradable Light Conversion Agricultural Films. Polym. Adv. Technol. 2019, 30, 203–211. DOI: 10.1002/pat.4459.
  • Gu, X. B.; Li, Y. N.; Du, Y. D. Biodegradable Film Mulching Improves Soil Temperature, Moisture and Seed Yield of Winter Oilseed Rape (Brassica Napus L. ). Soil Tillage Res. 2017, 171, 42–50. DOI: 10.1016/j.still.2017.04.008.
  • Ma, Z.; Ma, Y.; Qin, L.; Liu, J.; Su, H. Preparation and Characteristics of Biodegradable Mulching Films Based on Fermentation Industry Wastes. Int. Biodeterior. Biodegrad. 2016, 111, 54–61. DOI: 10.1016/j.ibiod.2016.04.024.
  • Liu, J.; Sun, Z.; Wang, K.; Chan, X.; Su, H. Preparation of Citric Acid Fermentation Waste-Based Mulch Films with Hydrophobic Surface by Poly(Styrene- co-Acrylate) Coatings. ACS Omega. 2019, 4, 2540–2546. DOI: 10.1021/acsomega.8b03420.
  • Nuinu, P.; Samosorn, K.; Srilatong, K.; Tongbut, S.; Saengsuwan, S. Thermal and Mechanical Properties of Mulch Film from Poly (Lactic Acid)/Expoxidized Natural Rubber Blends Filled with Rutile TiO2 as Fillers. J. Adv. Res. 2013, 844, 65–68. www.scientific.net/AMR.844.65. DOI: 10.4028/www.scientific.net/AMR.844.65.
  • Nampitch, T.; Kaisone, T.; Hanthanon, P.; Wiphanurat, C.; Ouipanich, S.; Thongjun, Y. Mechanical Properties of Biodegradable Mulch Films Contained Poly(Lactic Acid) and Modified Natural Rubber Prepared by Blown Film Extrusion. Appl. Mech. Mater. 2017, 873, 117–122. www.scientific.net/amm.873.117.
  • Tosin, M.; Weber, M.; Siotto, M.; Lott, C.; Innocenti, F. D. Laboratory Test Methods to Determine the Degradation of Plastics in Marine Environmental Conditions. Front. Microbiol. 2012, 3, 225–229. doi:10.3389/fmicb.2012.00225
  • Du, Y.; Wang, L.; Mu, R.; Wang, Y.; Li, Y.; Wu, D.; Wu, C.; Pang, J. Fabrication of Novel Konjac Glucomannan/Shellac Film with Advanced Functions for Food Packaging. Int. J. Biol. Macromol. 2019, 131, 36–42. DOI: 10.1016/j.ijbiomac.2019.02.142.
  • Huang, Y. C.; Yang, C. Y.; Chu, H. W.; Wu, W. C.; Tsai, J. S. Effect of Alkali on Konjac Glucomannan Film and Its Application on Wound Healing. Cellulose 2015, 22, 737–747. DOI: 10.1007/s10570-014-0512-z.
  • Taylor, P.; Sam, S. T.; Nuradibah, M. A.; Ismail, H.; Noriman, N. Z.; Ragunathan, S. Recent Advances in Polyolefins/Natural Polymer Blends Used for Packaging Application. Polym. Plastics Technol. Eng. 2014, 53, 631–641. DOI: 10.1080/03602559.2013.866247.
  • Drumright, R. E.; Gruber, P. R.; Henton, D. E. Polylactic Acid Technology. Adv. Mater. 2000, 12, 1841–1846. DOI: 10.1002/1521-4095(200012)12:23<1841::AID-ADMA1841>3.0.CO;2-E.
  • Garlotta, D. A Literature Review of Poly(Lactic Acid). J. Polym. Environ. 2001, 9, 63–84. DOI: 10.1023/A:1020200822435.
  • Nofar, M.; Sacligil, D.; Carreau, P. J.; Kamal, M. R.; Heuzey, M. Poly (lactic acid) Blends: Processing, Properties and Applications. Int. J. Biol. Macromol. 2019, 125, 307–360. DOI: 10.1016/j.ijbiomac.2018.12.002.
  • Gigante, V.; Canesi, I.; Cinelli, P.; Coltelli, M. B.; Lazzeri, A. Rubber Toughening of Polylactic Acid (PLA) with Poly(Butylene Adipate-co-Terephthalate) (PBAT): Mechanical Properties, Fracture Mechanics and Analysis of Ductile-to-Brittle Behavior While Varying Temperature and Test Speed. Eur. Polym. J. 2019, 115, 125–137. DOI: 10.1016/j.eurpolymj.2019.03.015.
  • Castro-Aguirre, E.; Iñiguez-Franco, F.; Samsudin, H.; Fang, X.; Auras, R. Poly(Lactic Acid)-Mass Production, Processing, Industrial Applications, and End of Life. Adv. Drug Deliv. Rev. .. 2016, 107, 333–366. DOI: 10.1016/j.addr.2016.03.010.
  • Goto, T.; Kishita, M.; Sun, Y.; Sako, T.; Okajima, I. Physico-Mechanical and Degradation Characteristics of Compatibilized Biodegradable Biopolymers for Mulch Film Application. Polymers (Basel) 2020, 12, 14. DOI: 10.3390/polym12112434.
  • Sintim, H. Y.; Bary, A. I.; Hayes, D. G.; Wadsworth, L. C.; Anunciado, M. B.; English, M. E.; Bandopadhyay, S.; Schaeffer, S. M.; DeBruyn, J. M.; Miles, C. A.; et al. In Situ Degradation of Biodegradable Plastic Mulch Films in Compost and Agricultural Soils. Sci. Total Environ. 2020, 727, 138668 DOI: 10.1016/j.scitotenv.2020.138668.
  • Karamanlioglu, M.; Robson, G. D. The Influence of Biotic and Abiotic Factors on the Rate of Degradation of Poly(Lactic) Acid (PLA) Coupons Buried in Compost and Soil. Polym. Degrad. Stab. 2013, 98, 2063–2071. DOI: 10.1016/j.polymdegradstab.2013.07.004.
  • Karamanlioglu, M.; Houlden, A.; Robson, G. D. Isolation and Characterisation of Fungal Communities Associated with Degradation and Growth on the Surface of Poly(Lactic) Acid (PLA) in Soil and Compost. Int. Biodeterior. Biodegrad. 2014, 95, 301–310. DOI: 10.1016/j.ibiod.2014.09.006.
  • Kakroodi, A. R.; Kazemi, Y.; Rodrigue, D.; Park, C. B. Facile Production of Biodegradable PCL/PLA in Situ Nanofibrillar Composites with Unprecedented Compatibility between the Blend Components. Chem. Eng. J. 2018, 351, 976–984. DOI: 10.1016/j.cej.2018.06.152.
  • Shi, R.; Bi, J.; Zhang, Z.; Zhu, A.; Chen, D.; Zhou, X.; Zhang, L.; Tian, W. The Effect of Citric Acid on the Structural Properties and Cytotoxicity of the Polyvinyl Alcohol/Starch Films When Molding at High Temperature. Carbohydr. Polym. 2008, 74, 763–770. DOI: 10.1016/j.carbpol.2008.04.045.
  • Ao, L.; Qin, L.; Kang, H.; Zhou, Z.; Su, H. Preparation, Properties and Field Application of Biodegradable and Phosphorus-Release Films Based on Fermentation Residue. Int. Biodeterior. Biodegrad. 2013, 82, 134–140. DOI: 10.1016/j.ibiod.2013.02.009.
  • Liu, W.; Liu, S.; Wang, Z.; Dai, B.; Liu, J.; Chen, Y.; Zeng, G.; He, Y.; Liu, Y.; Liu, R. Preparation and Characterization of Reinforced starch-based composites with compatibilizer by simple extrusion. Carbohydr. Polym. 2019, 223, 115122. DOI: 10.1016/j.carbpol.2019.115122.
  • Salehuddin, S. M. F.; Baharulrazi, N.; C.; Man, S. H.; W.; Ali, W. K.; Yusof, N. H. The Characterization of Hydroxyl Terminated Epoxidized Natural Rubber (HTeNR) via Oxidation Degradation Method. Chem. Eng. Trans 2020, 78, 151–156. DOI: 10.3303/CET2078026.
  • Bahruddin, F. I.; Septian, Wiranata, A.; Zahrina, I. Molecular Weight of Liquid Natural Rubber (LNR) Product from the Chemical Depolymerization Process of High Molecular Weight Narutal Rubber Latex. J. Phys. Conf. Ser. 2020, 1655. DOI: 10.1088/1742-6596/1655/1/012091.
  • Rooshenass, P.; Yahya, R.; Gan, S. N. Comparison of Three Different Degradation Methods to Produce Liquid Epoxidized Natural Rubber. Rubber Chem. Technol. 2016, 89, 177–198. DOI: 10.5254/RCT.15.84878.
  • Hayes, D. G.; Flury, M. Summary, and Assessment of EN 17033:2018, a New Standard for Biodegradable Plastic Mulch Films. Rep No EXT-2018-01. 2018;(June):1–7. https://ag.tennessee.edu/biodegradablemulch/Documents/EUregsfactsheet.pdf
  • International Standard Plastics — Soil biodegradable materials for mulch films for use. 2021.
  • Ayu, R. S.; Khalina, A.; Harmaen, A. S.; Zaman, K.; Mohd Nurrazi, N.; Isma, T.; Lee, C. H. Effect of Empty Fruit Brunch Reinforcement in PolyButylene-Succinate/Modified Tapioca Starch Blend for Agricultural Mulch Films. Sci. Rep. 2020, 10, 1–7. DOI: 10.1038/s41598-020-58278-y.
  • Ghalia, M. A.; Abdelrasoul, A. Compressive and Fracture Toughness of Natural and Synthetic Fiber-Reinforced Polymer. Mechanical and Physical Testing of Biocomposites, Fibre-Reinforced Composites and Hybrid Composites. Elsevier Ltd, 2019, 1, 123–140. DOI: 10.1016/B978-0-08-102292-4.00007-2.
  • Rajak, D. K.; Pagar, D. D.; Menezes, P. L.; Linul, E. Fiber-Reinforced Polymer Composites : Manufacturing, Properties, and Applications. Polymers. 2019, 11, 1667. DOI: 10.3390/polym11101667.
  • De Oliveira, T. A.; Oliveira Mota, I.; De, De Carvalho, L. H.; Barbosa, R.; Alves, T. S. Influence of Carnauba Wax on Films of Poly (Butylene Adipate co-Terephthalate) and Sugarcane Residue for Application in Soil Cover (Mulching). Mater. Res. 2019, 22, 1–10. DOI: 10.1590/1980-5373-MR-2019-0040.
  • Finkenstadt, V. L.; Tisserat, B. Poly(Lactic Acid) and Osage Orange Wood Fiber Composites for Agricultural Mulch Films. Ind. Crops Prod. 2010, 31, 316–320. DOI: 10.1016/j.indcrop.2009.11.012.
  • Baheti, V.; Mishra, R.; Militky, J.; Behera, B. K. Influence of Noncellulosic Contents on Nano Scale Refinement of Waste Jute Fibers for Reinforcement in Polylactic Acid Films. Fibers Polym. 2014, 15, 1500–1506. DOI: 10.1007/s12221-014-1500-5.
  • Suaduang, N.; Ross, S.; Ross, G. M.; Pratumshat, S.; Mahasaranon, S. The Physical and Mechanical Properties of Biocomposite Films Composed of Poly(Lactic Acid) with Spent Coffee Grounds. Kem. 2019, 824, 87–93. www.scientific.net/KEM.824.87. DOI: 10.4028/www.scientific.net/KEM.824.87.
  • Tan, B. K.; Ching, Y. C.; Gan, S. N.; Rozali, S. Biodegradable Mulches Based on Poly(Vinyl Alcohol) Kenaf Fiber, and Urea. BioResources 2015, 10, 5532–5543. DOI: 10.15376/biores.10.3.5532-5543.
  • Tan, Z.; Yi, Y.; Wang, H.; Zhou, W.; Yang, Y.; Wang, C. Physical and Degradable Properties of Mulching Films Prepared from Natural Fibers and Biodegradable Polymers. Appl. Sci. 2016, 6, 147. DOI: 10.3390/app6050147.
  • Sun, E.; Zhang, Y.; Yong, C.; Qu, P.; Huang, H.; Xu, Y. Biological Fermentation Pretreatment Accelerated the Depolymerization of Straw Fiber and Its Mechanical Properties as Raw Material for Mulch Film. J. Clean. Prod. 2020, 284, 124688.   DOI: 10.1016/j.jclepro.2020.124688.
  • Ning, R.; Liang, J.; Sun, Z.; Liu, X.; Sun, W. Preparation and Characterization of Black Biodegradable Mulch Films from Multiple Biomass Materials. Polym. Degrad. Stab. 2020, 183, 109411.   DOI: 10.1016/j.polymdegradstab.2020.109411.
  • Ayu, R. S.; Khalina, A.; Harmaen, A. S.; Zaman, K.; Isma, T.; Liu, Q.; Ilyas, R. A.; Lee, C. H. Characterization Study of Empty Fruit Bunch (EFB) Fibers Reinforcement in Poly(Butylene) Succinate (PBS)/Starch/Glycerol Composite Sheet. Polymers (Basel ). 2020, 12, 1571. DOI: 10.3390/polym12071571.
  • Merino, D.; Gutiérrez, T. J.; Alvarez, V. A. Structural and Thermal Properties of Agricultural Mulch Films Based on Native and Oxidized Corn Starch Nanocomposites. Starch ‐ Stärke 2019, 71, 1800341–1800348. DOI: 10.1002/star.201800341.
  • Wei, L.; Liang, S.; McDonald, A. G. Thermophysical Properties and Biodegradation Behavior of Green Composites Made from Polyhydroxybutyrate and Potato Peel Waste Fermentation Residue. Ind. Crops Prod. 2015, 69, 91–103. DOI: 10.1016/j.indcrop.2015.02.011.
  • Oliveira, T. D.; Mota, I. D. O.; Edinaldo, F. Biodegradation of Mulch fi Lms from Poly (Butylene Adipate co-Terephthalate), Carnauba Wax, and Sugarcane Residue. J. Appl. Polym. Sci. 2019, 136, 48240 . DOI: 10.1002/app.48240.
  • Baheti, V.; Militky, J. Nanoindentation Measurements of Jute/Poly Lactic Acid Composites. RILEM Bookseries 2016, 12, 139–154. DOI: 10.1007/978-94-017-7515-1_11.
  • Ferreira, F. V.; Pinheiro, I. F.; Gouveia, R. F.; Thim, G. P.; Lona, L. M. F. Functionalized Cellulose Nanocrystals as Reinforcement in Biodegradable Polymer Nanocomposites. Polym. Compos. 2018, 39, E9–E29. DOI: 10.1002/pc.24583.
  • Dufresne, A. Cellulose Nanomaterials as Green Nanoreinforcements for Polymer Nanocomposites. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2018, 376, 20170040. DOI: 10.1098/rsta.2017.0040.
  • Abdul Khalil, H. P. S.; Tye, Y. Y.; Saurabh, C. K.; Leh, C. P.; Lai, T. K.; Chong, E. W. N.; Nurul Fazita, M. R.; Mohd Hafiidz, J.; Banerjee, A.; Syakir, M. I. Biodegradable Polymer Films from Seaweed Polysaccharides: A Review on Cellulose as a Reinforcement Material. Express Polym. Lett. 2017, 11, 244–265. DOI: 10.3144/expresspolymlett.2017.26.
  • Merino, D.; Mansilla, A. Y.; Casalongué, C. A.; Alvarez, V. A. Effect of Nanoclay Addition on the Biodegradability and Performance of Starch-Based Nanocomposites as Mulch Films. J. Polym. Environ. 2019, 27, 1959–1970. DOI: 10.1007/s10924-019-01483-2.
  • M, H.; Chong, E. W. N.; Jafarzadeh, S.; Paridah, M. T.; Gopakumar, D.; Tajarudin, H. A.; Thomas, S.; Abdul Khalil, H. P. S. Enhancement in the Physico-Mechanical Functions of Seaweed Biopolymer Film via Embedding Fillers for Plasticulture application-A Comparison with Conventional Biodegradable Mulch Film. Polymers (Basel ). 2019, 11,210. DOI: 10.3390/polym11020.
  • Fleck-Arnold, J. E. Plastic Mulch Films—Additives and Their Effects. Proc. Natl. Agr. Plast. Congr. 2000, 29, 310–314.
  • Hayes, D. G.; Anunciado, M. B.; Debruyn, J. M. Biodegradable Plastic Mulch Films for Sustainable Specialty Crop Production. Polymers for Agri-Food Applications. 2019, 1, 183–213. DOI: 10.1007/978-3-030-19416-1.
  • Harada, J.; de Souza, A. G.; de Macedo, J. R. N.; Rosa, D. S. Soil Culture: Influence of Different Natural Fillers Incorporated in Biodegradable Mulching Film. J. Mol. Liq. 2019, 273, 33–36. DOI: 10.1016/j.molliq.2018.09.109.
  • Hahladakis, J. N.; Velis, C. A.; Weber, R.; Iacovidou, E.; Purnell, P. An Overview of Chemical Additives Present in Plastics: Migration, Release, Fate and Environmental Impact during Their Use, Disposal and recycling. J. Hazard. Mater. 2018, 344, 179–199. DOI: 10.1016/j.jhazmat.2017.10.014.
  • Kader, M. A.; Nakamura, K.; Senge, M.; Mojid, M. A.; Kawashima, S. Effects of Coloured Plastic Mulch on Soil Hydrothermal Characteristics, Growth and Water Productivity of Rainfed Soybean. Irrig. Drain. 2020, 69, 483–494. DOI: 10.1002/ird.2431.
  • Gao, H.; Yan, C.; Liu, Q.; Ding, W.; Chen, B.; Li, Z. Effects of Plastic Mulching and Plastic Residue on Agricultural Production: A Meta-Analysis. Sci. Total Environ. 2019, 651, 484–492. DOI: 10.1016/j.scitotenv.2018.09.105.
  • Wang, J. H.; Tian, Y.; Zhou, B. Degradation and Stabilization of Poly(Butylene Adipate-co-Terephthalate)/Polyhydroxyalkanoate Biodegradable Mulch Films under Different Aging Tests. J. Polym. Environ. 2021, 1, 1–23. DOI: 10.1007/s10924-021-02279-z.
  • Souza, P. M. S.; Coelho, F. M.; Sommaggio, L. R. D.; Marin-Morales, M. A.; Morales, A. R. Disintegration and Biodegradation in Soil of PBAT Mulch Films: Influence of the Stabilization Systems Based on Carbon Black/Hindered Amine Light Stabilizer and Carbon Black/Vitamin E. J. Polym. Environ. 2019, 27, 1584–1594. DOI: 10.1007/s10924-019-01455-6.
  • Souza, P. M. S.; Morales, A. R.; Sanchez, E. M. S.; Mei, L. H. I. Study of PBAT Photostabilization with Ultraviolet Absorber in Combination with Hindered Amine Light Stabilizer and Vitamin E, Aiming Mulching Film Application. J. Polym. Environ. 2018, 26, 3422–3436. DOI: 10.1007/s10924-018-1229-0.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.