2,826
Views
9
CrossRef citations to date
0
Altmetric
Reviews

Flexible and Stretchable Electrically Conductive Polymer Materials for Physical Sensing Applications

, &
Pages 67-126 | Received 13 Sep 2021, Accepted 12 Mar 2022, Published online: 15 May 2022

References

  • Yousef, H.; Boukallel, M.; Althoefer, K. Tactile Sensing for Dexterous in-Hand Manipulation in Robotics: A Review. Sens. Actuators A. 2011, 167, 171–187. DOI: 10.1016/j.sna.2011.02.038.
  • Huang, S.; Liu, Y.; Zhao, Y.; Ren, Z.; Guo, C. F. Flexible Electronics: Stretchable Electrodes and Their Future. Adv. Funct. Mater. 2019, 29, 1805924. DOI: 10.1002/adfm.201805924.
  • Liu, Y.; Pharr, M.; Salvatore, G. A. Lab-on-Skin: A Review of Flexible and Stretchable Electronics for Wearable Health Monitoring. ACS Nano. 2017, 11, 9614–9635. DOI: 10.1021/acsnano.7b04898.
  • Huang, Q.; Zhu, Y. Printing Conductive Nanomaterials for Flexible and Stretchable Electronics: A Review of Materials, Processes, and Applications. Adv. Mater. Technol. 2019, 4, 1800546. DOI: 10.1002/admt.201800546.
  • Matsuhisa, N.; Chen, X. D.; Bao, Z. A.; Someya, T. Materials and Structural Designs of Stretchable Conductors. Chem. Soc. Rev. 2019, 48, 2946–2966. DOI: 10.1039/c8cs00814k.
  • Kim, D. C.; Shim, H. J.; Lee, W.; Koo, J. H.; Kim, D. H. Material-Based Approaches for the Fabrication of Stretchable Electronics. Adv. Mater. 2020, 32, 1902743. DOI: 10.1002/adma.201902743.
  • Zhang, Q.; Liang, J.; Huang, Y.; Chen, H.; Ma, R. Intrinsically Stretchable Conductors and Interconnects for Electronic Applications. Mater. Chem. Front. 2019, 3, 1032–1051. DOI: 10.1039/C9QM00055K.
  • Saccomandi, P.; Schena, E.; Oddo, C. M.; Zollo, L.; Silvestri, S.; Guglielmelli, E. Microfabricated Tactile Sensors for Biomedical Applications: A Review. Biosensors (Basel). 2014, 4, 422–448. DOI: 10.3390/bios4040422.
  • Wu, S. Y.; Peng, S. H.; Yu, Y. Y.; Wang, C. H. Strategies for Designing Stretchable Strain Sensors and Conductors. Adv. Mater. Technol. 2020, 5, 1900908. DOI: 10.1002/admt.201900908.
  • Tiwana, M. I.; Redmond, S. J.; Lovell, N. H. A Review of Tactile Sensing Technologies with Applications in Biomedical Engineering. Sens. Actuators A. 2012, 179, 17–31. DOI: 10.1016/j.sna.2012.02.051.
  • Chen, J. W.; Yu, Q. L.; Cui, X. H.; Dong, M. Y.; Zhang, J. X.; Wang, C.; Fan, J. C.; Zhu, Y. T.; Guo, Z. H. An Overview of Stretchable Strain Sensors from Conductive Polymer Nanocomposites. J. Mater. Chem. C. 2019, 7, 11710–11730. DOI: 10.1039/C9TC03655E.
  • Yang, T. T.; Xie, D.; Li, Z. H.; Zhu, H. W. Recent Advances in Wearable Tactile Sensors: Materials, Sensing Mechanisms, and Device Performance. Mater. Sci. Engng. R-Rep. 2017, 115, 1–37. DOI: 10.1016/j.mser.2017.02.001.
  • Sun, Y.; Rogers, J. A. Structural Forms of Single Crystal Semiconductor Nanoribbons for High-Performance Stretchable Electronics. J. Mater. Chem. 2007, 17, 832–840. DOI: 10.1039/b614793c.
  • Wu, W. Stretchable Electronics: Functional Materials, Fabrication Strategies and Applications. Sci. Technol. Adv. Mater. 2019, 20, 187–224. DOI: 10.1080/14686996.2018.1549460.
  • Jason, N. N.; Ho, M. D.; Cheng, W. Resistive Electronic Skin. J. Mater. Chem. C. 2017, 5, 5845–5866. DOI: 10.1039/C7TC01169E.
  • Hamaguchi, S.; Kawasetsu, T.; Horii, T.; Ishihara, H.; Niiyama, R.; Hosoda, K.; Asada, M. Soft Inductive Tactile Sensor Using Flow-Channel Enclosing Liquid Metal. IEEE Robot. Autom. Lett. 2020, 5, 4028–4034. DOI: 10.1109/LRA.2020.2985573.
  • Wang, Y.; Lu, Y.; Mei, D.; Zhu, L. Liquid Metal-Based Wearable Tactile Sensor for Both Temperature and Contact Force Sensing. IEEE Sensors J. 2021, 21, 1694–1703. DOI: 10.1109/JSEN.2020.3015949.
  • Li, R.; Zhang, K.; Cai, L.; Chen, G.; he, M. Highly Stretchable Ionic Conducting Hydrogels for Strain/Tactile Sensors. Polymer 2019, 167, 154–158. DOI: 10.1016/j.polymer.2019.01.038.
  • Savagatrup, S.; Printz, A. D.; O’Connor, T. F.; Zaretski, A. V.; Lipomi, D. J. Molecularly Stretchable Electronics. Chem. Mater. 2014, 26, 3028–3041. DOI: 10.1021/cm501021v.
  • Onorato, J.; Pakhnyuk, V.; Luscombe, C. K. Structure and Design of Polymers for Durable, Stretchable Organic Electronics. Polym. J. 2017, 49, 41–60. DOI: 10.1038/pj.2016.76.
  • Ge, G.; Huang, W.; Shao, J.; Dong, X. Recent Progress of Flexible and Wearable Strain Sensors for Human-Motion Monitoring. J. Semicond. 2018, 39, 011012. DOI: 10.1088/1674-4926/39/1/011012.
  • Wang, B. H.; Facchetti, A. Mechanically Flexible Conductors for Stretchable and Wearable E-Skin and E-Textile Devices. Adv. Mater. 2019, 31, 1901408. DOI: 10.1002/adma.201901408.
  • Zou, L.; Ge, C.; Wang, Z. J.; Cretu, E.; Li, X. O. Novel Tactile Sensor Technology and Smart Tactile Sensing Systems: A Review. Sensors 2017, 17, 2653. DOI: 10.3390/s17112653.
  • Zhao, Y.; Kim, A.; Wan, G.; Tee, B. C. Design and Applications of Stretchable and Self-Healable Conductors for Soft Electronics. Nano Converg. 2019, 6, 1–22. DOI: 10.1186/s40580-019-0195-0.
  • Al-Handarish, Y.; Omisore, O. M.; Igbe, T.; Han, S. P.; Li, H.; Du, W. J.; Zhang, J. J.; Wang, L. A Survey of Tactile-Sensing Systems and Their Applications in Biomedical Engineering. Adv. Mater. Sci. Eng. 2020, 2020, 1–17. DOI: 10.1155/2020/4047937.
  • Oh, H. S.; Lee, C. H.; Kim, N. K.; An, T.; Kim, G. H. Sensors for Biosignal/Health Monitoring in Electronic Skin. Polymers 2021, 13, 2478. DOI: 10.3390/polym13152478.
  • Pan, Z. Y.; Ma, J. Z.; Zhang, W. B.; Wei, L. F. Flexible Conductive Polymer Composites in Strain Sensors. Progress Chem. 2020, 32, 1592–1607.
  • Castano, L. M.; Flatau, A. B. Smart Fabric Sensors and e-Textile Technologies: A Review. Smart Mater. Struct. 2014, 23, 053001. DOI: 10.1088/0964-1726/23/5/053001.
  • Islam, G. N.; Ali, A.; Collie, S. Textile Sensors for Wearable Applications: A Comprehensive Review. Cellulose 2020, 27, 6103–6131. DOI: 10.1007/s10570-020-03215-5.
  • Zhang, F.; Luo, Y.; Gao, X.; Wang, R. Copolymerized Sulfur with Intrinsically Ionic Conductivity, Superior Dispersibility, and Compatibility for All-Solid-State Lithium Batteries. ACS Sustainable Chem. Eng. 2020, 8, 12100–12109. DOI: 10.1021/acssuschemeng.0c03425.
  • Amoli, V.; Kim, J. S.; Kim, S. Y.; Koo, J.; Chung, Y. S.; Choi, H.; Kim, D. Ionic Tactile Sensors for Emerging Human-Interactive Technologies: A Review of Recent Progress. Adv. Funct. Mater. 2020, 30, 1904532. DOI: 10.1002/adfm.201904532.
  • Wan, Y. B.; Wang, Y.; Guo, C. F. Recent Progresses on Flexible Tactile Sensors. Mater. Today Phys. 2017, 1, 61–73. DOI: 10.1016/j.mtphys.2017.06.002.
  • Amoli, V.; Kim, S. Y.; Kim, J. S.; Choi, H.; Koo, J.; Kim, D. H. Biomimetics for High-Performance Flexible Tactile Sensors and Advanced Artificial Sensory Systems. J. Mater. Chem. C. 2019, 7, 14816–14844. DOI: 10.1039/C9TC05392A.
  • Wang, Y.; Yang, Y.; Wang, Z. L. Triboelectric Nanogenerators as Flexible Power Sources. Npj Flex. Electron. 2017, 1, 1–10. DOI: 10.1038/s41528-017-0007-8.
  • Lin, Z.; Chen, J.; Yang, J. Recent Progress in Triboelectric Nanogenerators as a Renewable and Sustainable Power Source. J. Nanomater. 2016, 2016, 1–24. DOI: 10.1155/2016/5651613.
  • Zhu, Y.; Kim, S.; Ma, X.; Byrley, P.; Yu, N.; Liu, Q.; Sun, X.; Xu, D.; Peng, S.; Hartel, M.; et al. Ultrathin-Shell Epitaxial Ag@ Au Core-Shell Nanowires for High-Performance and Chemically-Stable Electronic, Optical, and Mechanical Devices. Nano Res. 2021, 14, 4294–4303. DOI: 10.1007/s12274-021-3718-z.
  • Lomas, T.; Tuantranont, A.; Cheevasuvit, F. In Micromachined Piezoresistive Tactile Sensor Array Fabricated by Bulk-Etched MUMPs Process. Proceedings of the 2003 International Symposium on Circuits and Systems, 2003. ISCAS'03., IEEE: 2003; pp IV-IV.
  • Ádám, M.; Mohácsy, T.; Jónás, P.; Dücső, C.; Vázsonyi, É.; Bársony, I. CMOS Integrated Tactile Sensor Array by Porous Si Bulk Micromachining. Sens. Actuators A. 2008, 142, 192–195. DOI: 10.1016/j.sna.2007.08.003.
  • Fiorillo, A. S. A Piezoresistive Tactile Sensor. IEEE Trans. Instrum. Meas. 1997, 46, 15–17. DOI: 10.1109/19.552150.
  • Zhang, Y.; Ye, J.; Lin, Z.; Huang, S.; Wang, H.; Wu, H. A Piezoresistive Tactile Sensor for a Large Area Employing Neural Network. Sensors 2018, 19, 27. DOI: 10.3390/s19010027.
  • Stassi, S.; Cauda, V.; Canavese, G.; Pirri, C. F. Flexible Tactile Sensing Based on Piezoresistive Composites: A Review. Sensors (Basel) 2014, 14, 5296–5332. DOI: 10.3390/s140305296.
  • Cheng, M.; Huang, X.; Ma, C.; Yang, Y. A Flexible Capacitive Tactile Sensing Array with Floating Electrodes. J. Micromech. Microeng. 2009, 19, 115001. DOI: 10.1088/0960-1317/19/11/115001.
  • Joo, Y.; Yoon, J.; Hong, Y. Elastomeric Nanowire Composite for Flexible Pressure Sensors with Tunable Sensitivity. J. Inform. Display 2016, 17, 59–64. DOI: 10.1080/15980316.2016.1158745.
  • Li, T.; Luo, H.; Qin, L.; Wang, X.; Xiong, Z.; Ding, H.; Gu, Y.; Liu, Z.; Zhang, T. Flexible Capacitive Tactile Sensor Based on Micropatterned Dielectric Layer. Small 2016, 12, 5042–5048. DOI: 10.1002/smll.201600760.
  • Shintake, J.; Piskarev, E.; Jeong, S. H.; Floreano, D. Ultrastretchable Strain Sensors Using Carbon Black‐Filled Elastomer Composites and Comparison of Capacitive versus Resistive Sensors. Adv. Mater. Technol. 2018, 3, 1700284. DOI: 10.1002/admt.201700284.
  • Atalay, O. Textile-Based, Interdigital, Capacitive, Soft-Strain Sensor for Wearable Applications. Materials 2018, 11, 768. DOI: 10.3390/ma11050768.
  • Zhang, Q.; Wang, Y. L.; Xia, Y.; Kirk, T. V.; Chen, X. D. Textile-Only Capacitive Sensors with a Lockstitch Structure for Facile Integration in Any Areas of a Fabric. ACS Sens. 2020, 5, 1535–1540. DOI: 10.1021/acssensors.0c00210.
  • Sun, J. Y.; Keplinger, C.; Whitesides, G. M.; Suo, Z. Ionic Skin. Adv. Mater. 2014, 26, 7608–7614. DOI: 10.1002/adma.201403441.
  • Pruvost, M.; Smit, W. J.; Monteux, C.; Poulin, P.; Colin, A. Polymeric Foams for Flexible and Highly Sensitive Low-Pressure Capacitive Sensors. Npj Flex. Electron. 2019, 3, 1–6. DOI: 10.1038/s41528-019-0052-6.
  • Maiolino, P.; Galantini, F.; Mastrogiovanni, F.; Gallone, G.; Cannata, G.; Carpi, F. Soft Dielectrics for Capacitive Sensing in Robot Skins: Performance of Different Elastomer Types. Sens. Actuators A. 2015, 226, 37–47. DOI: 10.1016/j.sna.2015.02.010.
  • Houghton, T.; Vanjaria, J.; Murphy, T.; Yu, H. In Stretchable Capacitive Strain Sensors Based on a Novel Polymer Composite Blend. 2017 IEEE 67th Electronic Components and Technology Conference (ECTC), IEEE: 2017; pp 2263–2268. DOI: 10.1109/ECTC.2017.199.
  • Arshak, K.; McDonagh, D.; Durcan, M. Development of New Capacitive Strain Sensors Based on Thick Film Polymer and Cermet Technologies. Sens. Actuators A. 2000, 79, 102–114. DOI: 10.1016/S0924-4247(99)00275-7.
  • Qiu, J.; Guo, X.; Chu, R.; Wang, S.; Zeng, W.; Qu, L.; Zhao, Y.; Yan, F.; Xing, G. Rapid-Response, Low Detection Limit, and High-Sensitivity Capacitive Flexible Tactile Sensor Based on Three-Dimensional Porous Dielectric Layer for Wearable Electronic Skin. ACS Appl. Mater. Interf. 2019, 11, 40716–40725. DOI: 10.1021/acsami.9b16511.
  • Peng, Y.; Xiao, S.; Yang, J.; Lin, J.; Yuan, W.; Gu, W.; Wu, X.; Cui, Z. The Elastic Microstructures of Inkjet Printed Polydimethylsiloxane as the Patterned Dielectric Layer for Pressure Sensors. Appl. Phys. Lett. 2017, 110, 261904. DOI: 10.1063/1.4990528.
  • Palaniappan, V.; Masihi, S.; Panahi, M.; Maddipatla, D.; Bose, A. K.; Zhang, X.; Narakathu, B. B.; Bazuin, B. J.; Atashbar, M. Z. Laser-Assisted Fabrication of a Highly Sensitive and Flexible Micro Pyramid-Structured Pressure Sensor for E-Skin Applications. IEEE Sensors J. 2020, 20, 7605–7613. DOI: 10.1109/JSEN.2020.2989146.
  • Rahim, R. A.; Waduth, M. F. A.; Jaafar, H. I.; Ayob, N. M. N.; Leow, P. L. Current Trend of Tactile Sensor in Advanced Applications. Sensors Transducers 2012, 143, 32.
  • Atalay, O.; Atalay, A.; Gafford, J.; Wang, H.; Wood, R.; Walsh, C. A Highly Stretchable Capacitive‐Based Strain Sensor Based on Metal Deposition and Laser Rastering. Adv. Mater. Technol. 2017, 2, 1700081. DOI: 10.1002/admt.201700081.
  • Shintake, J.; Nagai, T.; Ogishima, K. Sensitivity Improvement of Highly Stretchable Capacitive Strain Sensors by Hierarchical Auxetic Structures. Front Robot AI. 2019, 6, 127. DOI: 10.3389/frobt.2019.00127.
  • Krishna, G.; Rajanna, K. R. Tactile Sensor Based on Piezoelectric Resonance. IEEE Sensors J. 2004, 4, 691–697. DOI: 10.1109/JSEN.2004.833505.
  • Kalimuldina, G.; Turdakyn, N.; Abay, I.; Medeubayev, A.; Nurpeissova, A.; Adair, D.; Bakenov, Z. A Review of Piezoelectric PVDF Film by Electrospinning and Its Applications. Sensors 2020, 20, 5214. DOI: 10.3390/s20185214.
  • Meng, N.; Zhu, X.; Mao, R.; Reece, M. J.; Bilotti, E. Nanoscale Interfacial Electroactivity in PVDF/PVDF-TrFE Blended Films with Enhanced Dielectric and Ferroelectric Properties. J. Mater. Chem. C. 2017, 5, 3296–3305. DOI: 10.1039/C7TC00162B.
  • Yu, P.; Liu, W.; Gu, C.; Cheng, X.; Fu, X. Flexible Piezoelectric Tactile Sensor Array for Dynamic Three-Axis Force Measurement. Sensors 2016, 16, 819. DOI: 10.3390/s16060819.
  • Watanabe, H. A New Tactile Sensor Using the Edge Mode in a Piezoelectric-Ceramic Bar. Jpn. J. Appl. Phys. 2001, 40, 3704–3706. DOI: 10.1143/JJAP.40.3704.
  • Dahiya, R. Piezoelectric Tactile Sensors. Wiley Encyclopedia Electric. Electron. Engng. 1999, 21, 1–15.DOI: 10.5260/chara.21.2.51
  • Chen, X.; Shao, J.; Tian, H.; Li, X.; Tian, Y.; Wang, C. Flexible Three-Axial Tactile Sensors with Microstructure-Enhanced Piezoelectric Effect and Specially-Arranged Piezoelectric Arrays. Smart Mater. Struct. 2018, 27, 025018. DOI: 10.1088/1361-665X/aaa622.
  • Choi, W.; Lee, J.; Kyoung Yoo, Y.; Kang, S.; Kim, J.; Hoon Lee, J. Enhanced Sensitivity of Piezoelectric Pressure Sensor with Microstructured Polydimethylsiloxane Layer. Appl. Phys. Lett. 2014, 104, 123701. DOI: 10.1063/1.4869816.
  • Ju, F.; Yun, Y.; Zhang, Z.; Wang, Y.; Wang, Y.; Zhang, L.; Chen, B. A Variable-Impedance Piezoelectric Tactile Sensor with Tunable Sensing Performance for Tissue Hardness Sensing in Robotic Tumor Palpation. Smart Mater. Struct. 2018, 27, 115039. DOI: 10.1088/1361-665X/aae54f.
  • Jiang, J.; Tu, S.; Fu, R.; Li, J.; Hu, F.; Yan, B.; Gu, Y.; Chen, S. Flexible Piezoelectric Pressure Tactile Sensor Based on Electrospun BaTiO3/Poly(vinylidene fluoride) Nanocomposite Membrane . ACS Appl. Mater. Interf. 2020, 12, 33989–33998. DOI: 10.1021/acsami.0c08560.
  • Wang, Z.; Sun, S.; Li, N.; Yao, T.; Lv, D. Triboelectric Self-Powered Three-Dimensional Tactile Sensor. IEEE Access 2020, 8, 172076–172085. DOI: 10.1109/ACCESS.2020.3024712.
  • Kim, D. W.; Lee, J. H.; Kim, J. K.; Jeong, U. Material Aspects of Triboelectric Energy Generation and Sensors. NPG Asia Mater. 2020, 12, 1–17. DOI: 10.1038/s41427-019-0176-0.
  • Wang, J.; Qian, S.; Yu, J.; Zhang, Q.; Yuan, Z.; Sang, S.; Zhou, X.; Sun, L. Flexible and Wearable PDMS-Based Triboelectric Nanogenerator for Self-Powered Tactile Sensing. Nanomaterials 2019, 9, 1304. DOI: 10.3390/nano9091304.
  • Yao, G.; Xu, L.; Cheng, X.; Li, Y.; Huang, X.; Guo, W.; Liu, S.; Wang, Z. L.; Wu, H. Bioinspired Triboelectric Nanogenerators as Self‐Powered Electronic Skin for Robotic Tactile Sensing. Adv. Funct. Mater. 2020, 30, 1907312. DOI: 10.1002/adfm.201907312.
  • Lu, C.; Chen, J.; Jiang, T.; Gu, G.; Tang, W.; Wang, Z. L. A Stretchable, Flexible Triboelectric Nanogenerator for Self‐Powered Real‐Time Motion Monitoring. Adv. Mater. Technol. 2018, 3, 1800021. DOI: 10.1002/admt.201800021.
  • Park, S.; Kim, H.; Vosgueritchian, M.; Cheon, S.; Kim, H.; Koo, J. H.; Kim, T. R.; Lee, S.; Schwartz, G.; Chang, H.; Bao, Z. Stretchable Energy‐Harvesting Tactile Electronic Skin Capable of Differentiating Multiple Mechanical Stimuli Modes. Adv. Mater. 2014, 26, 7324–7332. DOI: 10.1002/adma.201402574.
  • Ren, Z.; Nie, J.; Shao, J.; Lai, Q.; Wang, L.; Chen, J.; Chen, X.; Wang, Z. L. Fully Elastic and Metal‐Free Tactile Sensors for Detecting Both Normal and Tangential Forces Based on Triboelectric Nanogenerators. Adv. Funct. Mater. 2018, 28, 1802989. DOI: 10.1002/adfm.201802989.
  • Pu, X.; Liu, M.; Chen, X.; Sun, J.; Du, C.; Zhang, Y.; Zhai, J.; Hu, W.; Wang, Z. L. Ultrastretchable, Transparent Triboelectric Nanogenerator as Electronic Skin for Biomechanical Energy Harvesting and Tactile Sensing. Sci. Adv. 2017, 3, e1700015. DOI: 10.1126/sciadv.1700015.
  • Wang, X.; Zhang, H.; Dong, L.; Han, X.; Du, W.; Zhai, J.; Pan, C.; Wang, Z. L. Self-Powered High-Resolution and Pressure-Sensitive Triboelectric Sensor Matrix for Real-Time Tactile Mapping. Adv. Mater. 2016, 28, 2896–2903. DOI: 10.1002/adma.201503407.
  • Zhao, G.; Zhang, Y.; Shi, N.; Liu, Z.; Zhang, X.; Wu, M.; Pan, C.; Liu, H.; Li, L.; Wang, Z. L. Transparent and Stretchable Triboelectric Nanogenerator for Self-Powered Tactile Sensing. Nano Energy 2019, 59, 302–310. DOI: 10.1016/j.nanoen.2019.02.054.
  • Ra, Y.; La, M.; Cho, S.; Park, S. J.; Choi, D. Scalable Batch Fabrication of Flexible, Transparent and Self-Triggered Tactile Sensor Array Based on Triboelectric Effect. Int. J. of Precis. Eng. Manuf-Green. Tech. 2021, 8, 519–531. DOI: 10.1007/s40684-020-00267-7.
  • Yuan, Z.; Zhou, T.; Yin, Y.; Cao, R.; Li, C.; Wang, Z. L. Transparent and Flexible Triboelectric Sensing Array for Touch Security Applications. ACS Nano. 2017, 11, 8364–8369. DOI: 10.1021/acsnano.7b03680.
  • Mi, H.-Y.; Jing, X.; Zheng, Q.; Fang, L.; Huang, H.-X.; Turng, L.-S.; Gong, S. High-Performance Flexible Triboelectric Nanogenerator Based on Porous Aerogels and Electrospun Nanofibers for Energy Harvesting and Sensitive Self-Powered Sensing. Nano Energy 2018, 48, 327–336. DOI: 10.1016/j.nanoen.2018.03.050.
  • Wang, X.; Yang, B.; Liu, J.; Zhu, Y.; Yang, C.; He, Q. A Flexible Triboelectric-Piezoelectric Hybrid Nanogenerator Based on P (VDF-TrFE) Nanofibers and PDMS/MWCNT for Wearable Devices. Sci. Rep. 2016, 6, 1–10. DOI: 10.1038/srep36409.
  • Fatma, B.; Bhunia, R.; Gupta, S.; Verma, A.; Verma, V.; Garg, A. Maghemite/Polyvinylidene Fluoride Nanocomposite for Transparent, Flexible Triboelectric Nanogenerator and Noncontact Magneto-Triboelectric Nanogenerator. ACS Sustainable Chem. Eng. 2019, 7, 14856–14866. DOI: 10.1021/acssuschemeng.9b02953.
  • He, J.; Xie, Z.; Yao, K.; Li, D.; Liu, Y.; Gao, Z.; Lu, W.; Chang, L.; Yu, X. Trampoline Inspired Stretchable Triboelectric Nanogenerators as Tactile Sensors for Epidermal Electronics. Nano Energy 2021, 81, 105590. DOI: 10.1016/j.nanoen.2020.105590.
  • Wang, X.; Zhang, Y.; Zhang, X.; Huo, Z.; Li, X.; Que, M.; Peng, Z.; Wang, H.; Pan, C. A Highly Stretchable Transparent Self‐Powered Triboelectric Tactile Sensor with Metallized Nanofibers for Wearable Electronics. Adv. Mater. 2018, 30, 1706738. DOI: 10.1002/adma.201706738.
  • Li, T.; Zou, J.; Xing, F.; Zhang, M.; Cao, X.; Wang, N.; Wang, Z. L. From Dual-Mode Triboelectric Nanogenerator to Smart Tactile Sensor: A Multiplexing Design. ACS Nano. 2017, 11, 3950–3956. DOI: 10.1021/acsnano.7b00396.
  • Cai, Y.-W.; Zhang, X.-N.; Wang, G.-G.; Li, G.-Z.; Zhao, D.-Q.; Sun, N.; Li, F.; Zhang, H.-Y.; Han, J.-C.; Yang, Y. A Flexible Ultra-Sensitive Triboelectric Tactile Sensor of Wrinkled PDMS/MXene Composite Films for E-Skin. Nano Energy 2021, 81, 105663. DOI: 10.1016/j.nanoen.2020.105663.
  • Zhang, R.; Olin, H. Material Choices for Triboelectric Nanogenerators: A Critical Review. EcoMat 2020, 2, e12062. DOI: 10.1002/eom2.12062.
  • Rao, J.; Chen, Z.; Zhao, D.; Yin, Y.; Wang, X.; Yi, F. Recent Progress in Self-Powered Skin Sensors. Sensors 2019, 19, 2763. DOI: 10.3390/s19122763.
  • Luo, J.; Gao, W.; Wang, Z. L. The Triboelectric Nanogenerator as an Innovative Technology toward Intelligent Sports. Adv. Mater. 2021, 33, 2004178. DOI: 10.1002/adma.202004178.
  • Kolker, A.; Jokesch, M.; Thomas, U. In An Optical Tactile Sensor for Measuring Force Values and Directions for Several Soft and Rigid Contacts. Proceedings of ISR 2016: 47st International Symposium on Robotics, VDE: 2016; pp 1–6.
  • Sferrazza, C.; D’Andrea, R. Design, Motivation and Evaluation of a Full-Resolution Optical Tactile Sensor. Sensors 2019, 19, 928. DOI: 10.3390/s19040928.
  • Shimonomura, K. Tactile Image Sensors Employing Camera: A Review. Sensors 2019, 19, 3933. DOI: 10.3390/s19183933.
  • Yuan, W.; Dong, S.; Adelson, E. H. Gelsight: High-Resolution Robot Tactile Sensors for Estimating Geometry and Force. Sensors 2017, 17, 2762. DOI: 10.3390/s17122762.
  • Kim, J. T.; Choi, H.; Shin, E.; Park, S.; Kim, I. G. Graphene-Based Optical Waveguide Tactile Sensor for Dynamic Response. Sci. Rep. 2018, 8, 1–6. DOI: 10.1038/s41598-018-34613-2.
  • Chi, C.; Sun, X. G.; Xue, N.; Li, T.; Liu, C. Recent Progress in Technologies for Tactile Sensors. Sensors 2018, 18, 948. DOI: 10.3390/s18040948.
  • Wang, H.; De Boer, G.; Kow, J.; Alazmani, A.; Ghajari, M.; Hewson, R.; Culmer, P. Design Methodology for Magnetic Field-Based Soft Tri-Axis Tactile Sensors. Sensors 2016, 16, 1356. DOI: 10.3390/s16091356.
  • Li, Z.; Cheng, L.; Song, Q. An Ultra-Stretchable and Highly Sensitive Photoelectric Effect-Based Strain Sensor: Implementation and Applications. IEEE Sensors J. 2021, 21, 4365–4376. DOI: 10.1109/JSEN.2020.3034172.
  • Xu, H.; Gao, L.; Wang, Y.; Cao, K.; Hu, X.; Wang, L.; Mu, M.; Liu, M.; Zhang, H.; Wang, W.; Lu, Y. Flexible Waterproof Piezoresistive Pressure Sensors with Wide Linear Working Range Based on Conductive Fabrics. Nano-Micro Lett. 2020, 12, 1–13. DOI: 10.1007/s40820-020-00498-y.
  • Zhang, Y.; Zhu, X.; Liu, Y.; Liu, L.; Xu, Q.; Liu, H.; Wang, W.; Chen, L. Ultra‐Stretchable Monofilament Flexible Sensor with Low Hysteresis and Linearity Based on MWCNTs/Ecoflex Composite Materials. Macromol. Mater. Eng. 2021, 306, 2100113. DOI: 10.1002/mame.202100113.
  • Yang, T.; Wang, W.; Zhang, H.; Li, X.; Shi, J.; He, Y.; Zheng, Q-s.; Li, Z.; Zhu, H. Tactile Sensing System Based on Arrays of Graphene Woven Microfabrics: Electromechanical Behavior and Electronic Skin Application. ACS Nano. 2015, 9, 10867–10875. DOI: 10.1021/acsnano.5b03851.
  • Dahiya, R. S.; Valle, M.; Metta, G.; Lorenzelli, L.; Collini, C. In 2007; pp Tactile Sensing Arrays for Humanoid Robots. 2007 Ph. D Research in Microelectronics and Electronics Conference, IEEE: 201–204.
  • Newnham, R.; Ruschau, G. R. Electromechanical Properties of Smart Materials. J. Intell. Mater. Syst. Struct. 1993, 4, 289–294. DOI: 10.1177/1045389X9300400301.
  • Garcia, C.; Trendafilova, I.; de Villoria, R. G.; del Rio, J. S. Self-Powered Pressure Sensor Based on the Triboelectric Effect and Its Analysis Using Dynamic Mechanical Analysis. Nano Energy 2018, 50, 401–409. DOI: 10.1016/j.nanoen.2018.05.046.
  • Leal-Junior, A. G.; Marques, C.; Frizera, A.; Pontes, M. J. Dynamic Mechanical Analysis on a Polymethyl Methacrylate (PMMA) Polymer Optical Fiber. IEEE Sensors J. 2018, 18, 2353–2361. DOI: 10.1109/JSEN.2018.2797086.
  • Guo, S. Z.; Qiu, K. Y.; Meng, F. B.; Park, S. H.; McAlpine, M. C. 3D Printed Stretchable Tactile Sensors. Adv. Mater. 2017, 29, 1701218. DOI: 10.1002/adma.201701218.
  • Lin, Y.; Liu, S.; Chen, S.; Wei, Y.; Dong, X.; Liu, L. A Highly Stretchable and Sensitive Strain Sensor Based on Graphene–Elastomer Composites with a Novel Double-Interconnected Network. J. Mater. Chem. C 2016, 4, 6345–6352. DOI: 10.1039/C6TC01925K.
  • Pyo, M.; Bohn, C. C.; Smela, E.; Reynolds, J. R.; Brennan, A. B. Direct Strain Measurement of Polypyrrole Actuators Controlled by the Polymer/Gold Interface. Chem. Mater. 2003, 15, 916–922. DOI: 10.1021/cm020312w.
  • Park, J.; You, I.; Shin, S.; Jeong, U. Material Approaches to Stretchable Strain Sensors. Chemphyschem 2015, 16, 1155–1163. DOI: 10.1002/cphc.201402810.
  • Liu, Z. F.; Fang, S.; Moura, F. A.; Ding, J. N.; Jiang, N.; Di, J.; Zhang, M.; Lepró, X.; Galvão, D. S.; Haines, C. S.; et al. Stretchy Electronics. Hierarchically buckled sheath-core fibers for superelastic electronics, sensors, and muscles . Science 2015, 349, 400–404. DOI: 10.1126/science.aaa7952.
  • Wu, H.; Huang, Y.; Xu, F.; Duan, Y.; Yin, Z. Energy Harvesters for Wearable and Stretchable Electronics: From Flexibility to Stretchability. Adv. Mater. 2016, 28, 9881–9919. DOI: 10.1002/adma.201602251.
  • Kim, K. K.; Suh, Y.; Ko, S. H. Smart Stretchable Electronics for Advanced Human–Machine Interface. Advanc. Intell. Syst. 2021, 3, 2000157. DOI: 10.1002/aisy.202000157.
  • Kim, K. K.; Ha, I.; Kim, M.; Choi, J.; Won, P.; Jo, S.; Ko, S. H. A Deep-Learned Skin Sensor Decoding the Epicentral Human Motions. Nat. Commun. 2020, 11, 1–8. DOI: 10.1038/s41467-020-16040-y.
  • Kang, D.; Pikhitsa, P. V.; Choi, Y. W.; Lee, C.; Shin, S. S.; Piao, L.; Park, B.; Suh, K.-Y.; Kim, T-i.; Choi, M. Ultrasensitive Mechanical Crack-Based Sensor Inspired by the Spider Sensory System. Nature 2014, 516, 222–226. DOI: 10.1038/nature14002.
  • Jung, J.; Kim, K. K.; Suh, Y. D.; Hong, S.; Yeo, J.; Ko, S. H. Recent Progress in Controlled Nano/Micro Cracking as an Alternative Nano-Patterning Method for Functional Applications. Nanoscale Horiz. 2020, 5, 1036–1049. DOI: 10.1039/d0nh00241k.
  • Nur, R.; Matsuhisa, N.; Jiang, Z.; Nayeem, M. O. G.; Yokota, T.; Someya, T. A Highly Sensitive Capacitive-Type Strain Sensor Using Wrinkled Ultrathin Gold Films. Nano Lett. 2018, 18, 5610–5617. DOI: 10.1021/acs.nanolett.8b02088.
  • Joo, Y.; Byun, J.; Seong, N.; Ha, J.; Kim, H.; Kim, S.; Kim, T.; Im, H.; Kim, D.; Hong, Y. Silver Nanowire-Embedded PDMS with a Multiscale Structure for a Highly Sensitive and Robust Flexible Pressure Sensor. Nanoscale 2015, 7, 6208–6215. DOI: 10.1039/C5NR00313J.
  • Shi, J.; Wang, L.; Dai, Z.; Zhao, L.; Du, M.; Li, H.; Fang, Y. Multiscale Hierarchical Design of a Flexible Piezoresistive Pressure Sensor with High Sensitivity and Wide Linearity Range. Small 2018, 14, 1800819. DOI: 10.1002/smll.201800819.
  • Ge, G.; Cai, Y.; Dong, Q.; Zhang, Y.; Shao, J.; Huang, W.; Dong, X. A Flexible Pressure Sensor Based on rGO/Polyaniline Wrapped Sponge with Tunable Sensitivity for Human Motion Detection. Nanoscale 2018, 10, 10033–10040. DOI: 10.1039/c8nr02813c.
  • Kaidarova, A.; Alsharif, N.; Oliveira, B. N. M.; Marengo, M.; Geraldi, N. R.; Duarte, C. M.; Kosel, J. Laser-Printed, Flexible Graphene Pressure Sensors. Glob. Chall. 2020, 4, 2000001. DOI: 10.1002/gch2.202000001.
  • Gao, X.; Zheng, M.; Yan, X.; Fu, J.; Zhu, M.; Hou, Y. The Alignment of BCZT Particles in PDMS Boosts the Sensitivity and Cycling Reliability of a Flexible Piezoelectric Touch Sensor. J. Mater. Chem. C. 2019, 7, 961–967. DOI: 10.1039/C8TC04741C.
  • Das, P. S.; Chhetry, A.; Maharjan, P.; Rasel, M. S.; Park, J. Y. A Laser Ablated Graphene-Based Flexible Self-Powered Pressure Sensor for Human Gestures and Finger Pulse Monitoring. Nano Res. 2019, 12, 1789–1795. DOI: 10.1007/s12274-019-2433-5.
  • Shuai, X.; Zhu, P.; Zeng, W.; Hu, Y.; Liang, X.; Zhang, Y.; Sun, R.; Wong, C-p. Highly Sensitive Flexible Pressure Sensor Based on Silver Nanowires-Embedded Polydimethylsiloxane Electrode with Microarray Structure. ACS Appl. Mater. Interf. 2017, 9, 26314–26324. DOI: 10.1021/acsami.7b05753.
  • Nie, K.; Wang, Z.; Tang, R.; Zheng, L.; Li, C.; Shen, X.; Sun, Q. Anisotropic, Flexible Wood Hydrogels and Wrinkled, Electrodeposited Film Electrodes for Highly Sensitive, Wide-Range Pressure Sensing. ACS Appl. Mater. Interf. 2020, 12, 43024–43031. DOI: 10.1021/acsami.0c13962.
  • Regtien, P.; Dertien, E. 3: Uncertainty Aspects. In Sensors for Mechatronics, 2nd ed.; Regtien, P.; Dertien, E., Eds.; Elsevier: Amsterdam, Netherlands, 2018; pp 39–60.
  • Amjadi, M.; Kyung, K. U.; Park, I.; Sitti, M. Stretchable, Skin-Mountable, and Wearable Strain Sensors and Their Potential Applications: A Review. Adv. Funct. Mater. 2016, 26, 1678–1698. DOI: 10.1002/adfm.201504755.
  • Sánchez-Durán, J. A.; Oballe-Peinado, O.; Castellanos-Ramos, J.; Vidal-Verdú, F. Hysteresis Correction of Tactile Sensor Response with a Generalized Prandtl–Ishlinskii Model. Microsyst. Technol. 2012, 18, 1127–1138. DOI: 10.1007/s00542-012-1455-7.
  • Hara, Y.; Yoshida, K.; Khosla, A.; Kawakami, M.; Hosoda, K.; Furukawa, H. Very Wide Sensing Range and Hysteresis Behaviors of Tactile Sensor Developed by Embedding Soft Ionic Gels in Soft Silicone Elastomers. ECS J. Solid State Sci. Technol. 2020, 9, 061024. DOI: 10.1149/2162-8777/aba913.
  • Yeo, J. C.; Yu, J.; Loh, K. P.; Wang, Z.; Lim, C. T. Triple-State Liquid-Based Microfluidic Tactile Sensor with High Flexibility, Durability, and Sensitivity. ACS Sens. 2016, 1, 543–551. DOI: 10.1021/acssensors.6b00115.
  • Ge, G.; Zhang, Y.; Shao, J.; Wang, W.; Si, W.; Huang, W.; Dong, X. Stretchable, Transparent, and Self‐Patterned Hydrogel‐Based Pressure Sensor for Human Motions Detection. Adv. Funct. Mater. 2018, 28, 1802576. DOI: 10.1002/adfm.201802576.
  • Siddiqui, S.; Kim, D.-I.; Roh, E.; Duy, L. T.; Trung, T. Q.; Nguyen, M. T.; Lee, N.-E. A Durable and Stable Piezoelectric Nanogenerator with Nanocomposite Nanofibers Embedded in an Elastomer under High Loading for a Self-Powered Sensor System. Nano Energy 2016, 30, 434–442. DOI: 10.1016/j.nanoen.2016.10.034.
  • Lü, X.; Qi, L.; Hu, H.; Li, X.; Bai, G.; Chen, J.; Bao, W. Ultra-Sensitive Flexible Tactile Sensor Based on Graphene Film. Micromachines 2019, 10, 730. DOI: 10.3390/mi10110730.
  • Kwon, H.-J.; Kim, J.-H.; Choi, W.-C. Development of a Flexible Three-Axial Tactile Sensor Array for a Robotic Finger. Microsyst. Technol. 2011, 17, 1721–1726. DOI: 10.1007/s00542-011-1368-x.
  • Park, M.; Park, Y. J.; Chen, X.; Park, Y. K.; Kim, M. S.; Ahn, J. H. MoS2 -Based Tactile Sensor for Electronic Skin Applications . Adv. Mater. 2016, 28, 2556–2562. DOI: 10.1002/adma.201505124.
  • Kawasetsu, T.; Horii, T.; Ishihara, H.; Asada, M. Flexible Tri-Axis Tactile Sensor Using Spiral Inductor and Magnetorheological Elastomer. IEEE Sensors J. 2018, 18, 5834–5841. DOI: 10.1109/JSEN.2018.2844194.
  • Yu, K. J.; Yan, Z.; Han, M.; Rogers, J. A. Inorganic Semiconducting Materials for Flexible and Stretchable Electronics. Npj Flex. Electron. 2017, 1, 1–14. DOI: 10.1038/s41528-017-0003-z.
  • Lu, X.; Xia, Y. Electronic Materials: Buckling Down for Flexible Electronics. Nat. Nanotechnol. 2006, 1, 163–164. DOI: 10.1038/nnano.2006.157.
  • Lipomi, D. J. Stretchable Figures of Merit in Deformable Electronics. Adv. Mater. 2016, 28, 4180–4183. DOI: 10.1002/adma.201504196.
  • Liu, C. Recent Developments in Polymer MEMS. Adv. Mater. 2007, 19, 3783–3790. DOI: 10.1002/adma.200701709.
  • Snook, G. A.; Kao, P.; Best, A. S. Conducting-Polymer-Based Supercapacitor Devices and Electrodes. J. Power Sources 2011, 196, 1–12. DOI: 10.1016/j.jpowsour.2010.06.084.
  • Panwar, V.; Anoop, G. Flexible Piezoresistive Strain Sensor Based on Optimized Elastomer-Electronic Polymer Blend. Measurement 2021, 168, 108406. DOI: 10.1016/j.measurement.2020.108406.
  • Tseng, Y.-T.; Lin, Y.-C.; Shih, C.-C.; Hsieh, H.-C.; Lee, W.-Y.; Chiu, Y.-C.; Chen, W.-C. Morphology and Properties of PEDOT: PSS/Soft Polymer Blends through Hydrogen Bonding Interaction and Their Pressure Sensor Application. J. Mater. Chem. C. 2020, 8, 6013–6024. DOI: 10.1039/D0TC00559B.
  • Wang, T.; Zhang, Y.; Liu, Q.; Cheng, W.; Wang, X.; Pan, L.; Xu, B.; Xu, H. A Self‐Healable, Highly Stretchable, and Solution Processable Conductive Polymer Composite for Ultrasensitive Strain and Pressure Sensing. Adv. Funct. Mater. 2018, 28, 1705551. DOI: 10.1002/adfm.201705551.
  • Lu, Y.; Liu, Z.; Yan, H.; Peng, Q.; Wang, R.; Barkey, M. E.; Jeon, J.-W.; Wujcik, E. K. Ultrastretchable Conductive Polymer Complex as a Strain Sensor with a Repeatable Autonomous Self-Healing Ability. ACS Appl. Mater. Interf. 2019, 11, 20453–20464. DOI: 10.1021/acsami.9b05464.
  • Naghdi, S.; Rhee, K. Y.; Hui, D.; Park, S. J. A Review of Conductive Metal Nanomaterials as Conductive, Transparent, and Flexible Coatings, Thin Films, and Conductive Fillers: Different Deposition Methods and Applications. Coatings 2018, 8, 278. DOI: 10.3390/coatings8080278.
  • Li, X.; Wang, J. One‐Dimensional and Two‐Dimensional Synergized Nanostructures for High‐Performing Energy Storage and Conversion. InfoMat 2020, 2, 3–32. DOI: 10.1002/inf2.12040.
  • Park, J.; Hwang, J. C.; Kim, G. G.; Park, J. U. Flexible Electronics Based on One‐Dimensional and Two‐Dimensional Hybrid Nanomaterials. InfoMat 2020, 2, 33–56. DOI: 10.1002/inf2.12047.
  • Alexandridis, P.; Tsianou, M. Block Copolymer-Directed Metal Nanoparticle Morphogenesis and Organization. Eur. Polym. J. 2011, 47, 569–583. DOI: 10.1016/j.eurpolymj.2010.10.021.
  • Alexandridis, P. Gold Nanoparticle Synthesis, Morphology Control, and Stabilization Facilitated by Functional Polymers. Chem. Eng. Technol. 2011, 34, 15–28. DOI: 10.1002/ceat.201000335.
  • Choi, S.; Han, S. I.; Kim, D.; Hyeon, T.; Kim, D. H. High-Performance Stretchable Conductive Nanocomposites: Materials, Processes, and Device Applications. Chem. Soc. Rev. 2019, 48, 1566–1595. DOI: 10.1039/c8cs00706c.
  • Wang, D.; Wang, L.; Shen, G. Nanofiber/Nanowires-Based Flexible and Stretchable Sensors. J. Semicond. 2020, 41, 041605. DOI: 10.1088/1674-4926/41/4/041605.
  • McLellan, K.; Yoon, Y.; Leung, S. N.; Ko, S. H. Recent Progress in Transparent Conductors Based on Nanomaterials: Advancements and Challenges. Adv. Mater. Technol. 2020, 5, 1900939. DOI: 10.1002/admt.201900939.
  • Hong, S.; Lee, H.; Lee, J.; Kwon, J.; Han, S.; Suh, Y. D.; Cho, H.; Shin, J.; Yeo, J.; Ko, S. H. Highly Stretchable and Transparent Metal Nanowire Heater for Wearable Electronics Applications. Adv. Mater. 2015, 27, 4744–4751. DOI: 10.1002/adma.201500917.
  • Wei, J.; Qin, C.; Pang, X.; Zhang, H.; Li, X. One-Dimensional Core-Shell Composite of AgNWs@ Si@ GO for High-Specific Capacity and High-Safety Anode Materials of Lithium-Ion Batteries. Ceram. Int. 2021, 47, 4937–4943. DOI: 10.1016/j.ceramint.2020.10.069.
  • Chang, I.; Lee, J.; Lee, Y.; Lee, Y. H.; Ko, S. H.; Cha, S. W. Thermally Stable Ag@ ZrO2 Core-Shell via Atomic Layer Deposition. Mater. Lett. 2017, 188, 372–374. DOI: 10.1016/j.matlet.2016.11.105.
  • Moon, H.; Lee, H.; Kwon, J.; Suh, Y. D.; Kim, D. K.; Ha, I.; Yeo, J.; Hong, S.; Ko, S. H. Ag/Au/Polypyrrole Core-Shell Nanowire Network for Transparent, Stretchable and Flexible Supercapacitor in Wearable Energy Devices. Sci. Rep. 2017, 7, 1–10. DOI: 10.1038/srep41981.
  • Araki, T.; Jiu, J.; Nogi, M.; Koga, H.; Nagao, S.; Sugahara, T.; Suganuma, K. Low Haze Transparent Electrodes and Highly Conducting Air Dried Films with Ultra-Long Silver Nanowires Synthesized by One-Step Polyol Method. Nano Res. 2014, 7, 236–245. DOI: 10.1007/s12274-013-0391-x.
  • Bari, B.; Lee, J.; Jang, T.; Won, P.; Ko, S. H.; Alamgir, K.; Arshad, M.; Guo, L. J. Simple Hydrothermal Synthesis of Very-Long and Thin Silver Nanowires and Their Application in High Quality Transparent Electrodes. J. Mater. Chem. A. 2016, 4, 11365–11371. DOI: 10.1039/C6TA03308C.
  • Jeong, C. K.; Lee, J.; Han, S.; Ryu, J.; Hwang, G.-T.; Park, D. Y.; Park, J. H.; Lee, S. S.; Byun, M.; Ko, S. H.; Lee, K. J. A Hyper-Stretchable Elastic-Composite Energy Harvester. Adv. Mater. 2015, 27, 2866–2875. DOI: 10.1002/adma.201500367.
  • Kim, K. K.; Hong, S.; Cho, H. M.; Lee, J.; Suh, Y. D.; Ham, J.; Ko, S. H. Highly Sensitive and Stretchable Multidimensional Strain Sensor with Prestrained Anisotropic Metal Nanowire Percolation Networks. Nano Lett. 2015, 15, 5240–5247. DOI: 10.1021/acs.nanolett.5b01505.
  • Lee, J.; Lee, P.; Lee, H.; Lee, D.; Lee, S. S.; Ko, S. H. Very Long Ag Nanowire Synthesis and Its Application in a Highly Transparent, Conductive and Flexible Metal Electrode Touch Panel. Nanoscale 2012, 4, 6408–6414. DOI: 10.1039/c2nr31254a.
  • Kumar, A. K.; wan Bae, C.; Piao, L.; Kim, S.-H. Silver Nanowire Based Flexible Electrodes with Improved Properties: High Conductivity, Transparency, Adhesion and Low Haze. Mater. Res. Bull. 2013, 48, 2944–2949. DOI: 10.1016/j.materresbull.2013.04.035.
  • Chen, C.; Zhao, Y.; Wei, W.; Tao, J.; Lei, G.; Jia, D.; Wan, M.; Li, S.; Ji, S.; Ye, C. Fabrication of Silver Nanowire Transparent Conductive Films with an Ultra-Low Haze and Ultra-High Uniformity and Their Application in Transparent Electronics. J. Mater. Chem. C. 2017, 5, 2240–2246. DOI: 10.1039/C6TC05455B.
  • Lee, J.; Lee, P.; Lee, H. B.; Hong, S.; Lee, I.; Yeo, J.; Lee, S. S.; Kim, T. S.; Lee, D.; Ko, S. H. Room‐Temperature Nanosoldering of a Very Long Metal Nanowire Network by Conducting‐Polymer‐Assisted Joining for a Flexible Touch‐Panel Application. Adv. Funct. Mater. 2013, 23, 4171–4176. DOI: 10.1002/adfm.201203802.
  • Lee, P.; Ham, J.; Lee, J.; Hong, S.; Han, S.; Suh, Y. D.; Lee, S. E.; Yeo, J.; Lee, S. S.; Lee, D.; Ko, S. H. Highly Stretchable or Transparent Conductor Fabrication by a Hierarchical Multiscale Hybrid Nanocomposite. Adv. Funct. Mater. 2014, 24, 5671–5678. DOI: 10.1002/adfm.201400972.
  • Mayousse, C.; Celle, C.; Carella, A.; Simonato, J.-P. Synthesis and Purification of Long Copper Nanowires. Application to High Performance Flexible Transparent Electrodes with and without PEDOT: PSS. Nano Res. 2014, 7, 315–324. DOI: 10.1007/s12274-013-0397-4.
  • Huang, W.; Li, J.; Zhao, S.; Han, F.; Zhang, G.; Sun, R.; Wong, C.-P. Highly Electrically Conductive and Stretchable Copper Nanowires-Based Composite for Flexible and Printable Electronics. Compos. Sci. Technol. 2017, 146, 169–176. DOI: 10.1016/j.compscitech.2017.04.030.
  • Hong, I.; Lee, S.; Kim, D.; Cho, H.; Roh, Y.; An, H.; Hong, S.; Ko, S. H.; Han, S. Study on the Oxidation of Copper Nanowire Network Electrodes for Skin Mountable Flexible, Stretchable and Wearable Electronics Applications. Nanotechnology 2019, 30, 074001. DOI: 10.1088/1361-6528/aaf35c.
  • Mardiansyah, D.; Badloe, T.; Triyana, K.; Mehmood, M. Q.; Raeis-Hosseini, N.; Lee, Y.; Sabarman, H.; Kim, K.; Rho, J. Effect of Temperature on the Oxidation of Cu Nanowires and Development of an Easy to Produce, Oxidation-Resistant Transparent Conducting Electrode Using a PEDOT: PSS Coating. Sci. Rep. 2018, 8, 1–9. DOI: 10.1038/s41598-018-28744-9.
  • Shi, L.; Wang, R.; Zhai, H.; Liu, Y.; Gao, L.; Sun, J. A Long-Term Oxidation Barrier for Copper Nanowires: Graphene Says Yes. Phys. Chem. Chem. Phys. 2015, 17, 4231–4236. DOI: 10.1039/C4CP05187D.
  • Kim, D.; Kwon, J.; Jung, J.; Kim, K.; Lee, H.; Yeo, J.; Hong, S.; Han, S.; Ko, S. H. A Transparent and Flexible Capacitive‐Force Touch Pad from High‐Aspect‐Ratio Copper Nanowires with Enhanced Oxidation Resistance for Applications in Wearable Electronics. Small Method. 2018, 2, 1800077. DOI: 10.1002/smtd.201800077.
  • Kim, D.; Bang, J.; Won, P.; Kim, Y.; Jung, J.; Lee, J.; Kwon, J.; Lee, H.; Hong, S.; Jeon, N. L.; et al. Biocompatible Cost‐Effective Electrophysiological Monitoring with Oxidation‐Free Cu–Au Core–Shell Nanowire. Adv. Mater. Technol. 2020, 5, 2000661. DOI: 10.1002/admt.202000661.
  • Park, J. H.; Han, S.; Kim, D.; You, B. K.; Joe, D.; Hong, S.; Seo, J.; Kwon, J.; Jeong, C. K.; Park, H.-J.; et al. Plasmonic‐Tuned Flash Cu Nanowelding with Ultrafast Photochemical‐Reducing and Interlocking on Flexible Plastics. Adv. Funct. Mater. 2017, 27, 1701138. DOI: 10.1002/adfm.201701138.
  • Han, S.; Hong, S.; Ham, J.; Yeo, J.; Lee, J.; Kang, B.; Lee, P.; Kwon, J.; Lee, S.; Yang, M.-Y.; Ko, S. H. Fast Plasmonic Laser Nanowelding for a Cu-Nanowire Percolation Network For Flexible Transparent Conductors And Stretchable Electronics. Adv. Mater. 2014, 26, 5808–5814. DOI: 10.1002/adma.201400474.
  • Tanahashi, M. Development of Fabrication Methods of Filler/Polymer Nanocomposites: With Focus on Simple Melt-Compounding-Based Approach without Surface Modification of Nanofillers. Materials 2010, 3, 1593–1619. DOI: 10.3390/ma3031593.
  • Park, J.; You, I.; Kim, T. Y.; Song, J.; Jeong, U. Ag Nanowire-Based Transparent Stretchable Tactile Sensor Recognizing Strain Directions and Pressure. Nanotechnology 2019, 30, 315502. DOI: 10.1088/1361-6528/ab11b7.
  • Huo, Z.; Peng, Y.; Zhang, Y.; Gao, G.; Wan, B.; Wu, W.; Yang, Z.; Wang, X.; Pan, C. Recent Advances in Large‐Scale Tactile Sensor Arrays Based on a Transistor Matrix. Adv. Mater. Interfaces 2018, 5, 1801061. DOI: 10.1002/admi.201801061.
  • Spahr, M.; Gilardi, R.; Bonacchi, D. Carbon Black for Electrically Conductive Polymer Applications. Fillers Polymer Appl. 2016, 375. DOI: 10.1007/978-3-319-28117-9_32.
  • Zhang, W.; Dehghani-Sanij, A. A.; Blackburn, R. S. Carbon Based Conductive Polymer Composites. J. Mater. Sci. 2007, 42, 3408–3418. DOI: 10.1007/s10853-007-1688-5.
  • Hu, L.; Hecht, D. S.; Gruner, G. Carbon Nanotube Thin Films: Fabrication, Properties, and Applications. Chem. Rev. 2010, 110, 5790–5844. DOI: 10.1021/cr9002962.
  • Forintos, N.; Czigany, T. Multifunctional Application of Carbon Fiber Reinforced Polymer Composites: Electrical Properties of the Reinforcing Carbon Fibers–a Short Review. Compos. Part B. Engng. 2019, 162, 331–343. DOI: 10.1016/j.compositesb.2018.10.098.
  • Zhu, Y.; Murali, S.; Cai, W.; Li, X.; Suk, J. W.; Potts, J. R.; Ruoff, R. S. Graphene and Graphene Oxide: Synthesis, Properties, and Applications. Adv. Mater. 2010, 22, 3906–3924. DOI: 10.1002/adma.201001068.
  • Power, A. C.; Gorey, B.; Chandra, S.; Chapman, J. Carbon Nanomaterials and Their Application to Electrochemical Sensors: A Review. Nanotechnology Reviews 2018, 7, 19–41. DOI: 10.1515/ntrev-2017-0160.
  • Merum, S.; Veluru, J. B.; Seeram, R. Functionalized Carbon Nanotubes in Bio-World: Applications, Limitations and Future Directions. Mater. Sci. Engng. B. 2017, 223, 43–63. DOI: 10.1016/j.mseb.2017.06.002.
  • Wang, X.; Sun, H.; Yue, X.; Yu, Y.; Zheng, G.; Dai, K.; Liu, C.; Shen, C. A Highly Stretchable Carbon Nanotubes/Thermoplastic Polyurethane Fiber-Shaped Strain Sensor with Porous Structure for Human Motion Monitoring. Compos. Sci. Technol. 2018, 168, 126–132. DOI: 10.1016/j.compscitech.2018.09.006.
  • Pedrosa, M. C. G.; Dutra, J. C.; Menezes, d.; Silva, d. Chemical Surface Modification and Characterization of Carbon Nanostructures without Shape Damage. Mat. Res. 2020, 23, 1–8. DOI: 10.1590/1980-5373-mr-2019-0493.
  • Lin, Y.; Smith, T. W.; Alexandridis, P. Adsorption of a Rake-Type Siloxane Surfactant onto Carbon Black Nanoparticles Dispersed in Aqueous Media. Langmuir 2002, 18, 6147–6158. DOI: 10.1021/la011671t.
  • Bilotti, E.; Zhang, H.; Deng, H.; Zhang, R.; Fu, Q.; Peijs, T. Controlling the Dynamic Percolation of Carbon Nanotube Based Conductive Polymer Composites by Addition of Secondary Nanofillers: The Effect on Electrical Conductivity and Tuneable Sensing Behaviour. Compos. Sci. Technol. 2013, 74, 85–90. DOI: 10.1016/j.compscitech.2012.10.008.
  • Yao, Z.; Wu, D.; Chen, C.; Zhang, M. Creep Behavior of Polyurethane Nanocomposites with Carbon Nanotubes. Compos. Part A. Appl. Sci. Manufact. 2013, 50, 65–72. DOI: 10.1016/j.compositesa.2013.03.015.
  • Lima, M. D.; Andrade, M. J.; Skákalová, V.; Bergmann, C. P.; Roth, S. Dynamic Percolation of Carbon Nanotubes in Liquid Medium. J. Mater. Chem. 2007, 17, 4846–4853. DOI: 10.1039/b710417k.
  • Jiménez-Suárez, A.; Campo, M.; Gaztelumendi, I.; Markaide, N.; Sánchez, M.; Ureña, A. The Influence of Mechanical Dispersion of MWCNT in Epoxy Matrix by Calendering Method: Batch Method versus Time Controlled. Compos. Part B. Engng 2013, 48, 88–94. DOI: 10.1016/j.compositesb.2012.12.011.
  • Gong, S.; Zhu, Z.; Li, J.; Meguid, S. Modeling and Characterization of Carbon Nanotube Agglomeration Effect on Electrical Conductivity of Carbon Nanotube Polymer Composites. J. Appl. Phys. 2014, 116, 194306. DOI: 10.1063/1.4902175.
  • Park, H.; Kim, J. W.; Hong, S. Y.; Lee, G.; Kim, D. S.; Oh, J. h.; Jin, S. W.; Jeong, Y. R.; Oh, S. Y.; Yun, J. Y.; Ha, J. S. Microporous Polypyrrole‐Coated Graphene Foam for High‐Performance Multifunctional Sensors and Flexible Supercapacitors. Adv. Funct. Mater. 2018, 28, 1707013. DOI: 10.1002/adfm.201707013.
  • Du, J.; Cheng, H. M. The Fabrication, Properties, and Uses of Graphene/Polymer Composites. Macromol. Chem. Phys. 2012, 213, 1060–1077. DOI: 10.1002/macp.201200029.
  • Lu, C.; Lee, W. ‐Y.; Gu, X.; Xu, J.; Chou, H. ‐H.; Yan, H.; Chiu, Y. ‐C.; He, M.; Matthews, J.; Niu, W.; et al. Effects of Molecular Structure and Packing Order on the Stretchability of Semicrystalline Conjugated Poly (Tetrathienoacene‐Diketopyrrolopyrrole) Polymers. Adv. Electron. Mater. 2017, 3, 1600311. DOI: 10.1002/aelm.201600311.
  • Shi, H.; Liu, C.; Jiang, Q.; Xu, J. Effective Approaches to Improve the Electrical Conductivity of PEDOT: PSS: A Review. Adv. Electron. Mater. 2015, 1, 1500017. DOI: 10.1002/aelm.201500017.
  • Vosgueritchian, M.; Lipomi, D. J.; Bao, Z. Highly Conductive and Transparent PEDOT: PSS Films with a Fluorosurfactant for Stretchable and Flexible Transparent Electrodes. Adv. Funct. Mater. 2012, 22, 421–428. DOI: 10.1002/adfm.201101775.
  • Tevi, T.; Saint Birch, S. W.; Thomas, S. W.; Takshi, A. Effect of Triton X-100 on the Double Layer Capacitance and Conductivity of Poly (3, 4-Ethylenedioxythiophene): Poly (Styrenesulfonate)(PEDOT: PSS) Films. Synth. Met. 2014, 191, 59–65. DOI: 10.1016/j.synthmet.2014.02.005.
  • Hu, Z.; Zhang, J.; Hao, Z.; Zhao, Y. Influence of Doped PEDOT: PSS on the Performance of Polymer Solar Cells. Sol. Energy Mater. Sol. Cells 2011, 95, 2763–2767. DOI: 10.1016/j.solmat.2011.04.040.
  • Pasha, A.; Roy, A. S.; Murugendrappa, M.; Al-Hartomy, O. A.; Khasim, S. Conductivity and Dielectric Properties of PEDOT-PSS Doped DMSO Nano Composite Thin Films. Journal of Mater. Sci. Mater. Electron. 2016, 27, 8332–8339.
  • Döbbelin, M.; Marcilla, R.; Salsamendi, M.; Pozo-Gonzalo, C.; Carrasco, P. M.; Pomposo, J. A.; Mecerreyes, D. Influence of Ionic Liquids on the Electrical Conductivity and Morphology of PEDOT: PSS Films. Chem. Mater. 2007, 19, 2147–2149. DOI: 10.1021/cm070398z.
  • Saxena, N.; Pretzl, B.; Lamprecht, X.; Bießmann, L.; Yang, D.; Li, N.; Bilko, C.; Bernstorff, S.; Müller-Buschbaum, P. Ionic Liquids as Post-Treatment Agents for Simultaneous Improvement of Seebeck Coefficient and Electrical Conductivity in PEDOT:PSS Films . ACS Appl. Mater. Interf. 2019, 11, 8060–8071. DOI: 10.1021/acsami.8b21709.
  • Kumar, A.; Battabyal, M.; Chauhan, A.; Suresh, G.; Gopalan, R.; Ravi kumar, N. V.; Satapathy, D. Charge Transport Mechanism and Thermoelectric Behavior in Te:(PEDOT: PSS) Polymer Composites. Mater. Res. Express 2019, 6, 115302. DOI: 10.1088/2053-1591/ab43a7.
  • Wang, X.; Dong, L.; Zhang, H.; Yu, R.; Pan, C.; Wang, Z. L. Recent Progress in Electronic Skin. Adv Sci. (Weinh) 2015, 2, 1500169. DOI: 10.1002/advs.201500169.
  • Matsuhisa, N.; Kaltenbrunner, M.; Yokota, T.; Jinno, H.; Kuribara, K.; Sekitani, T.; Someya, T. Printable Elastic Conductors with a High Conductivity for Electronic Textile Applications. Nat. Commun. 2015, 6, 1–11. DOI: 10.1038/ncomms8461.
  • Yang, C.; Suo, Z. Hydrogel Ionotronics. Nat. Rev. Mater. 2018, 3, 125–142. DOI: 10.1038/s41578-018-0018-7.
  • Scaffaro, R.; Maio, A.; Citarrella, M. C. Ionic Tactile Sensors as Promising Biomaterials for Artificial Skin: Review of Latest Advances and Future Perspectives. Eur. Polym. J. 2021, 151, 110421. DOI: 10.1016/j.eurpolymj.2021.110421.
  • De, S. K.; White, J. R. Rubber Technologist's Handbook. Smithers Rapra Publishing: Shrewsbury, Shropshire, 2001; Vol. 1.
  • Gu, Y.; Zhao, J.; Johnson, J. A. Polymer Networks: From Plastics and Gels to Porous Frameworks. Angew. Chem. Int. Ed. Engl. 2020, 59, 5022–5049. DOI: 10.1002/anie.201902900.
  • Levita, G.; De Petris, S.; Marchetti, A.; Lazzeri, A. Crosslink Density and Fracture Toughness of Epoxy Resins. J. Mater. Sci. 1991, 26, 2348–2352. DOI: 10.1007/BF01130180.
  • Singh, R.; Zhang, M.; Chan, D. Toughening of a Brittle Thermosetting Polymer: Effects of Reinforcement Particle Size and Volume Fraction. J. Mater. Sci.2002, 37, 781–788. DOI: 10.1023/A:1013844015493.
  • Varnava, C. K.; Patrickios, C. S. Polymer Networks One Hundred Years after the Macromolecular Hypothesis: A Tutorial Review. Polymer 2021, 215, 123322. DOI: 10.1016/j.polymer.2020.123322.
  • Sheiko, S. S.; Dobrynin, A. V. Architectural Code for Rubber Elasticity: From Supersoft to Superfirm Materials. Macromolecules 2019, 52, 7531–7546. DOI: 10.1021/acs.macromol.9b01127.
  • Lee, H. R.; Kim, C. C.; Sun, J. Y. Stretchable Ionics–a Promising Candidate for Upcoming Wearable Devices. Adv. Mater. 2018, 30, 1704403. DOI: 10.1002/adma.201704403.
  • Feig, V. R.; Tran, H.; Lee, M.; Bao, Z. Mechanically Tunable Conductive Interpenetrating Network Hydrogels That Mimic the Elastic Moduli of Biological Tissue. Nat. Commun. 2018, 9, 1–9. DOI: 10.1038/s41467-018-05222-4.
  • Wang, Z.; Tao, F.; Pan, Q. A Self-Healable Polyvinyl Alcohol-Based Hydrogel Electrolyte for Smart Electrochemical Capacitors. J. Mater. Chem. A. 2016, 4, 17732–17739. DOI: 10.1039/C6TA08018A.
  • Bae, J.; Li, Y.; Zhang, J.; Zhou, X.; Zhao, F.; Shi, Y.; Goodenough, J. B.; Yu, G. A 3D Nanostructured Hydrogel-Framework-Derived High-Performance Composite Polymer Lithium-Ion Electrolyte. Angew. Chem. Int. Ed. Engl. 2018, 57, 2096–2100. DOI: 10.1002/anie.201710841.
  • Li, H.; Lv, T.; Li, N.; Yao, Y.; Liu, K.; Chen, T. Ultraflexible and Tailorable All-Solid-State Supercapacitors Using Polyacrylamide-Based Hydrogel Electrolyte with High Ionic Conductivity. Nanoscale 2017, 9, 18474–18481. DOI: 10.1039/c7nr07424g.
  • Jing, X.; Li, H.; Mi, H.-Y.; Liu, Y.-J.; Feng, P.-Y.; Tan, Y.-M.; Turng, L.-S. Highly Transparent, Stretchable, and Rapid Self-Healing Polyvinyl Alcohol/Cellulose Nanofibril Hydrogel Sensors for Sensitive Pressure Sensing and Human Motion Detection. Sens. Actuators B. 2019, 295, 159–167. DOI: 10.1016/j.snb.2019.05.082.
  • Zhou, Y.; Wan, C.; Yang, Y.; Yang, H.; Wang, S.; Dai, Z.; Ji, K.; Jiang, H.; Chen, X.; Long, Y. Highly Stretchable, Elastic, and Ionic Conductive Hydrogel for Artificial Soft Electronics. Adv. Funct. Mater. 2019, 29, 1806220. DOI: 10.1002/adfm.201806220.
  • Yang, N.; Qi, P.; Ren, J.; Yu, H.; Liu, S.; Li, J.; Chen, W.; Kaplan, D. L.; Ling, S. Polyvinyl Alcohol/Silk Fibroin/Borax Hydrogel Ionotronics: A Highly Stretchable, Self-Healable, and Biocompatible Sensing Platform. ACS Appl. Mater. Interf. 2019, 11, 23632–23638. DOI: 10.1021/acsami.9b06920.
  • Yang, H.; Liu, Y.; Kong, L.; Kang, L.; Ran, F. Biopolymer-Based Carboxylated Chitosan Hydrogel Film Crosslinked by HCl as Gel Polymer Electrolyte for All-Solid-Sate Supercapacitors. J. Power Sources 2019, 426, 47–54. DOI: 10.1016/j.jpowsour.2019.04.023.
  • Gao, Y.; Wang, Y.; Xia, S.; Gao, G. An Environment-Stable Hydrogel with Skin-Matchable Performance for Human-Machine Interface. Sci. China Mater. 2021, 64, 2313–2324. DOI: 10.1007/s40843-020-1624-y.
  • Liu, C.; Zhang, H. J.; You, X.; Cui, K.; Wang, X. Electrically Conductive Tough Gelatin Hydrogel. Adv. Electron. Mater. 2020, 6, 2000040. DOI: 10.1002/aelm.202000040.
  • Cui, C.; Fu, Q.; Meng, L.; Hao, S.; Dai, R.; Yang, J. Recent Progress in Natural Biopolymers Conductive Hydrogels for Flexible Wearable Sensors and Energy Devices: Materials, Structures, and Performance. ACS Appl. Bio. Mater. 2021, 4, 85–121. DOI: 10.1021/acsabm.0c00807.
  • Aimé, C.; Coradin, T. Nanocomposites from Biopolymer Hydrogels: Blueprints for White Biotechnology and Green Materials Chemistry. J. Polym. Sci. B. Polym. Phys. 2012, 50, 669–680. DOI: 10.1002/polb.23061.
  • Wang, L.; Gao, G.; Zhou, Y.; Xu, T.; Chen, J.; Wang, R.; Zhang, R.; Fu, J. Tough, Adhesive, Self-Healable, and Transparent Ionically Conductive Zwitterionic Nanocomposite Hydrogels as Skin Strain Sensors. ACS Appl. Mater. Interf. 2019, 11, 3506–3515. DOI: 10.1021/acsami.8b20755.
  • Wang, Z.; Chen, J.; Wang, L.; Gao, G.; Zhou, Y.; Wang, R.; Xu, T.; Yin, J.; Fu, J. Flexible and Wearable Strain Sensors Based on Tough and Self-Adhesive Ion Conducting Hydrogels. J. Mater. Chem. B. 2019, 7, 24–29. DOI: 10.1039/c8tb02629g.
  • Tian, K.; Bae, J.; Bakarich, S. E.; Yang, C.; Gately, R. D.; Spinks, G. M.; in het Panhuis, M.; Suo, Z.; Vlassak, J. J. 3D Printing of Transparent and Conductive Heterogeneous Hydrogel–Elastomer Systems. Adv. Mater. 2017, 29, 1604827. DOI: 10.1002/adma.201604827.
  • Yuk, H.; Zhang, T.; Parada, G. A.; Liu, X.; Zhao, X. Skin-Inspired Hydrogel–Elastomer Hybrids with Robust Interfaces and Functional Microstructures. Nat. Commun. 2016, 7, 1–11. DOI: 10.1038/ncomms12028.
  • Yuk, H.; Zhang, T.; Lin, S.; Parada, G. A.; Zhao, X. Tough Bonding of Hydrogels to Diverse non-porous surfaces. Nat. Mater. 2016, 15, 190–196. DOI: 10.1038/nmat4463.
  • Zhu, T.; Cheng, Y.; Cao, C.; Mao, J.; Li, L.; Huang, J.; Gao, S.; Dong, X.; Chen, Z.; Lai, Y. A Semi-Interpenetrating Network Ionic Hydrogel for Strain Sensing with High Sensitivity, Large Strain Range, and Stable Cycle Performance. Chem. Engng. J. 2020, 385, 123912. DOI: 10.1016/j.cej.2019.123912.
  • Sun, X.; Qin, Z.; Ye, L.; Zhang, H.; Yu, Q.; Wu, X.; Li, J.; Yao, F. Carbon Nanotubes Reinforced Hydrogel as Flexible Strain Sensor with High Stretchability and Mechanically Toughness. Chem. Engng. J. 2020, 382, 122832. DOI: 10.1016/j.cej.2019.122832.
  • Shuai, L.; Guo, Z. H.; Zhang, P.; Wan, J.; Pu, X.; Wang, Z. L. Stretchable, Self-Healing, Conductive Hydrogel Fibers for Strain Sensing and Triboelectric Energy-Harvesting Smart Textiles. Nano Energy 2020, 78, 105389. DOI: 10.1016/j.nanoen.2020.105389.
  • Han, S.; Liu, C.; Lin, X.; Zheng, J.; Wu, J.; Liu, C. Dual Conductive Network Hydrogel for a Highly Conductive, Self-Healing, anti-Freezing, and Non-Drying Strain Sensor. ACS Appl. Polym. Mater. 2020, 2, 996–1005. DOI: 10.1021/acsapm.9b01198.
  • Visentin, F.; Fiorini, P.; Suzuki, K. A Deformable Smart Skin for Continuous Sensing Based on Electrical Impedance Tomography. Sensors 2016, 16, 1928. DOI: 10.3390/s16111928.
  • Duan, X.; Taurand, S.; Soleimani, M. Artificial Skin through Super-Sensing Method and Electrical Impedance Data from Conductive Fabric with Aid of Deep Learning. Sci. Rep. 2019, 9, 1–11. DOI: 10.1038/s41598-019-45484-6.
  • Silvera-Tawil, D.; Rye, D.; Soleimani, M.; Velonaki, M. Electrical Impedance Tomography for Artificial Sensitive Robotic Skin: A Review. IEEE Sensors J. 2015, 15, 2001–2016. DOI: 10.1109/JSEN.2014.2375346.
  • Zou, Y.; Guo, Z. A Review of Electrical Impedance Techniques for Breast Cancer Detection. Med. Eng. Phys. 2003, 25, 79–90. DOI: 10.1016/s1350-4533(02)00194-7.
  • Sun, X.; Liu, T.; Zhou, J.; Yao, L.; Liang, S.; Zhao, M.; Liu, C.; Xue, N. Recent Applications of Different Microstructure Designs in High Performance Tactile Sensors: A Review. IEEE Sensors J. 2021, 21, 10291–10303. DOI: 10.1109/JSEN.2021.3061677.
  • Park, M.; Bok, B. G.; Ahn, J. H.; Kim, M. S. Recent Advances in Tactile Sensing Technology. Micromachines 2018, 9, 321. DOI: 10.3390/mi9070321.
  • Loos, M. Chapter 5: Fundamentals of Polymer Matrix Composites Containing CNTs. In Carbon Nanotube Reinforced Composites, Loos, M., Ed.; William Andrew Publishing: Oxford, 2015; pp 125–170.
  • Lee, G.-W.; Park, M.; Kim, J.; Lee, J. I.; Yoon, H. G. Enhanced Thermal Conductivity of Polymer Composites Filled with Hybrid Filler. Compos Part A. Appl. Sci. Manufact. 2006, 37, 727–734. DOI: 10.1016/j.compositesa.2005.07.006.
  • Ghaleb, Z.; Mariatti, M.; Ariff, Z. Properties of Graphene Nanopowder and Multi-Walled Carbon Nanotube-Filled Epoxy Thin-Film Nanocomposites for Electronic Applications: The Effect of Sonication Time and Filler Loading. Compos. Part A. Appl. Sci. Manufact. 2014, 58, 77–83. DOI: 10.1016/j.compositesa.2013.12.002.
  • Luo, Z.; Koo, J. Quantitative Study of the Dispersion Degree in Carbon Nanofiber/Polymer and Carbon Nanotube/Polymer Nanocomposites. Mater. Lett. 2008, 62, 3493–3496. DOI: 10.1016/j.matlet.2008.03.010.
  • Natarajan, T. S.; Eshwaran, S. B.; Stöckelhuber, K. W.; Wießner, S.; Pötschke, P.; Heinrich, G.; Das, A. Strong Strain Sensing Performance of Natural Rubber Nanocomposites. ACS Appl. Mater. Interf. 2017, 9, 4860–4872. DOI: 10.1021/acsami.6b13074.
  • Schütt, F.; Signetti, S.; Krüger, H.; Röder, S.; Smazna, D.; Kaps, S.; Gorb, S. N.; Mishra, Y. K.; Pugno, N. M.; Adelung, R. Hierarchical Self-Entangled Carbon Nanotube Tube Networks. Nat. Commun. 2017, 8, 1–10. DOI: 10.1038/s41467-017-01324-7.
  • Yang, H.; Yuan, L.; Yao, X.; Zheng, Z.; Fang, D. Monotonic Strain Sensing Behavior of Self-Assembled Carbon Nanotubes/Graphene Silicone Rubber Composites under Cyclic Loading. Compos. Sci. Technol. 2020, 200, 108474. DOI: 10.1016/j.compscitech.2020.108474.
  • DeArmitt, C.; Rothon, R. Particulate Fillers, Selection and Use in Polymer Composites. In Encyclopedia of Polymers and Composites, Springer-Verlag Heidelberg: Berlin, 2017; pp 1–19.
  • Sang, Z.; Ke, K.; Manas-Zloczower, I. Effect of Carbon Nanotube Morphology on Properties in Thermoplastic Elastomer Composites for Strain Sensors. Compos. Part A. Appl Sci. Manuf. 2019, 121, 207–212. DOI: 10.1016/j.compositesa.2019.03.007.
  • Niu, D.; Jiang, W.; Ye, G.; Wang, K.; Yin, L.; Shi, Y.; Chen, B.; Luo, F.; Liu, H. Graphene-Elastomer Nanocomposites Based Flexible Piezoresistive Sensors for Strain and Pressure Detection. Mater. Res. Bull. 2018, 102, 92–99. DOI: 10.1016/j.materresbull.2018.02.005.
  • Gul, J. Z.; Sajid, M.; Choi, K. H. Retracted Article: 3D Printed Highly Flexible Strain Sensor Based on TPU–Graphene Composite for Feedback from High Speed Robotic Applications. J. Mater. Chem. C. 2019, 7, 4692–4701. DOI: 10.1039/C8TC03423K.
  • Wei, M.; Zhang, F.; Wang, W.; Alexandridis, P.; Zhou, C.; Wu, G. 3D Direct Writing Fabrication of Electrodes for Electrochemical Storage Devices. J. Power Sources 2017, 354, 134–147. DOI: 10.1016/j.jpowsour.2017.04.042.
  • Naji, A.; Krause, B.; Pötschke, P.; Ameli, A. Hybrid Conductive Filler/Polycarbonate Composites with Enhanced Electrical and Thermal Conductivities for Bipolar Plate Applications. Polym. Compos. 2019, 40, 3189–3198. DOI: 10.1002/pc.25169.
  • Liu, H.; Gao, J.; Huang, W.; Dai, K.; Zheng, G.; Liu, C.; Shen, C.; Yan, X.; Guo, J.; Guo, Z. Electrically Conductive Strain Sensing Polyurethane Nanocomposites with Synergistic Carbon Nanotubes and Graphene Bifillers. Nanoscale 2016, 8, 12977–12989. DOI: 10.1039/c6nr02216b.
  • Zhang, F.; Wu, S.; Peng, S.; Wang, C. H. The Effect of Dual-Scale Carbon Fibre Network on Sensitivity and Stretchability of Wearable Sensors. Compos. Sci. Technol. 2018, 165, 131–139. DOI: 10.1016/j.compscitech.2018.06.019.
  • Ke, K.; Bonab, V. S.; Yuan, D.; Manas-Zloczower, I. Piezoresistive Thermoplastic Polyurethane Nanocomposites with Carbon Nanostructures. Carbon 2018, 139, 52–58. DOI: 10.1016/j.carbon.2018.06.037.
  • Ke, K.; Pötschke, P.; Wiegand, N.; Krause, B.; Voit, B. Tuning the Network Structure in Poly(vinylidene fluoride)/Carbon Nanotube Nanocomposites Using Carbon Black: Toward Improvements of Conductivity and Piezoresistive Sensitivity . ACS Appl. Mater. Interf. 2016, 8, 14190–14199. DOI: 10.1021/acsami.6b03451.
  • Zheng, Y.; Li, Y.; Li, Z.; Wang, Y.; Dai, K.; Zheng, G.; Liu, C.; Shen, C. The Effect of Filler Dimensionality on the Electromechanical Performance of Polydimethylsiloxane Based Conductive Nanocomposites for Flexible Strain Sensors. Compos. Sci. Technol. 2017, 139, 64–73. DOI: 10.1016/j.compscitech.2016.12.014.
  • Uddin, M. E.; Kuila, T.; Nayak, G. C.; Kim, N. H.; Ku, B.-C.; Lee, J. H. Effects of Various Surfactants on the Dispersion Stability and Electrical Conductivity of Surface Modified Graphene. J. Alloys Compd. 2013, 562, 134–142. DOI: 10.1016/j.jallcom.2013.01.127.
  • Costa, P.; Silva, J.; Ansón-Casaos, A.; Martinez, M.; Abad, M. J.; Viana, J.; Lanceros-Méndez, S. Effect of Carbon Nanotube Type and Functionalization on the Electrical, Thermal, Mechanical and Electromechanical Properties of Carbon Nanotube/Styrene–Butadiene–Styrene Composites for Large Strain Sensor Applications. Compos. Part B. Engng. 2014, 61, 136–146. DOI: 10.1016/j.compositesb.2014.01.048.
  • Yadav, S. K.; Mahapatra, S. S.; Cho, J. W. Tailored Dielectric and Mechanical Properties of Noncovalently Functionalized Carbon Nanotube/Poly (Styrene‐b‐(Ethylene‐co‐Butylene)‐b‐Styrene) Nanocomposites. J. Appl. Polym. Sci. 2013, 129, 2305–2312. DOI: 10.1002/app.38938.
  • Sebastián, D.; Suelves, I.; Moliner, R.; Lázaro, M. The Effect of the Functionalization of Carbon Nanofibers on Their Electronic Conductivity. Carbon 2010, 48, 4421–4431. DOI: 10.1016/j.carbon.2010.07.059.
  • Ji, M.; Deng, H.; Yan, D.; Li, X.; Duan, L.; Fu, Q. Selective Localization of Multi-Walled Carbon Nanotubes in Thermoplastic Elastomer Blends: An Effective Method for Tunable Resistivity–Strain Sensing Behavior. Compos. Sci. Technol. 2014, 92, 16–26. DOI: 10.1016/j.compscitech.2013.11.018.
  • Wu, X.; Lu, C.; Han, Y.; Zhou, Z.; Yuan, G.; Zhang, X. Cellulose Nanowhisker Modulated 3D Hierarchical Conductive Structure of Carbon Black/Natural Rubber Nanocomposites for Liquid and Strain Sensing Application. Compos. Sci. Technol. 2016, 124, 44–51. DOI: 10.1016/j.compscitech.2016.01.012.
  • Duan, L.; D'hooge, D.; Spoerk, M.; Cornillie, P.; Cardon, L. Facile and Low-Cost Route for Sensitive Stretchable Sensors by Controlling Kinetic and Thermodynamic Conductive Network Regulating Strategies. ACS Appl. Mater. Interf. 2018, 10, 22678–22691. DOI: 10.1021/acsami.8b03967.
  • Duan, L.; Spoerk, M.; Wieme, T.; Cornillie, P.; Xia, H.; Zhang, J.; Cardon, L.; D'hooge, D. R. Designing Formulation Variables of Extrusion-Based Manufacturing of Carbon Black Conductive Polymer Composites for Piezoresistive Sensing. Compos. Sci. Technol. 2019, 171, 78–85. DOI: 10.1016/j.compscitech.2018.12.009.
  • Salaeh, S.; Das, A.; Stöckelhuber, K. W.; Wießner, S. Fabrication of a Strain Sensor from a Thermoplastic Vulcanizate with an Embedded Interconnected Conducting Filler Network. Compos. Part A. Appl. Sci. Manufact. 2020, 130, 105763. DOI: 10.1016/j.compositesa.2020.105763.
  • Oh, J.; Yang, J. C.; Kim, J.-O.; Park, H.; Kwon, S. Y.; Lee, S.; Sim, J. Y.; Oh, H. W.; Kim, J.; Park, S. Pressure Insensitive Strain Sensor with Facile Solution-Based Process for Tactile Sensing Applications. ACS Nano. 2018, 12, 7546–7553. DOI: 10.1021/acsnano.8b03488.
  • Sheng, N.; Ji, P.; Zhang, M.; Wu, Z.; Liang, Q.; Chen, S.; Wang, H. High Sensitivity Polyurethane‐Based Fiber Strain Sensor with Porous Structure via Incorporation of Bacterial Cellulose Nanofibers. Adv. Electron. Mater. 2021, 7, 2001235. DOI: 10.1002/aelm.202001235.
  • Zhao, S.; Gao, Y.; Zhang, G.; Deng, L.; Li, J.; Sun, R.; Wong, C.-P. Covalently Bonded Nitrogen-Doped Carbon-Nanotube-Supported Ag Hybrid Sponges: Synthesis, Structure Manipulation, and Its Application for Flexible Conductors and Strain-Gauge Sensors. Carbon 2015, 86, 225–234. DOI: 10.1016/j.carbon.2015.01.033.
  • Luo, S.; Samad, Y. A.; Chan, V.; Liao, K. Cellular Graphene: Fabrication, Mechanical Properties, and Strain-Sensing Applications. Matter 2019, 1, 1148–1202. DOI: 10.1016/j.matt.2019.10.001.
  • Husain, Z.; Madjid, N. A.; Liatsis, P. Tactile Sensing Using Machine Learning-Driven Electrical Impedance Tomography. IEEE Sensors J. 2021, 21, 11628–11642. DOI: 10.1109/JSEN.2021.3054870.
  • Bera, T. K. "A schematic of the modern EIT system and its instrumentation" of Electrical Impedance Tomography. Medical Imaging Study Group at Yonsei University, Korea 2012, https://web.yonsei.ac.kr/seoj/eit.htm.
  • Roh, E.; Hwang, B.-U.; Kim, D.; Kim, B.-Y.; Lee, N.-E. Stretchable, Transparent, Ultrasensitive, and Patchable Strain Sensor for Human-Machine Interfaces Comprising a Nanohybrid of Carbon Nanotubes and Conductive Elastomers. ACS Nano. 2015, 9, 6252–6261. DOI: 10.1021/acsnano.5b01613.
  • Granot, Y.; Ivorra, A.; Rubinsky, B. Frequency-Division Multiplexing for Electrical Impedance Tomography in Biomedical Applications. Int. J. Biomed. Imaging 2007, 2007, 1–9. DOI: 10.1155/2007/54798.
  • Liu, K.; Wu, Y.; Wang, S.; Wang, H.; Chen, H.; Chen, B.; Yao, J. Artificial Sensitive Skin for Robotics Based on Electrical Impedance Tomography. Advan. Intell. Syst. 2020, 2, 1900161. DOI: 10.1002/aisy.201900161.
  • Yao, A.; Yang, C. L.; Seo, J. K.; Soleimani, M. EIT-Based Fabric Pressure Sensing. Comput. Math. Methods Med. 2013, 2013, 1–9. DOI: 10.1155/2013/405325.
  • Ammari, H.; Kang, K.; Lee, K.; Seo, J. K. Electrical impedance tomography-based pressure-sensing using conductive membrane. arXiv preprint arXiv:1409.3650 2014.
  • Durlak, W.; Kwinta, P. Role of Electrical Impedance Tomography in Clinical Practice in Pediatric Respiratory Medicine. Intern. Scholarly Res. Notices 2013, 2013, 1–5. DOI: 10.1155/2013/529038.
  • Madjid, N. A.; Liatsis, P. In Object Segmentation in Electrical Impedance Tomography for Tactile Sensing. 2020 IEEE International Conference on Image Processing (ICIP), IEEE: 2020; pp 3050–3054. DOI: 10.1109/ICIP40778.2020.9191036.
  • Sarrar, S.; Gunister, E.; Vukusic, S.; Liatsis, P. In Materials Selection and Characterization of Fabric Membrane in Tactile Sensoring. 2020 Advances in Science and Engineering Technology International Conferences (ASET), IEEE: pp 1–7. DOI: 10.1109/ASET48392.2020.9118394.
  • Fan, Y.; Ying, L. Solving Electrical Impedance Tomography with Deep Learning. Comput. Phys. 2020, 404, 109119. DOI: 10.1016/j.jcp.2019.109119.
  • Husain, Z.; Liatsis, P. In 2019; pp A Neural Network-Based Local Decomposition Approach for Image Reconstruction in Electrical Impedance Tomography. 2019 IEEE International Conference on Imaging Systems and Techniques (IST), IEEE: 1–6. DOI: 10.1109/IST48021.2019.9010183.
  • Lee, J.; Kim, G.; Shin, D.-K.; Park, J. Solution-Processed Resistive Pressure Sensors Based on Sandwich Structures Using Silver Nanowires and Conductive Polymer. IEEE Sensors J. 2018, 18, 9919–9924. DOI: 10.1109/JSEN.2018.2876142.
  • Kim, S. O.; Han, C. J.; Lee, C.-R.; Kim, J.-W. Highly Transparent, Stretchable, and Conformable Silicone-Based Strain/Pressure-Sensitive Capacitor Using Adhesive Polydimethylsiloxane. J. Alloys Compd. 2020, 841, 155773. DOI: 10.1016/j.jallcom.2020.155773.
  • Sun, X.; Wang, C.; Chi, C.; Xue, N.; Liu, C. A Highly-Sensitive Flexible Tactile Sensor Array Utilizing Piezoresistive Carbon Nanotube–Polydimethylsiloxane Composite. J. Micromech. Microeng. 2018, 28, 105011. DOI: 10.1088/1361-6439/aaceb9.
  • Yang, Y.-F.; Tao, L.-Q.; Pang, Y.; Tian, H.; Ju, Z.-Y.; Wu, X.-M.; Yang, Y.; Ren, T.-L. An Ultrasensitive Strain Sensor with a Wide Strain Range Based on Graphene Armour Scales. Nanoscale 2018, 10, 11524–11530. DOI: 10.1039/c8nr02652a.
  • Zhang, F.; Wu, S.; Peng, S.; Sha, Z.; Wang, C. H. Synergism of Binary Carbon Nanofibres and Graphene Nanoplates in Improving Sensitivity and Stability of Stretchable Strain Sensors. Compos. Sci. Technol. 2019, 172, 7–16. DOI: 10.1016/j.compscitech.2018.12.031.
  • Xue, P.; Chen, C.; Diao, D. Ultra-Sensitive Flexible Strain Sensor Based on Graphene Nanocrystallite Carbon Film with Wrinkle Structures. Carbon 2019, 147, 227–235. DOI: 10.1016/j.carbon.2019.03.001.
  • Fan, X.; Nie, W.; Tsai, H.; Wang, N.; Huang, H.; Cheng, Y.; Wen, R.; Ma, L.; Yan, F.; Xia, Y. PEDOT:PSS for Flexible and Stretchable Electronics: Modifications, Strategies, and Applications. Adv. Sci. (Weinh) 2019, 6, 1900813. DOI: 10.1002/advs.201900813.
  • Zhu, Y.; Li, J.; Cai, H.; Wu, Y.; Ding, H.; Pan, N.; Wang, X. Highly Sensitive and Skin-like Pressure Sensor Based on Asymmetric Double-Layered Structures of Reduced Graphite Oxide. Sens. Actuators B. 2018, 255, 1262–1267. DOI: 10.1016/j.snb.2017.08.116.
  • Liu, Y.; Zhang, D.; Wang, K.; Liu, Y.; Shang, Y. A Novel Strain Sensor Based on Graphene Composite Films with Layered Structure. Compos. Part A. Appl. Sci. Manufact. 2016, 80, 95–103. DOI: 10.1016/j.compositesa.2015.10.010.
  • Cho, D.; Park, J.; Kim, J.; Kim, T.; Kim, J.; Park, I.; Jeon, S. Three-Dimensional Continuous Conductive Nanostructure for Highly Sensitive and Stretchable Strain Sensor. ACS Appl. Mater. Interf. 2017, 9, 17369–17378. DOI: 10.1021/acsami.7b03052.
  • Medina Rodríguez, B. Inkjet and Screen Printing for Electronic Applications, 2016; pp 1–225.
  • Liu, C.; Huang, N.; Xu, F.; Tong, J.; Chen, Z.; Gui, X.; Fu, Y.; Lao, C. 3D Printing Technologies for Flexible Tactile Sensors toward Wearable Electronics and Electronic Skin. Polymers 2018, 10, 629. DOI: 10.3390/polym10060629.
  • Kumar, K. S.; Chen, P. Y.; Ren, H. L. A Review of Printable Flexible and Stretchable Tactile Sensors. Research (Wash DC) 2019, 2019, Unsp3018568. DOI: 10.34133/2019/3018568.
  • Nayak, L.; Mohanty, S.; Nayak, S. K.; Ramadoss, A. A Review on Inkjet Printing of Nanoparticle Inks for Flexible Electronics. J. Mater. Chem. C. 2019, 7, 8771–8795. DOI: 10.1039/C9TC01630A.
  • Gorissen, B.; Milana, E.; Reynaerts, D.; De Voider, M. In Lithographic Production of Vertically Aligned CNT Strain Sensors for Integration in Soft Robotic Microactuators. 2018 IEEE International Conference on Soft Robotics (RoboSoft), IEEE: 2018; pp 400–405. DOI: 10.1109/ROBOSOFT.2018.8404952.
  • Baran, D.; Corzo, D.; Blazquez, G. T. Flexible Electronics: Status, Challenges and Opportunities. Front Electron. 2020, 1.594003. DOI: 10.3389/felec.2020.594003.
  • Bringans, R.; Veres, J. In Challenges and Opportunities in Flexible Electronics. 2016 IEEE International Electron Devices Meeting (IEDM), IEEE: 2016; pp 6.4. 1–6.4. 2. DOI: 10.1109/IEDM.2016.7838361.
  • Yin, Z.; Huang, Y.; Bu, N.; Wang, X.; Xiong, Y. Inkjet Printing for Flexible Electronics: Materials, Processes and Equipments. Chin. Sci. Bull. 2010, 55, 3383–3407. DOI: 10.1007/s11434-010-3251-y.
  • Francis, L. F.; Roberts, C. C. Chapter 6 - Dispersion and Solution Processes. In Materials Processing, Francis, L. F., Ed.; Academic Press: Boston, 2016; pp 415–512.
  • Ukoba, K.; Eloka-Eboka, A.; Inambao, F. Review of Nanostructured NiO Thin Film Deposition Using the Spray Pyrolysis Technique. Renewable Sustainable Energy Rev. 2018, 82, 2900–2915. DOI: 10.1016/j.rser.2017.10.041.
  • Pasquarelli, R. M.; Ginley, D. S.; O'Hayre, R. Solution Processing of Transparent Conductors: From Flask to Film. Chem. Soc. Rev. 2011, 40, 5406–5441. DOI: 10.1039/c1cs15065k.
  • Zhan, P.; Zhai, W.; Wang, N.; Wei, X.; Zheng, G.; Dai, K.; Liu, C.; Shen, C. Electrically Conductive Carbon Black/Electrospun Polyamide 6/Poly (Vinyl Alcohol) Composite Based Strain Sensor with Ultrahigh Sensitivity and Favorable Repeatability. Mater. Lett. 2019, 236, 60–63. DOI: 10.1016/j.matlet.2018.10.068.
  • Wang, X.; Li, J.; Song, H.; Huang, H.; Gou, J. Highly Stretchable and Wearable Strain Sensor Based on Printable Carbon Nanotube Layers/Polydimethylsiloxane Composites with Adjustable Sensitivity. ACS Appl. Mater. Interf. 2018, 10, 7371–7380. DOI: 10.1021/acsami.7b17766.
  • El Zein, A.; Huppé, C.; Cochrane, C. Development of a Flexible Strain Sensor Based on PEDOT: PSS for Thin Film Structures. Sensors 2017, 17, 1337. DOI: 10.3390/s17061337.
  • Kim, T.; Shin, J.; Lee, K.; Jung, Y.; Lee, S. B.; Yang, S. J. A Universal Surface Modification Method of Carbon Nanotube Fibers with Enhanced Tensile Strength. Compos. Part A. Appl. Sci. Manufact. 2021, 140, 106182. DOI: 10.1016/j.compositesa.2020.106182.
  • Amjadi, M.; Pichitpajongkit, A.; Lee, S.; Ryu, S.; Park, I. Highly Stretchable and Sensitive Strain Sensor Based on Silver nanowire-elastomer nanocomposite. ACS Nano. 2014, 8, 5154–5163. DOI: 10.1021/nn501204t.
  • Wu, S.; Zhang, J.; Ladani, R. B.; Ravindran, A. R.; Mouritz, A. P.; Kinloch, A. J.; Wang, C. H. Novel Electrically Conductive Porous PDMS/Carbon Nanofiber Composites for Deformable Strain Sensors and Conductors. ACS Appl. Mater. Interf. 2017, 9, 14207–14215. DOI: 10.1021/acsami.7b00847.
  • Qu, H.; Wang, Y.; Ye, Y. S.; Zhou, W.; Bai, S. P.; Zhou, X. P.; Peng, H. Y.; Xie, X. L.; Mai, Y.-W. A Promising Nanohybrid of Silicon Carbide Nanowires Scrolled by Graphene Oxide Sheets with a Synergistic Effect for Poly (Propylene Carbonate) Nanocomposites. J. Mater. Chem. A. 2017, 5, 22361–22371. DOI: 10.1039/C7TA06080G.
  • Guo, X.; Huang, Y.; Zhao, Y.; Mao, L.; Gao, L.; Pan, W.; Zhang, Y.; Liu, P. Highly Stretchable Strain Sensor Based on SWCNTs/CB Synergistic Conductive Network for Wearable Human-Activity Monitoring and Recognition. Smart Mater. Struct. 2017, 26, 095017. DOI: 10.1088/1361-665X/aa79c3.
  • Yang, C.; Abodurexiti, A.; Maimaitiyiming, X. Flexible Humidity and Pressure Sensors Realized by Molding and Inkjet Printing Processes with Sandwich Structure. Macromol. Mater. Eng. 2020, 305, 2000287. DOI: 10.1002/mame.202000287.
  • Villmow, T.; Pegel, S.; John, A.; Rentenberger, R.; Pötschke, P. Liquid Sensing: Smart Polymer/CNT Composites. Mater. Today 2011, 14, 340–345. DOI: 10.1016/S1369-7021(11)70164-X.
  • Mamishev, A. V.; Sundara-Rajan, K.; Yang, F.; Du, Y.; Zahn, M. Interdigital Sensors and Transducers. Proc. IEEE 2004, 92, 808–845. DOI: 10.1109/JPROC.2004.826603.
  • Li, H.; Wu, K.; Xu, Z.; Wang, Z.; Meng, Y.; Li, L. Ultrahigh-Sensitivity Piezoresistive Pressure Sensors for Detection of Tiny Pressure. ACS Appl. Mater. Interf. 2018, 10, 20826–20834. DOI: 10.1021/acsami.8b03639.
  • Pan, H.; Xie, G.; Pang, W.; Wang, S.; Wang, Y.; Jiang, Z.; Du, X.; Tai, H. Surface Engineering of a 3D Topological Network for Ultrasensitive Piezoresistive Pressure Sensors. ACS Appl. Mater. Interf. 2020, 12, 38805–38812. DOI: 10.1021/acsami.0c11658.
  • Yu, Y.; Zeng, J.; Chen, C.; Xie, Z.; Guo, R.; Liu, Z.; Zhou, X.; Yang, Y.; Zheng, Z. Three-dimensional compressible and stretchable conductive composites . Adv. Mater. 2014, 26, 810–815. DOI: 10.1002/adma.201303662.
  • Ding, Y.; Xu, T.; Onyilagha, O.; Fong, H.; Zhu, Z. Recent Advances in Flexible and Wearable Pressure Sensors Based on Piezoresistive 3D Monolithic Conductive Sponges. ACS Appl. Mater. Interf. 2019, 11, 6685–6704. DOI: 10.1021/acsami.8b20929.
  • Zheng, Q.; Liu, X.; Xu, H.; Cheung, M.-S.; Choi, Y.-W.; Huang, H.-C.; Lei, H.-Y.; Shen, X.; Wang, Z.; Wu, Y.; et al. Sliced Graphene Foam Films for Dual-Functional Wearable Strain Sensors and Switches. Nanoscale Horiz. 2018, 3, 35–44. DOI: 10.1039/c7nh00147a.
  • Li, Y.; He, T.; Shi, L.; Wang, R.; Sun, J. Strain Sensor with Both a Wide Sensing Range and High Sensitivity Based on Braided Graphene Belts. ACS Appl. Mater. Interf. 2020, 12, 17691–17698. DOI: 10.1021/acsami.9b21921.
  • Jing, Z.; Guang-Yu, Z.; Dong-Xia, S. Review of Graphene-Based Strain Sensors. Chin. Phys. B. 2013, 22, 057701.
  • Zheng, S.; Wu, X.; Huang, Y.; Xu, Z.; Yang, W.; Liu, Z.; Huang, S.; Xie, B.; Yang, M. Highly Sensitive and Multifunctional Piezoresistive Sensor Based on Polyaniline Foam for Wearable Human-Activity Monitoring. Compos. Part A. Appl. Sci. Manufact 2019, 121, 510–516. DOI: 10.1016/j.compositesa.2019.04.014.
  • Xu, R.; Lu, Y.; Jiang, C.; Chen, J.; Mao, P.; Gao, G.; Zhang, L.; Wu, S. Facile Fabrication of Three-Dimensional Graphene Foam/Poly(dimethylsiloxane) Composites and Their Potential Application as Strain Sensor. ACS Appl. Mater. Interf. 2014, 6, 13455–13460. DOI: 10.1021/am502208g.
  • Ali, M. M.; Maddipatla, D.; Narakathu, B. B.; Chlaihawi, A. A.; Emamian, S.; Janabi, F.; Bazuin, B. J.; Atashbar, M. Z. Printed Strain Sensor Based on Silver Nanowire/Silver Flake Composite on Flexible and Stretchable TPU Substrate. Sens. Actuators A. 2018, 274, 109–115. DOI: 10.1016/j.sna.2018.03.003.
  • Min, S.-H.; Lee, G.-Y.; Ahn, S.-H. Direct Printing of Highly Sensitive, Stretchable, and Durable Strain Sensor Based on Silver Nanoparticles/Multi-Walled Carbon Nanotubes Composites. Compos. Part B. Engng 2019, 161, 395–401. DOI: 10.1016/j.compositesb.2018.12.107.
  • Lin, H.-W.; Chang, C.-P.; Hwu, W.-H.; Ger, M.-D. The Rheological Behaviors of Screen-Printing Pastes. J. Mater. Process. Technol. 2008, 197, 284–291. DOI: 10.1016/j.jmatprotec.2007.06.067.
  • Xu, F.; Zhu, Y. Highly Conductive and Stretchable Silver Nanowire Conductors. Adv. Mater. 2012, 24, 5117–5122. DOI: 10.1002/adma.201201886.
  • Yao, S.; Zhu, Y. Wearable Multifunctional Sensors Using Printed Stretchable Conductors Made of Silver Nanowires. Nanoscale 2014, 6, 2345–2352. DOI: 10.1039/c3nr05496a.
  • Zymelka, D.; Yamashita, T.; Sun, X.; Kobayashi, T. Printed Strain Sensors Based on an Intermittent Conductive Pattern Filled with Resistive Ink Droplets. Sensors 2020, 20, 4181. DOI: 10.3390/s20154181.
  • Shi, X.; Liu, S.; Sun, Y.; Liang, J.; Chen, Y. Lowering Internal Friction of 0D–1D–2D Ternary Nanocomposite‐Based Strain Sensor by Fullerene to Boost the Sensing Performance. Adv. Funct. Mater. 2018, 28, 1800850. DOI: 10.1002/adfm.201800850.
  • Lee, J.; Pyo, S.; Kwon, D. S.; Jo, E.; Kim, W.; Kim, J. Ultrasensitive Strain Sensor Based on Separation of Overlapped Carbon Nanotubes. Small 2019, 15, 1805120. DOI: 10.1002/smll.201805120.
  • Ahmad, Z. Polymer Dielectric Materials. In Dielectric Material, IntechOpen: 2012; pp 1–26.
  • Yang, J. C.; Kim, J.-O.; Oh, J.; Kwon, S. Y.; Sim, J. Y.; Kim, D. W.; Choi, H. B.; Park, S. Microstructured Porous Pyramid-Based Ultrahigh Sensitive Pressure Sensor Insensitive to Strain and Temperature. ACS Appl. Mater. Interf. 2019, 11, 19472–19480. DOI: 10.1021/acsami.9b03261.
  • Cheng, W.; Wang, J.; Ma, Z.; Yan, K.; Wang, Y.; Wang, H.; Li, S.; Li, Y.; Pan, L.; Shi, Y. Flexible Pressure Sensor with High Sensitivity and Low Hysteresis Based on a Hierarchically Microstructured Electrode. IEEE Electron Device Lett. 2018, 39, 288–291. DOI: 10.1109/LED.2017.2784538.
  • Tee, B. C. K.; Chortos, A.; Dunn, R. R.; Schwartz, G.; Eason, E.; Bao, Z. Tunable Flexible Pressure Sensors Using Microstructured Elastomer Geometries for Intuitive Electronics. Adv. Funct. Mater. 2014, 24, 5427–5434. DOI: 10.1002/adfm.201400712.
  • Xu, Y.; Tsai, Y-p.; Tu, K.-N.; Zhao, B.; Liu, Q.-Z.; Brongo, M.; Sheng, G. T.; Tung, C. Dielectric Property and Microstructure of a Porous Polymer Material with Ultralow Dielectric Constant. Appl. Phys. Lett. 1999, 75, 853–855. DOI: 10.1063/1.124535.
  • Chen, S.; Zhuo, B.; Guo, X. Large Area One-Step Facile Processing of Microstructured Elastomeric Dielectric Film for High Sensitivity and Durable Sensing over Wide Pressure Range. ACS Appl. Mater. Interf. 2016, 8, 20364–20370. DOI: 10.1021/acsami.6b05177.
  • Kwon, D.; Lee, T.-I.; Shim, J.; Ryu, S.; Kim, M. S.; Kim, S.; Kim, T.-S.; Park, I. Highly Sensitive, Flexible, and Wearable Pressure Sensor Based on a Giant Piezocapacitive Effect of Three-Dimensional Microporous Elastomeric Dielectric Layer. ACS Appl. Mater. Interf. 2016, 8, 16922–16931. DOI: 10.1021/acsami.6b04225.
  • Jung, Y.; Lee, W.; Jung, K.; Park, B.; Park, J.; Ko, J.; Cho, H. A Highly Sensitive and Flexible Capacitive Pressure Sensor Based on a Porous Three-Dimensional PDMS/Microsphere Composite. Polymers 2020, 12, 1412. DOI: 10.3390/polym12061412.
  • Wang, X.; Xia, Z.; Zhao, C.; Huang, P.; Zhao, S.; Gao, M.; Nie, J. Microstructured Flexible Capacitive Sensor with High Sensitivity Based on Carbon Fiber-Filled Conductive Silicon Rubber. Sens. Actuators. A. 2020, 312, 112147. DOI: 10.1016/j.sna.2020.112147.
  • Zeng, X.; Wang, Z.; Zhang, H.; Yang, W.; Xiang, L.; Zhao, Z.; Peng, L.-M.; Hu, Y. Tunable, Ultrasensitive, and Flexible Pressure Sensors Based on Wrinkled Microstructures for Electronic Skins. ACS Appl. Mater. Interf. 2019, 11, 21218–21226. DOI: 10.1021/acsami.9b02518.
  • Ma, L.; Shuai, X.; Hu, Y.; Liang, X.; Zhu, P.; Sun, R.; Wong, C-p. A Highly Sensitive and Flexible Capacitive Pressure Sensor Based on a Micro-Arrayed Polydimethylsiloxane Dielectric Layer. J. Mater. Chem. C. 2018, 6, 13232–13240. DOI: 10.1039/C8TC04297G.
  • Lei, K. F.; Lee, K.-F.; Lee, M.-Y. Development of a Flexible PDMS Capacitive Pressure Sensor for Plantar Pressure Measurement. Microelectron. Eng. 2012, 99, 1–5. DOI: 10.1016/j.mee.2012.06.005.
  • Wan, Y.; Qiu, Z.; Huang, J.; Yang, J.; Wang, Q.; Lu, P.; Yang, J.; Zhang, J.; Huang, S.; Wu, Z.; Guo, C. F. Natural Plant Materials as Dielectric Layer for Highly Sensitive Flexible Electronic Skin. Small 2018, 14, 1801657. DOI: 10.1002/smll.201801657.
  • Mannsfeld, S. C.; Tee, B. C.; Stoltenberg, R. M.; Chen, C. V. H.; Barman, S.; Muir, B. V.; Sokolov, A. N.; Reese, C.; Bao, Z. Highly Sensitive Flexible Pressure Sensors with Microstructured Rubber Dielectric Layers. Nat. Mater. 2010, 9, 859–864. DOI: 10.1038/nmat2834.
  • Zhang, W.; Sun, W.; Xiao, W.; Zhong, X.; Wu, C.; Guo, W. Numerical Simulation Analysis of Microstructure of Dielectric Layeasrs in Capacitive Pressure Sensors. IEEE Sensors J. 2019, 19, 3260–3266. DOI: 10.1109/JSEN.2019.2893336.
  • Zhao, S.; Ran, W.; Wang, D.; Yin, R.; Yan, Y.; Jiang, K.; Lou, Z.; Shen, G. 3D Dielectric Layer Enabled Highly Sensitive Capacitive Pressure Sensors for Wearable Electronics. ACS Appl. Mater. Interf. 2020, 12, 32023–32030. DOI: 10.1021/acsami.0c09893.
  • Guo, Z.; Mo, L.; Ding, Y.; Zhang, Q.; Meng, X.; Wu, Z.; Chen, Y.; Cao, M.; Wang, W.; Li, L. Printed and Flexible Capacitive Pressure Sensor with Carbon Nanotubes Based Composite Dielectric Layer. Micromachines 2019, 10, 715. DOI: 10.3390/mi10110715.
  • Wen, Z.; Yang, J.; Ding, H.; Zhang, W.; Wu, D.; Xu, J.; Shi, Z.; Xu, T.; Tian, Y.; Li, X. Ultra-Highly Sensitive, Low Hysteretic and Flexible Pressure Sensor Based on Porous MWCNTs/Ecoflex Elastomer Composites. J. Mater. Sci. Mater. Electron. 2018, 29, 20978–20983. DOI: 10.1007/s10854-018-0242-3.
  • Zhao, D.; Deng, G.; Liu, R.; Gu, L.; Li, Y. Study of Preparation and Film-Forming Performance of Carbon Nanotube-PDMS Composite Film. In Advances in Graphic Communication, Printing and Packaging Technology and Materials, Springer: Berlin, Germany, 2021; pp 692–697.
  • Mendes-Felipe, C.; Barbosa, J.; Gonçalves, S.; Pereira, N.; Costa, C.; Vilas-Vilela, J.; Lanceros-Mendez, S. High Dielectric Constant UV Curable Polyurethane Acrylate/Indium Tin Oxide Composites for Capacitive Sensing. Compos. Sci. Technol. 2020, 199, 108363. DOI: 10.1016/j.compscitech.2020.108363.
  • Wan, S.; Bi, H.; Zhou, Y.; Xie, X.; Su, S.; Yin, K.; Sun, L. Graphene Oxide as High-Performance Dielectric Materials for Capacitive Pressure Sensors. Carbon 2017, 114, 209–216. DOI: 10.1016/j.carbon.2016.12.023.
  • Lee, P.; Lee, J.; Lee, H.; Yeo, J.; Hong, S.; Nam, K. H.; Lee, D.; Lee, S. S.; Ko, S. H. Highly Stretchable and Highly Conductive Metal Electrode by Very Long Metal Nanowire Percolation Network. Adv. Mater. 2012, 24, 3326–3332. DOI: 10.1002/adma.201200359.
  • Pignanelli, J.; Schlingman, K.; Carmichael, T. B.; Rondeau-Gagné, S.; Ahamed, M. J. A Comparative Analysis of Capacitive-Based Flexible PDMS Pressure Sensors. Sens. Actuators A. 2019, 285, 427–436. DOI: 10.1016/j.sna.2018.11.014.
  • Yoon, S. G.; Chang, S. T. Microfluidic Capacitive Sensors with Ionic Liquid Electrodes and CNT/PDMS Nanocomposites for Simultaneous Sensing of Pressure and Temperature. J. Mater. Chem. C. 2017, 5, 1910–1919. DOI: 10.1039/C6TC03994D.
  • Lei, K. F.; Lee, K.-F.; Lee, M.-Y. A Flexible PDMS Capacitive Tactile Sensor with Adjustable Measurement Range for Plantar Pressure Measurement. Microsyst. Technol. 2014, 20, 1351–1358. DOI: 10.1007/s00542-013-1918-5.
  • Shen, X.; Nie, K.; Zheng, L.; Wang, Z.; Wang, Z.; Li, S.; Jin, C.; Sun, Q. Muscle-Inspired Capacitive Tactile Sensors with Superior Sensitivity in an Ultra-Wide Stress Range. J. Mater. Chem. C. 2020, 8, 5913–5922. DOI: 10.1039/D0TC00453G.
  • Hu, W.; Niu, X.; Zhao, R.; Pei, Q. Elastomeric Transparent Capacitive Sensors Based on an Interpenetrating Composite of Silver Nanowires and Polyurethane. Appl. Phys. Lett. 2013, 102, 083303. DOI: 10.1063/1.4794143.
  • Nag, A.; Feng, S.; Mukhopadhyay, S.; Kosel, J.; Inglis, D. 3D Printed Mould-Based Graphite/PDMS Sensor for Low-Force Applications. Sens. Actuators A. 2018, 280, 525–534. DOI: 10.1016/j.sna.2018.08.028.
  • Li, G.; Qiu, Z.; Wang, Y.; Hong, Y.; Wan, Y.; Zhang, J.; Yang, J.; Wu, Z.; Hong, W.; Guo, C. F. PEDOT:PSS/Grafted-PDMS Electrodes for Fully Organic and Intrinsically Stretchable Skin-like Electronics. ACS Appl. Mater. Interf. 2019, 11, 10373–10379. DOI: 10.1021/acsami.8b20255.
  • Zhao, P.; Zhang, R.; Tong, Y.; Zhao, X.; Zhang, T.; Tang, Q.; Liu, Y. Strain-Discriminable Pressure/Proximity Sensing of Transparent Stretchable Electronic Skin Based on PEDOT:PSS/SWCNT Electrodes. ACS Appl. Mater. Interf. 2020, 12, 55083–55093. DOI: 10.1021/acsami.0c16546.
  • Helseth, L. Interdigitated Electrodes Based on Liquid Metal Encapsulated in Elastomer as Capacitive Sensors and Triboelectric Nanogenerators. Nano Energy 2018, 50, 266–272. DOI: 10.1016/j.nanoen.2018.05.047.
  • Ali, S.; Maddipatla, D.; Narakathu, B. B.; Chlaihawi, A. A.; Emamian, S.; Janabi, F.; Bazuin, B. J.; Atashbar, M. Z. Flexible Capacitive Pressure Sensor Based on PDMS Substrate and Ga–in Liquid Metal. IEEE Sensors J. 2019, 19, 97–104. DOI: 10.1109/JSEN.2018.2877929.
  • Jiao, P. Emerging Artificial Intelligence in Piezoelectric and Triboelectric Nanogenerators. Nano Energy 2021, 88, 106227. DOI: 10.1016/j.nanoen.2021.106227.
  • Zheng, Q.; Shi, B.; Li, Z.; Wang, Z. L. Recent Progress on Piezoelectric and Triboelectric Energy Harvesters in Biomedical Systems. Adv. Sci. (Weinh) 2017, 4, 1700029. DOI: 10.1002/advs.201700029.
  • Ng, T.; Liao, W. Sensitivity Analysis and Energy Harvesting for a Self-Powered Piezoelectric Sensor. J. Intell. Mater. Syst. Struct. 2005, 16, 785–797. DOI: 10.1177/1045389X05053151.
  • Yang, Y.; Pan, H.; Xie, G.; Jiang, Y.; Chen, C.; Su, Y.; Wang, Y.; Tai, H. Flexible Piezoelectric Pressure Sensor Based on Polydopamine-Modified BaTiO3/PVDF Composite Film for Human Motion Monitoring. Sens. Actuators A. 2020, 301, 111789. DOI: 10.1016/j.sna.2019.111789.
  • Chen, X.; Li, X.; Shao, J.; An, N.; Tian, H.; Wang, C.; Han, T.; Wang, L.; Lu, B. High‐Performance Piezoelectric Nanogenerators with Imprinted P (VDF‐TrFE)/BaTiO3 Nanocomposite Micropillars for Self‐Powered Flexible Sensors. Small 2017, 13, 1604245. DOI: 10.1002/smll.201604245.
  • He, J.; Guo, X.; Yu, J.; Qian, S.; Hou, X.; Cui, M.; Yang, Y.; Mu, J.; Geng, W.; Chou, X. A High-Resolution Flexible Sensor Array Based on PZT Nanofibers. Nanotechnology 2020, 31, 155503. DOI: 10.1088/1361-6528/ab667a.
  • Chen, Z.; Wang, Z.; Li, X.; Lin, Y.; Luo, N.; Long, M.; Zhao, N.; Xu, J.-B. Flexible Piezoelectric-Induced Pressure Sensors for Static Measurements Based on Nanowires/Graphene Heterostructures. ACS Nano. 2017, 11, 4507–4513. DOI: 10.1021/acsnano.6b08027.
  • Deng, W.; Yang, T.; Jin, L.; Yan, C.; Huang, H.; Chu, X.; Wang, Z.; Xiong, D.; Tian, G.; Gao, Y.; et al. Cowpea-Structured PVDF/ZnO Nanofibers Based Flexible Self-Powered Piezoelectric Bending Motion Sensor towards Remote Control of Gestures. Nano Energy 2019, 55, 516–525. DOI: 10.1016/j.nanoen.2018.10.049.
  • Hou, X.; Zhang, S.; Yu, J.; Cui, M.; He, J.; Li, L.; Wang, X.; Chou, X. Flexible Piezoelectric Nanofibers/Polydimethylsiloxane‐Based Pressure Sensor for Self‐Powered Human Motion Monitoring. Energy Technol. 2020, 8, 1901242. DOI: 10.1002/ente.201901242.
  • Cheng, X.; Gong, Y.; Liu, Y.; Wu, Z.; Hu, X. Flexible Tactile Sensors for Dynamic Triaxial Force Measurement Based on Piezoelectric Elastomer. Smart Mater. Struct. 2020, 29, 075007. DOI: 10.1088/1361-665X/ab8748.
  • Seminara, L.; Pinna, L.; Valle, M.; Basirico, L.; Loi, A.; Cosseddu, P.; Bonfiglio, A.; Ascia, A.; Biso, M.; Ansaldo, A.; et al. Piezoelectric Polymer Transducer Arrays for Flexible Tactile Sensors. IEEE Sensors J. 2013, 13, 4022–4029. DOI: 10.1109/JSEN.2013.2268690.
  • Pinna, L.; Ibrahim, A.; Valle, M. Interface Electronics for Tactile Sensors Based on Piezoelectric Polymers. IEEE Sensors J. 2017, 17, 5937–5947. DOI: 10.1109/JSEN.2017.2730840.
  • Maity, K.; Garain, S.; Henkel, K.; Schmeißer, D.; Mandal, D. Self-Powered Human-Health Monitoring through Aligned PVDF Nanofibers Interfaced Skin-Interactive Piezoelectric Sensor. ACS Appl. Polym. Mater. 2020, 2, 862–878. DOI: 10.1021/acsapm.9b00846.
  • Zhu, G.; Zeng, Z.; Zhang, L.; Yan, X. Piezoelectricity in β-Phase PVDF Crystals: A Molecular Simulation Study. Comput. Mater. Sci. 2008, 44, 224–229. DOI: 10.1016/j.commatsci.2008.03.016.
  • Chen, X.; Shao, J.; An, N.; Li, X.; Tian, H.; Xu, C.; Ding, Y. Self-Powered Flexible Pressure Sensors with Vertically Well-Aligned Piezoelectric Nanowire Arrays for Monitoring Vital Signs. J. Mater. Chem. C 2015, 3, 11806–11814. DOI: 10.1039/C5TC02173A.
  • Lee, J. H.; Yoon, H. J.; Kim, T. Y.; Gupta, M. K.; Lee, J. H.; Seung, W.; Ryu, H.; Kim, S. W. Micropatterned P (VDF‐TrFE) Film‐Based Piezoelectric Nanogenerators for Highly Sensitive Self‐Powered Pressure Sensors. Adv. Funct. Mater. 2015, 25, 3203–3209. DOI: 10.1002/adfm.201500856.
  • Ueberschlag, P. PVDF Piezoelectric Polymer. Sensor Rev. 2001, 21, 118–126. DOI: 10.1108/02602280110388315.
  • Sappati, K. K.; Bhadra, S. Piezoelectric Polymer and Paper Substrates: A Review. Sensors 2018, 18, 3605. DOI: 10.3390/s18113605.
  • Yang, Z.; Zhou, S.; Zu, J.; Inman, D. High-Performance Piezoelectric Energy Harvesters and Their Applications. Joule 2018, 2, 642–697. DOI: 10.1016/j.joule.2018.03.011.
  • Kapat, K.; Shubhra, Q. T.; Zhou, M.; Leeuwenburgh, S. Piezoelectric Nano‐Biomaterials for Biomedicine and Tissue Regeneration. Adv. Funct. Mater. 2020, 30, 1909045. DOI: 10.1002/adfm.201909045.
  • Maciel, M.; Ribeiro, S.; Ribeiro, C.; Francesko, A.; Maceiras, A.; Vilas, J.; Lanceros-Méndez, S. Relation between Fiber Orientation and Mechanical Properties of Nano-Engineered Poly (Vinylidene Fluoride) Electrospun Composite Fiber Mats. Composites Part B. Engng 2018, 139, 146–154. DOI: 10.1016/j.compositesb.2017.11.065.
  • Sathiyanathan, P.; Dhevi, D. M.; Prabu, A. A.; Kim, K. J. Electrospun Polyvinylidene Fluoride-Polyoctafluoropentyl Acrylate-Hydroxyapatite Blend Based Piezoelectric Pressure Sensors. Macromol. Res. 2019, 27, 743–749. DOI: 10.1007/s13233-019-7116-2.
  • Shahzad, A.; Chen, Z.; Haidary, A. A.; Mehmood, A.; Khan, Z. M. Piezoelectric Pressure Sensors Based on GO-Modified P (VDF-TrFE) Fibers for Vacuum Applications. J. Mater. Sci. Mater. Electron. 2020, 31, 18627–18639. DOI: 10.1007/s10854-020-04405-4.
  • Wang, A.; Hu, M.; Zhou, L.; Qiang, X. Self-Powered Wearable Pressure Sensors with Enhanced Piezoelectric Properties of Aligned P (VDF-TrFE)/MWCNT Composites for Monitoring Human Physiological and Muscle Motion Signs. Nanomaterials 2018, 8, 1021. DOI: 10.3390/nano8121021.
  • Ahmed, A.; Hassan, I.; El‐Kady, M. F.; Radhi, A.; Jeong, C. K.; Selvaganapathy, P. R.; Zu, J.; Ren, S.; Wang, Q.; Kaner, R. B. Integrated Triboelectric Nanogenerators in the Era of the Internet of Things. Adv. Sci. (Weinh) 2019, 6, 1802230. DOI: 10.1002/advs.201802230.
  • Zhang, H.; Zhang, C.; Zhang, J.; Quan, L.; Huang, H.; Jiang, J.; Dong, S.; Luo, J. A Theoretical Approach for Optimizing Sliding-Mode Triboelectric Nanogenerator Based on Multi-Parameter Analysis. Nano Energy 2019, 61, 442–453. DOI: 10.1016/j.nanoen.2019.04.057.
  • Chen, T.; Shi, Q.; Zhu, M.; He, T.; Sun, L.; Yang, L.; Lee, C. Triboelectric Self-Powered Wearable Flexible Patch as 3D Motion Control Interface for Robotic Manipulator. ACS Nano. 2018, 12, 11561–11571. DOI: 10.1021/acsnano.8b06747.
  • Li, Y.; Chen, Z.; Zheng, G.; Zhong, W.; Jiang, L.; Yang, Y.; Jiang, L.; Chen, Y.; Wong, C.-P. A Magnetized Microneedle-Array Based Flexible Triboelectric-Electromagnetic Hybrid Generator for Human Motion Monitoring. Nano Energy 2020, 69, 104415. DOI: 10.1016/j.nanoen.2019.104415.
  • Yu, J.; Hou, X.; He, J.; Cui, M.; Wang, C.; Geng, W.; Mu, J.; Han, B.; Chou, X. Ultra-Flexible and High-Sensitive Triboelectric Nanogenerator as Electronic Skin for Self-Powered Human Physiological Signal Monitoring. Nano Energy 2020, 69, 104437. DOI: 10.1016/j.nanoen.2019.104437.
  • Liu, H.; Ji, Z.; Xu, H.; Sun, M.; Chen, T.; Sun, L.; Chen, G.; Wang, Z. Large-Scale and Flexible Self-Powered Triboelectric Tactile Sensing Array for Sensitive Robot Skin. Polymers 2017, 9, 586. DOI: 10.3390/polym9110586.
  • Yang, J.; Liu, P.; Wei, X.; Luo, W.; Yang, J.; Jiang, H.; Wei, D.; Shi, R.; Shi, H. Surface Engineering of Graphene Composite Transparent Electrodes for High-Performance Flexible Triboelectric Nanogenerators and Self-Powered Sensors. ACS Appl. Mater. Interf. 2017, 9, 36017–36025. DOI: 10.1021/acsami.7b10373.
  • Dong, Y.; Mallineni, S. S. K.; Maleski, K.; Behlow, H.; Mochalin, V. N.; Rao, A. M.; Gogotsi, Y.; Podila, R. Metallic MXenes: A New Family of Materials for Flexible Triboelectric Nanogenerators. Nano Energy 2018, 44, 103–110. DOI: 10.1016/j.nanoen.2017.11.044.
  • Zhou, K.; Zhao, Y.; Sun, X.; Yuan, Z.; Zheng, G.; Dai, K.; Mi, L.; Pan, C.; Liu, C.; Shen, C. Ultra-Stretchable Triboelectric Nanogenerator as High-Sensitive and Self-Powered Electronic Skins for Energy Harvesting and Tactile Sensing. Nano Energy 2020, 70, 104546. DOI: 10.1016/j.nanoen.2020.104546.
  • Zhao, L.; Zheng, Q.; Ouyang, H.; Li, H.; Yan, L.; Shi, B.; Li, Z. A Size-Unlimited Surface Microstructure Modification Method for Achieving High Performance Triboelectric Nanogenerator. Nano Energy 2016, 28, 172–178. DOI: 10.1016/j.nanoen.2016.08.024.
  • Scheibert, J.; Leurent, S.; Prevost, A.; Debrégeas, G. The Role of Fingerprints in the Coding of Tactile Information Probed with a Biomimetic Sensor. Science 2009, 323, 1503–1506. DOI: 10.1126/science.1166467.
  • Choi, H.-J.; Lee, J. H.; Jun, J.; Kim, T. Y.; Kim, S.-W.; Lee, H. High-Performance Triboelectric Nanogenerators with Artificially Well-Tailored Interlocked Interfaces. Nano Energy 2016, 27, 595–601. DOI: 10.1016/j.nanoen.2016.08.014.
  • Li, W.; Pei, Y.; Zhang, C.; Kottapalli, A. G. P. Bioinspired Designs and Biomimetic Applications of Triboelectric Nanogenerators. Nano Energy 2021, 84, 105865. DOI: 10.1016/j.nanoen.2021.105865.
  • Dhakar, L.; Tay, F.; Lee, C. In Skin Based Flexible Triboelectric Nanogenerators with Motion Sensing Capability. 2015 28th IEEE International Conference on Micro Electro Mechanical Systems (MEMS), IEEE: 2015; pp 106–109.
  • Yu, X.; Liu, Z.; Yang, X.; Wang, Y.; Zhang, J.; Duan, J.; Liu, L.; Tang, Q. Crystal-Plane Controlled Spontaneous Polarization of Inorganic Perovskite toward Boosting Triboelectric Surface Charge Density. ACS Appl. Mater. Interf. 2021, 13, 26196–26203. DOI: 10.1021/acsami.1c05796.
  • Zhang, C.; Lin, X.; Zhang, N.; Lu, Y.; Wu, Z.; Liu, G.; Nie, S. Chemically Functionalized Cellulose Nanofibrils-Based Gear-like Triboelectric Nanogenerator for Energy Harvesting and Sensing. Nano Energy 2019, 66, 104126. DOI: 10.1016/j.nanoen.2019.104126.
  • Gao, Q.; Cheng, T.; Wang, Z. L. Triboelectric Mechanical Sensors—Progress and Prospects. Extreme Mech. Lett. 2021,42, 101100.
  • Zhang, Y.; Lin, Z.; Huang, X.; You, X.; Ye, J.; Wu, H. A Large‐Area, Stretchable, Textile‐Based Tactile Sensor. Adv. Mater. Technol. 2020, 5, 1901060. DOI: 10.1002/admt.201901060.
  • Stoppa, M.; Chiolerio, A. Wearable Electronics and Smart Textiles: A Critical Review. Sensors 2014, 14, 11957–11992. [Database] DOI: 10.3390/s140711957.
  • Jang, J.; Jun, Y. S.; Seo, H.; Kim, M.; Park, J.-U. Motion Detection Using Tactile Sensors Based on Pressure-Sensitive Transistor Arrays. Sensors 2020, 20, 3624. DOI: 10.3390/s20133624.
  • Yang, J. C.; Mun, J.; Kwon, S. Y.; Park, S.; Bao, Z. N.; Park, S. Electronic Skin: Recent Progress and Future Prospects for Skin-Attachable Devices for Health Monitoring, Robotics, and Prosthetics. Adv. Mater. 2019, 31, 1904765. DOI: 10.1002/adma.201904765.
  • Hayward, J. E-Textiles and Smart Clothing 2020–2030: Technologies, Markets and Players. IDTechEx. 2020, 524.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.