1,155
Views
3
CrossRef citations to date
0
Altmetric
Reviews

Stimulus-Responsive Macromolecules in Polymeric Coatings

& ORCID Icon
Pages 289-323 | Received 01 Nov 2021, Accepted 01 Apr 2022, Published online: 26 Apr 2022

References

  • Urban, M. W. Stimuli-Responsive Materials: From Molecules to Nature Mimicking Materials Design. Royal Society of Chemistry: London, 2019.
  • Hill, M. R.; Carmean, R. N.; Sumerlin, B. S. Expanding the Scope of RAFT Polymerization: recent Advances and New Horizons. Macromolecules 2015, 48, 5459–5469. DOI: 10.1021/acs.macromol.5b00342.
  • Matyjaszewski, K. Advanced Materials by Atom Transfer Radical Polymerization. Adv. Mater. 2018, 30, 1706441. DOI: 10.1002/adma.201706441.
  • Blum, A. P.; Kammeyer, J. K.; Rush, A. M.; Callmann, C. E.; Hahn, M. E.; Gianneschi, N. C. Stimuli-Responsive Nanomaterials for Biomedical Applications. J. Am. Chem. Soc. 2015, 137, 2140–2154. DOI: 10.1021/ja510147n.
  • Montero de Espinosa, L.; Meesorn, W.; Moatsou, D.; Weder, C. Bioinspired Polymer Systems with Stimuli-Responsive Mechanical Properties. Chem. Rev. 2017, 117, 12851–12892. DOI: 10.1021/acs.chemrev.7b00168.
  • Yang, Y.; Urban, M. W. Self-Healing Polymeric Materials. Chem. Soc. Rev. 2013, 42, 7446–7467. DOI: 10.1039/c3cs60109a.
  • Sun, H.; Kabb, C. P.; Sims, M. B.; Sumerlin, B. S. Architecture-Transformable Polymers: Reshaping the Future of Stimuli-Responsive Polymers. Prog. Polym. Sci. 2019, 89, 61–75. DOI: 10.1016/j.progpolymsci.2018.09.006.
  • Liu, F.; Urban, M. W. Recent Advances and Challenges in Designing Stimuli-Responsive Polymers. Prog. Polym. Sci. 2010, 35, 3–23. DOI: 10.1016/j.progpolymsci.2009.10.002.
  • Lu, C.; Urban, M. W. Stimuli-Responsive Polymer Nano-Science: Shape Anisotropy, Responsiveness, Applications. Prog. Polym. Sci. 2018, 78, 24–46. DOI: 10.1016/j.progpolymsci.2017.07.005.
  • Liu, X.; Yang, Y.; Urban, M. W. Stimuli‐Responsive Polymeric Nanoparticles. Macromol. Rapid Commun. 2017, 38, 1700030. DOI: 10.1002/marc.201700030.
  • Hu, L.; Zhang, Q.; Li, X.; Serpe, M. J. Stimuli-Responsive Polymers for Sensing and Actuation. Mater. Horiz. 2019, 6, 1774–1793. DOI: 10.1039/C9MH00490D.
  • Wang, S.; Liu, Q.; Li, L.; Urban, M. W. Recent Advances in Stimuli‐Responsive Commodity Polymers. Macromol. Rapid Commun. 2021, 42, 2100054. DOI: 10.1002/marc.202100054.
  • Urban, M. W. Handbook of Stimuli-Responsive Materials; John Wiley & Sons: Hoboken, 2011.
  • Huang, H.; Sheng, X.; Tian, Y.; Zhang, L.; Chen, Y.; Zhang, X. Two-Dimensional Nanomaterials for Anticorrosive Polymeric Coatings: A Review. Ind. Eng. Chem. Res. 2020, 59, 15424–15446. DOI: 10.1021/acs.iecr.0c02876.
  • Li, H.; Cui, Y.; Wang, H.; Zhu, Y.; Wang, B. Preparation and Application of Polysulfone Microcapsules Containing Tung Oil in Self-Healing and Self-Lubricating Epoxy Coating. Colloids Surf, A 2017, 518, 181–187. DOI: 10.1016/j.colsurfa.2017.01.046.
  • Calvino, C.; Weder, C. Microcapsule‐Containing Self‐Reporting Polymers. Small 2018, 14, 1802489. DOI: 10.1002/smll.201802489.
  • Vidinejevs, S.; Aniskevich, A. N.; Gregor, A.; Sjöberg, M.; Alvarez, G. Smart Polymeric Coatings for Damage Visualization in Substrate Materials. J. Intell. Mater. Syst. Struct. 2012, 23, 1371–1377. DOI: 10.1177/1045389X12447289.
  • Kragt, A. J.; Zuurbier, N. C.; Broer, D. J.; Schenning, A. P. Temperature-Responsive, Multicolor-Changing Photonic Polymers. ACS Appl. Mater. Interfaces. 2019, 11, 28172–28179. DOI: 10.1021/acsami.9b08827.
  • Sonmez, G.; Sonmez, H. B.; Shen, C. K.; Wudl, F. Red, Green, and Blue Colors in Polymeric Electrochromics. Adv. Mater. 2004, 16, 1905–1908. DOI: 10.1002/adma.200400546.
  • Ramachandran, D.; Liu, F.; Urban, M. W. Self-Repairable Copolymers That Change Color. RSC Adv. 2012, 2, 135–143. DOI: 10.1039/C1RA00137J.
  • Otts, D. B.; Urban, M. W. Heterogeneous Crosslinking of Waterborne Two-Component Polyurethanes (WB 2K-PUR); Stratification Processes and the Role of Water. Polymer 2005, 46, 2699–2709. DOI: 10.1016/j.polymer.2005.01.053.
  • Raut, H. K.; Ganesh, V. A.; Nair, A. S.; Ramakrishna, S. Anti-Reflective Coatings: A Critical, in-Depth Review. Energy Environ. Sci. 2011, 4, 3779–3804. DOI: 10.1039/c1ee01297e.
  • Moayedfar, M.; Assadi, M. K. Various Types of anti-Reflective Coatings (ARCS) Based on the Layer Composition and Surface Topography: A Review. Rev. Advan. Mater. Sci. 2018, 53, 187–205. DOI: 10.1515/rams-2018-0013.
  • Es‐Souni, M.; Fischer‐Brandies, H.; Es‐Souni, M. Versatile Nanocomposite Coatings with Tunable Cell Adhesion and Bactericidity. Adv. Funct. Mater. 2008, 18, 3179–3188.
  • George, P. A.; Donose, B. C.; Cooper-White, J. J. Self-assembling polystyrene-block-poly(ethylene oxide) copolymer surface coatings: resistance to protein and cell adhesion . Biomaterials 2009, 30, 2449–2456. DOI: 10.1016/j.biomaterials.2009.01.012.
  • Salwiczek, M.; Qu, Y.; Gardiner, J.; Strugnell, R. A.; Lithgow, T.; McLean, K. M.; Thissen, H. Emerging Rules for Effective Antimicrobial Coatings. Trends Biotechnol. 2014, 32, 82–90. DOI: 10.1016/j.tibtech.2013.09.008.
  • Shum, R. L.; Liu, S. R.; Caschera, A.; Foucher, D. A. UV-Curable Surface-Attached Antimicrobial Polymeric Onium Coatings: Designing Effective, Solvent-Resistant Coatings for Plastic Surfaces. ACS Appl Bio Mater . 2020, 3, 4302–4315. DOI: 10.1021/acsabm.0c00359.
  • Mao, S.; Zhang, D.; He, X.; Yang, Y.; Protsak, I.; Li, Y.; Wang, J.; Ma, C.; Tan, J.; Yang, J. Mussel-Inspired Polymeric Coatings to Realize Functions from Single and Dual to Multiple Antimicrobial Mechanisms. ACS Appl Mater Interfaces . 2021, 13, 3089–3097. DOI: 10.1021/acsami.0c16510.
  • Li, C.; Li, X.; Tao, C.; Ren, L.; Zhao, Y.; Bai, S.; Yuan, X. Amphiphilic Antifogging/anti-Icing Coatings Containing POSS-PDMAEMA-b-PSBMA. ACS Appl Mater Interfaces . 2017, 9, 22959–22969. DOI: 10.1021/acsami.7b05286.
  • Chen, J.; Li, K.; Wu, S.; Liu, J.; Liu, K.; Fan, Q. Durable anti-Icing Coatings Based on Self-Sustainable Lubricating Layer. ACS Omega. 2017, 2, 2047–2054. DOI: 10.1021/acsomega.7b00359.
  • Bretler, S.; Kanovsky, N.; Iline-Vul, T.; Cohen, S.; Margel, S. In-Situ Thin Coating of Silica Micro/Nano-Particles on Polymeric Films and Their anti-Fogging Application. Colloids Surf, A 2020, 607, 125444. DOI: 10.1016/j.colsurfa.2020.125444.
  • Park, S.; Park, S.; Jang, D. H.; Lee, H. S.; Park, C. H. Anti-Fogging Behavior of Water-Absorbing Polymer Films Derived from Isosorbide-Based Epoxy Resin. Mater. Lett. 2016, 180, 81–84. DOI: 10.1016/j.matlet.2016.05.114.
  • De Crevoisier, G.; Fabre, P.; Corpart, J.-M.; Leibler, L. Switchable Tackiness and Wettability of a Liquid Crystalline Polymer. Science 1999, 285, 1246–1249. DOI: 10.1126/science.285.5431.1246.
  • Darmanin, T.; Guittard, F. Wettability of Conducting Polymers: From Superhydrophilicity to Superoleophobicity. Prog. Polym. Sci. 2014, 39, 656–682. DOI: 10.1016/j.progpolymsci.2013.10.003.
  • Chen, P.-C.; Xu, Z.-K. Mineral-Coated Polymer Membranes with Superhydrophilicity and Underwater Superoleophobicity for Effective Oil/Water Separation. Sci. Rep. 2013, 3, 2776–2776. DOI: 10.1038/srep02776.
  • Cho, E.-C.; Chang-Jian, C.-W.; Chen, H.-C.; Chuang, K.-S.; Zheng, J.-H.; Hsiao, Y.-S.; Lee, K.-C.; Huang, J.-H. Robust Multifunctional Superhydrophobic Coatings with Enhanced Water/Oil Separation, Self-Cleaning, anti-Corrosion, and anti-Biological Adhesion. Chemical Engineering Journal 2017, 314, 347–357. DOI: 10.1016/j.cej.2016.11.145.
  • Wang, S.; Urban, M. W. Self-Healing Polymers. Nat. Rev. Mater. 2020, 5, 562–583. DOI: 10.1038/s41578-020-0202-4.
  • Ghosh, B.; Urban, M. W. Self-Repairing Oxetane-Substituted Chitosan Polyurethane Networks. Science 2009, 323, 1458–1460. DOI: 10.1126/science.1167391.
  • Ghosh, B.; Chellappan, K. V.; Urban, M. W. UV-Initiated Self-Healing of Oxolane–Chitosan–Polyurethane (OXO–CHI–PUR) Networks. J. Mater. Chem. 2012, 22, 16104–16113. DOI: 10.1039/c2jm31126g.
  • Hornat, C. C.; Urban, M. W. Entropy and Interfacial Energy Driven Self-Healable Polymers. Nat. Commun. 2020, 11, 1028. DOI: 10.1038/s41467-020-14911-y.
  • Luo, X.; Mather, P. T. Shape Memory Assisted Self-Healing Coating. ACS Macro Lett. 2013, 2, 152–156. DOI: 10.1021/mz400017x.
  • Zhao, D.; Liu, S.; Wu, Y.; Guan, T.; Sun, N.; Ren, B. Self-Healing UV Light-Curable Resins Containing Disulfide Group: synthesis and Application in UV Coatings. Prog. Org. Coat. 2019, 133, 289–298. DOI: 10.1016/j.porgcoat.2019.04.060.
  • Kim, S.-M.; Jeon, H.; Shin, S.-H.; Park, S.-A.; Jegal, J.; Hwang, S. Y.; Oh, D. X.; Park, J. Superior Toughness and Fast Self-Healing at Room Temperature Engineered by Transparent Elastomers. Adv. Mater. 2018, 30, 1705145. DOI: 10.1002/adma.201705145.
  • Li, S.; Pei, M.; Wan, T.; Yang, H.; Gu, S.; Tao, Y.; Liu, X.; Zhou, Y.; Xu, W.; Xiao, P. Self-Healing Hyaluronic Acid Hydrogels Based on Dynamic Schiff Base Linkages as Biomaterials. Carbohydr. Polym. 2020, 250, 116922. DOI: 10.1016/j.carbpol.2020.116922.
  • Luo, C.; Li, M.; Yuan, R.; Yang, Y.; Lu, Z.; Ge, L. Biocompatible Self-Healing Coating Based on Schiff Base for Promoting Adhesion of Coral Cells. ACS Appl Bio Mater . 2020, 3, 1481–1495. DOI: 10.1021/acsabm.9b01113.
  • Wei, Z.; Yang, J. H.; Liu, Z. Q.; Xu, F.; Zhou, J. X.; Zrínyi, M.; Osada, Y.; Chen, Y. M. Novel Biocompatible Polysaccharide-Based Self-Healing Hydrogel. Adv. Funct. Mater. 2015, 25, 1352–1359. DOI: 10.1002/adfm.201401502.
  • Nadgorny, M.; Collins, J.; Xiao, Z.; Scales, P. J.; Connal, L. A. 3D-Printing of Dynamic Self-Healing Cryogels with Tuneable Properties. Polym. Chem. 2018, 9, 1684–1692. DOI: 10.1039/C7PY01945A.
  • Cromwell, O. R.; Chung, J.; Guan, Z. Malleable and Self-Healing Covalent Polymer Networks through Tunable Dynamic Boronic Ester Bonds. J. Am. Chem. Soc. 2015, 137, 6492–6495. DOI: 10.1021/jacs.5b03551.
  • Sung, S.; Kim, S. Y.; Lee, T. H.; Favaro, G.; Park, Y. I.; Lee, S.-H.; Ahn, J. B.; Noh, S. M.; Kim, J. C. Thermally Reversible Polymer Networks for Scratch Resistance and Scratch Healing in Automotive Clear Coats. Prog. Org. Coat. 2019, 127, 37–44. DOI: 10.1016/j.porgcoat.2018.10.023.
  • Hao, C.; Liu, T.; Zhang, S.; Brown, L.; Li, R.; Xin, J.; Zhong, T.; Jiang, L.; Zhang, J. A High-Lignin-Content, Removable, and Glycol-Assisted Repairable Coating Based on Dynamic Covalent Bonds. Chem. Sus. Chem. 2019, 12, 1049–1058. DOI: 10.1002/cssc.201802615.
  • Feng, X.; Li, G. Catalyst-Free β-Hydroxy Phosphate Ester Exchange for Robust Fire-Proof Vitrimers. Chem.l Eng. J. 2021, 417, 129132. DOI: 10.1016/j.cej.2021.129132.
  • Zych, A.; Tellers, J.; Bertolacci, L.; Ceseracciu, L.; Marini, L.; Mancini, G.; Athanassiou, A. Biobased, Biodegradable, Self-Healing Boronic Ester Vitrimers from Epoxidized Soybean Oil Acrylate. ACS Appl. Polym. Mater. 2021, 3, 1135–1144. DOI: 10.1021/acsapm.0c01335.
  • Elling, B. R.; Dichtel, W. R. Reprocessable Cross-Linked Polymer Networks: are Associative Exchange Mechanisms Desirable? ACS Cent Sci. 2020, 6, 1488–1496. DOI: 10.1021/acscentsci.0c00567.
  • Zou, W.; Dong, J.; Luo, Y.; Zhao, Q.; Xie, T. Dynamic Covalent Polymer Networks: From Old Chemistry to Modern Day Innovations. Adv. Mater. 2017, 29, 1606100. DOI: 10.1002/adma.201606100.
  • Kloxin, C. J.; Bowman, C. N. Covalent Adaptable Networks: smart, Reconfigurable and Responsive Network Systems. Chem. Soc. Rev. 2013, 42, 7161–7173. DOI: 10.1039/c3cs60046g.
  • Fu, J.; Chen, T.; Wang, M.; Yang, N.; Li, S.; Wang, Y.; Liu, X. Acid and Alkaline Dual Stimuli-Responsive Mechanized Hollow Mesoporous Silica Nanoparticles as Smart Nanocontainers for Intelligent Anticorrosion Coatings. ACS Nano. 2013, 7, 11397–11408. DOI: 10.1021/nn4053233.
  • Zhao, H.; Sun, Q.; Deng, X.; Cui, J. Earthworm‐Inspired Rough Polymer Coatings with Self‐Replenishing Lubrication for Adaptive Friction‐Reduction and Antifouling Surfaces. Adv. Mater. 2018, 30, 1802141. DOI: 10.1002/adma.201802141.
  • Yang, Y.; Davydovich, D.; Hornat, C. C.; Liu, X.; Urban, M. W. Leaf-Inspired Self-Healing Polymers. Chem. 2018, 4, 1928–1936. DOI: 10.1016/j.chempr.2018.06.001.
  • Urban, M. W.; Davydovich, D.; Yang, Y.; Demir, T.; Zhang, Y.; Casabianca, L. Key-and-Lock Commodity Self-Healing Copolymers. Science 2018, 362, 220–225. DOI: 10.1126/science.aat2975.
  • Davydovich, D.; Urban, M. W. Water Accelerated Self-Healing of Hydrophobic Copolymers. Nat. Commun. 2020, 11, 1–7. DOI: 10.1038/s41467-020-19405-5.
  • Bai, S.; Sun, C.; Yan, H.; Sun, X.; Zhang, H.; Luo, L.; Lei, X.; Wan, P.; Chen, X. Healable, Transparent, Room-Temperature Electronic Sensors Based on Carbon Nanotube Network-Coated Polyelectrolyte Multilayers . Small 2015, 11, 5807–5813. DOI: 10.1002/smll.201502169.
  • Liang, B.; Zhong, Z.; Jia, E.; Zhang, G.; Su, Z. Transparent and Scratch-Resistant Antifogging Coatings with Rapid Self-Healing Capability. ACS Appl Mater Interfaces . 2019, 11, 30300–30307. DOI: 10.1021/acsami.9b09610.
  • Corten, C. C.; Urban, M. W. Repairing Polymers Using Oscillating Magnetic Field. Adv. Mater. 2009, 21, 5011–5015. DOI: 10.1002/adma.200901940.
  • Zhu, D. Y.; Rong, M. Z.; Zhang, M. Q. Self-Healing Polymeric Materials Based on Microencapsulated Healing Agents: From Design to Preparation. Prog. Polym. Sci. 2015, 49-50, 175–220. DOI: 10.1016/j.progpolymsci.2015.07.002.
  • Billiet, S.; Hillewaere, X. K. D.; Teixeira, R. F. A.; Du Prez, F. E. Chemistry of Crosslinking Processes for Self-Healing Polymers. Macromol. Rapid Commun. 2013, 34, 290–309. DOI: 10.1002/marc.201200689.
  • Leal, D. A.; Riegel-Vidotti, I. C.; Ferreira, M. G. S.; Marino, C. E. B. Smart Coating Based on Double Stimuli-Responsive Microcapsules Containing Linseed Oil and Benzotriazole for Active Corrosion Protection. Corros. Sci. 2018, 130, 56–63. DOI: 10.1016/j.corsci.2017.10.009.
  • Popova, A.; Christov, M. Evaluation of Impedance Measurements on Mild Steel Corrosion in Acid Media in the Presence of Heterocyclic Compounds. Corros. Sci. 2006, 48, 3208–3221. DOI: 10.1016/j.corsci.2005.11.001.
  • Lvov, Y. M.; Shchukin, D. G.; Möhwald, H.; Price, R. R. Halloysite Clay Nanotubes for Controlled Release of Protective Agents. ACS Nano. 2008, 2, 814–820. DOI: 10.1021/nn800259q.
  • Abdullayev, E.; Abbasov, V.; Tursunbayeva, A.; Portnov, V.; Ibrahimov, H.; Mukhtarova, G.; Lvov, Y. Self-Healing Coatings Based on Halloysite Clay Polymer Composites for Protection of Copper Alloys. ACS Appl. Mater. Interfaces 2013, 5, 4464–4471. DOI: 10.1021/am400936m.
  • Yu, D.; Wang, J.; Hu, W.; Guo, R. Preparation and Controlled Release Behavior of Halloysite/2-Mercaptobenzothiazole Nanocomposite with Calcined Halloysite as Nanocontainer. Mater. Design 2017, 129, 103–110. DOI: 10.1016/j.matdes.2017.05.033.
  • Li, D.; Gong, B.; Liu, Y.; Dang, Z. Self-Healing Coatings Based on PropS-SH and pH-Responsive HNT-BTA Nanoparticles for Inhibition of Pyrite Oxidation to Control Acid Mine Drainage. Chem. Eng. J. 2021, 415, 128993. DOI: 10.1016/j.cej.2021.128993.
  • Wang, T.; Du, J.; Ye, S.; Tan, L.; Fu, J. Triple-Stimuli-Responsive Smart Nanocontainers Enhanced Self-Healing Anticorrosion Coatings for Protection of Aluminum Alloy. ACS Appl. Mater. Interfaces . 2019, 11, 4425–4438. DOI: 10.1021/acsami.8b19950.
  • Andreeva, D. V.; Fix, D.; Möhwald, H.; Shchukin, D. G. Self-Healing Anticorrosion Coatings Based on pH-Sensitive Polyelectrolyte/Inhibitor Sandwichlike Nanostructures . Adv. Mater. 2008, 20, 2789–2794. DOI: 10.1002/adma.200800705.
  • Xiong, L.; Liu, J.; Yu, M.; Li, S. Improving the Corrosion Protection Properties of PVB Coating by Using Salicylaldehyde@ ZIF-8/Graphene Oxide Two-Dimensional Nanocomposites. Corros. Sci. 2019, 146, 70–79. DOI: 10.1016/j.corsci.2018.10.016.
  • Xiong, P.; Jia, Z.; Zhou, W.; Yan, J.; Wang, P.; Yuan, W.; Li, Y.; Cheng, Y.; Guan, Z.; Zheng, Y. Osteogenic and pH Stimuli-Responsive Self-Healing Coating on Biomedical Mg-1Ca Alloy. Acta Biomater. 2019, 92, 336–350. DOI: 10.1016/j.actbio.2019.05.027.
  • Wang, J.; Tang, J.; Zhang, H.; Wang, Y.; Wang, H.; Lin, B.; Hou, J.; Zhang, H. A CO2-Responsive anti-Corrosion Ethyl Cellulose Coating Based on the pH-Response Mechanism. Corros. Sci. 2021, 180, 109194. DOI: 10.1016/j.corsci.2020.109194.
  • Ma, L.; Wang, J.; Zhang, D.; Huang, Y.; Huang, L.; Wang, P.; Qian, H.; Li, X.; Terryn, H. A.; Mol, J. M. Dual-Action Self-Healing Protective Coatings with Photothermal Responsive Corrosion Inhibitor Nanocontainers. Chem. Eng. J. 2021, 404, 127118. DOI: 10.1016/j.cej.2020.127118.
  • Zheng, Z.; Huang, X.; Schenderlein, M.; Borisova, D.; Cao, R.; Möhwald, H.; Shchukin, D. Self‐Healing and Antifouling Multifunctional Coatings Based on pH and Sulfide Ion Sensitive Nanocontainers. Adv. Funct. Mater. 2013, 23, 3307–3314. DOI: 10.1002/adfm.201203180.
  • Ma, A.; Wei, J.; Wu, Y.; Wu, Y.; Zhao, W. A Novel Directional Repairing rGO-Fe3O4/Oil Coating with Magnetic Driving for Metal Protection and Self-Healing. Chem. Eng. J. 2021, 421, 129597. DOI: 10.1016/j.cej.2021.129597.
  • Huang, M.; Zhang, H.; Yang, J. Synthesis of Organic Silane Microcapsules for Self-Healing Corrosion Resistant Polymer Coatings. Corros. Sci. 2012, 65, 561–566. DOI: 10.1016/j.corsci.2012.08.020.
  • Wang, W.; Li, W.; Fan, W.; Zhang, X.; Song, L.; Xiong, C.; Gao, X.; Liu, X. Accelerated Self-Healing Performance of Magnetic Gradient Coating. Chem. Eng. J. 2018, 332, 658–670. DOI: 10.1016/j.cej.2017.09.112.
  • Huang, L.; Li, J.; Yuan, W.; Liu, X.; Li, Z.; Zheng, Y.; Liang, Y.; Zhu, S.; Cui, Z.; Yang, X.; et al. Near-Infrared Light Controlled Fast Self-Healing Protective Coating on Magnesium Alloy. Corros. Sci. 2020, 163, 108257. DOI: 10.1016/j.corsci.2019.108257.
  • Xu, J. H.; Ye, S.; Di Ding, C.; Tan, L. H.; Fu, J. J. Autonomous Self-Healing Supramolecular Elastomer Reinforced and Toughened by Graphitic Carbon Nitride Nanosheets Tailored for Smart Anticorrosion Coating Applications. J. Mater. Chem. A 2018, 6, 5887–5898. DOI: 10.1039/C7TA09841C.
  • Li, K.; Li, H.; Cui, Y.; Li, Z.; Ji, J.; Feng, Y.; Chen, S.; Zhang, M.; Wang, H. Dual-Functional Coatings with Self-Lubricating and Self-Healing Properties by Combining Poly (Urea–Formaldehyde)/SiO2 Hybrid Microcapsules Containing Linseed Oil. Ind. Eng. Chem. Res. 2019, 58, 22032–22039. DOI: 10.1021/acs.iecr.9b04736.
  • Li, H.; Cui, Y.; Li, Z.; Zhu, Y.; Wang, H. Fabrication of Microcapsules Containing Dual-Functional Tung Oil and Properties Suitable for Self-Healing and Self-Lubricating Coatings. Prog. Org. Coat. 2018, 115, 164–171. DOI: 10.1016/j.porgcoat.2017.11.019.
  • Li, H.; Ma, Y.; Cui, Y.; Li, Z.; Wang, H. Ultralow Tribological Properties of Polymer Composites Containing [BMIm] PF6‐Loaded Multilayer Wall Microcapsule. Macromol. Mater. Eng. 2019, 304, 1800791. DOI: 10.1002/mame.201800791.
  • Ma, Y.; Li, Z.; Wang, H.; Li, H. Synthesis and Optimization of Polyurethane Microcapsules Containing [BMIm]PF6 Ionic Liquid Lubricant. J. Colloid. Interface Sci. 2019, 534, 469–479. DOI: 10.1016/j.jcis.2018.09.059.
  • Khun, N. W.; Zhang, H.; Sun, D. W.; Yang, J. L. Tribological Behaviors of Binary and Ternary Epoxy Composites Functionalized with Different Microcapsules and Reinforced by Short Carbon Fibers. Wear 2016, 350-351, 89–98. DOI: 10.1016/j.wear.2016.01.007.
  • Mu, B.; Li, X.; Yang, B.; Cui, J.; Wang, X.; Guo, J.; Bao, X.; Chen, L. Tribological Behaviors of Polyurethane Composites Containing Self-Lubricating Microcapsules and Reinforced by Short Carbon Fibers. J. Appl. Polym. Sci. 2017, 134, 45331. DOI: 10.1002/app.45331.
  • Li, M.; Wang, H.; Liu, D.; Wang, R.; Zhu, Y. Tribological and Mechanical Properties of Self-Lubrication Epoxy Composites Filled with Activated Carbon Particles Containing Lubricating Oil. RSC Adv. 2016, 6, 52596–52603. DOI: 10.1039/C6RA07698J.
  • Li, K.; Liu, Z.; Wang, C.; Fan, W.; Liu, F.; Li, H.; Zhu, Y.; Wang, H. Preparation of Smart Coatings with Self-Healing and anti-Wear Properties by Embedding PU-Fly Ash Absorbing Linseed Oil Microcapsules. Prog. Org. Coat. 2020, 145, 105668. DOI: 10.1016/j.porgcoat.2020.105668.
  • Li, M.; Liu, W.; Zhang, Q.; Zhu, S. Mechanical Force Sensitive Acrylic Latex Coating. ACS Appl Mater Interfaces . 2017, 9, 15156–15163. DOI: 10.1021/acsami.7b04154.
  • Shree, S.; Dowds, M.; Kuntze, A.; Mishra, Y. K.; Staubitz, A.; Adelung, R. Self-Reporting Mechanochromic Coating: A Glassfiber Reinforced Polymer Composite That Predicts Impact Induced Damage. Mater. Horiz. 2020, 7, 598–604. DOI: 10.1039/C9MH01400D.
  • Song, Y.-K.; Lee, K.-H.; Hong, W.-S.; Cho, S.-Y.; Yu, H.-C.; Chung, C.-M. Fluorescence Sensing of Microcracks Based on Cycloreversion of a Dimeric Anthracene Moiety. J. Mater. Chem 2012, 22, 1380–1386. DOI: 10.1039/C1JM13709C.
  • Cho, S.-Y.; Kim, J.-G.; Chung, C.-M. A Fluorescent Crack Sensor Based on Cyclobutane-Containing Crosslinked Polymers of Tricinnamates. Sens. Actuators, B 2008, 134, 822–825. DOI: 10.1016/j.snb.2008.06.042.
  • Ramachandran, D.; Urban, M. W. Sensing Macromolecular Rearrangements in Polymer Networks by Stimuli-Responsive Crosslinkers. J. Mater. Chem. 2011, 21, 8300–8308. DOI: 10.1039/c0jm03722b.
  • Rifaie‐Graham, O.; Apebende, E. A.; Bast, L. K.; Bruns, N. Self‐Reporting Fiber‐Reinforced Composites That Mimic the Ability of Biological Materials to Sense and Report Damage. Adv. Mater. 2018, 30, 1705483. DOI: 10.1002/adma.201705483.
  • Li, W.; Matthews, C. C.; Yang, K.; Odarczenko, M. T.; White, S. R.; Sottos, N. R. Autonomous Indication of Mechanical Damage in Polymeric Coatings. Adv. Mater. 2016, 28, 2189–2194. DOI: 10.1002/adma.201505214.
  • Odom, S. A.; Jackson, A. C.; Prokup, A. M.; Chayanupatkul, S.; Sottos, N. R.; White, S. R.; Moore, J. S. Visual Indication of Mechanical Damage Using core-shell microcapsules. ACS Appl. Mater. Interfaces. 2011, 3, 4547–4551. DOI: 10.1021/am201048a.
  • Ma, L.; Ren, C.; Wang, J.; Liu, T.; Yang, H.; Wang, Y.; Huang, Y.; Zhang, D. Self-Reporting Coatings for Autonomous Detection of Coating Damage and Metal Corrosion: A Review. Chem. Eng. J. 2021, 421, 127854. DOI: 10.1016/j.cej.2020.127854.
  • Exbrayat, L.; Salaluk, S.; Uebel, M.; Jenjob, R.; Rameau, B.; Koynov, K.; Landfester, K.; Rohwerder, M.; Crespy, D. Nanosensors for Monitoring Early Stages of Metallic Corrosion. ACS Appl. Nano Mater. 2019, 2, 812–818. DOI: 10.1021/acsanm.8b02045.
  • Galvão, T. L.; Sousa, I.; Wilhelm, M.; Carneiro, J.; Opršal, J.; Kukačková, H.; Špaček, V.; Maia, F.; Gomes, J. R.; Tedim, J.; Ferreira, M. G. Improving the Functionality and Performance of AA2024 Corrosion Sensing Coatings with Nanocontainers. Chem. Eng. J. 2018, 341, 526–538. DOI: 10.1016/j.cej.2018.02.061.
  • Liu, C.; Jin, Z.; Cheng, L.; Zhao, H.; Wang, L. Synthesis of Nanosensors for Autonomous Warning of Damage and Self-Repairing in Polymeric Coatings. Nanoscale 2020, 12, 3194–3204. DOI: 10.1039/c9nr09221h.
  • Mennig, M.; Fries, K.; Lindenstruth, M.; Schmidt, H. Development of Fast Switching Photochromic Coatings on Transparent Plastics and Glass. Thin Solid Films 1999, 351, 230–234. DOI: 10.1016/S0040-6090(99)00341-7.
  • Liu, D.; Bastiaansen, C. W.; den Toonder, J. M.; Broer, D. J. Photo-switchable surface topologies in chiral nematic coatings . Angew. Chem. Int. Ed. Engl. 2012, 51, 892–896. DOI: 10.1002/anie.201105101.
  • Hisham, S.; Muhamad Sarih, N.; Tajuddin, H. A.; Zainal Abidin, Z. H.; Abdullah, Z. Unraveling the Surface Properties of PMMA/Azobenzene Blends as Coating Films with Photoreversible Surface Polarity. RSC Adv. 2021, 11, 15428–15437. DOI: 10.1039/D1RA01192H.
  • Yang, Y.; Zhang, T.; Yan, J.; Fu, L.; Xiang, H.; Cui, Y.; Su, J.; Liu, X. Preparation and Photochromic Behavior of Spiropyran-Containing Fluorinated Polyacrylate Hydrophobic Coatings. Langmuir 2018, 34, 15812–15819. DOI: 10.1021/acs.langmuir.8b03229.
  • Florea, L.; McKeon, A.; Diamond, D.; Benito-Lopez, F. Spiropyran Polymeric Microcapillary Coatings for Photodetection of Solvent Polarity. Langmuir 2013, 29, 2790–2797. DOI: 10.1021/la304985p.
  • Julià-López, A.; Ruiz-Molina, D.; Hernando, J.; Roscini, C. Solid Materials with Tunable Reverse Photochromism. ACS Appl. Mater. Interfaces . 2019, 11, 11884–11892. DOI: 10.1021/acsami.8b22335.
  • Utsumi, H.; Nagahama, D.; Nakano, H.; Shirota, Y. Synthesis of a Novel Family of Photochromic Amorphous Molecular Materials Based on Dithienylethene, Their Photochromic Properties and Application for Dual Image Formation. J. Mater. Chem. 2002, 12, 2612–2619. DOI: 10.1039/b205201f.
  • Jiang, L.; Wu, J.; Li, Q.; Deng, G.; Zhang, X.; Li, Z.; Chen, K.; Chiang, K. S. A Photochromic Dye Doped Polymeric Mach–Zehnder Interferometer for UV Light Detection. J. Mater. Chem. C 2019, 7, 6257–6265. DOI: 10.1039/C9TC00749K.
  • Seeboth, A.; Lötzsch, D.; Ruhmann, R.; Muehling, O. Thermochromic Polymers– Function by Design. Chem. Rev. 2014, 114, 3037–3068. DOI: 10.1021/cr400462e.
  • Štaffová, M.; Kučera, F.; Tocháček, J.; Dzik, P.; Ondreáš, F.; Jančář, J. Insight into Color Change of Reversible Thermochromic Systems and Their Incorporation into Textile Coating. J. Appl. Polym. Sci. 2021, 138, 49724. DOI: 10.1002/app.49724.
  • Zhang, Y.; Zhai, X. Preparation and Testing of Thermochromic Coatings for Buildings. Sol. Ener. 2019, 191, 540–548. DOI: 10.1016/j.solener.2019.09.042.
  • Xiao, X.; Zhang, H.; Chai, G.; Sun, Y.; Yang, T.; Cheng, H.; Chen, L.; Miao, L.; Xu, G. A Cost-Effective Process to Prepare VO2 (M) powder and Films with Superior Thermochromic Properties. Mater. Res. Bull. 2014, 51, 6–12. DOI: 10.1016/j.materresbull.2013.11.051.
  • van Heeswijk, E. P.; Kragt, A. J.; Grossiord, N.; Schenning, A. P. Environmentally Responsive Photonic Polymers. Chem. Commun. (Camb) 2019, 55, 2880–2891. DOI: 10.1039/c8cc09672d.
  • Belmonte, A.; Pilz da Cunha, M.; Nickmans, K.; Schenning, A. P. Brush‐Paintable, Temperature and Light Responsive Triple Shape‐Memory Photonic Coatings Based on Micrometer‐Sized Cholesteric Liquid Crystal Polymer Particles. Adv. Optical Mater. 2020, 8, 2000054. DOI: 10.1002/adom.202000054.
  • Hendrikx, M.; Sırma, B.; Schenning, A. P.; Liu, D.; Broer, D. J. Compliance‐Mediated Topographic Oscillation of Polarized Light Triggered Liquid Crystal Coating. Adv. Mater. Interfaces 2018, 5, 1800810. DOI: 10.1002/admi.201800810.
  • Zhang, W.; Schenning, A. P. H. J.; Kragt, A. J. J.; Zhou, G.; de Haan, L. T. Reversible Thermochromic Photonic Coatings with a Protective Topcoat. ACS Appl. Mater. Interfaces. 2021, 13, 3153–3160. DOI: 10.1021/acsami.0c19236.
  • Chen, H.; Hou, A.; Zheng, C.; Tang, J.; Xie, K.; Gao, A. Light- and Humidity-Responsive Chiral Nematic Photonic Crystal Films Based on Cellulose Nanocrystals . ACS Appl. Mater. Interfaces. 2020, 12, 24505–24511. DOI: 10.1021/acsami.0c05139.
  • Moirangthem, M.; Schenning, A. P. H. J. Full Color Camouflage in a Printable Photonic Blue-Colored Polymer. ACS Appl. Mater. Interfaces. 2018, 10, 4168–4172. DOI: 10.1021/acsami.7b17892.
  • Zhang, X.; Liu, C.; Zhang, L.; Jia, L.; Shi, M.; Chen, L.; Di, Y.; Gan, Z. Bioinspired Tunable Structural Color Film with Janus Wettability and Interfacial Floatability towards Visible Water Quality Monitoring. Adv. Funct. Mater. 2021, 31, 2010406. DOI: 10.1002/adfm.202010406.
  • Xu, X.; Liu, Z.; Liu, Y.; Zhang, X.; Zheng, Z.; Luo, D.; Sun, X. Electrically Switchable, Hyper-Reflective Blue Phase Liquid Crystals Films. Adv. Opt. Mater. 2018, 6, 1700891. DOI: 10.1002/adom.201700891.
  • Sage, I. Thermochromic Liquid Crystals. Liq. Cryst. 2011, 38, 1551–1561. DOI: 10.1080/02678292.2011.631302.
  • Stumpel, J. E.; Broer, D. J.; Schenning, A. P. Stimuli-Responsive Photonic Polymer Coatings. Chem. Commun. (Camb) 2014, 50, 15839–15848. DOI: 10.1039/c4cc05072j.
  • Jeon, S. J.; Chiappelli, M. C.; Hayward, R. C. Photocrosslinkable Nanocomposite Multilayers for Responsive 1D Photonic Crystals. Adv. Funct. Mater. 2016, 26, 722–728. DOI: 10.1002/adfm.201503727.
  • Yang, H.; Pan, L.; Han, Y.; Ma, L.; Li, Y.; Xu, H.; Zhao, J. A Visual Water Vapor Photonic Crystal Sensor with PVA/SiO2 Opal Structure. Appl. Surf. Sci. 2017, 423, 421–425. DOI: 10.1016/j.apsusc.2017.06.140.
  • Priimagi, A.; Shevchenko, A. Azopolymer‐Based Micro‐and Nanopatterning for Photonic Applications. J. Polymer Sci. Part B: Polymer Phys. 2014, 52, 163–182. DOI: 10.1002/polb.23390.
  • Kopyshev, A.; Galvin, C. J.; Patil, R. R.; Genzer, J.; Lomadze, N.; Feldmann, D.; Zakrevski, J.; Santer, S. Light-Induced Reversible Change of Roughness and Thickness of Photosensitive Polymer Brushes. ACS Appl. Mater. Interfaces. 2016, 8, 19175–19184. DOI: 10.1021/acsami.6b06881.
  • Hendrikx, M.; Ter Schiphorst, J.; van Heeswijk, E. P.; Koçer, G.; Knie, C.; Bléger, D.; Hecht, S.; Jonkheijm, P.; Broer, D. J.; Schenning, A. P. Re‐and Preconfigurable Multistable Visible Light Responsive Surface Topographies. Small 2018, 14, 1803274. DOI: 10.1002/smll.201803274.
  • Nickmans, K.; der Heijden, D. A. C.; Schenning, A. P. H. J. Photonic Shape Memory Chiral Nematic Polymer Coatings with Changing Surface Topography and Color. Adv. Optical Mater. 2019, 7, 1900592. DOI: 10.1002/adom.201900592.
  • Liu, D.; Bastiaansen, C. W.; den Toonder, J. M.; Broer, D. J. (Photo-)thermally induced formation of dynamic surface topographies in polymer hydrogel networks. Langmuir 2013, 29, 5622–5629. DOI: 10.1021/la4005906.
  • Hiller, J. A.; Mendelsohn, J. D.; Rubner, M. F. Reversibly Erasable Nanoporous anti-Reflection Coatings from Polyelectrolyte Multilayers. Nat. Mater. 2002, 1, 59–63. DOI: 10.1038/nmat719.
  • Mendelsohn, J. D.; Barrett, C. J.; Chan, V. V.; Pal, A. J.; Mayes, A. M.; Rubner, M. F. Fabrication of Microporous Thin Films from Polyelectrolyte Multilayers. Langmuir 2000, 16, 5017–5023. DOI: 10.1021/la000075g.
  • Li, X.; Yu, X.; Han, Y. Intelligent Reversible Nanoporous Antireflection Film by Solvent-Stimuli-Responsive Phase Transformation of Amphiphilic Block Copolymer. Langmuir 2012, 28, 10584–10591. DOI: 10.1021/la301755a.
  • Feng, X.; Jiang, L. Design and Creation of Superwetting/Antiwetting Surfaces. Adv. Mater. 2006, 18, 3063–3078. DOI: 10.1002/adma.200501961.
  • Dang, Z.; Liu, L.; Li, Y.; Xiang, Y.; Guo, G. In Situ and Ex Situ pH-Responsive Coatings with Switchable Wettability for Controllable Oil/Water Separation. ACS Appl. Mater. Interfaces. 2016, 8, 31281–31288. DOI: 10.1021/acsami.6b09381.
  • Frysali, M. A.; Anastasiadis, S. H. Temperature- and/or pH-Responsive Surfaces with Controllable Wettability: From Parahydrophobicity to Superhydrophilicity . Langmuir 2017, 33, 9106–9114. DOI: 10.1021/acs.langmuir.7b02098.
  • Chen, X.; Gao, J.; Song, B.; Smet, M.; Zhang, X. Stimuli-Responsive Wettability of Nonplanar Substrates: pH-Controlled Floatation and Supporting Force. Langmuir 2010, 26, 104–108. DOI: 10.1021/la902137b.
  • Kwon, G.; Panchanathan, D.; Mahmoudi, S. R.; Gondal, M. A.; McKinley, G. H.; Varanasi, K. K. Visible Light Guided Manipulation of Liquid Wettability on Photoresponsive Surfaces. Nat. Commun. 2017, 8, 14968–14968. DOI: 10.1038/ncomms14968.
  • Rao, Q.; Li, A.; Zhang, J.; Jiang, J.; Zhang, Q.; Zhan, X.; Chen, F. Multi-Functional Fluorinated Ionic Liquid Infused Slippery Surfaces with Dual-Responsive Wettability Switching and Self-Repairing. J. Mater. Chem. A 2019, 7, 2172–2183. DOI: 10.1039/C8TA08956F.
  • Konosu, Y.; Matsumoto, H.; Tsuboi, K.; Minagawa, M.; Tanioka, A. Enhancing the Effect of the Nanofiber Network Structure on Thermoresponsive Wettability Switching. Langmuir 2011, 27, 14716–14720. DOI: 10.1021/la203396y.
  • Guselnikova, O.; Elashnikov, R.; Postnikov, P.; Svorcik, V.; Lyutakov, O. Smart, Piezo-Responsive Polyvinylidenefluoride/Polymethylmethacrylate Surface with Triggerable Water/Oil Wettability and Adhesion. ACS Appl. Mater. Interfaces. 2018, 10, 37461–37469. DOI: 10.1021/acsami.8b06840.
  • Zhang, X.; Liu, C.; Yang, J.; Huang, X.-J.; Xu, Z.-K. Wettability Switchable Membranes for Separating Both Oil-in-Water and Water-in-Oil Emulsions. J. Membr. Sci. 2021, 624, 118976. DOI: 10.1016/j.memsci.2020.118976.
  • Leverant, C. J.; Zhang, Y.; Cordoba, M. A.; Leo, S. Y.; Charpota, N.; Taylor, C.; Jiang, P. Macroporous Superhydrophobic Coatings with Switchable Wettability Enabled by Smart Shape Memory Polymers. Adv. Mater. Interfaces 2021, 8, 2002111. DOI: 10.1002/admi.202002111.
  • ElSherbiny, I. M.; Khalil, A. S.; Ulbricht, M. Tailoring Surface Characteristics of Polyamide Thin‐Film Composite Membranes toward Pronounced Switchable Wettability. Adv. Mater. Interfaces 2019, 6, 1801408. DOI: 10.1002/admi.201801408.
  • Huang, X.; Sun, Y.; Soh, S. Stimuli-Responsive Surfaces for Tunable and Reversible Control of Wettability. Adv. Mater. 2015, 27, 4062–4068. DOI: 10.1002/adma.201501578.
  • Pearson, H. A.; Andrie, J. M.; Urban, M. W. Covalent Attachment of Multilayers (CAM): a Platform for pH Switchable Antimicrobial and Anticoagulant Polymeric Surfaces. Biomater. Sci. 2014, 2, 512–521. DOI: 10.1039/c3bm60238a.
  • Yang, C.; Wu, L.; Li, G. Magnetically Responsive Superhydrophobic Surface: In Situ Reversible Switching of Water Droplet Wettability and Adhesion for Droplet Manipulation. ACS Appl. Mater. Interfaces. 2018, 10, 20150–20158. DOI: 10.1021/acsami.8b04190.
  • Xu, Z.; Zhao, Y.; Wang, H.; Zhou, H.; Qin, C.; Wang, X.; Lin, T. Fluorine-Free Superhydrophobic Coatings with pH-induced Wettability Transition for Controllable Oil-Water Separation . ACS Appl. Mater. Interfaces. 2016, 8, 5661–5667. DOI: 10.1021/acsami.5b11720.
  • Li, L.; Xu, Z.; Sun, W.; Chen, J.; Dai, C.; Yan, B.; Zeng, H. Bio-Inspired Membrane with Adaptable Wettability for Smart Oil/Water Separation. J. Membr. Sci. 2020, 598, 117661. DOI: 10.1016/j.memsci.2019.117661.
  • Flemming, H.-C.; Wuertz, S. Bacteria and Archaea on Earth and Their Abundance in Biofilms. Nat. Rev. Microbiol. 2019, 17, 247–260. DOI: 10.1038/s41579-019-0158-9.
  • Rai, P. K.; Usmani, Z.; Thakur, V. K.; Gupta, V. K.; Mishra, Y. K. Tackling COVID-19 Pandemic through Nanocoatings: confront and Exactitude. Current Res. Green and Sus. Chem. 2020, 3, 100011. DOI: 10.1016/j.crgsc.2020.100011.
  • Urban, M. W. Advances in Molecular Design of Polymer Surfaces with Antimicrobial, Anticoagulant, and Antifouling Properties. In Biomaterials in Regenerative Medicine and the Immune System, Springer: Berlin, 2015; pp 53–80
  • Pearson, H. A.; Urban, M. W. Simple Click Reactions on Polymer Surfaces Leading to Antimicrobial Behavior. J. Mater. Chem. B 2014, 2, 2084–2087. DOI: 10.1039/c3tb21865a.
  • Francolini, I.; Vuotto, C.; Piozzi, A.; Donelli, G. Antifouling and Antimicrobial Biomaterials: An Overview. APMIS 2017, 125, 392–417. DOI: 10.1111/apm.12675.
  • Wei, T.; Yu, Q.; Chen, H. Responsive and Synergistic Antibacterial Coatings: fighting against Bacteria in a Smart and Effective Way. Adv. Healthcare Mater. 2019, 8, 1801381. DOI: 10.1002/adhm.201801381.
  • Bian, Q.; Chen, S.; Xing, Y.; Yuan, D.; Lv, L.; Wang, G. Host-Guest Self-Assembly toward Reversible Visible-Light-Responsive Switching for Bacterial Adhesion. Acta Biomater. 2018, 76, 39–45. DOI: 10.1016/j.actbio.2018.06.039.
  • Ramanan, S. N.; Shahkaramipour, N.; Tran, T.; Zhu, L.; Venna, S. R.; Lim, C.-K.; Singh, A.; Prasad, P. N.; Lin, H. Self-Cleaning Membranes for Water Purification by co-Deposition of Photo-Mobile 4, 4′-Azodianiline and Bio-Adhesive Polydopamine. J. Membr. Sci. 2018, 554, 164–174. DOI: 10.1016/j.memsci.2018.02.068.
  • Lee, K. S.; In, I.; Park, S. Y. pH and Redox Responsive Polymer for Antifouling Surface Coating. Appl. Surf. Sci. 2014, 313, 532–536. DOI: 10.1016/j.apsusc.2014.06.017.
  • Wang, T.; Wang, C.; Zhou, S.; Xu, J.; Jiang, W.; Tan, L.; Fu, J. Nanovalves-Based Bacteria-Triggered, Self-Defensive Antibacterial Coating: using Combination Therapy, Dual Stimuli-Responsiveness, and Multiple Release Modes for Treatment of Implant-Associated Infections. Chem. Mater. 2017, 29, 8325–8337. DOI: 10.1021/acs.chemmater.7b02678.
  • Xu, G.; Liu, P.; Pranantyo, D.; Neoh, K.-G.; Kang, E.-T. Dextran- and Chitosan-Based Antifouling, Antimicrobial Adhesion, and Self-Polishing Multilayer Coatings from pH-Responsive Linkages-Enabled Layer-by-Layer Assembly. ACS Sustainable Chem. Eng. 2018, 6, 3916–3926. DOI: 10.1021/acssuschemeng.7b04286.
  • Wang, B.; Ye, Z.; Xu, Q.; Liu, H.; Lin, Q.; Chen, H.; Nan, K. Construction of a Temperature-Responsive Terpolymer Coating with Recyclable Bactericidal and Self-Cleaning Antimicrobial Properties. Biomater. Sci. 2016, 4, 1731–1741. DOI: 10.1039/c6bm00587j.
  • Poudel, B. K.; Park, J. H.; Byeon, J. H. On-Demand Gas-to-Liquid Process to Fabricate Thermoresponsive Antimicrobial Nanocomposites and Coatings. ACS Appl. Mater. Interfaces. 2017, 9, 15342–15349. DOI: 10.1021/acsami.7b05167.
  • He, M.; Wang, Q.; Zhang, J.; Zhao, W.; Zhao, C. Substrate-Independent Ag-Nanoparticle-Loaded Hydrogel Coating with Regenerable Bactericidal and Thermoresponsive Antibacterial Properties. ACS Appl. Mater. Interfaces. 2017, 9, 44782–44791. DOI: 10.1021/acsami.7b13238.
  • Saha, P.; Santi, M.; Emondts, M.; Roth, H.; Rahimi, K.; Großkurth, J.; Ganguly, R.; Wessling, M.; Singha, N. K.; Pich, A. Stimuli-Responsive Zwitterionic Core–Shell Microgels for Antifouling Surface Coatings. ACS Appl. Mater. Interfaces 2020, 12, 58223–58238. DOI: 10.1021/acsami.0c17427.
  • He, M.; Wang, Q.; Zhao, W.; Li, J.; Zhao, C. A Self-Defensive Bilayer Hydrogel Coating with Bacteria Triggered Switching from Cell Adhesion to Antibacterial Adhesion. Polym. Chem. 2017, 8, 5344–5353. DOI: 10.1039/C7PY00967D.
  • Xu, B.; Feng, C.; Hu, J.; Shi, P.; Gu, G.; Wang, L.; Huang, X. Spin-Casting Polymer Brush Films for Stimuli-Responsive and anti-Fouling Surfaces. ACS Appl. Mater. Interfaces. 2016, 8, 6685–6692. DOI: 10.1021/acsami.5b12820.
  • Czerwińska-Główka, D.; Przystaś, W.; Zabłocka-Godlewska, E.; Student, S.; Cwalina, B.; Łapkowski, M.; Krukiewicz, K. Electrically-Responsive Antimicrobial Coatings Based on a Tetracycline-Loaded Poly(3,4-Ethylenedioxythiophene) Matrix. Mater. Sci. Eng. C Mater. Biol. Appl. 2021, 123, 112017. DOI: 10.1016/j.msec.2021.112017.
  • Xu, G.; Neoh, K. G.; Kang, E.-T.; Teo, S. L.-M. Switchable Antimicrobial and Antifouling Coatings from Tannic Acid-Scaffolded Binary Polymer Brushes. ACS Sustain. Chem. Eng. 2020, 8, 2586–2595. DOI: 10.1021/acssuschemeng.9b07836.
  • Pearson, H. A.; Sahukhal, G. S.; Elasri, M. O.; Urban, M. W. Phage-Bacterium War on Polymeric Surfaces: can Surface-Anchored Bacteriophages Eliminate Microbial Infections? Biomacromolecules 2013, 14, 1257–1261. DOI: 10.1021/bm400290u.
  • Pemmada, R.; Zhu, X.; Dash, M.; Zhou, Y.; Ramakrishna, S.; Peng, X.; Thomas, V.; Jain, S.; Nanda, H. S. Science-Based Strategies of Antiviral Coatings with Viricidal Properties for the COVID-19 like Pandemics. Materials 2020, 13, 4041. DOI: 10.3390/ma13184041.
  • van Doremalen, N.; Bushmaker, T.; Morris, D. H.; Holbrook, M. G.; Gamble, A.; Williamson, B. N.; Tamin, A.; Harcourt, J. L.; Thornburg, N. J.; Gerber, S. I.; et al. Aerosol and Surface Stability of SARS-CoV-2 as Compared with SARS-CoV-1. N. Engl. J. Med. 2020, 382, 1564–1567. DOI: 10.1056/NEJMc2004973.
  • Behzadinasab, S.; Chin, A.; Hosseini, M.; Poon, L.; Ducker, W. A. A Surface Coating That Rapidly Inactivates SARS-CoV-2. ACS Appl. Mater. Interfaces. 2020, 12, 34723–34727. DOI: 10.1021/acsami.0c11425.
  • Hosseini, M.; Chin, A. W.; Behzadinasab, S.; Poon, L. L.; Ducker, W. A. Cupric Oxide Coating That Rapidly Reduces Infection by SARS-CoV-2 via Solids. ACS Appl. Mater. Interfaces. 2021, 13, 5919–5928. DOI: 10.1021/acsami.0c19465.
  • Zhao, X.; Jin, L.; Shi, H.; Tong, W.; Gorin, D.; Kotelevtsev, Y.; Mao, Z. Recent Advances of Designing Dynamic Surfaces to Regulate Cell Adhesion. Colloid Interface Sci. Commun. 2020, 35, 100249. DOI: 10.1016/j.colcom.2020.100249.
  • Koçer, G.; Ter Schiphorst, J.; Hendrikx, M.; Kassa, H. G.; Leclère, P.; Schenning, A. P.; Jonkheijm, P. Light‐Responsive Hierarchically Structured Liquid Crystal Polymer Networks for Harnessing Cell Adhesion and Migration. Adv. Mater. 2017, 29, 1606407. DOI: 10.1002/adma.201606407.
  • Murase, N.; Ando, T.; Ajiro, H. Synthesis of Spiropyran with Methacrylate at the Benzopyran Moiety and Control of the Water Repellency and Cell Adhesion of Its Polymer Film. J. Mater. Chem. B 2020, 8, 1489–1495. DOI: 10.1039/c9tb02733e.
  • Wei, Y.; Mo, X.; Zhang, P.; Li, Y.; Liao, J.; Li, Y.; Zhang, J.; Ning, C.; Wang, S.; Deng, X.; Jiang, L. Directing Stem Cell Differentiation via Electrochemical Reversible Switching between Nanotubes and Nanotips of Polypyrrole Array. ACS Nano. 2017, 11, 5915–5924. DOI: 10.1021/acsnano.7b01661.
  • Yuranova, T.; Mosteo, R.; Bandara, J.; Laub, D.; Kiwi, J. Self-Cleaning Cotton Textiles Surfaces Modified by Photoactive SiO2/TiO2 Coating. J. Mol. Catal. A: Chem. 2006, 244, 160–167. DOI: 10.1016/j.molcata.2005.08.059.
  • Kasanen, J.; Suvanto, M.; Pakkanen, T. T. Self‐Cleaning, Titanium Dioxide Based, Multilayer Coating Fabricated on Polymer and Glass Surfaces. J. Appl. Polym. Sci. 2009, 111, 2597–2606. DOI: 10.1002/app.29295.
  • Nakajima, A.; Koizumi, S-i.; Watanabe, T.; Hashimoto, K. Photoinduced Amphiphilic Surface on Polycrystalline Anatase TiO2 Thin Films. Langmuir 2000, 16, 7048–7050. DOI: 10.1021/la0004348.
  • Schmidt, H.; Naumann, M.; Müller, T. S.; Akarsu, M. Application of Spray Techniques for New Photocatalytic Gradient Coatings on Plastics. Thin Solid Films 2006, 502, 132–137. DOI: 10.1016/j.tsf.2005.07.257.
  • Kaner, P.; Hu, X.; Thomas, S. W.; III,.; Asatekin, A. Self-Cleaning Membranes from Comb-Shaped Copolymers with Photoresponsive Side Groups. ACS Appl. Mater. Interfaces. 2017, 9, 13619–13631. DOI: 10.1021/acsami.7b01585.
  • Sun, X.; Damle, V. G.; Liu, S.; Rykaczewski, K. Bioinspired Stimuli‐Responsive and Antifreeze‐Secreting anti‐Icing Coatings. Adv. Mater. Interfaces 2015, 2, 1400479. DOI: 10.1002/admi.201400479.
  • Zhu, T.; Cheng, Y.; Huang, J.; Xiong, J.; Ge, M.; Mao, J.; Liu, Z.; Dong, X.; Chen, Z.; Lai, Y. A Transparent Superhydrophobic Coating with Mechanochemical Robustness for anti-Icing, Photocatalysis and Self-Cleaning. Chem. Eng. J. 2020, 399, 125746. DOI: 10.1016/j.cej.2020.125746.
  • Guo, H.; Liu, M.; Xie, C.; Zhu, Y.; Sui, X.; Wen, C.; Li, Q.; Zhao, W.; Yang, J.; Zhang, L. A Sunlight-Responsive and Robust anti-Icing/Deicing Coating Based on the Amphiphilic Materials. Chem. Eng. J. 2020, 402, 126161. DOI: 10.1016/j.cej.2020.126161.
  • Durán, I. R.; Laroche, G. Water Drop-Surface Interactions as the Basis for the Design of anti-Fogging Surfaces: Theory, Practice, and Applications Trends. Adv. Colloid. Interface Sci. 2019, 263, 68–94. DOI: 10.1016/j.cis.2018.11.005.
  • Howarter, J. A.; Youngblood, J. P. Self‐Cleaning and Next Generation anti‐Fog Surfaces and Coatings. Macromol. Rapid Commun. 2008, 29, 455–466. DOI: 10.1002/marc.200700733.
  • Howarter, J. A.; Youngblood, J. P. Self‐Cleaning and anti‐Fog Surfaces via Stimuli‐Responsive Polymer Brushes. Adv. Mater. 2007, 19, 3838–3843. DOI: 10.1002/adma.200700156.
  • Su, X.; Li, H.; Lai, X.; Chen, Z.; Zeng, X. Stimuli-Responsive Superhydrophobic Films Driven by Solvent Vapor for Electric Switch and Liquid Manipulation. Chem. Eng. J. 2020, 394, 124919. DOI: 10.1016/j.cej.2020.124919.
  • Liu, Y.; Wang, X.; Fei, B.; Hu, H.; Lai, C.; Xin, J. H. Bioinspired, Stimuli‐Responsive, Multifunctional Superhydrophobic Surface with Directional Wetting, Adhesion, and Transport of Water. Adv. Funct. Mater. 2015, 25, 5047–5056. DOI: 10.1002/adfm.201501705.
  • Shang, B.; Chen, M.; Wu, L. NIR‐Triggered Photothermal Responsive Coatings with Remote and Localized Tunable Underwater Oil Adhesion. Small 2019, 15, 1901888. DOI: 10.1002/smll.201901888.
  • Sieste, S.; Mack, T.; Synatschke, C. V.; Schilling, C.; Meyer zu Reckendorf, C.; Pendi, L.; Harvey, S.; Ruggeri, F. S.; Knowles, T. P. J.; Meier, C.; et al. Water‐Dispersible Polydopamine‐Coated Nanofibers for Stimulation of Neuronal Growth and Adhesion. Adv. Healthcare Mater. 2018, 7, 1701485. DOI: 10.1002/adhm.201701485.
  • Chen, W. H.; Liao, W. C.; Sohn, Y. S.; Fadeev, M.; Cecconello, A.; Nechushtai, R.; Willner, I. Stimuli‐Responsive Nucleic Acid‐Based Polyacrylamide Hydrogel‐Coated Metal–Organic Framework Nanoparticles for Controlled Drug Release. Adv. Funct. Mater. 2018, 28, 1705137. DOI: 10.1002/adfm.201705137.
  • Ma, J.; Mu, X.; Bowman, C. N.; Sun, Y.; Dunn, M. L.; Qi, H. J.; Fang, D. A Photoviscoplastic Model for Photoactivated Covalent Adaptive Networks. J. Mech. Phys. Solids 2014, 70, 84–103. DOI: 10.1016/j.jmps.2014.05.008.
  • Krishnakumar, B.; Sanka, R. P.; Binder, W. H.; Parthasarthy, V.; Rana, S.; Karak, N. Vitrimers: Associative Dynamic Covalent Adaptive Networks in Thermoset Polymers. Chem. Eng. J. 2020, 385, 123820. DOI: 10.1016/j.cej.2019.123820.
  • Li, L.; Chen, X.; Torkelson, J. M. Covalent Adaptive Networks for Enhanced Adhesion: exploiting Disulfide Dynamic Chemistry and Annealing during Application. ACS Appl. Polym. Mater. 2020, 2, 4658–4665. DOI: 10.1021/acsapm.0c00720.
  • Hornat, C. C.; Urban, M. W. Shape Memory Effects in Self-Healing Polymers. Prog. Polym. Sci. 2020, 102, 101208. DOI: 10.1016/j.progpolymsci.2020.101208.
  • Hornat, C. C.; Nijemeisland, M.; Senardi, M.; Yang, Y.; Pattyn, C.; van der Zwaag, S.; Urban, M. W. Quantitative Predictions of Maximum Strain Storage in Shape Memory Polymers (SMP). Polymer 2020, 186, 122006. DOI: 10.1016/j.polymer.2019.122006.
  • Fortman, D. J.; Sheppard, D. T.; Dichtel, W. R. Reprocessing Cross-Linked Polyurethanes by Catalyzing Carbamate Exchange. Macromolecules 2019, 52, 6330–6335. DOI: 10.1021/acs.macromol.9b01134.
  • Kolb, H. C.; Finn, M.; Sharpless, K. B. Click Chemistry: diverse Chemical Function from a Few Good Reactions. Angew. Chem. Int. Ed. 2001, 40, 2004–2021. DOI: 10.1002/1521-3773(20010601)40:11<2004::AID-ANIE2004>3.0.CO;2-5.
  • Collman, J. P.; Devaraj, N. K.; Chidsey, C. E. "Clicking" functionality onto electrode surfaces”. Langmuir 2004, 20, 1051–1053. DOI: 10.1021/la0362977.
  • Devaraj, N. K.; Miller, G. P.; Ebina, W.; Kakaradov, B.; Collman, J. P.; Kool, E. T.; Chidsey, C. E. Chemoselective Covalent Coupling of Oligonucleotide Probes to Self-Assembled Monolayers. J. Am. Chem. Soc. 2005, 127, 8600–8601. DOI: 10.1021/ja051462l.
  • Nandivada, H.; Chen, H. Y.; Bondarenko, L.; Lahann, J. Reactive Polymer Coatings That “Click”. Angew. Chem. Int. Ed. Engl. 2006, 45, 3360–3363. DOI: 10.1002/anie.200600357.
  • Deng, X.; Friedmann, C.; Lahann, J. Bio‐Orthogonal “Double‐Click” Chemistry Based on Multifunctional Coatings. Angew. Chem. 2011, 123, 6652–6656. DOI: 10.1002/ange.201101581.
  • Hu, J.; Peng, K.; Guo, J.; Shan, D.; Kim, G. B.; Li, Q.; Gerhard, E.; Zhu, L.; Tu, W.; Lv, W.; et al. Click Cross-Linking-Improved Waterborne Polymers for Environment-Friendly Coatings and Adhesives. ACS Appl. Mater. Interfaces. 2016, 8, 17499–17510. DOI: 10.1021/acsami.6b02131.
  • Liu, F.; Jarrett, W. L.; Urban, M. W. Glass (T g) and Stimuli-Responsive (T SR) Transitions in Random Copolymers. Macromolecules 2010, 43, 5330–5337. DOI: 10.1021/ma1006914.
  • Hart, L. F.; Hertzog, J. E.; Rauscher, P. M.; Rawe, B. W.; Tranquilli, M. M.; Rowan, S. J. Material Properties and Applications of Mechanically Interlocked Polymers. Nat. Rev. Mater. 2021, 6, 508–530. DOI: 10.1038/s41578-021-00278-z.
  • Ayarza, J.; Wang, Z.; Wang, J.; Huang, C.-W.; Esser-Kahn, A. P. 100th Anniversary of Macromolecular Science Viewpoint: Piezoelectrically Mediated Mechanochemical Reactions for Adaptive Materials. ACS Macro Lett. 2020, 9, 1237–1248. DOI: 10.1021/acsmacrolett.0c00477.
  • Wang, Z.; Wang, J.; Ayarza, J.; Steeves, T.; Hu, Z.; Manna, S.; Esser‐Kahn, A. P. Bio-Inspired Mechanically Adaptive Materials through Vibration-Induced Crosslinking. Nat. Mater. 2021, 20, 869–874. DOI: 10.1038/s41563-021-00932-5.
  • Liu, Y.; Mu, L.; Liu, B.; Kong, J. Controlled Switchable Surface. Chemistry 2005, 11, 2622–2631. DOI: 10.1002/chem.200400931.
  • Zhou, Y.; Chen, M.; Ban, Q.; Zhang, Z.; Shuang, S.; Koynov, K.; Butt, H-Jr.; Kong, J.; Wu, S. Light-Switchable Polymer Adhesive Based on Photoinduced Reversible Solid-to-Liquid Transitions. ACS Macro. Lett. 2019, 8, 968–972. DOI: 10.1021/acsmacrolett.9b00459.
  • Yang, Y.; Zhang, X.; Chen, Y.; Yang, X.; Ma, J.; Wang, J.; Wang, L.; Feng, W. Bioinspired Color-Changing Photonic Polymer Coatings Based on Three-Dimensional Blue Phase Liquid Crystal Networks. ACS Appl. Mater. Interfaces. 2021, 13, 41102–41111. DOI: 10.1021/acsami.1c11711.
  • Yamanaka, K.; Vestergaard, MdC.; Tamiya, E. Printable Electrochemical Biosensors: A Focus on Screen-Printed Electrodes and Their Application. Sensors 2016, 16, 1761. DOI: 10.3390/s16101761.
  • Gultepe, E.; Nagesha, D.; Sridhar, S.; Amiji, M. Nanoporous Inorganic Membranes or Coatings for Sustained Drug Delivery in Implantable Devices. Adv. Drug Deliv. Rev. 2010, 62, 305–315. DOI: 10.1016/j.addr.2009.11.003.
  • Urban, M. W. Intelligent Polymeric Coatings; Current and Future Advances. J. Macromolec. Sci. Part C. Polymer Rev. 2006, 46, 329–339. DOI: 10.1080/15583720600945535.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.