1,846
Views
6
CrossRef citations to date
0
Altmetric
Reviews

Advances in the Synthesis and Applications of Mussel-Inspired Polymers

, , &
Pages 1-39 | Received 19 Oct 2021, Accepted 25 Jan 2022, Published online: 20 Feb 2022

References

  • Ye, Q.; Zhou, F.; Liu, W. Bioinspired catecholic chemistry for surface modification. Chem. Soc. Rev. 2011, 40, 4244–4258. DOI: 10.1039/c1cs15026j.
  • Faure, E.; Falentin-Daudré, C.; Jérôme, C.; Lyskawa, J.; Fournier, D.; Woisel, P.; Detrembleur, C. Catechols as versatile platforms in polymer chemistry. Prog. Polym. Sci. 2013, 38, 236–270. DOI: 10.1016/j.progpolymsci.2012.06.004.
  • Sedo, J.; Saiz-Poseu, J.; Busque, F.; Ruiz-Molina, D. Catechol-based biomimetic functional materials. Adv. Mater. 2013, 25, 653–701. DOI: 10.1002/adma.201202343.
  • Patil, N.; Jérôme, C.; Detrembleur, C. Recent advances in the synthesis of catechol-derived (bio)polymers for applications in energy storage and environment. Prog. Polym. Sci. 2018, 82, 34–91. DOI: 10.1016/j.progpolymsci.2018.04.002.
  • Basak, S. Evolving with nature: the recent trends on the mussel-inspired polymers in medical adhesion. Biotechnol. Bioproc. E 2021, 26, 10–24. DOI: 10.1007/s12257-020-0234-z.
  • Ruiz-Molina, D.; Poseu, jS.; Busque, F.; Nador, F.; Mancebo, J. The chemistry behind catechol-based adhesion. Angew. Chem. Int. Ed. Engl. 2019, 58, 696–714. DOI: 10.1002/anie.201801063.
  • Zhang, W.; Wang, R.; Sun, Z.; Zhu, X.; Zhao, Q.; Zhang, T.; Cholewinski, A.; Yang, F.; Zhao, B.; Pinnaratip, R.; et al. Catechol-functionalized hydrogels: biomimetic design, adhesion mechanism, and biomedical applications. Chem. Soc. Rev. 2020, 49, 433–464. DOI: 10.1039/c9cs00285e.
  • Zhang, C.; Wu, B.; Zhou, Y.; Zhou, F.; Liu, W.; Wang, Z. Mussel-inspired hydrogels: from design principles to promising applications. Chem. Soc. Rev. 2020, 49, 3605–3637. DOI: 10.1039/c9cs00849g.
  • Fan, H.; Gong, J. P. Bioinspired underwater adhesives. Adv. Mater. 2021, 33, 2102983. DOI: 10.1002/adma.202102983.
  • Yu, J. Adhesive interactions of mussel foot proteins. In Adhesive Interactions of Mussel Foot Proteins; Springer: Cham, 2014.
  • Lin, Q.; Gourdon, D.; Sun, C.; Holten-Andersen, N.; Anderson, T. H.; Waite, J. H.; Israelachvili, J. N. Adhesion mechanisms of the mussel foot proteins Mfp-1 and Mfp-3. Proc. Natl. Acad. Sci. U.S.A. 2007, 104, 3782–3786. DOI: 10.1073/pnas.0607852104.
  • Deming, T. J. Mussel byssus and biomolecular materials. Curr. Opin. Chem. Biol. 1999, 3, 100–105. DOI: 10.1016/s1367-5931(99)80018-0.
  • Yang, J.; A.; M.; Stuart, C.; Kamperman, M. Jack of all trades: versatile catechol crosslinking mechanisms. Chem. Soc. Rev. 2014, 43, 8271–8298. DOI: 10.1039/c4cs00185k.
  • Wilker, J. J. The iron-fortified adhesive system of marine mussels. Angew. Chem. Int. Ed. Engl. 2010, 49, 8076–8078. DOI: 10.1002/anie.201003171.
  • Sever, M. J.; Wilker, J. J. Visible absorption spectra of metal–catecholate and metal–tironate complexes. Dalton Trans. 2004, 1061–1072. DOI: 10.1039/B315811J.
  • Li, Y.; Cheng, J.; Delparastan, P.; Wang, H.; Sigg, S. J.; DeFrates, K. G.; Cao, Y.; Messersmith, P. B. Molecular design principles of lysine-DOPA wet adhesion. Nat. Commun. 2020, 11, 3895. DOI: 10.1038/s41467-020-17597-4.
  • Degen, G. D.; Stow, P. R.; Lewis, R. B.; Andresen Eguiluz, R. C.; Valois, E.; Kristiansen, K.; Butler, A.; Israelachvili, J. N. Impact of molecular architecture and adsorption density on adhesion of mussel-inspired surface primers with catechol-cation synergy. J. Am. Chem. Soc. 2019, 141, 18673–18681. DOI: 10.1021/jacs.9b04337.
  • Li, Y.; Wang, T.; Xia, L.; Wang, L.; Qin, M.; Li, Y.; Wang, W.; Cao, Y. Single-molecule study of the synergistic effects of positive charges and DOPA for wet adhesion. J. Mater. Chem. B 2017, 5, 4416–4420. DOI: 10.1039/c7tb00131b.
  • Maier, G. P.; Rapp, M. V.; Waite, J. H.; Israelachvili, J. N.; Butler, A. Biological adhesives. Adaptive synergy between catechol and lysine promotes wet adhesion by surface salt displacement. Science 2015, 349, 628–632. DOI: 10.1126/science.aab0556.
  • Mu, Y.; Mu, P.; Wu, X.; Wan, X. The two facets of the synergic effect of amine cation and catechol on the adhesion of catechol in underwater conditions. Appl. Surf. Sci. 2020, 530, 146973. DOI: 10.1016/j.apsusc.2020.146973.
  • Maier, G. P.; Butler, A. Siderophores and mussel foot proteins: the role of catechol, cations, and metal coordination in surface adhesion. J. Biol. Inorg. Chem. 2017, 22, 739–749. DOI: 10.1007/s00775-017-1451-6.
  • Rapp, M. V.; Maier, G. P.; Dobbs, H. A.; Higdon, N. J.; Waite, J. H.; Butler, A.; Israelachvili, J. N. Defining the catechol-cation synergy for enhanced wet adhesion to mineral surfaces. J. Am. Chem. Soc. 2016, 138, 9013–9016. DOI: 10.1021/jacs.6b03453.
  • Lee, H.; Dellatore, S. M.; Miller, W. M.; Messersmith, P. B. Mussel-inspired surface chemistry for multifunctional coatings. Science 2007, 318, 426–430. DOI: 10.1126/science.1147241.
  • Mrówczyński, R.; Markiewicz, R.; Liebscher, J. Chemistry of polydopamine analogues. Polym. Int. 2016, 65, 1288–1299. DOI: 10.1002/pi.5193.
  • Wang, Z.; Xu, Y.; Liu, Y.; Shao, L. A novel mussel-inspired strategy toward superhydrophobic surfaces for self-driven crude oil spill cleanup. J. Mater. Chem. A 2015, 3, 12171–12178. DOI: 10.1039/C5TA01767J.
  • Ong, C.; Shi, Y.; Chang, J.; Alduraiei, F.; Ahmed, Z.; Wang, P. Polydopamine as a versatile adhesive layer for robust fabrication of smart surface with switchable wettability for effective oil/water separation. Ind. Eng. Chem. Res. 2019, 58, 4838–4843. DOI: 10.1021/acs.iecr.8b06408.
  • Wang, Y.; Lai, H.; Cheng, Z.; Zhang, H.; Liu, Y.; Jiang, L. Smart superhydrophobic shape memory adhesive surface toward selective capture/release of microdroplets. ACS Appl. Mater. Interfaces. 2019, 11, 10988–10997. DOI: 10.1021/acsami.9b00278.
  • Fang, Q.; Duan, S.; Zhang, J.; Li, J.; Leung, K. C.-F. Dual shelled Fe3O4/polydopamine hollow microspheres as an effective Eu(III) adsorbent. J. Mater. Chem. A 2017, 5, 2947–2958. DOI: 10.1039/C6TA09968H.
  • Li, S.; Xu, J.; Yao, G.; Liu, H. Self-adhesive, self-healable, and triple-responsive hydrogel doped with polydopamine as an adsorbent toward methylene blue. Ind. Eng. Chem. Res. 2019, 58, 17075–17087. DOI: 10.1021/acs.iecr.9b03359.
  • Asha, A. B.; Chen, Y.; Zhang, H.; Ghaemi, S.; Ishihara, K.; Liu, Y.; Narain, R. Rapid Mussel-inspired surface zwitteration for enhanced antifouling and antibacterial properties. Langmuir 2019, 35, 1621–1630. DOI: 10.1021/acs.langmuir.8b03810.
  • Pramanik, A.; Gates, K.; Gao, Y.; Zhang, Q.; Han, F. X.; Begum, S.; Rightsell, C.; Sardar, D.; Ray, P. C. Composites composed of polydopamine nanoparticles, graphene oxide, and ɛ-poly-ʟ-lysine for removal of waterborne contaminants and eradication of superbugs. ACS Appl. Nano Mater. 2019, 2, 3339–3347. DOI: 10.1021/acsanm.9b00161.
  • Rivera, J. G.; Messersmith, P. B. Polydopamine-assisted immobilization of trypsin onto monolithic structures for protein digestion. J. Sep. Sci. 2012, 35, 1514–1520. DOI: 10.1002/jssc.201200073.
  • Cui, J.; Yan, Y.; Such, G. K.; Liang, K.; Ochs, C. J.; Postma, A.; Caruso, F. Immobilization and intracellular delivery of an anticancer drug using mussel-inspired polydopamine capsules. Biomacromolecules 2012, 13, 2225–2228. DOI: 10.1021/bm300835r.
  • Zhang, C.; Xiang, L.; Zhang, J.; Gong, L.; Han, L.; Xu, Z.-K.; Zeng, H. Tough and alkaline-resistant mussel-inspired wet adhesion with surface salt displacement via polydopamine/amine synergy. Langmuir 2019, 35, 5257–5263. DOI: 10.1021/acs.langmuir.9b00559.
  • Qian, B.; Zheng, Z.; Michailids, M.; Fleck, N.; Bilton, M.; Song, Y.; Li, G.; Shchukin, D. Mussel-inspired self-healing coatings based on polydopamine-coated nanocontainers for corrosion protection. ACS Appl Mater Interfaces . 2019, 11, 10283–10291. DOI: 10.1021/acsami.8b21197.
  • Zhang, G.; Chen, S.; Peng, Z.; Shi, W.; Liu, Z.; Shi, H.; Luo, K.; Wei, G.; Mo, H.; Li, B.; Liu, L. Topologically enhanced dual-network hydrogels with rapid recovery for low-hysteresis, self-adhesive epidemic electronics. ACS Appl Mater Interfaces. 2021, 13, 12531–12540. DOI: 10.1021/acsami.1c00819.
  • Pei, X.; Zhang, H.; Zhou, Y.; Zhou, L.; Fu, J. Self-healing and tissue-adhesive zwitterionic hydrogels as strain sensors for wireless monitoring of organ motions. Mater. Horiz. 2020, 7, 1872–1882. DOI: 10.1039/D0MH00361A.
  • Wu, C.; Zhang, G.; Xia, T.; Li, Z.; Zhao, K.; Deng, Z.; Guo, D.; Peng, B. Bioinspired synthesis of polydopamine/Ag nanocomposite particles with antibacterial activities. Mater. Sci. Eng. C Mater. Biol. Appl. 2015, 55, 155–165. DOI: 10.1016/j.msec.2015.05.032.
  • Fu, L.; Lai, G.; Jia, B.; Yu, A. Preparation and electrocatalytic properties of polydopamine functionalized reduced graphene oxide-silver nanocomposites. Electrocatalysis 2015, 6, 72–76. DOI: 10.1007/s12678-014-0219-9.
  • Zhou, M.; Li, J.; Zhang, M.; Wang, H.; Lan, Y.; Wu, Y-n.; Li, F.; Li, G. A polydopamine layer as the nucleation center of MOF deposition on “Inert” polymer surfaces to fabricate hierarchically structured porous films. Chem. Commun. (Camb.) 2015, 51, 2706–2709. DOI: 10.1039/c4cc08796h.
  • Kim, S.; Gim, T.; Kang, S. M. Versatile, tannic acid-mediated surface pegylation for marine antifouling applications. ACS Appl. Mater. Interfaces. 2015, 7, 6412–6416. DOI: 10.1021/acsami.5b01304.
  • Hong, D.; Bae, K.; Hong, S.-P.; Park, J. H.; Choi, I. S.; Cho, W. K. Mussel-inspired, perfluorinated polydopamine for self-cleaning coating on various substrates. Chem. Commun. (Camb.) 2014, 50, 11649–11652. DOI: 10.1039/c4cc02775b.
  • Hebbar, R. S.; Isloor, A. M.; Ananda, K.; Ismail, A. F. Fabrication of polydopamine functionalized halloysite nanotube/polyetherimide membranes for heavy metal removal. J. Mater. Chem. A 2016, 4, 764–774. DOI: 10.1039/C5TA09281G.
  • Lee, M.; Rho, J.; Lee, D. E.; Hong, S.; Choi, S. J.; Messersmith, P. B.; Lee, H. Water detoxification by a substrate-bound catecholamine adsorbent. Chempluschem 2012, 77, 987–990. DOI: 10.1002/cplu.201200209.
  • Sileika, T. S.; Barrett, D. G.; Zhang, R.; Lau, K. H.; Messersmith, P. B. Colorless multifunctional coatings inspired by polyphenols found in tea, chocolate, and wine. Angew. Chem. Int. Ed. Engl. 2013, 52, 10766–10770. DOI: 10.1002/anie.201304922.
  • Li, S.; Scheiger, J. M.; Wang, Z.; Dong, Z.; Welle, A.; Trouillet, V.; Levkin, P. A. Substrate-independent and re-writable surface patterning by combining polydopamine coatings, silanization, and thiol-ene reaction. Adv. Funct. Mater. 2021, 31, 2107716. DOI: 10.1002/adfm.202107716.
  • Liu, Y.; Ai, K.; Lu, L. Polydopamine and its derivative materials: synthesis and promising applications in energy, environmental, and biomedical fields. Chem. Rev. 2014, 114, 5057–5115. DOI: 10.1021/cr400407a.
  • Kobayashi, S.; Makino, A. Enzymatic polymer synthesis: an opportunity for green polymer chemistry. Chem. Rev. 2009, 109, 5288–5353. DOI: 10.1021/cr900165z.
  • Ouyang, R.; Lei, J.; Ju, H.; Xue, Y. A molecularly imprinted copolymer designed for enantioselective recognition of glutamic acid. Adv. Funct. Mater. 2007, 17, 3223–3230. DOI: 10.1002/adfm.200700143.
  • Liebscher, J.; Mrówczyński, R.; Scheidt, H. A.; Filip, C.; Hădade, N. D.; Turcu, R.; Bende, A.; Beck, S. Structure of polydopamine: a never-ending story? Langmuir 2013, 29, 10539–10548. DOI: 10.1021/la4020288.
  • Kang, S. M.; Rho, J.; Choi, I. S.; Messersmith, P. B.; Lee, H. Norepinephrine: material-independent, multifunctional surface modification reagent. J. Am. Chem. Soc. 2009, 131, 13224–13225. DOI: 10.1021/ja905183k.
  • Borase, T.; Heise, A. Hybrid nanomaterials by surface grafting of synthetic polypeptides using N-carboxyanhydride (NCA) polymerization. Adv. Mater. 2016, 28, 5725–5731. DOI: 10.1002/adma.201504474.
  • Yu, M.; Deming, T. J. Synthetic polypeptide mimics of marine adhesives. Macromolecules 1998, 31, 4739–4745. DOI: 10.1021/ma980268z.
  • Ham, H. O.; Park, S. H.; Kurutz, J. W.; Szleifer, I. G.; Messersmith, P. B. Antifouling glycocalyx-mimetic peptoids. J. Am. Chem. Soc. 2013, 135, 13015–13022. DOI: 10.1021/ja404681x.
  • Saxer, S.; Portmann, C.; Tosatti, S.; Gademann, K.; Zürcher, S.; Textor, M. Surface assembly of catechol-functionalized poly(ʟ-lysine)-graft-poly(ethylene glycol) copolymer on titanium exploiting combined electrostatically driven self-organization and biomimetic strong adhesion. Macromolecules 2010, 43, 1050–1060. DOI: 10.1021/ma9020664.
  • Tang, W.; Policastro, G. M.; Hua, G.; Guo, K.; Zhou, J.; Wesdemiotis, C.; Doll, G. L.; Becker, M. L. Bioactive surface modification of metal oxides via catechol-bearing modular peptides: multivalent-binding, surface retention, and peptide bioactivity. J. Am. Chem. Soc. 2014, 136, 16357–16367. DOI: 10.1021/ja508946h.
  • Wei, W.; Yu, J.; Gebbie, M. A.; Tan, Y.; Rodriguez, N. R. M.; Israelachvili, J. N.; Wait, J. H. The bridging adhesion of mussel-inspired peptides: role of charge, chain length, and surface type. Langmuir 2015, 31, 1105–1112. DOI: 10.1021/la504316q.
  • Wang, J.; Liu, C.; Lu, X.; Yin, M. Co-polypeptides of 3,4-dihydroxyphenylalanine and ʟ-lysine to mimic marine adhesive protein. Biomaterials 2007, 28, 3456–3468. DOI: 10.1016/j.biomaterials.2007.04.009.
  • Wei, W.; Petrone, L.; Tan, Y.; Cai, H.; Israelachvili, J. N.; Miserez, A.; Waite, J. H. An underwater surface-drying peptide inspired by a mussel adhesive protein. Adv. Funct. Mater. 2016, 26, 3496–3507. DOI: 10.1002/adfm.201600210.
  • Wilke, P.; Helfricht, N.; Mark, A.; Papastavrou, G.; Faivre, D.; Borner, H. G. A direct biocombinatorial strategy toward next generation, mussel-glue inspired saltwater adhesives. J. Am. Chem. Soc. 2014, 136, 12667–12674. DOI: 10.1021/ja505413e.
  • Anderson, T. H.; Yu, J.; Estrada, A.; Hammer, M. U.; Waite, J. H.; Israelachvili, J. N. The contribution of DOPA to substrate-peptide adhesion and internal cohesion of mussel-inspired synthetic peptide films. Adv. Funct. Mater. 2010, 20, 4196–4205. DOI: 10.1002/adfm.201000932.
  • Aydindogan, E.; Guler Celik, E.; Odaci Demirkol, D.; Yamada, S.; Endo, T.; Timur, S.; Yagci, Y. Surface modification with a catechol-bearing polypeptide and sensing applications. Biomacromolecules 2018, 19, 3067–3076. DOI: 10.1021/acs.biomac.8b00650.
  • Bo, W.; Sang, L. J.; Young, Sil, J.; Jaeyun, K.; Ji.; Heung, K., Hydrophobicity‐enhanced adhesion of novel biomimetic biocompatible polyaspartamide derivative glues. Polym. Int 2018, 67, 557–565. DOI: 10.1002/pi.5544.
  • Zhao, H.; Huang, Y.; Zhang, W.; Guo, Q.; Cui, W.; Sun, Z.; Eglin, D.; Liu, L.; Pan, G.; Shi, Q. Mussel-inspired peptide coatings on titanium implant to improve osseointegration in osteoporotic condition. ACS Biomater. Sci. Eng. 2018, 4, 2505–2515. DOI: 10.1021/acsbiomaterials.8b00261.
  • Westwood, G.; Horton, T. N.; Wilke, J. J. Simplified polymer mimics of cross-linking adhesive proteins. Macromolecules 2007, 40, 3960–3964. DOI: 10.1021/ma0703002.
  • Matos-Perez, C. R.; White, J. D.; Wilker, J. J. Polymer composition and substrate influences on the adhesive bonding of a biomimetic, cross-linking polymer. J. Am. Chem. Soc. 2012, 134, 9498–9505. DOI: 10.1021/ja303369p.
  • Meredith, H. J.; Jenkins, C. L.; Wilker, J. J. Enhancing the adhesion of a biomimetic polymer yields performance rivaling commercial glues. Adv. Funct. Mater. 2014, 24, 3259–3267. DOI: 10.1002/adfm.201303536.
  • Matos-Perez, C. R.; Wilker, J. J. Ambivalent adhesives: combining biomimetic cross-linking with antiadhesive oligo(ethylene glycol). Macromolecules 2012, 45, 6634–6639. DOI: 10.1021/ma300962d.
  • White, J. D.; Wilker, J. J. Underwater bonding with charged polymer mimics of marine mussel adhesive proteins. Macromolecules 2011, 44, 5085–5088. DOI: 10.1021/ma201044x.
  • North, M. A.; Del Grosso, C. A.; Wilker, J. J. High strength underwater bonding with polymer mimics of mussel adhesive proteins. ACS. Appl. Mater. Interfaces. 2017, 9, 7866–7872. DOI: 10.1021/acsami.7b00270.
  • Lukyanov, D. A.; Vereshchagin, A. A.; Soloviova, A. V.; Grigorova, O. V.; Vlasov, P. S.; Levin, O. V. Sulfonated polycatechol immobilized in a conductive polymer for enhanced energy storage. ACS Appl. Energy Mater. 2021, 4, 5070–5078. DOI: 10.1021/acsaem.1c00639.
  • Pirnat, K.; Casado, N.; Porcarelli, L.; Ballard, N.; Mecerreyes, D. Synthesis of redox polymer nanoparticles based on poly(vinyl catechols) and their electroactivity. Macromolecules 2019, 52, 8155–8166. DOI: 10.1021/acs.macromol.9b01405.
  • Patil, N.; Aqil, A.; Ouhib, F.; Admassie, S.; Inganäs, O.; Jérôme, C.; Detrembleur, C. Bioinspired redox-active catechol-bearing polymers as ultrarobust organic cathodes for lithium storage. Adv. Mater. 2017, 29, 1703373. DOI: 10.1002/adma.201703373.
  • Patil, N.; Palma, J.; Marcilla, R. Macromolecular engineering of poly(catechol) cathodes towards high-performance aqueous zinc-polymer batteries. Polymers 2021, 13, 1673. DOI: 10.3390/polym13111673.
  • Patil, N.; Cruz, C.; Ciurduc, D.; Mavrandonakis, A.; Palma, J.; Marcilla, R. An ultrahigh performance zinc-organic battery using poly(catechol) cathode in Zn(TFSI)2-based concentrated aqueous electrolytes. Adv. Energy Mater. 2021, 11, 2100939. DOI: 10.1002/aenm.202100939.
  • Aqil, A.; Ouhib, F.; Detrembleur, C.; Moreno-Couranjou, M. Atmospheric plasma deposition of bioinspired catechol-rich polymers: a promising route for the simple construction of redox-active thin films. Mater. Adv. 2021, 2, 1248–1252. DOI: 10.1039/d0ma00865f.
  • Bernard, J.; Branger, C.; Nguyen, T. L. A.; Denoyel, R.; Margaillan, A. Synthesis and characterization of a polystyrenic resin functionalized by catechol: application to retention of metal ions. React. Funct. Polym. 2008, 68, 1362–1370. DOI: 10.1016/j.reactfunctpolym.2008.06.014.
  • Neto, A. I.; Meredith, H. J.; Jenkins, C. L.; Wilker, J. J.; Mano, J. F. Combining biomimetic principles from the lotus leaf and mussel adhesive: polystyrene films with superhydrophobic and adhesive layers. RSC Adv. 2013, 3, 9352. DOI: 10.1039/c3ra40715b.
  • Kim, J.; You, N.-H.; Ku, B.-C. Highly efficient halogen-free flame retardants of thermally-oxidized polyacrylonitrile copolymers containing bio-derived caffeic acid derivatives. Polym. Chem. 2020, 11, 6658–6669. DOI: 10.1039/D0PY00854K.
  • Nam, K.-H.; Jin, J.-U.; Lee, J. H.; Kim, J.; Chung, Y. S.; Yeo, H.; You, N.-H.; Ku, B.-C. Highly efficient thermal oxidation and cross-linking reaction of catechol functionalized polyacrylonitrile copolymer composites for halogen-free flame retardant. Compos. Part B-Eng. 2020, 184, 107687. DOI: 10.1016/j.compositesb.2019.107687.
  • Na, Y.; Chen, C. Catechol-functionalized polyolefins. Angew. Chem. 2020, 132, 8027–8033. DOI: 10.1002/ange.202000848.
  • Li, L.; Smitthipong, W.; Zeng, H. Mussel-inspired hydrogels for biomedical and environmental applications. Polym. Chem. 2015, 6, 353–358. DOI: 10.1039/C4PY01415D.
  • Barrett, D. G.; Fullenkamp, D. E.; He, L.; Holten-Andersen, N.; Lee, K. Y.; Messersmith, P. B. pH-based regulation of hydrogel mechanical properties through mussel-inspired chemistry and processing. Adv. Funct. Mater. 2013, 23, 1111–1119. DOI: 10.1002/adfm.201201922.
  • Brubaker, C. E.; Kissler, H.; Wang, L. J.; Kaufman, D. B.; Messersmith, P. B. Biological performance of mussel-inspired adhesive in extrahepatic islet transplantation. Biomaterials 2010, 31, 420–427. DOI: 10.1016/j.biomaterials.2009.09.062.
  • Brubaker, C. E.; Messersmith, P. B. Enzymatically degradable mussel-inspired adhesive hydrogel. Biomacromolecules 2011, 12, 4326–4334. DOI: 10.1021/bm201261d.
  • Choi, J. S.; Messersmith, P. B.; Yoo, H. S. Decoration of electrospun nanofibers with monomeric catechols to facilitate cell adhesion. Macromol. Biosci. 2014, 14, 270–279. DOI: 10.1002/mabi.201300281.
  • Fan, X.; Lin, L.; Messersmith, P. B. Cell fouling resistance of polymer brushes grafted from Ti substrates by surface-initiated polymerization: effect of ethylene glycol side chain length. Biomacromolecules 2006, 7, 2443–2448. DOI: 10.1021/bm060276k.
  • Fullenkamp, D. E.; He, L.; Barrett, D. G.; Burghardt, W. R.; Messersmith, P. B. Mussel-inspired histidine-based transient network metal coordination hydrogels. Macromolecules 2013, 46, 1167–1174. DOI: 10.1021/ma301791n.
  • Su, J.; Chen, F.; Cryns, V. L.; Messersmith, P. B. Catechol polymers for pH-responsive, targeted drug delivery to cancer cells. J. Am. Chem. Soc. 2011, 133, 11850–11853. DOI: 10.1021/ja203077x.
  • Barrett, D. G.; Bushnell, G. G.; Messersmith, P. B. Mechanically robust, negative-swelling, mussel-inspired tissue adhesives. Adv. Healthc. Mater. 2013, 2, 745–755. DOI: 10.1002/adhm.201200316.
  • Chawla, K.; Lee, S.; Lee, B. P.; Dalsin, J. L.; Messersmith, P. B.; Spencer, N. D. A novel low-friction surface for biomedical applications: modification of poly(dimethylsiloxane) (PDMS) with polyethylene glycol(PEG)-DOPA-lysine. J. Biomed. Mater. Res. A 2009, 90, 742–749. DOI: 10.1002/jbm.a.32141.
  • Fullenkamp, D. E.; Rivera, J. G.; Gong, Y. K.; Lau, K. H.; He, L.; Varshney, R.; Messersmith, P. B. Mussel-inspired silver-releasing antibacterial hydrogels. Biomaterials 2012, 33, 3783–3791. DOI: 10.1016/j.biomaterials.2012.02.027.
  • Kuang, J.; Guo, J. L.; Messersmith, P. B. High ionic strength formation of DOPA-melanin coating for loading and release of cationic antimicrobial compounds. Adv. Mater. Interfaces. 2014, 1, 1400145. DOI: 10.1002/admi.201400145.
  • Lee, B. P.; Chao, C.-Y.; Nunalee, N.; Motan, E.; Shull, K. R.; Messersmith, P. B. Rapid gel formation and adhesion in photocurable and biodegradable block copolymers with high DOPA content. Macromolecules 2006, 39, 1740–1748. DOI: 10.1021/ma0518959.
  • Lee, B. P.; Huang, K.; Nunalee, F. N.; Shull, K. R.; Messersmith, P. B. Synthesis of 3,4-dihydroxyphenylalanine (DOPA) containing monomers and their co-polymerization with PEG-diacrylate to form hydrogels. J. Biomater. Sci. Polym. Ed. 2004, 15, 449–464. DOI: 10.1163/156856204323005307.
  • Lee, B. P.; Dalsin, J. L.; Messersmith, P. B. Biomimetic adhesive polymers based on mussel adhesive proteins. In Biological Adhesives; Springer: Berlin, Heidelberg, 2006; pp. 257
  • Haller, C. M.; Buerzle, W.; Kivelio, A.; Perrini, M.; Brubaker, C. E.; Gubeli, R. J.; Mallik, A. S.; Weber, W.; Messersmith, P. B.; Mazza, E.; et al. Mussel-mimetic tissue adhesive for fetal membrane repair: an ex vivo evaluation. Acta Biomater. 2012, 8, 4365–4370. DOI: 10.1016/j.actbio.2012.07.047.
  • Chen, T.; Chen, Y.; Rehman, H. U.; Chen, Z.; Yang, Z.; Wang, M.; Li, H.; Liu, H. Ultratough, self-healing, and tissue-adhesive hydrogel for wound dressing. ACS Appl. Mater. Interfaces. 2018, 10, 33523–33531. DOI: 10.1021/acsami.8b10064.
  • Zhao, C.; Li, Z.; Chen, J.; Su, L.; Wang, J.; Chen, D. S.; Ye, J.; Liao, N.; Yang, H.; Song, J.; Shi, J. Site-specific biomimicry of antioxidative melanin formation and its application for acute liver injury therapy and imaging. Adv. Mater. 2021, 33, 2102391. DOI: 10.1002/adma.202102391.
  • Liang, R.; Yu, H.; Wang, L.; Wang, N.; Amin, B. U. NIR light-triggered shape memory polymers based on mussel-inspired iron–catechol complexes. Adv. Funct. Mater. 2021, 31, 2102621. DOI: 10.1002/adfm02621.
  • Liu, S.; Ono, R. J.; Yang, C.; Gao, S.; Ming Tan, J. Y.; Hedrick, J. L.; Yang, Y. Y. Dual pH-responsive shell-cleavable polycarbonate micellar nanoparticles for in vivo anticancer drug delivery. ACS Appl. Mater. Interfaces. 2018, 10, 19355–19364. DOI: 10.1021/acsami.8b01954.
  • Higginson, C. J.; Malollari, K. G.; Xu, Y.; Kelleghan, A. V.; Ricapito, N. G.; Messersmith, P. B. Bioinspired design provides high-strength benzoxazine structural adhesives. Angew. Chem. Int. Ed. Engl. 2019, 58, 12271–12279. DOI: 10.1002/anie.201906008.
  • Tang, X.; Wang, B.; Eristoff, S.; Zhang, H.; Bettinger, C. J. Dynamic contributions to the bulk mechanical properties of self-assembled polymer networks with reconfigurable bonds. Macromol. Rapid Commun. 2020, 41, 1900551–1900551. DOI: 10.1002/marc.201900551.
  • Tang, X.; Bettinger, C. J. Multimodal underwater adhesion using self-assembled DOPA-bearing ABA triblock copolymer networks. J. Mater. Chem. B 2018, 6, 545–549. DOI: 10.1039/c7tb02371e.
  • Podsiadlo, P.; Liu, Z.; Paterson, D.; Messersmith, P. B.; Kotov, N. A. Fusion of seashell nacre and marine bioadhesive analogs: high-strength nanocomposite by layer-by-layer assembly of clay and ʟ-3,4-dihydroxyphenylalanine polymer. Adv. Mater. 2007, 19, 949–955. DOI: 10.1002/adma.200602706.
  • Villiou, M.; Paez, J. I.; del Campo, A. Photodegradable hydrogels for cell encapsulation and tissue adhesion. ACS Appl. Mater. Interfaces. 2020, 12, 37862–37872. DOI: 10.1021/acsami.0c08568.
  • Shannon, A.; Manolakis, I. A facile route to bio-inspired supramolecular oligo(ethylene glycol) catecholates. Macromol. Chem. Phys. 2019, 220, 1800412. DOI: 10.1002/macp.201800412.
  • Jia, M.; Li, A.; Mu, Y.; Jiang, W.; Wan, X. Synthesis and adhesive property study of polyoxetanes grafted with catechols via Cu(I)-catalyzed click chemistry. Polymer 2014, 55, 1160–1166. DOI: 10.1016/j.polymer.2014.01.028.
  • Li, A.; Jia, M.; Mu, Y.; Jiang, W.; Wan, X. Humid bonding with a water-soluble adhesive inspired by mussels and sandcastle worms. Macromol. Chem. Phys. 2015, 216, 450–459. DOI: 10.1002/macp.201400513.
  • Lee, H.; Lee, B. P.; Messersmith, P. B. A reversible wet/dry adhesive inspired by mussels and geckos. Nature 2007, 448, 338–341. DOI: 10.1038/nature05968.
  • Ryou, M. H.; Kim, J.; Lee, I.; Kim, S.; Jeong, Y. K.; Hong, S.; Ryu, J. H.; Kim, T. S.; Park, J. K.; Lee, H.; Choi, J. W. Mussel-inspired adhesive binders for high-performance silicon nanoparticle anodes in lithium-ion batteries. Adv. Mater. 2013, 25, 1571–1576. DOI: 10.1002/adma.201203981.
  • Zhang, X.; Carter, M. C. D.; Belowich, M. E.; Wan, G.; Crimmins, M.; Laughlin, K. B.; Even, R. C.; Kalantar, T. H. Catechol-functionalized latex polymers display improved adhesion to low-surface-energy thermoplastic polyolefin substrates. ACS Appl. Polym. Mater. 2019, 1, 1317–1325. DOI: 10.1021/acsapm.9b00130.
  • Lee, K.; Tiu, B. D. B.; Martchenko, V.; Mai, K.; Lee, G.; Gerst, M.; Messersmith, P. B. A Modular strategy for functional pressure sensitive adhesives. ACS Appl Mater Interfaces. 2021, 13, 3161–3165. DOI: 10.1021/acsami.0c19405.
  • Ahn, B. K.; Lee, D. W.; Israelachvili, J. N.; Waite, J. H. Surface-initiated self-healing of polymers in aqueous media. Nat. Mater. 2014, 13, 867–872. DOI: 10.1038/nmat4037.
  • Nishida, J.; Kobayashi, M.; Takahara, A. Light-triggered adhesion of water-soluble polymers with a caged catechol group. ACS Macro Lett. 2013, 2, 112–115. DOI: 10.1021/mz300524q.
  • Zhang, F.; Liu, S.; Zhang, Y.; Wei, Y.; Xu, J. Underwater bonding strength of marine mussel-inspired polymers containing DOPA-like units with amino groups. RSC Adv. 2012, 2, 8919–8921. DOI: 10.1039/c2ra21312e.
  • Ham, H. O.; Liu, Z.; Lau, K. H.; Lee, H.; Messersmith, P. B. Facile DNA immobilization on surfaces through a catecholamine polymer. Angew. Chem. Int. Ed. Engl. 2011, 50, 732–736. DOI: 10.1002/anie.201005001.
  • Zhang, R.; Peng, H.; Zhou, T.; Yao, Y.; Zhu, X.; Bi, B.; Zhang, X.; Liu, B.; Niu, L.; Wang, W. Constructing high performance hydrogels with strong underwater adhesion through a “Mussel Feet-Rock” inspired strategy. ACS Appl. Polym. Mater. 2019, 1, 2883–2889. DOI: 10.1021/acsapm.9b00590.
  • Zhao, Q.; Lee, D.; Ahn, B. K.; Seo, S.; Kaufman, Y.; Israelachvili, J. N.; Waite, J. H. Underwater contact adhesion and microarchitecture in polyelectrolyte complexes actuated by solvent exchange. Nat. Mater. 2016, 15, 407–412. DOI: 10.1038/nmat4539.
  • Shao, H.; Stewart, R. J. Biomimetic underwater adhesives with environmentally triggered setting mechanisms. Adv. Mater. 2010, 22, 729–733. DOI: 10.1002/adma.200902380.
  • Chung, H.; Grubbs, R. H. Rapidly cross-linkable DOPA containing terpolymer adhesives and PEG-based cross-linkers for biomedical applications. Macromolecules 2012, 45, 9666–9673. DOI: 10.1021/ma3017986.
  • Zhang, Y.; Zhao, Y.; Xia, S.; Tao, L.; Wei, Y. A facile preparation of mussel-inspired poly(dopamine phosphonate-co-PEGMA)S via a one-pot multicomponent polymerization system. Macromol. Rapid Commun. 2020, 41, 1900533–1900533. DOI: 10.1002/marc.201900533.
  • Balkenende, D. W. R.; Winkler, S. M.; Li, Y.; Messersmith, P. B. Supramolecular cross-links in mussel-inspired tissue adhesives. ACS Macro Lett. 2020, 9, 1439–1445. DOI: 10.1021/acsmacrolett.0c00520.
  • Qiu, S.; Zhuang, J.; Jin, S.; Yang, N.-L. Nitrocatecholic copolymers - synthesis and their remarkable binding affinity. Chem. Commun. (Camb.) 2019, 55, 10748–10751. DOI: 10.1039/c9cc04425f.
  • Bartucci, M. A.; Savage, A. M.; Flanagan, D.; Morgan, B. F.; Beyer, F. L.; Radzinski, S. C.; Orlicki, J. A.; Lenhart, J. L. Maleimide-acrylate copolymers with pendent catechols: platform for probing adhesion. Polym. Int. 2021, 70, 790–794. DOI: 10.1002/pi.6175.
  • Putnam, A. A.; Wilker, J. Changing polymer catechol content to generate adhesives for high versus low energy surfaces. Soft Matter. 2021, 17, 1999–2009. DOI: 10.1039/d0sm01944e.
  • Millican, J. M.; Bittrich, E.; Caspari, A.; Pöschel, K.; Drechsler, A.; Freudenberg, U.; Ryan, T. G.; Thompson, R. L.; Pospiech, D.; Hutchings, L. R. Synthesis and characterisation of a mussel-inspired hydrogel film coating for biosensors. Eur. Polym. J 2021, 153, 110503. DOI: 10.1016/j.eurpolymj.2021.110503.
  • Bhuiyan, M. S. A.; Liu, B.; Manuel, J.; Zhao, B.; Lee, B. P. Effect of conductivity on in situ deactivation of catechol-boronate complexation-based reversible smart adhesive. Biomacromolecules 2021, 22, 4004–4015. DOI: 10.1021/acs.biomac.1c00802.
  • Patil, N.; Mavrandonakis, A.; Jérôme, C.; Detrembleur, C.; Palma, J.; Marcilla, R. Polymers bearing catechol pendants as universal hosts for aqueous rechargeable H+, Li-Ion, and post-Li-ion (mono-, di-, and trivalent) batteries. ACS Appl. Energy Mater. 2019, 2, 3035–3041. DOI: 10.1021/acsaem.9b00443.
  • Gallastegui, A.; Minudri, D.; Casado, N.; Goujon, N.; Ruipérez, F.; Patil, N.; Detrembleur, C.; Marcilla, R.; Mecerreyes, D. Proton trap effect on catechol–pyridine redox polymer nanoparticles as organic electrodes for lithium batteries. Sustainable Energy Fuels 2020, 4, 3934–3942. DOI: 10.1039/D0SE00531B.
  • Patil, N.; Mavrandonakis, A.; Jérôme, C.; Detrembleur, C.; Casado, N.; Mecerreyes, D.; Palma, J.; Marcilla, R. High-performance all-organic aqueous batteries based on a poly(imide) anode and poly(catechol) cathode. J. Mater. Chem. A 2021, 9, 505–514. DOI: 10.1039/D0TA09404H.
  • Razaviamri, S.; Wang, K.; Liu, B.; Lee, B. P. Catechol-based antimicrobial polymers. Molecules 2021, 26, 559. DOI: 10.3390/molecules26030559.
  • Liu, W.; Dong, Y.; Liu, S.; Wei, T.; Wu, Z.; Chen, H. Enhancement of bactericidal activity via cyclic poly(cationic liquid) brushes. Macromol. Rapid Commun. 2019, 40, 1900379. DOI: 10.1002/marc.201900379.
  • Faure, E.; Falentin-Daudré, C.; Lanero, T. S.; Vreuls, C.; Zocchi, G.; Van De Weerdt, C.; Martial, J.; Jérôme, C.; Duwez, A.-S.; Detrembleur, C. Functional nanogels as platforms for imparting antibacterial, antibiofilm, and antiadhesion activities to stainless steel. Adv. Funct. Mater. 2012, 22, 5271–5282. DOI: 10.1002/adfm.201201106.
  • Faure, E.; Lecomte, P.; Lenoir, S.; Vreuls, C.; Van De Weerdt, C.; Archambeau, C.; Martial, J.; Jérôme, C.; Duwez, A.-S.; Detrembleur, C. Sustainable and bio-inspired chemistry for robust antibacterial activity of stainless steel. J. Mater. Chem. 2011, 21, 7901–7904. DOI: 10.1039/c1jm11380a.
  • Li, L.; Yan, B.; Yang, J.; Huang, W.; Chen, L.; Zeng, H. Injectable self-healing hydrogel with antimicrobial and antifouling properties. ACS Appl. Mater. Interfaces. 2017, 9, 9221–9225. DOI: 10.1021/acsami.6b16192.
  • Plachá, D.; Muñoz-Bonilla, A.; Škrlová, K.; Echeverria, C.; Chiloeches, A.; Petr, M.; Lafdi, K.; Fernández-García, M. Antibacterial character of cationic polymers attached to carbon-based nanomaterials. Nanomaterials 2020, 10, 1218. DOI: 10.3390/nano10061218.
  • Han, H.; Wu, J.; Avery, C. W.; Mizutani, M.; Jiang, X.; Kamigaito, M.; Chen, Z.; Xi, C.; Kuroda, K. Immobilization of amphiphilic polycations by catechol functionality for antimicrobial coatings. Langmuir 2011, 27, 4010–4019. DOI: 10.1021/la1046904.
  • He, M.; Wang, Q.; Zhang, J.; Zhao, W.; Zhao, C. Substrate-independent Ag-nanoparticle-loaded hydrogel coating with regenerable bactericidal and thermoresponsive antibacterial properties. ACS Appl. Mater. Interfaces. 2017, 9, 44782–44791. DOI: 10.1021/acsami.7b13238.
  • Guo, S.; Zhang, Q.; Wang, D.; Wang, L.; Lin, F.; Wilson, P.; Haddleton, D. M. Bioinspired coating of TiO2 nanoparticles with antimicrobial polymers by Cu(0)-LRP: grafting to vs. grafting from. Polym. Chem. 2017, 8, 6570–6580. DOI: 10.1039/C7PY01471F.
  • Pramudya, I.; Kim, C.; Chung, H. Synthesis and adhesion control of glucose-based bioadhesive via strain-promoted azide–alkyne cycloaddition. Polym. Chem. 2018, 9, 3638–3650. DOI: 10.1039/C8PY00339D.
  • Patil, N.; Falentin-Daudré, C.; Jérôme, C.; Detrembleur, C. Mussel-inspired protein-repelling ambivalent block copolymers: controlled synthesis and characterization. Polym. Chem. 2015, 6, 2919–2933. DOI: 10.1039/C5PY00127G.
  • Yan, H.; Li, L.; Wang, Z.; Wang, Y.; Guo, M.; Shi, X.; Yeh, J.-M.; Zhang, P. Mussel-inspired conducting copolymer with aniline tetramer as intelligent biological adhesive for bone tissue engineering. ACS Biomater. Sci. Eng. 2020, 6, 634–646. DOI: 10.1021/acsbiomaterials.9b01601.
  • Ma, W.; Ameduri, B.; Takahara, A. Molecular aggregation structure and surface properties of biomimetic catechol-bearing poly[2-(perfluorooctyl)ethyl acrylate] and its application to superamphiphobic coatings. ACS Omega. 2020, 5, 8169–8180. DOI: 10.1021/acsomega.0c00439.
  • Shen, D.; Xu, B.; Huang, X.; Zhuang, Q.; Lin, S. ( PtBA-co-PPEGMEMA-co-PDOMA)-g-PPFA polymer brushes synthesized by sequential raft polymerization and Atrp. Polym. Chem. 2018, 9, 2821–2829. DOI: 10.1039/C8PY00470F.
  • Payra, D.; Naito, M.; Fujii, Y.; Yamada, N. L.; Hiromoto, S.; Singh, A. Bioinspired adhesive polymer coatings for efficient and versatile corrosion resistance. RSC Adv. 2015, 5, 15977–15984. DOI: 10.1039/C4RA17196A.
  • Vatankhah-Varnosfaderani, M.; Hu, X.; Li, Q.; Adelnia, H.; Ina, M.; Sheiko, S. S. Universal coatings based on zwitterionic-dopamine copolymer microgels. ACS Appl Mater Interfaces . 2018, 10, 20869–20875. DOI: 10.1021/acsami.8b05570.
  • Zhai, Y.; Chen, X.; Yuan, Z.; Han, X.; Liu, H. A mussel-inspired catecholic ABA triblock copolymer exhibits better antifouling properties compared to a diblock copolymer. Polym. Chem. 2020, 11, 4622–4629. DOI: 10.1039/D0PY00810A.
  • Ganguly, R.; Saha, P.; Banerjee, S. L.; Pich, A.; Singha, N. K. Stimuli-responsive block copolymer micelles based on mussel-inspired metal-coordinated supramolecular networks. Macromol. Rapid Commun. 2021, 42, 2100312. DOI: 10.1002/marc.202100312.
  • Zhao, W.; Wang, H.; Han, Y.; Wang, H.; Sun, Y.; Zhang, H. Dopamine/phosphorylcholine copolymer as an efficient joint lubricant and ROS scavenger for the treatment of osteoarthritis. ACS Appl Mater Interfaces . 2020, 12, 51236–51248. DOI: 10.1021/acsami.0c14805.
  • Han, L.; Xiang, L.; Zhang, J.; Chen, J.; Liu, J.; Yan, B.; Zeng, H. Biomimetic lubrication and surface interactions of dopamine-assisted zwitterionic polyelectrolyte coatings. Langmuir 2018, 34, 11593–11601. DOI: 10.1021/acs.langmuir.8b02473.
  • Chen, Y.; Diaz-Dussan, D.; Wu, D.; Wang, W.; Peng, Y.-Y.; Asha, A. B.; Hall, D. G.; Ishihara, K.; Narain, R. Bioinspired self-healing hydrogel based on benzoxaborole-catechol dynamic covalent chemistry for 3D cell encapsulation. ACS Macro Lett. 2018, 7, 904–908. DOI: 10.1021/acsmacrolett.8b00434.
  • Yang, L.; Wu, H.; Liu, Y.; Xia, Q.; Yang, Y.; Chen, N.; Yang, M.; Luo, R.; Liu, G.; Wang, Y. A robust mussel-inspired zwitterionic coating on biodegradable poly(ʟ-lactide) stent with enhanced anticoagulant, anti-inflammatory, and anti-hyperplasia properties. Chem. Eng. J. 2022, 427, 130910. DOI: 10.1016/j.cej.2021.130910.
  • Czuba, U.; Quintana, R.; De Pauw-Gillet, M. C.; Bourguignon, M.; Moreno-Couranjou, M.; Alexandre, M.; Detrembleur, C.; Choquet, P. Atmospheric plasma deposition of methacrylate layers containing catechol/quinone groups: an alternative to polydopamine bioconjugation for biomedical applications. Adv. Healthcare Mater. 2018, 7, 1701059. DOI: 10.1002/adhm.201701059.
  • Czuba, U.; Moreno-Couranjou, M.; Collard, D.; De Pauw-Gillet, M. C.; Quintana, R.; Lassaux, P.; Detrembleur, C.; Choquet, P. Controlled co-immobilization of biomolecules on quinone-bearing plasma polymer films for multifunctional biomaterial surfaces. Plasma Processes Polym. 2020, 17, 2000090. DOI: 10.1002/ppap.202000090.
  • Czuba, U.; Quintana, R.; Lassaux, P.; Bombera, R.; Ceccone, G.; Banuls-Ciscar, J.; Moreno-Couranjou, M.; Detrembleur, C.; Choquet, P. Anti-biofouling activity of ranaspumin-2 bio-surfactant immobilized on catechol-functional pmma thin layers prepared by atmospheric plasma deposition. Colloids Surf. B Biointerfaces 2019, 178, 120–128. DOI: 10.1016/j.colsurfb.2019.02.049.
  • Moreno-Couranjou, M.; Mauchauffe, R.; Bonot, S.; Detrembleur, C.; Choquet, P. Anti-biofouling and antibacterial surfaces via a multicomponent coating deposited from an up-scalable atmospheric-pressure plasma-assisted CVD process. J. Mater. Chem. B 2018, 6, 614–623. DOI: 10.1039/c7tb02473h.
  • Mauchauffe, R.; Bonot, S.; Moreno-Couranjou, M.; Detrembleur, C.; Boscher, N. D.; Van De Weerdt, C.; Duwez, A. S.; Choquet, P. Fast atmospheric plasma deposition of bio-inspired catechol/quinone-rich nanolayers to immobilize NDM-1 enzymes for water treatment. Adv. Mater. Interfaces 2016, 3, 1500520. DOI: 10.1002/admi.201500520.
  • Liu, Y.; Wang, L.; Lu, H.; Huang, Z. Achieving effective oil/water separation with bicomponent supramolecular hydrogel paint coated metal mesh. ACS Appl. Polym. Mater. 2020, 2, 4770–4778. DOI: 10.1021/acsapm.0c00764.
  • Guo, Z..; Ni, K.; Wei, D.; Ren, Y. Fe3+-induced oxidation and coordination cross-linking in catechol–chitosan hydrogels under acidic pH conditions. RSC Adv. 2015, 5, 37377–37384. DOI: 10.1039/c5ra03851k.
  • Hoffmann, B.; Volkmer, E.; Kokott, A.; Augat, P.; Ohnmacht, M.; Sedlmayr, N.; Schieker, M.; Claes, L.; Mutschler, W.; Ziegler, G. Characterisation of a new bioadhesive system based on polysaccharides with the potential to be used as bone glue. J. Mater. Sci. Mater. Med. 2009, 20, 2001–2009. DOI: 10.1007/s10856-009-3782-5.
  • Krogsgaard, M.; Hansen, M. R.; Birkedal, H. Metals & polymers in the mix: fine-tuning the mechanical properties & color of self-healing mussel-inspired hydrogels. J. Mater. Chem. B 2014, 2, 8292–8297. DOI: 10.1039/c4tb01503g.
  • Ghadban, A.; Ahmed, A. S.; Ping, Y.; Ramos, R.; Arfin, N.; Cantaert, B.; Ramanujan, R. V.; Miserez, A. Bioinspired pH and magnetic responsive catechol-functionalized chitosan hydrogels with tunable elastic properties. Chem. Commun. (Camb.) 2016, 52, 697–700. DOI: 10.1039/c5cc08617e.
  • Neto, A. I.; Cibrao, A. C.; Correia, C. R.; Carvalho, R. R.; Luz, G. M.; Ferrer, G. G.; Botelho, G.; Picart, C.; Alves, N. M.; Mano, J. F. Nanostructured polymeric coatings based on chitosan and dopamine-modified hyaluronic acid for biomedical applications. Small 2014, 10, 2459–2469. DOI: 10.1002/smll.201303568.
  • Ni, K.; Zhou, X.; Zhao, L.; Wang, H.; Ren, Y.; Wei, D. Magnetic catechol-chitosan with bioinspired adhesive surface: preparation and immobilization of Ꞷ-transaminase. PLoS One. 2012, 7, e41101. DOI: 10.1371/journal.pone.0041101.
  • Ryu, J. H.; Lee, Y.; Kong, W. H.; Kim, T. G.; Park, T. G.; Lee, H. Catechol-functionalized chitosan/pluronic hydrogels for tissue adhesives and hemostatic materials. Biomacromolecules 2011, 12, 2653–2659. DOI: 10.1021/bm200464x.
  • Yamada, K.; Chen, T.; Kumar, G.; Vesnovsky, O.; Topoleski, L. D. T.; Payne, dGF. Chitosan based water-resistant adhesive. Analogy to mussel glue. Biomacromolecules 2000, 1, 252–258. DOI: 10.1021/bm0003009.
  • Zvarec, O.; Purushotham, S.; Masic, A.; Ramanujan, R. V.; Miserez, A. Catechol-functionalized chitosan/iron oxide nanoparticle composite inspired by mussel thread coating and squid beak interfacial chemistry. Langmuir 2013, 29, 10899–10906. DOI: 10.1021/la401858s.
  • Xu, R.; Ma, S.; Wu, Y.; Lee, H.; Zhou, F.; Liu, W. Adaptive control in lubrication, adhesion, and hemostasis by chitosan-catechol-pNIPAM. Biomater. Sci. 2019, 7, 3599–3608. DOI: 10.1039/c9bm00697d.
  • Kim, E.; Liu, Y.; Shi, X.-W.; Yang, X.; Bentley, W. E.; Payne, G. F. Biomimetic approach to confer redox activity to thin chitosan films. Adv. Funct. Mater. 2010, 20, 2683–2694. DOI: 10.1002/adfm.200902428.
  • Zeng, Z.; Liu, D.; Li, D.; Mo, X. An injectable double cross-linked hydrogel adhesive inspired by synergistic effects of mussel foot proteins for biomedical application. Colloids Surf. B Biointerfaces 2021, 204, 111782. DOI: 10.1016/j.colsurfb.2021.111782.
  • Lee, J.; Park, E.; Fujisawa, A.; Lee, H. Diatom silica/polysaccharide elastomeric hydrogels: adhesion and interlocking synergy. ACS Appl. Mater. Interfaces. 2021, 13, 21703–21713. DOI: 10.1021/acsami.1c01279.
  • Liu, Y.; Chang, C. P.; Sun, T. Dopamine-assisted deposition of dextran for nonfouling applications. Langmuir 2014, 30, 3118–3126. DOI: 10.1021/la500006e.
  • Park, J. Y.; Kim, J. S.; Nam, Y. S. Mussel-inspired modification of dextran for protein-resistant coatings of titanium oxide. Carbohydr. Polym. 2013, 97, 753–757. DOI: 10.1016/j.carbpol.2013.05.064.
  • Wang, L.; Li, Y.; Lin, L.; Mu, R.; Pang, J. Novel synthesis of mussel inspired and Fe3+ induced pH-sensitive hydrogels: adhesion, injectable, shapeable, temperature properties, release behavior and rheological characterization. Carbohydr. Polym. 2020, 236, 116045. DOI: 10.1016/j.carbpol.2020.116045.
  • Park, J. Y.; Yeom, J.; Kim, J. S.; Lee, M.; Lee, H.; Nam, Y. S. Cell-repellant dextran coatings of porous titania using mussel adhesion chemistry. Macromol. Biosci. 2013, 13, 1511–1519. DOI: 10.1002/mabi.201300224.
  • Wang, B.; Liu, J.; Niu, D.; Wu, N.; Yun, W.; Wang, W.; Zhang, K.; Li, G.; Yan, S.; Xu, G.; Yin, J. Mussel-inspired bisphosphonated injectable nanocomposite hydrogels with adhesive, self-healing, and osteogenic properties for bone regeneration. ACS Appl. Mater. Interfaces. 2021, 13, 32673–32689. DOI: 10.1021/acsami.1c06058.
  • Huang, R.; Liu, X.; Ye, H.; Su, R.; Qi, W.; Wang, L.; He, Z. Conjugation of hyaluronic acid onto surfaces via the interfacial polymerization of dopamine to prevent protein adsorption. Langmuir 2015, 31, 12061–12070. DOI: 10.1021/acs.langmuir.5b02320.
  • Joo, H.; Byun, E.; Lee, M.; Hong, Y.; Lee, H.; Kim, P. Biofunctionalization via flow shear stress resistant adhesive polysaccharide, hyaluronic acid-catechol, for enhanced in vitro endothelialization. J. Ind. Eng. Chem. 2016, 34, 14–20. DOI: 10.1016/j.jiec.2015.11.015.
  • Lee, Y.; Chung, H. J.; Yeo, S.; Ahn, C.-H.; Lee, H.; Messersmith, P. B.; Park, T. G. Thermo-sensitive, injectable, and tissue adhesive sol–gel transition hyaluronic acid/pluronic composite hydrogels prepared from bio-inspired catechol-thiol reaction. Soft Matter 2010, 6, 977–983. DOI: 10.1039/b919944f.
  • Shin, J.; Lee, J. S.; Lee, C.; Park, H.; Yang, K.; Jin, Y.; Ryu, J. H.; Hong, K. S.; Moon, S.; Chung, H.; et al. Tissue adhesive catechol-modified hyaluronic acid hydrogel for effective, minimally invasive cell therapy. Adv. Funct. Mater. 2015, 25, 3814–3824. DOI: 10.1002/adfm.201500006.
  • Zhou, Y.; Kang, L.; Yue, Z.; Liu, X.; Wallace, G. G. Composite tissue adhesive containing catechol-modified hyaluronic acid and poly-ʟ-lysine. ACS Appl. Bio Mater. 2020, 3, 628–638. DOI: 10.1021/acsabm.9b01003.
  • Neto, A. I.; Vasconcelos, N. L.; Oliveira, S. M.; Ruiz-Molina, D.; Mano, J. F. High-throughput topographic, mechanical, and biological screening of multilayer films containing mussel-inspired biopolymers. Adv. Funct. Mater. 2016, 26, 2745–2755. DOI: 10.1002/adfm.201505047.
  • Yuan, Y.; Shen, S.; Fan, D. A physicochemical double cross-linked multifunctional hydrogel for dynamic burn wound healing: shape adaptability, injectable self-healing property and enhanced adhesion. Biomaterials 2021, 276, 120838. DOI: 10.1016/j.biomaterials.2021.120838.
  • Hong, B. M.; Hong, G. L.; Gwak, M. A.; Kim, K. H.; Jeong, J. E.; Jung, J. Y.; Park, S. A.; Park, W. H. Self-crosslinkable hyaluronate-based hydrogels as a soft tissue filler. Int. J. Biol. Macromol. 2021, 185, 98–110. DOI: 10.1016/j.ijbiomac.2021.06.047.
  • Ye, H.; Xia, Y.; Liu, Z.; Huang, R.; Su, R.; Qi, W.; Wang, L.; He, Z. Dopamine-assisted deposition and zwitteration of hyaluronic acid for the nanoscale fabrication of low-fouling surfaces. J. Mater. Chem. B 2016, 4, 4084–4091. DOI: 10.1039/c6tb01022a.
  • Lee, C.; Shin, J.; Lee, J. S.; Byun, E.; Ryu, J. H.; Um, S. H.; Kim, D. I.; Lee, H.; Cho, S. W. Bioinspired, calcium-free alginate hydrogels with tunable physical and mechanical properties and improved biocompatibility. Biomacromolecules 2013, 14, 2004–2013. 2013. DOI: 10.1021/bm400352d.
  • Ma, L.; Cheng, C.; Nie, C.; He, C.; Deng, J.; Wang, L.; Xia, Y.; Zhao, C. Anticoagulant sodium alginate sulfates and their mussel-inspired heparin-mimetic coatings. J. Mater. Chem. B 2016, 4, 3203–3215. DOI: 10.1039/c6tb00636a.
  • Fu, Y.; Ren, P.; Wang, F.; Liang, M.; Hu, W.; Zhou, N.; Lu, Z.; Zhang, T. Mussel-inspired hybrid network hydrogel for continuous adhesion in water. J. Mater. Chem. B 2020, 8, 2148–2154. DOI: 10.1039/c9tb02863c.
  • Hu, W.; Zhang, Z.; Zhu, L.; Wen, Y.; Zhang, T.; Ren, P.; Wang, F.; Ji, Z. Combination of polypropylene mesh and in situ injectable mussel-inspired hydrogel in laparoscopic hernia repair for preventing post-surgical adhesions in the piglet model. ACS Biomater. Sci. Eng. 2020, 6, 1735–1743. DOI: 10.1021/acsbiomaterials.9b01333.
  • Wei, Q.; Becherer, T.; Noeske, P. L.; Grunwald, I.; Haag, R. A universal approach to crosslinked hierarchical polymer multilayers as stable and highly effective antifouling coatings. Adv. Mater. 2014, 26, 2688–2693. DOI: 10.1002/adma.201304737.
  • Wei, Q.; Krysiak, S.; Achazi, K.; Becherer, T.; Noeske, P. L.; Paulus, F.; Liebe, H.; Grunwald, I.; Dernedde, J.; Hartwig, A.; et al. Multivalent anchored and crosslinked hyperbranched polyglycerol monolayers as antifouling coating for titanium oxide surfaces. Colloids Surf B Biointerfaces 2014, 122, 684–692. DOI: 10.1016/j.colsurfb.2014.08.001.
  • Thomas, A.; Bauer, H.; Schilmann, A.-M.; Fischer, K.; Tremel, W.; Frey, H. The “Needle in the Haystack” makes the difference: linear and hyperbranched polyglycerols with a single catechol moiety for metal oxide nanoparticle coating. Macromolecules 2014, 47, 4557–4566. DOI: 10.1021/ma5003672.
  • Lu, D.; Li, Y.; Wang, X.; Li, Te.; Zhang, Y.; Guo, H.; Sun, S.; Wang, X.; Zhang, Y.; Lei, Z. All-in-one hyperbranched polypeptides for surgical adhesives and interventional embolization of tumors. J. Mater. Chem. B 2018, 6, 7511–7520. DOI: 10.1039/c8tb01015c.
  • Zhang, H.; Bré, L.; Zhao, T.; Newland, B.; Da Costa, M.; Wang, W. A biomimetic hyperbranched poly(amino ester)-based nanocomposite as a tunable bone adhesive for sternal closure. J. Mater. Chem. B 2014, 2, 4067–4071. DOI: 10.1039/c4tb00155a.
  • Zhang, H.; Bre, L. P.; Zhao, T.; Zheng, Y.; Newland, B.; Wang, W. Mussel-inspired hyperbranched poly(amino ester) polymer as strong wet tissue adhesive. Biomaterials 2014, 35, 711–719. DOI: 10.1016/j.biomaterials.2013.10.017.
  • Cui, C.; Fan, C.; Wu, Y.; Xiao, M.; Wu, T.; Zhang, D.; Chen, X.; Liu, B.; Xu, Z.; Qu, B.; Liu, W. Water-triggered hyperbranched polymer universal adhesives: from strong underwater adhesion to rapid sealing hemostasis. Adv. Mater. 2019, 31, 1905761–1905761. DOI: 10.1002/adma.201905761.
  • Guo, J.; Wang, W.; Hu, J.; Xie, D.; Gerhard, E.; Nisic, M.; Shan, D.; Qian, G.; Zheng, S.; Yang, J. Synthesis and characterization of anti-bacterial and anti-fungal citrate-based mussel-inspired bioadhesives. Biomaterials 2016, 85, 204–217. DOI: 10.1016/j.biomaterials.2016.01.069.
  • Mehdizadeh, M.; Weng, H.; Gyawali, D.; Tang, L.; Yang, J. Injectable citrate-based mussel-inspired tissue bioadhesives with high wet strength for sutureless wound closure. Biomaterials 2012, 33, 7972–7983. DOI: 10.1016/j.biomaterials.2012.07.055.
  • Xu, H.; Cai, Y.; Chu, X.; Chu, H.; Li, J.; Zhang, D. A mussel-bioinspired multi-functional hyperbranched polymeric coating with integrated antibacterial and antifouling activities for implant interface modification. Polym. Chem. 2021, 12, 3413–3426. DOI: 10.1039/d1py00246e.
  • Cheng, W.; Yang, C.; Ding, X.; Engler, A. C.; Hedrick, J. L.; Yang, Y. Y. Broad-Spectrum antimicrobial/antifouling soft material coatings using poly(ethylenimine) as a tailorable scaffold. Biomacromolecules 2015, 16, 1967–1977. DOI: 10.1021/acs.biomac.5b00359.
  • Lee, Y.; Lee, S. H.; Kim, J. S.; Maruyama, A.; Chen, X.; Park, T. G. Controlled synthesis of PEI-coated gold nanoparticles using reductive catechol chemistry for siRNA delivery. J Control Release 2011, 155, 3–10. DOI: 10.1016/j.jconrel.2010.09.009.
  • Sun, P.; Wang, J.; Yao, X.; Peng, Y.; Tu, X.; Du, P.; Zheng, Z.; Wang, X. Facile preparation of mussel-inspired polyurethane hydrogel and its rapid curing behavior. ACS Appl. Mater. Interfaces. 2014, 6, 12495–12504. DOI: 10.1021/am502106e.
  • Chen, B.; Lei, K.; Zhu, D.; Yang, C.; Sun, C.; Xiao, W.; Zheng, Z.; Wang, X. A topological stitching strategy for biocompatible wet adhesion using mussel-inspired polyurethane. Adv. Mater. Interfaces 2021, 8, 2100657. DOI: 10.1002/admi.202100657.
  • Zhao, X.; Ming, H.; Wang, Y.; Luo, F.; Li, Z.; Li, J.; Tan, H.; Fu, Q. Mussel-inspired, injectable polyurethane tissue adhesives demonstrate in situ gel formation under mild conditions. ACS Appl. Bio Mater. 2021, 4, 5352–5361. DOI: 10.1021/acsabm.1c00451.
  • Yin, Y.; Wu, Q.; Liu, Q.; Du, L. Mussel-inspired fabrication of pH-sensitive biomimetic hydrogels based on greenhouse gas carbon dioxide. New J. Chem. 2019, 43, 4757–4764. DOI: 10.1039/C8NJ06459H.
  • Xu, Z.; Chen, L.; Lu, L.; Du, R.; Ma, W.; Cai, Y.; An, X.; Wu, H.; Luo, Q.; Xu, Q.; et al. A Highly-adhesive and self-healing elastomer for bio-interfacial electrode. Adv. Funct. Mater. 2021, 31, 2006432. DOI: 10.1002/adfm.202006432.
  • Yang, Y.; Du, F.-S.; Li, Z.-C. Self-healable, and adhesive polyurethane elastomers based on boronic ester bonds. ACS Appl. Polym. Mater. 2020, 2, 5630–5640. DOI: 10.1021/acsapm.0c00941.
  • Xia, G.; Lin, M.; Jiayu, Y.; Jinkang, H.; Bowen, L.; Mu, Y.; Wan, X. Solvent-free mussel-inspired adhesive with rapid underwater curing capability. Adv. Mater. Interfaces 2021, 8, 2101544. DOI: 10.1002/admi.202101544.
  • Panchireddy, S.; Grignard, B.; Thomassin, J.-M.; Jerome, C.; Detrembleur, C. Catechol containing polyhydroxyurethanes as high performance coatings and adhesives. ACS Sustainable Chem. Eng. 2018, 6, 14936–14944. DOI: 10.1021/acssuschemeng.8b03429.
  • Gomez-Lopez, A.; Grignard, B.; Calvo, I.; Detrembleur, C.; Sardon, H. Synergetic effect of dopamine and alkoxysilanes in sustainable non-isocyanate polyurethane adhesives. Macromol. Rapid Commun. 2021, 42, 2000538. DOI: 10.1002/marc.202000538.
  • Zhou, J.; Defante, A. P.; Lin, F.; Xu, Y.; Yu, J.; Gao, Y.; Childers, E.; Dhinojwala, A.; Becker, M. L. Adhesion properties of catechol-based biodegradable amino acid-based poly(ester urea) copolymers inspired from mussel proteins. Biomacromolecules 2015, 16, 266–274. DOI: 10.1021/bm501456g.
  • Xu, S.; Sheng, D.; Liu, X.; Ji, F.; Zhou, Y.; Dong, L.; Wu, H.; Yang, Y. A seawater-assisted self-healing metal–catechol polyurethane with tunable mechanical properties. Polym. Int. 2019, 68, 1084–1090. DOI: 10.1002/pi.5798.
  • Liu, Y.; Zheng, J.; Zhang, X.; Du, Y.; Li, K.; Yu, G.; Jia, Y.; Zhang, Y. Mussel-inspired and aromatic disulfide-mediated polyurea-urethane with rapid self-healing performance and water-resistance. J Colloid Interface Sci. 2021, 593, 105–115. DOI: 10.1016/j.jcis.2021.03.003.
  • Wang, F.; Yang, Z.; Li, J.; Zhang, C.; Sun, P. Bioinspired polyurethane using multifunctional block modules with synergistic dynamic bonds. ACS Macro Lett. 2021, 10, 510–517. DOI: 10.1021/acsmacrolett.1c00054.
  • Xu, Y.; Liu, Q.; Narayanan, A.; Jain, D.; Dhinojwala, A.; Joy, A. Mussel-inspired polyesters with aliphatic pendant groups demonstrate the importance of hydrophobicity in underwater adhesion. Adv. Mater. Interfaces 2017, 4, 1700506. n/a. DOI: 10.1002/admi.201700506.
  • Kaur, S.; Narayanan, A.; Dalvi, S.; Liu, Q.; Joy, A.; Dhinojwala, A. Direct observation of the interplay of catechol binding and polymer hydrophobicity in a mussel-inspired elastomeric adhesive. ACS Cent. Sci. 2018, 4, 1420–1429. DOI: 10.1021/acscentsci.8b00526.
  • Narayanan, A.; Kaur, S.; Peng, C.; Debnath, D.; Mishra, K.; Liu, Q.; Dhinojwala, A.; Joy, A. Viscosity attunes the adhesion of bioinspired low modulus polyester adhesive sealants to wet tissues. Biomacromolecules 2019, 20, 2577–2586. DOI: 10.1021/acs.biomac.9b00383.
  • Narayanan, A.; Kaur, S.; Kumar, N.; Tsige, M.; Joy, A.; Dhinojwala, A. Cooperative multivalent weak and strong interfacial interactions enhance the adhesion of mussel-inspired adhesives. Macromolecules 2021, 54, 5417–5428. DOI: 10.1021/acs.macromol.1c00742.
  • Narayanan, A.; Menefee, J. R.; Liu, Q.; Dhinojwala, A.; Joy, A. Lower critical solution temperature-driven self-coacervation of nonionic polyester underwater adhesives. ACS Nano 2020, 14, 8359–8367. DOI: 10.1021/acsnano.0c02396.
  • Siebert, H. M.; Wilker, J. J. Improving the molecular weight and synthesis of a renewable biomimetic adhesive polymer. Eur. Polym. J. 2019, 113, 321–327. DOI: 10.1016/j.eurpolymj.2019.01.063.
  • Siebert, H. M.; Wilker, J. Deriving commercial level adhesive performance from a bio-based mussel mimetic polymer. ACS Sustainable Chem. Eng. 2019, 7, 13315–13323. DOI: 10.1021/acssuschemeng.9b02547.
  • Jenkins, C. L.; Siebert, H. M.; Wilker, J. J. Integrating mussel chemistry into a bio-based polymer to create degradable adhesives. Macromolecules 2017, 50, 561–568. DOI: 10.1021/acs.macromol.6b02213.
  • Sadaba, N.; Salsamendi, M.; Casado, N.; Zuza, E.; Muñoz, J.; Sarasua, J.-R.; Mecerreyes, D.; Mantione, D.; Detrembleur, C.; Sardon, H. Catechol end-functionalized polylactide by organocatalyzed ring-opening polymerization. Polymers 2018, 10, 155. DOI: 10.3390/polym10020155.
  • Zhang, Y.; Hirai, T.; Ma, W.; Higaki, Y.; Kojio, K.; Takahara, A. Synthesis of a bio-inspired catechol/phosphorylcholine surface modifier and characterization of its surface properties. J. Polym. Sci. Part A: Polym. Chem. 2018, 56, 38–49. DOI: 10.1002/pola.28858.
  • Li, A.; Mu, Y.; Jiang, W.; Wan, X. A mussel-inspired adhesive with stronger bonding strength under underwater conditions than under dry conditions. Chem. Commun. (Camb.) 2015, 51, 9117–9120. DOI: 10.1039/c5cc00101c.
  • Mu, Y.; Wu, X.; Pei, D.; Wu, Z.; Zhang, C.; Zhou, D.; Wan, X. Contribution of the polarity of mussel-inspired adhesives in the realization of strong underwater bonding. ACS Biomater. Sci. Eng. 2017, 3, 3133–3140. DOI: 10.1021/acsbiomaterials.7b00673.
  • Mu, Y.; Wu, Z.; Ma, Y.; Zheng, J.; Zhang, W.; Sun, Z.; Wang, X.; Pei, D.; Li, L.; Jiang, W.; et al. Robust mussel-inspired coatings for controlled zinc ion release. J. Mater. Chem. B 2017, 5, 1742–1752. DOI: 10.1039/c6tb03176e.
  • Mu, Y.; Wan, X. Simple but strong: a mussel-inspired hot curing adhesive based on polyvinyl alcohol backbone. Macromol. Rapid Commun. 2016, 37, 545–550. DOI: 10.1002/marc.201500723.
  • Mu, Y.; Wu, Z.; Pei, D.; Wang, J.; Wan, X. A versatile platform to achieve mechanically robust mussel-inspired antifouling coatings via grafting-to approach. J. Mater. Chem. B 2018, 6, 133–142. DOI: 10.1039/c7tb02400b.
  • Heo, J.; Kang, T.; Jang, S. G.; Hwang, D. S.; Spruell, J. M.; Killops, K. L.; Waite, J. H.; Hawker, C. J. Improved performance of protected catecholic polysiloxanes for bioinspired wet adhesion to surface oxides. J. Am. Chem. Soc. 2012, 134, 20139–20145. DOI: 10.1021/ja309044z.
  • Sha, X.; Zhang, C.; Qi, M.; Zheng, L.; Cai, B.; Chen, F.; Wang, Y.; Zhou, Y. Mussel-inspired alternating copolymer as a high-performance adhesive material both at dry and under-seawater conditions. Macromol. Rapid Commun. 2020, 41, 2000055–2000055. DOI: 10.1002/marc.202000055.
  • Agergaard, A. H.; Sommerfeldt, A.; Pedersen, S. U.; Birkedal, H.; Daasbjerg, K. Dual-responsive material based on catechol-modified self-immolative poly(disulfide) backbones. Angew. Chem. Int. Ed. Engl. 2021, 60, 21543–21549. DOI: 10.1002/anie.202108698.
  • Krogsgaard, M.; Behrens, M. A.; Pedersen, J. S.; Birkedal, H. Self-healing mussel-inspired multi-ph-responsive hydrogels. Biomacromolecules 2013, 14, 297–301. DOI: 10.1021/bm301844u.
  • Lee, J. N.; Lee, S. Y.; Park, W. H. Bioinspired self-healable polyallylamine-based hydrogels for wet adhesion: synergistic contributions of catechol-amino functionalities and nanosilicate. ACS Appl. Mater. Interfaces. 2021, 13, 18324–18337. DOI: 10.1021/acsami.1c02141.
  • Patil, N.; Cordella, D.; Aqil, A.; Debuigne, A.; Admassie, S.; Jérôme, C.; Detrembleur, C. Surface- and redox-active multifunctional polyphenol-derived poly(ionic liquid)s: controlled synthesis and characterization. Macromolecules 2016, 49, 7676–7691. DOI: 10.1021/acs.macromol.6b01857.
  • Patil, N.; Aqil, M.; Aqil, A.; Ouhib, F.; Marcilla, R.; Minoia, A.; Lazzaroni, R.; Jérôme, C.; Detrembleur, C. Integration of redox-active catechol pendants into poly(ionic liquid) for the design of high-performance lithium-ion battery cathodes. Chem. Mater. 2018, 30, 5831–5835. DOI: 10.1021/acs.chemmater.8b02307.
  • Mezhuev, Y. O.; Varankin, A. V.; Luss, A. L.; Dyatlov, V. A.; Tsatsakis, A. M.; Shtilman, M. I.; Korshak, Y. V. Immobilization of dopamine on the copolymer of N-vinyl-2-pyrrolidone and allyl glycidyl ether and synthesis of new hydrogels. Polym. Int. 2020, 69, 1275–1282. DOI: 10.1002/pi.6073.
  • He, Y.; Gao, S.; Jubsilp, C.; Rimdusit, S.; Lu, Z. Reprocessable polybenzoxazine thermosets crosslinked by mussel-inspired catechol-Fe3+ coordination bonds. Polymer 2020, 192, 122307. DOI: 10.1016/j.polymer.2020.122307.
  • Zhan, H.; Chen, J.; Zhang, C.; Zhang, J.; Fan, L.-J. Design, Synthesis, and adhesion of fluorescent conjugated polymers with pendant catechol groups. ACS Appl. Polym. Mater. 2021, 3, 3, 4543–4553. DOI: 10.1021/acsapm.1c00603.
  • Ma, C.; Pang, H.; Cai, L.; Huang, Z.; Gao, Z.; Li, J.; Zhang, S. Facile strategy of mussel-inspired polymer as a high-performance dry/wet adhesive. J. Clean. Prod 2021, 308, 127309. DOI: 10.1016/j.jclepro.2021.127309.
  • Watanabe, S.; Oyaizu, K. Catechol end-capped poly(arylene sulfide) as a high-refractive-index “TiO2/ZrO2-nanodispersible” polymer. ACS Appl. Polym. Mater. 2021, 3, 4495–4503. DOI: 10.1021/acsapm.1c00536.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.