1,772
Views
6
CrossRef citations to date
0
Altmetric
Reviews

X-Ray and γ-Ray Shielding Efficiency of Polymer Composites: Choice of Fillers, Effect of Loading and Filler Size, Photon Energy and Multifunctionality

ORCID Icon, ORCID Icon & ORCID Icon
Pages 246-288 | Received 07 Jul 2021, Accepted 13 Apr 2022, Published online: 04 May 2022

References

  • Hubbell, J. H. Industrial, Agricultural, and Medical Applications of Radiation Metrology. Proceedings of the Sixth Pacific Basin Nuclear Conference, (p. 905), China. 1987. https://inis.iaea.org/collection/NCLCollectionStore/_Public/20/012/20012148.pdf?r=1.
  • Liss, K. D.; Bartels, A.; Schreyer, A.; Clemens, H. High-Energy X-Rays: A Tool for Advanced Bulk Investigations in Materials Science and Physics. Textures Microstruct. 2003, 35, 219–252. DOI: 10.1080/07303300310001634952.
  • Olivo, A.; Chana, D.; Speller, R. A Preliminary Investigation of the Potential of Phase Contrast x-Ray Imaging in the Field of Homeland Security. J. Phys. D: Appl. Phys. 2008, 41, 225503. DOI: 10.1088/0022-3727/41/22/225503.
  • Donya, M.; Radford, M.; ElGuindy, A.; Firmin, D.; Yacoub, M. H. Radiation in Medicine: Origins, Risks and Aspirations. Glob. Cardiol. Sci. Pract. 2014, 2014, 57. DOI: 10.5339/gcsp.2014.57.
  • Kobayashi, Y. Food Irradiation: Radiation-Based Sterilization, Insecticidal, and Inhibition of Sprouting Technologies for Foods and Agricultural Produce. In Radiation Applications; Springer: Singapore, 2018; pp 217–253. DOI: 10.1007/978-981-10-7350-2_15.
  • World Health Organization (WHO). Ionizing Radiation, Health Effects and Protective Measures. https://www.who.int/news-room/fact-sheets/detail/ionizing-radiation-health-effects-and-protective-measures. (accessed March 15, 2022).
  • Reisz, J. A.; Bansal, N.; Qian, J.; Zhao, W.; Furdui, C. M. Effects of Ionizing Radiation on Biological Molecules-Mechanisms of Damage and Emerging Methods of Detection. Antioxid. Redox. Signal. 2014, 21, 260–292. DOI: 10.1089/ars.2013.5489.
  • Ma, T. P.; Dressendorfer, P. V. Ionizing Radiation Effects in MOS Devices and Circuits; John Wiley & Sons: Hoboken, 1989. https://books.google.co.in/books?id=Z6jyidJL7Q8C.
  • Bagatin, M.; Gerardin, S. Ionizing Radiation Effects in Electronics; CRC Press: Boca Raton, 2016.
  • Krane, K. S. Introductory Nuclear Physics; John Wiley & Sons: Hoboken, 1991.
  • Klein, O.; Nishina, Y. Über Die Streuung Von Strahlung Durch Freie Elektronen Nach Der Neuen Relativistischen Quantendynamik Von Dirac. Z. Physik 1929, 52, 853–868. DOI: 10.1007/BF01366453.
  • Davisson, C. M.; Evans, R. D. Gamma-Ray Absorption Coefficients. Rev. Mod. Phys. 1952, 24, 79–107. DOI: 10.1103/RevModPhys.24.79.
  • Wilson, J. W.; Miller, J.; Konradi, A.; Cucinotta, F. A. Shielding Strategies for Human Space Exploration, 1997. https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19980137598.pdf.
  • El-Hosiny, F. I.; El-Faramawy, N. A. Shielding of Gamma Radiation by Hydrated Portland Cement–Lead Pastes. Radiat. Meas. 2000, 32, 93–99. DOI: 10.1016/S1350-4487(99)00050-5.
  • Abdo, A. E. S.; Ali, M. A. M.; Ismail, M. R. Influence of Magnetite and Boron Carbide on Radiation Attenuation of Cement–Fiber/Composite. Ann. Nucl. Energy 2003, 30, 391–403. DOI: 10.1016/S0306-4549(02)00074-9.
  • Singh, N.; Singh, K. J.; Singh, K.; Singh, H. Gamma-Ray Attenuation Studies of PbO–BaO–B2O3 Glass System. Radiat. Meas 2006, 41, 84–88. DOI: 10.1016/j.radmeas.2004.09.009.
  • Barghouty, A. F.; Thibeault, S. A. The Exploration Atmospheres Working Group's Report on Space Radiation Shielding Materials, 2006. https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20070009850.pdf.
  • Singh, K. J.; Singh, N.; Kaundal, R. S.; Singh, K. Gamma-Ray Shielding and Structural Properties of PbO–SiO2 Glasses. Nucl. Instrum. Methods Phys. Res. B 2008, 266, 944–948. DOI: 10.1016/j.nimb.2008.02.004.
  • Kaur, R.; Singh, S.; Pandey, O. P. Gamma Ray Irradiation Effects on the Optical Properties of BaO–Na2O–B2O3–SiO2 Glasses. J. Mol. Struct 2013, 1048, 78–82. DOI: 10.1016/j.molstruc.2013.05.037.
  • Chen, S.; Bourham, M.; Rabiei, A. Applications of Open-Cell and Closed-Cell Metal Foams for Radiation Shielding. Procedia. Mater. Sci. 2014, 4, 293–298. https://core.ac.uk/reader/82628810. DOI: 10.1016/j.mspro.2014.07.560.
  • Ipbüker, C.; Nulk, H.; Gulik, V.; Biland, A.; Tkaczyk, A. H. Radiation Shielding Properties of a Novel Cement–Basalt Mixture for Nuclear Energy Applications. Nucl. Eng. Des. 2015, 284, 27–37. DOI: 10.1016/j.nucengdes.2014.12.007.
  • Singh, V. P.; Badiger, N. M. Shielding Efficiency of Lead Borate and Nickel Borate Glasses for Gamma Rays and Neutrons. Glass Phys. Chem. 2015, 41, 276–283. DOI: 10.1134/S1087659615030177.
  • Allahmoradi, N.; Baghshahi, S.; Rajabi, M. The Role of Sb2O3 on the Physical and Structural Properties of PbO-SiO2 Glasses. J. Ceram. Process. Res. 2017, 18, 691–695.
  • Abo-El-Enein, S. A.; El-Hosiny, F. I.; El-Gamal, S. M. A.; Amin, M. S.; Ramadan, M. Gamma Radiation Shielding, Fire Resistance and Physicochemical Characteristics of Portland Cement Pastes Modified with Synthesized Fe2O3 and ZnO Nanoparticles. Constr. Build. Mater. 2018, 173, 687–706. DOI: 10.1016/j.conbuildmat.2018.04.071.
  • Roslan, M. K. A.; Ismail, M.; Kueh, A. B. H.; Zin, M. R. M. High-Density Concrete: exploring Ferro Boron Effects in Neutron and Gamma Radiation Shielding. Constr. Build. Mater. 2019, 215, 718–725. DOI: 10.1016/j.conbuildmat.2019.04.105.
  • Arshad, M.; Zubair, M.; Rahman, S. S.; Ullah, A. Polymers for Advanced Applications. In Polymer Science and Nanotechnology; Elsevier: Amsterdam, 2020, pp. 325–340. DOI: 10.1016/B978-0-12-816806-6.00014-5.
  • Abdulrahman, S. T.; Ahmad, Z.; Thomas, S.; Rahman, A. A. Introduction to Neutron-Shielding Materials. In Micro and Nanostructured Composite Materials for Neutron Shielding Applications; Elsevier: Amsterdam, 2020, pp. 1–23. DOI: 10.1016/B978-0-12-819459-1.00001-5.
  • Mahmoud, M. E.; El-Khatib, A. M.; Badawi, M. S.; Rashad, A. R.; El-Sharkawy, R. M.; Thabet, A. A. Fabrication, Characterization and Gamma Rays Shielding Properties of Nano and Micro Lead Oxide-Dispersed-High Density Polyethylene Composites. Radiat. Phys. Chem. 2018, 145, 160–173. DOI: 10.1016/j.radphyschem.2017.10.017.
  • Zegaoui, A.; Derradji, M.; Medjahed, A.; Dayo, A. Q.; Dong, W.; Liu, W. B.; Cai, W. A.; Wang, J.; Liu, Y. G. Multifunctional Polymer Materials with Enhanced Mechanical, Thermal and Gamma Radiation Shielding Properties from Dicyanate Ester of bisphenol-A/bisphenol-A Based Benzoxazine Resin and Short Kevlar/Basalt Hybrid Fibers. J. Polym. Res. 2018, 25, 250. DOI: 10.1007/s10965-018-1652-x.
  • Pavlenko, V. I.; Cherkashina, N. I.; Yastrebinsky, R. N. Synthesis and Radiation Shielding Properties of Polyimide/Bi2O3 Composites. Heliyon 2019, 5, e01703. DOI: 10.1016/j.heliyon.2019.e01703.
  • Muthamma, M. V.; Bubbly, S. G.; Gudennavar, S. B. Attenuation Properties of Epoxy‐Ta2O5 and Epoxy‐Ta2O5‐Bi2O3 Composites at γ‐Ray Energies 59.54 and 0.662 MeV. J. Appl. Polym. Sci. 2020, 137, 49366. DOI: 10.1002/app.49366.
  • Prabhu, S.; Bubbly, S. G.; Gudennavar, S. B. Sodium Alginate/Bismuth (III) Oxide Composites for γ‐Ray Shielding Applications. J. Appl. Polym. Sci. 2021, 138, 50369. DOI: 10.1002/app.50369.
  • Prabhu, S.; Bubbly, S. G.; Gudennavar, S. B. Thermal, Mechanical and γ‐Ray Shielding Properties of Micro‐and Nano‐Ta2O5 Loaded DGEBA Epoxy Resin Composites. J. Appl. Polym. Sci. 2021, 138, 51289. DOI: 10.1002/app.51289.
  • Kim, S.; Ahn, Y.; Song, S. H.; Lee, D. Tungsten Nanoparticle Anchoring on Boron Nitride Nanosheet-Based Polymer Nanocomposites for Complex Radiation Shielding. Compos. Sci. Technol. 2022, 221, 109353. DOI: 10.1016/j.compscitech.2022.109353.
  • Abdel‐Aziz, M. M.; Badran, A. S.; Abdel‐Hakem, A. A.; Helaly, F. M.; Moustafa, A. B. Styrene–Butadiene Rubber/Lead Oxide Composites as Gamma Radiation Shields. J. Appl. Polym. Sci. 1991, 42, 1073–1080. DOI: 10.1002/app.1991.070420420.
  • Gwaily, S. E.; Madani, M.; Hassan, H. H. Lead-Natural Rubber Composites as Gamma Radiation Shields. II: High Concentration. Polym. Compos. 2002, 23, 495–499. DOI: 10.1002/pc.10450.
  • Huang, W.; Yang, W.; Ma, Q.; Wu, J.; Fan, J.; Zhang, K. Preparation and Characterization of γ-Ray Radiation Shielding PbWO4/EPDM Composite. J. Radioanal. Nucl. Chem. 2016, 309, 1097–1103. DOI: 10.1007/s10967-016-4713-9.
  • Rabie, A. M.; Moustafa, A. B.; Badran, A. S. Preparation and Characterization of Poly (Methyl Methacrylate)–Lead Silicate Composites. J. Appl. Polym. Sci. 1979, 24, 417–423. DOI: 10.1002/app.1979.070240210.
  • Gwaily, S. E. Galena/(NR + SBR) Rubber Composites as Gamma Radiation Shields. Polym. Test 2002, 21, 883–887. DOI: 10.1016/S0142-9418(02)00023-5.
  • Mahmoud, M. E.; El-Sharkawy, R. M.; Allam, E. A.; Elsaman, R.; El-Taher, A. Fabrication and Characterization of Phosphotungstic acid-Copper Oxide nanoparticles-Plastic Waste Nanocomposites for Enhanced Radiation-Shielding. J. Alloys Compd. 2019, 803, 768–777. DOI: 10.1016/j.jallcom.2019.06.290.
  • Adlienė, D.; Gilys, L.; Griškonis, E. Development and Characterization of New Tungsten and Tantalum Containing Composites for Radiation Shielding in Medicine. Nucl. Instrum. Methods Phys. Res. B. 2020, 467, 21–26. DOI: 10.1016/j.nimb.2020.01.027.
  • Akman, F.; Kaçal, M. R.; Almousa, N.; Sayyed, M. I.; Polat, H. Gamma-Ray Attenuation Parameters for Polymer Composites Reinforced with BaTiO3 and CaWO4 Compounds. Prog. Nucl. Energy 2020, 121, 103257. DOI: 10.1016/j.pnucene.2020.103257.
  • Mahmoud, K. A.; Lacomme, E.; Sayyed, M. I.; Özpolat, Ö. F.; Tashlykov, O. L. Investigation of the Gamma Ray Shielding Properties for Polyvinyl Chloride Reinforced with Chalcocite and Hematite Minerals. Heliyon 2020, 6, e03560. DOI: 10.1016/j.heliyon.2020.e03560.
  • Muthamma, M. V.; Bubbly, S. G.; Gudennavar, S. B.; Narendranath, K. S. Poly (Vinyl Alcohol)–Bismuth Oxide Composites for X‐Ray and γ‐Ray Shielding Applications. J. Appl. Polym. Sci. 2019, 136, 47949. DOI: 10.1002/app.47949.
  • Aldhuhaibat, M. J.; Amana, M. S.; Jubier, N. J.; Salim, A. A. Improved Gamma Radiation Shielding Traits of Epoxy Composites: Evaluation of Mass Attenuation Coefficient, Effective Atomic and Electron Number. Radiat. Phys. Chem. 2021, 179, 109183. DOI: 10.1016/j.radphyschem.2020.109183.
  • Kim, J.; Seo, D.; Lee, B. C.; Seo, Y. S.; Miller, W. H. Nano‐W Dispersed Gamma Radiation Shielding Materials. Adv. Eng. Mater. 2014, 16, 1083–1089. DOI: 10.1002/adem.201400127.
  • Hashemi, S. A.; Mousavi, S. M.; Faghihi, R.; Arjmand, M.; Sina, S.; Amani, A. M. Lead Oxide-Decorated Graphene Oxide/Epoxy Composite towards X-Ray Radiation Shielding. Radiat. Phys. Chem. 2018, 146, 77–85. DOI: 10.1016/j.radphyschem.2018.01.008.
  • Asgari, M.; Afarideh, H.; Ghafoorifard, H.; Amirabadi, E. A. Comparison of Nano/Micro Lead, Bismuth and Tungsten on the Gamma Shielding Properties of the Flexible Composites against Photon in Wide Energy Range (40 keV–662 keV). Nucl. Eng. Technol. 2021, 53, 4142–4149. DOI: 10.1016/j.net.2021.06.022.
  • Muthamma, M. V.; Prabhu, S.; Bubbly, S. G.; Gudennavar, S. B. Micro and Nano Bi2O3 Filled Epoxy Composites: Thermal, Mechanical and γ-Ray Attenuation Properties. Appl. Radiat. Isot. 2021, 174, 109780. DOI: 10.1016/j.apradiso.2021.109780.
  • Hosseini, M. A.; Malekie, S.; Kazemi, F. Experimental Evaluation of Gamma Radiation Shielding Characteristics of Polyvinyl Alcohol/Tungsten Oxide Composite: A Comparison Study of Micro and Nano Sizes of the Fillers. Nucl. Instrum. Methods Phys. Res. A. 2022, 1026, 166214. DOI: 10.1016/j.nima.2021.166214.
  • Abbas, M. I.; El-Khatib, A. M.; Dib, M. F.; Mustafa, H. E.; Sayyed, M. I.; Elsafi, M. The Influence of Bi2O3 Nanoparticle Content on the γ-Ray Interaction Parameters of Silicon Rubber. Polymers 2022, 14, 1048. DOI: 10.3390/polym14051048.
  • Kim, H.; Lim, J.; Kim, J.; Lee, J.; Seo, Y. Multilayer Structuring of Nonleaded Metal (BiSn)/Polymer/Tungsten Composites for Enhanced γ‐Ray Shielding. Adv. Eng. Mater. 2020, 22, 1901448. DOI: 10.1002/adem.201901448.
  • Prabhu, S.; Geejo, A.; Dagar, R.; Chakraborty, D.; Jacob, A.; Paul, S.; Bubbly, S. G.; Gudennavar, S. B. Multi-Layered Epoxy Composites of Micro and Nano Bi2O3 and Ta2O5 for γ-Ray Shielding. In Proceedings of Fourth International Conference on Inventive Material Science Applications. Springer: Singapore, 2022, pp. 457–467. DOI: 10.1007/978-981-16-4321-7_38.
  • Nambiar, S.; Yeow, J. T. Polymer-Composite Materials for Radiation Protection. ACS Appl. Mater. Interfaces. 2012, 4, 5717–5726. DOI: 10.1021/am300783d.
  • Mirji, R.; Lobo, B. Radiation Shielding Materials: A Brief Review on Methods, Scope and Significance. In Proceedings of the National Conference on Advances in VLSI and Microelectronics, Huballi, India, 2017, pp. 96–100.
  • More, C. V.; Alsayed, Z.; Badawi, M. S.; Thabet, A. A.; Pawar, P. P. Polymeric Composite Materials for Radiation Shielding: A Review. Environ. Chem. Lett. 2021, 19, 2057–2090. DOI: 10.1007/s10311-021-01189-9.
  • Sastri, V. R. Plastics in Medical Devices. In Materials Used in Medical Devices, Elsevier: Amsterdam, 2010; pp. 21–32. DOI: 10.1016/B978-0-8155-2027-6.10003-0.
  • Cheon, B. K.; Kim, C. L.; Kim, K. R.; Kang, M. H.; Lim, J. A.; Woo, N. S.; Rhee, K. Y.; Kim, H. K.; Kim, J. H. Radiation Safety: A Focus on Lead Aprons and Thyroid Shields in Interventional Pain Management. Korean J. Pain. . 2018, 31, 244–252. DOI: 10.3344/kjp.2018.31.4.244.
  • Hussain, R.; Haq, Z. U.; Mohammad, D. A Study of the Shielding Properties of Poly Ethylene Glycol-Lead Oxide Composite. J. Islamic Acad. Sci 1997, 10, 81–84.
  • Mandal, S.; Alam, S. Studies on Gamma Radiation Resistance Polyethersulphone Films Reinforced by Lead Oxide. Mater. Res. Innov. 2013, 17, 373–376. DOI: 10.1179/1433075X12Y.0000000056.
  • Saadi, A. J. Variation of Gamma Ray Attenuation Parameters for Poly Vinyl Alcohol Reinforced by Lead Acetate. J. Kerbala Univ. 2014, 12, 35–44. https://www.iasj.net/iasj?func=fulltextaId=93890.
  • Belgin, E. E.; Aycik, G. A. Preparation and Radiation Attenuation Performances of Metal Oxide Filled Polyethylene-Based Composites for Ionizing Electromagnetic Radiation Shielding Applications. J. Radioanal. Nucl. Chem. 2015, 306, 107–117. DOI: 10.1007/s10967-015-4052-2.
  • Hammannavar, P. B.; Lobo, B. Study of Lead Nitrate Doped PVA/PVP Blend Films Using EDXRF and Complementary Techniques. Macromol. Symp. 2017, 376, 1600198. DOI: 10.1002/masy.201600198.
  • Akman, F.; Ogul, H.; Kaçal, M. R.; Polat, H.; Dilsiz, K.; Turhan, M. F. Impact of Lead (II) Iodide on Radiation Shielding Properties of Polyester Composites. Appl. Phys. A 2020, 126, 301. DOI: 10.1007/s00339-020-03494-6.
  • Özkalaycı, F.; Kaçal, M. R.; Agar, O.; Polat, H.; Sharma, A.; Akman, F. Lead (II) Chloride Effects on Nuclear Shielding Capabilities of Polymer Composites. J. Phys. Chem. Solids 2020, 145, 109543. DOI: 10.1016/j.jpcs.2020.109543.
  • A Abu Saleem, R.; Abdelal, N.; Alsabbagh, A.; Al-Jarrah, M.; Al-Jawarneh, F. Radiation Shielding of Fiber Reinforced Polymer Composites Incorporating Lead Nanoparticles—an Empirical Approach. Polymers 2021, 13, 3699. DOI: 10.3390/polym13213699.
  • Akman, F.; Kaçal, M. R.; Polat, H.; Aktas, G.; Gultekin, A.; Agar, O. A Comparative Study on the Nuclear Shielding Properties of BiBr3 and PbSO4 Incorporated Composites. J. Phys. Chem Solids 2021, 152, 109978. DOI: 10.1016/j.jpcs.2021.109978.
  • El-Khatib, A. M.; Abbas, Y. M.; Badawi, M. S.; Hagag, O. M.; Alabsy, M. T. Gamma Radiation Shielding Properties of Recycled Polyvinyl Chloride Composites Reinforced with Micro/Nano-Structured PbO and CuO Particles. Phys. Scr. 2021, 96, 125316. DOI: 10.1088/1402-4896/ac35c3.
  • El-Khatib, A. M.; Doma, A. S.; Abu-Rayan, A. E.; Aly, N. S.; Abbas, M. I. Novel Composites Made of Natural and Waste Rubber Loaded with Lead Nanoparticles for Gamma Radiation Shielding. Surf. Innov 2021, 40, 1–17. DOI: 10.1680/jsuin.20.00025.
  • Elsad, R. A.; Mahmoud, K. A.; Rammah, Y. S.; Abouhaswa, A. S. Fabrication, Structural, Optical, and Dielectric Properties of PVC-PbO Nanocomposites, as Well as Their Gamma-Ray Shielding Capability. Radiat. Phys. Chem. 2021, 189, 109753. DOI: 10.1016/j.radphyschem.2021.109753.
  • Ghaseminejad, M.; Gholamzadeh, L.; Ostovari, F. Investigation of x-Ray Attenuation Property of Modification PbO with Graphene in Epoxy Polymer. Mater. Res. Express 2021, 8, 035008. DOI: 10.1088/2053-1591/abecea.
  • Salawu, M. A.; Gbolahan, J. A.; Alabi, A. B. Assessment of Radiation Shielding Properties of Polymer-Lead (II) Oxide Composites. J. Nig. Soc. Phys. Sci. 2021, 3, 423–428. DOI: 10.46481/jnsps.2021.249.
  • Sudirman, S. Z.; Indriyati.; Y. R.; Mahendra. Synthesis and Characterization of Polyurethane-Based X-Ray Shielding Based with Pb3O4 Filler. In AIP Conference Proceedings, 2021, 2381, 020085. DOI: 10.1063/5.0066593.
  • Waly, S. A.; Abdelreheem, A. M.; Shehata, M. M.; Ghazy, O. A.; Ali, Z. I. Thermal Stability, Mechanical Properties, and Gamma Radiation Shielding Performance of Polyvinyl Chloride/Pb(NO3)2 Composites. J. Polym. Eng. 2021, 41, 737–745. DOI: 10.1515/polyeng-2021-0067.
  • Wei, H.; Lou, L.; Yang, Z.; He, R.; Fan, J.; Zhang, K.; Yang, W. Multifunctional Composites Silicone Rubber/Paraffin@ Lead Tungstate with Different Core/Shell Ratio for Thermal Regulation and Gamma Shielding. J. Energy. Storage 2021, 36, 102363. DOI: 10.1016/j.est.2021.102363.
  • Abou-Laila, M. T.; EL-Zayat, M. M.; Madbouly, A. M.; Abdel-Hakim, A. Gamma Irradiation Effects on Styrene Butadiene Rubber/Pb3O4: Mechanical, Thermal, Electrical Investigations and Shielding Parameter Measurements. Radiat. Phys. Chem 2022, 192, 109897. DOI: 10.1016/j.radphyschem.2021.109897.
  • Kilicoglu, O.; More, C. V.; Akman, F.; Dilsiz, K.; Oğul, H.; Kaçal, M. R.; Polat, H.; Agar, O. Micro Pb Filled Polymer Composites: Theoretical, Experimental and Simulation Results for γ-Ray Shielding Performance. Radiat. Phys. Chem. 2022, 194, 110039. DOI: 10.1016/j.radphyschem.2022.110039.
  • Madbouly, A. M.; Atta, E. R. Comparative Study between Lead Oxide and Lead Nitrate Polymer as Gamma-Radiation Shielding Materials. JEP. 2016, 07, 268–276. DOI: 10.4236/jep.2016.7202.
  • El-Kameesy, S. U.; El-Nashar, D. E.; El-Fiki, S.; Agami, W. R.; Younes, A. E. Development of Silicone Rubber/Lead Oxide Composites as Gamma Ray Shielding Materials. Int. J. Adv. Res. 2015, 3, 1017–1023. https://www.journalijar.com/uploads/456_IJAR-6190.pdf.
  • Atef, S.; El-Nashar, D. E.; Ashour, A. H.; El-Fiki, S.; El-Kameesy, S. U.; Medhat, M. Effect of Gamma Irradiation and Lead Content on the Physical and Shielding Properties of PVC/NBR Polymer Blends. Polym. Bull. 2020, 77, 5423–5416. DOI: 10.1007/s00289-019-03022-4.
  • Park, J.; Kim, M.; Choi, S.; Sun, J. Y. Self-Healable Soft Shield for γ-Ray Radiation Based on Polyacrylamide Hydrogel Composites. Sci. Rep. 2020, 10, 1–8. DOI: 10.1038/s41598-020-78663-x.
  • Özdemir, T.; Güngör, A.; Akbay, I. K.; Uzun, H.; Babucçuoglu, Y. Nano Lead Oxide and EPDM Composite for Development of Polymer-Based Radiation Shielding Material: gamma Irradiation and Attenuation Tests. Radiat. Phys. Chem 2018, 144, 248–255. DOI: 10.1016/j.radphyschem.2017.08.021.
  • Kamat, V. A.; Swaroop, K.; Kiran, K. U.; George, B.; Somashekarappa, H. M. Effects of Hematite-Lead Oxide Combination in Ethylene-Propylene-Diene-Monomer on Shielding 59.54 keV Gamma Rays. Radiat. Phys. Chem. 2019, 156, 50–57. DOI: 10.1016/j.radphyschem.2018.10.023.
  • Fan, J.; Wu, J.; Ma, Y. Effect of Different Size of PbWO4 Particles on EPDM Composite for Gamma-Ray Shielding. Int. J. Mod. Phys. B 2020, 34, 2050046. DOI: 10.1142/S0217979220500460.
  • Pavlenko, V. I.; Epifanovskii, I. S.; Yastrebinskii, R. N.; Kuprieva, O. V. Thermoplastic Constructional Composite Material for Radiation Protection. Inorg. Mater. Appl. Res. 2011, 2, 136–141. DOI: 10.1134/S207511331102016X.
  • Mirzaei, M.; Zarrebini, M.; Shirani, A.; Shanbeh, M.; Borhani, S. X-Ray Shielding Behavior of Garment Woven with Melt-Spun Polypropylene Monofilament. Powder Technol. 2019, 345, 15–25. DOI: 10.1016/j.powtec.2018.12.069.
  • El-Toony, M. M.; Eid, G.; Algarni, H. M.; Alhuwaymel, T. F.; Abel-hady, E. E. Synthesis and Characterisation of Smart Poly Vinyl Ester/Pb2O3 Nanocomposite for Gamma Radiation Shielding. Radiat. Phys. Chem. 2020, 168, 108536. DOI: 10.1016/j.radphyschem.2019.108536.
  • Hassan, H. E.; Badran, H. M.; Aydarous, A.; Sharshar, T. Studying the Effect of Nano Lead Compounds Additives on the Concrete Shielding Properties for γ-Rays. Nucl. Instrum. Methods Phys. Res. Sec. B 2015, 360, 81–89. DOI: 10.1016/j.nimb.2015.07.126.
  • Azman, N. Z. N.; Siddiqui, S. A.; Hart, R.; Low, I. M. Microstructural Design of Lead Oxide-Epoxy Composites for Radiation Shielding Purposes. J. Appl. Polym. Sci. 2013, 128, 3213–3219. DOI: 10.1002/app.38515.
  • Harish, V.; Nagaiah, N.; Prabhu, T. N.; Varughese, K. T. Preparation and Characterization of Lead Monoxide Filled Unsaturated Polyester-Based Polymer Composites for Gamma Radiation Shielding Applications. J. Appl. Polym. Sci. 2009, 112, 1503–1508. DOI: 10.1002/app.29633.
  • Harish, V.; Nagaiah, N.; Kumar, H. G. Lead Oxides Filled Isophthalic Resin Polymer Composites for Gamma Radiation Shielding Applications. Indian J. Pure Appl. Phys. 2012, 50, 847–850. http://nopr.niscair.res.in/handle/123456789/14920.
  • Eid, G. A.; Kany, A. I.; El-Toony, M. M.; Bashter, I. I.; Gaber, F. A. Application of Epoxy/Pb3O4 Composite for Gamma Ray Shielding. Arab. J. Nucl. Sci. Appl. 2013, 46, 226–233. http://www.esnsa-eg.com/download/researchFiles/(15)%20C%20Ghada.pdf.
  • Bagheri, K.; Razavi, S. M.; Ahmadi, S. J.; Kosari, M.; Abolghasemi, H. Thermal Resistance, Tensile Properties, and Gamma Radiation Shielding Performance of Unsaturated Polyester/Nanoclay/PbO Composites. Radiat. Phys. Chem 2018, 146, 5–10. DOI: 10.1016/j.radphyschem.2017.12.024.
  • Ergin, Y.; Karabul, Y.; Özdemir, Z. G.; Kiliç, M. Experimental Comparison of PbO and BaO Addition Effect on Gamma Ray Shielding Performance of Epoxy Polymer. Eur. J. Sci. Technol 2019, 16, 256–266. https://dergipark.org.tr/tr/download/article-file/730832.
  • Kiani, M. A.; Ahmadi, S. J.; Outokesh, M.; Adeli, R.; Kiani, H. Study on Physico-Mechanical and Gamma-Ray Shielding Characteristics of New Ternary Nanocomposites. Appl. Radiat. Isot. 2019, 143, 141–148. DOI: 10.1016/j.apradiso.2018.10.006.
  • Hosseini, S. H.; Askari, M.; Ezzati, S. N. X-Ray Attenuating Nanocomposite Based on Polyaniline Using Pb Nanoparticles. Synth. Met 2014, 196, 68–75. DOI: 10.1016/j.synthmet.2014.07.015.
  • Hosseini, S. H.; Noushin Ezzati, S.; Askari, M. Synthesis, Characterization and X‐Ray Shielding Properties of Polypyrrole/Lead Nanocomposites. Polym. Adv. Technol. 2015, 26, 561–568. DOI: 10.1002/pat.3486.
  • Mahmoud, M. E.; El-Khatib, A. M.; Badawi, M. S.; Rashad, A. R.; El-Sharkawy, R. M.; Thabet, A. A. Recycled High-Density Polyethylene Plastics Added with Lead Oxide Nanoparticles as Sustainable Radiation Shielding Materials. J. Clean. Prod 2018, 176, 276–287. DOI: 10.1016/j.jclepro.2017.12.100.
  • Andersen, P. K.; Ghassemi, A.; Ghassemi, M. Nuclear Waste. In Encyclopedia of Energy, Elsevier: Amsterdam, 2004; pp. 449–463. DOI: 10.1016/B0-12-176480-X/00414-9.
  • Al-Attiyah, K. H.; Hashim, A.; Obaid, S. F. Fabrication of Novel (Carboxy Methyl Cellulose-Polyvinylpyrrolidone-Polyvinyl Alcohol)/Lead Oxide Nanoparticles: structural and Optical Properties for Gamma Rays Shielding Applications. Int. J. Plast. Technol. 2019, 23, 39–45. DOI: 10.1007/s12588-019-09228-5.
  • Habeeb, M. A.; Hashim, A.; Hadi, A. Fabrication of New Nanocomposites: CMC-PAA-PbO2 Nanoparticles for Piezoelectric Sensors and Gamma Radiation Shielding Applications. Sens. Lett. 2017, 15, 785–790. DOI: 10.1166/sl.2017.3877.
  • Hashim, A.; Hadi, A. Novel Lead Oxide Polymer Nanocomposites for Nuclear Radiation Shielding Applications. Ukr. J. Phys. 2017, 62, 978–978. DOI: 10.15407/ujpe62.11.0978.
  • Arat, A. K. Preparation and Characterization of (Biopolymer blend-PbO2) Nanocomposites for Gamma Ray Shielding Applications. J. Univ. Babylon Pure Appl. Sci. 2018, 26, 31–44. https://iasj.net/iasj?func=fulltextaId=156865.
  • Hassan, D.; Hashim, A. Preparation and Studying the Structural and Optical Properties of (Poly-Methyl Methacrylate–Lead Oxide) Nanocomposites for Bioenvironmental Applications. J. Bionanosci. 2018, 12, 346–349. DOI: 10.1166/jbns.2018.1537.
  • Hashim, A.; Al-Attiyah, K. H. H.; Obaid, S. F. Fabrication of Novel (Biopolymer Blend-Lead Oxide Nanoparticles) Nanocomposites: Structural and Optical Properties for Low-Cost Nuclear Radiation Shielding. Ukr. J. Phys. 2019, 64, 157–157. DOI: 10.15407/ujpe64.2.157.
  • McAlister, D. R. Gamma Ray Attenuation Properties of Common Shielding Materials; University Lane Lisle: USA, 2012.
  • Suzuki, H.; Komatsu, N.; Ogawa, T.; Murafuji, T.; Ikegami, T.; Matano, Y. Organobismuth Chemistry; Elsevier: Amsterdam, 2001.
  • Leontie, L.; Caraman, M.; Visinoiu, A.; Rusu, G. I. On the Optical Properties of Bismuth Oxide Thin Films Prepared by Pulsed Laser Deposition. Thin Solid Films 2005, 473, 230–235. DOI: 10.1016/j.tsf.2004.07.061.
  • Özdemir, T. Monte Carlo Simulations of Radioactive Waste Encapsulated by bisphenol-A Polycarbonate and Effect of bismuth-III Oxide Filler Material. Radiat. Phys. Chem. 2017, 135, 11–17. DOI: 10.1016/j.radphyschem.2017.03.012.
  • Ambika, M. R.; Nagaiah, N.; Suman, S. K. Role of Bismuth Oxide as a Reinforcer on Gamma Shielding Ability of Unsaturated Polyester Based Polymer Composites. J. Appl. Polym. Sci. 2017, 134, 44657–44663. DOI: 10.1002/app.44657.
  • Ambika, M. R.; Nagaiah, N.; Harish, V.; Lokanath, N. K.; Sridhar, M. A.; Renukappa, N. M.; Suman, S. K. Preparation and Characterisation of isophthalic-Bi2O3 Polymer Composite Gamma Radiation Shields. Radiat. Phys. Chem. 2017, 130, 351–358. DOI: 10.1016/j.radphyschem.2016.09.022.
  • Toyen, D.; Rittirong, A.; Poltabtim, W.; Saenboonruang, K. Flexible, Lead-Free, Gamma-Shielding Materials Based on Natural Rubber/Metal Oxide Composites. Iran. Polym. J. 2018, 27, 33–41. DOI: 10.1007/s13726-017-0584-3.
  • Verdipoor, K.; Alemi, A.; Mesbahi, A. Photon Mass Attenuation Coefficients of a Silicon Resin Loaded with WO3, PbO, and Bi2O3 Micro and Nano-Particles for Radiation Shielding. Radiat. Phys. Chem. 2018, 147, 85–90. DOI: 10.1016/j.radphyschem.2018.02.017.
  • Poltabtim, W.; Wimolmala, E.; Saenboonruang, K. Properties of Lead-Free Gamma-Ray Shielding Materials from Metal Oxide/EPDM Rubber Composites. Radiat. Phys. Chem. 2018, 153, 1–9. DOI: 10.1016/j.radphyschem.2018.08.036.
  • Abdalsalam, A. H.; Sayyed, M. I.; Hussein, T. A.; Şakar, E.; Mhareb, M. H. A.; Şakar, B. C.; Alim, B.; Kaky, K. M. A Study of Gamma Attenuation Property of UHMWPE/Bi2O3 Nanocomposites. Chem. Phys. 2019, 523, 92–98. DOI: 10.1016/j.chemphys.2019.04.013.
  • Abdalsalam, A. H.; Şakar, E.; Kaky, K. M.; Mhareb, M. H. A.; Şakar, B. C.; Sayyed, M. I.; Gürol, A. Investigation of Gamma Ray Attenuation Features of Bismuth Oxide Nano Powder Reinforced High-Density Polyethylene Matrix Composites. Radiat. Phys. Chem. 2020, 168, 108537. DOI: 10.1016/j.radphyschem.2019.108537.
  • Cao, D.; Ge, Y.; Bourham, M.; Moneghan, D. Gamma Radiation Shielding Properties of Poly (Methyl Methacrylate)/Bi2O3 Composites. Nucl. Eng. Technol. 2020, 52, 2613–2619. DOI: 10.1016/j.net.2020.04.026.
  • Intom, S.; Kalkornsurapranee, E.; Johns, J.; Kaewjaeng, S.; Kothan, S.; Hongtong, W.; Chaiphaksa, W.; Kaewkhao, J. Mechanical and Radiation Shielding Properties of Flexible Material Based on Natural Rubber/Bi2O3 Composites. Radiat. Phys. Chem. 2020, 172, 108772. DOI: 10.1016/j.radphyschem.2020.108772.
  • Maksoud, M. A.; Kassem, S. M.; Bekhit, M.; Fahim, R. A.; Ashour, A. H.; Awed, A. S. Gamma Radiation Shielding Properties of Poly (Vinyl Butyral)/Bi2O3@ BaZrO3 Nanocomposites. Mater. Chem. Phys. 2021, 268, 124728. DOI: 10.1016/j.matchemphys.2021.12472.
  • Mehrara, R.; Malekie, S.; Kotahi, S. M. S.; Kashian, S. Introducing a Novel Low Energy Gamma Ray Shield Utilizing Polycarbonate Bismuth Oxide Composite. Sci. Rep. 2021, 11, 1–13. DOI: 10.1038/s41598-021-89773-5.
  • Liao, Y. C.; Xu, D. G.; Zhang, P. C. Preparation and Characterization of Bi2O3/XNBR Flexible Films for Attenuating Gamma Rays. Nucl. Sci. Tech. 2018, 29, 99. DOI: 10.1007/s41365-018-0436-7.
  • Sharma, A.; Sayyed, M. I.; Agar, O.; Kaçal, M. R.; Polat, H.; Akman, F. Photon-Shielding Performance of Bismuth Oxychloride-Filled Polyester Concretes. Mater. Chem. Phys. 2020, 241, 122330. DOI: 10.1016/j.matchemphys.2019.122330.
  • Samir, A.; El‐Nashar, D. E.; Ashour, A. H.; Medhat, M.; El‐Kameesy, S. U. Polyvinyl Chloride/Styrene Butadiene Rubber Polymeric Blend Filled with Bismuth Subcarbonate (BiO)2CO3 as a Shielding Material for Gamma Rays. Polym. Compos. 2020, 41, 535–543. DOI: 10.1002/pc.25385.
  • Song, C.; Zheng, J.; Zhang, Q. P.; Li, Y. T.; Li, Y. J.; Zhou, Y. L. Numerical Simulation and Experimental Study of PbWO4/EPDM and Bi2WO6/EPDM for the Shielding of γ-Rays. Chinese Phys. C. 2016, 40, 089001. DOI: 10.1088/1674-1137/40/8/089001.
  • Mirji, R.; Lobo, B. Study of Polycarbonate–Bismuth Nitrate Composite for Shielding against Gamma Radiation. J. Radioanal. Nucl. Chem. 2020, 324, 7–19. DOI: 10.1007/s10967-020-07038-3.
  • Ramu, Malothu, R.; Rao, R. S. Combination of Copper Bismuth Oxide (CuBi2O4) and Polymer Composites from Plastic Waste: A Boon for EMF Shielding. i-Manager's J. Future Eng. Technol 2021, 16, 11. DOI: 10.26634/jfet.16.4.18423.
  • Yu, L.; Yap, P. L.; Santos, A.; Tran, D.; Losic, D. Lightweight Bismuth Titanate (Bi4Ti3O12) Nanoparticle-Epoxy Composite for Advanced Lead-Free X-Ray Radiation Shielding. ACS Appl. Nano Mater. 2021, 4, 7471–7478. DOI: 10.1021/acsanm.1c01475.
  • Gholamzadeh, L.; Sharghi, H.; Aminian, M. K. Synthesis of Barium-Doped PVC/Bi2WO6 Composites for X-Ray Radiation Shielding. Nucl. Eng. Technol. 2022, 54, 318–325. DOI: 10.1016/j.net.2021.07.045.
  • Sheela, M.; Kamat, V. A.; Kiran, K. U.; Eshwarappa, K. M. Preparation and Characterization of Bismuth-Filled High-Density Polyethylene Composites for Gamma-Ray Shielding. Radiat. Prot. Environ. 2019, 42, 180. http://www.rpe.org.in/text.asp?2019/42/4/180/276921.
  • El-Fiki, S.; El Kameesy, S. U.; Nashar, D. E.; Abou-Leila, M. A.; El-Mansy, M. K.; Ahmed, M. Influence of Bismuth Contents on Mechanical and Gamma Ray Attenuation Properties of Silicone Rubber Composite. Int. J. Adv. Res. 2015, 3, 1035–1041.
  • El-Gamel, A. A. R.; Hegazi, E. M. Effect of Bismuth Ratios on the Gamma Shielding Properties for NBR/Nano Silica Composites. Appl. Eng. 2020, 4, 14. DOI: 10.11648/j.ae.20200401.13.
  • Atashi, P.; Rahmani, S.; Ahadi, B.; Rahmati, A. Efficient, Flexible and Lead-Free Composite Based on Room Temperature Vulcanizing Silicone Rubber/W/Bi2O3 for Gamma Ray Shielding Application. J. Mater. Sci: Mater. Electron. 2018, 29, 12306–12322. DOI: 10.1007/s10854-018-9344-1.
  • Gershony, G.; Weisz, G.; Mooney, M.; Katzen, B. Novel Lead-Free Lightweight Radiation Attenuating Material for Interventional Procedures; Columbia University Medical Center and Cardiovascular Research Foundation: Columbia, 2010.
  • Sonsilphong, A.; Wongkasem, N. Light-Weight Radiation Protection by Non-Lead Materials in X-Ray Regimes. Int. Conf. Electromag. Adv. Appl., 2014, 656–658. DOI: 10.1109/ICEAA.2014.6903939.
  • Mehnati, P.; Arash, M.; Akhlaghi, P. Bismuth-Silicon and Bismuth-Polyurethane Composite Shields for Breast Protection in Chest Computed Tomography Examinations. J. Med. Phys. 2018, 43, 61. 10.4103/jmp.JMP_74_17.
  • Lopresti, M.; Alberto, G.; Cantamessa, S.; Cantino, G.; Conterosito, E.; Palin, L.; Milanesio, M. Light Weight, Easy Formable and Non-Toxic Polymer-Based Composites for Hard X-Ray Shielding: A Theoretical and Experimental Study. IJMS. 2020, 21, 833. DOI: 10.3390/ijms21030833.
  • Staniszewska, M.; Zaborski, M.; Kusiak, E.; Pankowski, P. New Material for Shields in X-Ray Diagnostic Procedures. J. US-China Med. Sci 2016, 13, 206–212. DOI: 10.17265/1548-6648/2016.04.004.
  • Cornish, K.; Li, Z. Guayule Medical Radiation Attenuation Glove. In Rubber & Plastics News, Technical Note, October 2, 20–25, 2017. https://s3-prod.rubbernews.com/s3fs-public/RN112299929.PDF.
  • Nambiar, S.; Osei, E. K.; Yeow, J. T. Polymer Nanocomposite‐Based Shielding against Diagnostic X‐Rays. J. Appl. Polym. Sci. 2013, 127, 4939–4946. DOI: 10.1002/app.37980.
  • Noor Azman, N. Z.; Siddiqui, S. A.; Haroosh, H. J.; Albetran, H. M.; Johannessen, B.; Dong, Y.; Low, I. M. Characteristics of X-Ray Attenuation in Electrospun Bismuth Oxide/Polylactic Acid Nanofibre Mats. J. Synchrotron. Radiat. 2013, 20, 741–748. DOI: 10.1107/S0909049513017871.
  • Fontainha, C. C. P.; Faria, L. O.; Neto, A. B. Polymer-Based Nanocomposites of P(VDF-TrFE)/Bi2O3 Applied to X-Ray Shielding. Res. Rev.: J. Mater. Sci 2016, 4, 16–23. DOI: 10.4172/2321-6212.1000149.
  • Maghrabi, H. A.; Vijayan, A.; Deb, P.; Wang, L. Bismuth Oxide-Coated Fabrics for X-Ray Shielding. Tex. Res. J. 2016, 86, 649–658. DOI: 10.1177/0040517515592809.
  • Noor Azman, N. Z.; Musa, N. F.; Ab Razak, N. N. N.; Ramli, R. M.; Mustafa, I. S.; Rahman, A. A.; Yahaya, N. Z. Effect of Bi2O3 Particle Sizes and Addition of Starch into Bi2O3–PVA Composites for X-Ray Shielding. Appl. Phys. A. 2016, 122, 818. DOI: 10.1007/s00339-016-0329-8.
  • Pulford, S.; Fergusson, M. A Textile Platform for Non-Lead Radiation Shielding Apparel. J. Text. Inst 2016, 107, 1610–1616. DOI: 10.1080/00405000.2015.1131402.
  • Abunahel, B. M.; Ramli, R. M.; Quffa, K. M.; Azman, N. Z. N. Effect of Nanofibrous Porosity on the X-Ray Attenuation Properties of Electrospun n-Bi2O3/Epoxy–Polyvinyl Alcohol (PVA) Nanofiber Mats. Appl. Phys. A 2018, 124, 540. DOI: 10.1007/s00339-018-1975-9.
  • Hazlan, M. H.; Jamil, M.; Ramli, R. M.; Azman, N. Z. N. X-Ray Attenuation Characterisation of Electrospun Bi2O3/PVA and WO3/PVA Nanofibre Mats as Potential X-Ray Shielding Materials. Appl. Phys. A 2018, 124, 497. DOI: 10.1007/s00339-018-1915-8.
  • Özdemir, T.; Yılmaz, S. N. Mixed Radiation Shielding via 3-Layered Polydimethylsiloxane Rubber Composite Containing Hexagonal Boron Nitride, Boron (III) Oxide, Bismuth (III) Oxide for Each Layer. Radiat. Phys. Chem 2018, 152, 17–22. DOI: 10.1016/j.radphyschem.2018.07.007.
  • Singh, A. K.; Singh, R. K.; Sharma, B.; Tyagi, A. K. Characterization and Biocompatibility Studies of Lead-Free X-Ray Shielding Polymer Composite for Healthcare Application. Radiat. Phys. Chem. 2017, 138, 9–15. DOI: 10.1016/j.radphyschem.2017.04.016.
  • Lim-Aroon, P.; Wimolmala, E.; Sombatsompop, N.; Saenboonruang, K. Manufacturing Process and Properties of Lead-Free Natural Rubber Sponge for Use in X-Ray and Gamma Ray Shielding Applications. IOP Conf. Ser: Mater. Sci. Eng. 2019, 526, 012015. DOI: 10.1088/1757-899X/526/1/012015.
  • Yılmaz, S. N.; Güngör, A.; Özdemir, T. The Investigations of Mechanical, Thermal and Rheological Properties of Polydimethylsiloxane/Bismuth (III) Oxide Composite for X/Gamma Ray Shielding. Radiat. Phys. Chem 2020, 170, 108649. DOI: 10.1016/j.radphyschem.2019.108649.
  • Alshahri, S.; Alsuhybani, M.; Alosime, E.; Almurayshid, M.; Alrwais, A.; Alotaibi, S. LDPE/Bismuth Oxide Nanocomposite: Preparation, Characterization and Application in X-Ray Shielding. Polym. 2021, 13, 3081. DOI: 10.3390/polym13183081.
  • Li, Z.; Zhou, W.; Zhang, X.; Gao, Y.; Guo, S. High-Efficiency, Flexibility and Lead-Free X-Ray Shielding Multilayered Polymer Composites: layered Structure Design and Shielding Mechanism. Sci. Reports 2021, 11, 1–13. DOI: 10.1038/s41598-021-83031-4.
  • Nuñez-Briones, A. G.; Benavides, R.; Mendoza-Mendoza, E.; Martínez-Pardo, M. E.; Carrasco-Abrego, H.; Kotzian, C.; Saucedo-Zendejo, F. R.; García-Cerda, L. A. Preparation of PVC/Bi2O3 Composites and Their Evaluation as Low Energy X-Ray Radiation Shielding. Radiat. Phys. Chem. 2021, 179, 109198. DOI: 10.1016/j.radphyschem.2020.109198.
  • Yılmaz, S. N.; Akbay, İK.; Özdemir, T. A Metal-Ceramic-Rubber Composite for Hybrid Gamma and Neutron Radiation Shielding. Radiat. Phys. Chem 2021, 180, 109316. DOI: 10.1016/j.radphyschem.2020.109316.
  • Abdolahzadeh, T.; Morshedian, J.; Ahmadi, S. Preparation and Characterization of Nano WO3/Bi2O3/GO and BaSO4/GO Dispersed HDPE Composites for x-Ray Shielding Application. Polyolefins J. 2022, 9. DOI: https://dx.doi.org/10.22063/poj.2022.3009.1201.
  • Yu, D.; Shu-Quan, C.; Hong-Xu, Z.; Chao, R.; Bin, K.; Ming-Zhu, D.; Yao-Dong, D. Effects of WO3 Particle Size in WO3/Epoxy Resin Radiation Shielding Material. Chinese Phys. Lett. 2012, 29, 108102. DOI: 10.1088/0256-307X/29/10/108102.
  • Kaloshkin, S. D.; Tcherdyntsev, V. V.; Gorshenkov, M. V.; Gulbin, V. N.; Kuznetsov, S. A. Radiation-Protective Polymer-Matrix Nanostructured Composites. J. Alloys Compd 2012, 536, S522–S526. DOI: 10.1016/j.jallcom.2012.01.061.
  • Chang, L.; Zhang, Y.; Liu, Y.; Fang, J.; Luan, W.; Yang, X.; Zhang, W. Preparation and Characterization of Tungsten/Epoxy Composites for γ-Rays Radiation Shielding. Nucl. Instrum. Methods Phys. Res. B 2015, 356-357, 88–93. DOI: 10.1016/j.nimb.2015.04.062.
  • Soylu, H. M.; Lambrecht, F. Y.; Ersöz, O. A. Gamma Radiation Shielding Efficiency of a New Lead-Free Composite Material. J. Radioanal. Nucl. Chem. 2015, 305, 529–534. DOI: 10.1007/s10967-015-4051-3.
  • Gavrish, V. M.; Baranov, G. A.; Chayka, T. V.; Derbasova, N. M.; Lvov, A. V.; Matsuk, Y. M. Tungsten Nanoparticles Influence on Radiation Protection Properties of Polymers. IOP Conf. Ser: Mater. Sci. Eng. 2016, 110, 012028. DOI: 10.1088/1757-899X/110/1/012028.
  • Abbas, A. A.; Abdullah, B. A.; Abd Al-Hussain, M. A. Gamma-Ray Shielding Properties of PVA Reinforced with Sodium Tungstate. Basrah J. Sci 2017, 35, 73–84. http://ojs.basjsci.net/index.php/bjsojs/article/view/99.
  • Malekie, S.; Hajiloo, N. Comparative Study of Micro and Nano Size WO3/E44 Epoxy Composite as Gamma Radiation Shielding Using MCNP and Experiment. Chinese Phys. Lett. 2017, 34, 108102. DOI: 10.1088/0256-307X/34/10/108102.
  • Hou, Y.; Li, M.; Gu, Y.; Yang, Z.; Li, R.; Zhang, Z. Gamma Ray Shielding Property of Tungsten Powder Modified Continuous Basalt Fiber Reinforced Epoxy Matrix Composites. Polym. Compos. 2018, 39, E2106–E2115. DOI: 10.1002/pc.24469.
  • Derradji, M.; Zegaoui, A.; Xu, Y. L.; Wang, A. R.; Dayo, A. Q.; Wang, J.; Liu, W. B.; Liu, Y. G.; Khiari, K. Toward Advanced Gamma Rays Radiation Resistance and Shielding Efficiency with Phthalonitrile Resins and Composites. Nucl. Instrum. Methods Phys. Res. B. 2018, 421, 13–17. DOI: 10.1016/j.nimb.2018.02.017.
  • Gwon, S. H.; Oh, J. H.; Kim, M.; Choi, S.; Oh, K. H.; Sun, J. Y. Sewable Soft Shields for the γ-Ray Radiation. Sci. Rep. 2018, 8, 1–7. DOI: 10.1038/s41598-018-20411-3.
  • Salimi, M.; Ghal-Eh, N.; Amirabadi, E. A. Characterization of a New Shielding Rubber for Use in Neutron–Gamma Mixed Fields. Nucl. Sci. Tech 2018, 29, 36. DOI: 10.1007/s41365-018-0371-7.
  • Afshar, M.; Morshedian, J.; Ahmadi, S. Radiation Attenuation Capability and Flow Characteristics of HDPE Composite Loaded with W, MoS2, and B4C. Polym. Compos. 2019, 40, 149–158. DOI: 10.1002/pc.24620.
  • Canel, A.; Korkut, H.; Korkut, T. Improving Neutron and Gamma Flexible Shielding by Adding Medium-Heavy Metal Powder to Epoxy Based Composite Materials. Radiat. Phys. Chem. 2019, 158, 13–16. DOI: 10.1016/j.radphyschem.2019.01.005.
  • Higgins, M. C. M.; Radcliffe, N. A.; Toro-González, M.; Rojas, J. V. Gamma Ray Attenuation of Hafnium Dioxide-and Tungsten Trioxide-Epoxy Resin Composites. J. Radioanal. Nucl. Chem. 2019, 322, 707–716. DOI: 10.1007/s10967-019-06714-3.
  • Kazemi, F.; Malekie, S. A Monte Carlo Study on the Shielding Properties of a Novel Polyvinyl Alcohol (PVA)/WO3 Composite, against Gamma Rays, Using the MCNPX Code. J. Biomed. Phys. Eng 2019, 9, 465. 10.31661/jbpe.v0i0.1114.
  • Ahmed, B.; Shah, G. B.; Malik, A. H.; Rizwan, M. Gamma-Ray Shielding Characteristics of Flexible Silicone Tungsten Composites. Appl. Radiat. Isot 2020, 155, 108901. DOI: 10.1016/j.apradiso.2019.108901.
  • Hashemi, S. A.; Mousavi, S. M.; Faghihi, R.; Arjmand, M.; Rahsepar, M.; Bahrani, S.; Ramakrishna, S.; Lai, C. W. Superior X-Ray Radiation Shielding Effectiveness of Biocompatible Polyaniline Reinforced with Hybrid Graphene Oxide-Iron Tungsten Nitride Flakes. Polym 2020, 12, 1407. DOI: 10.3390/polym12061407.
  • Körpınar, B.; Öztürk, B. C.; Çam, N. F.; Akat, H. Radiation Shielding Properties of Poly (Hydroxylethyl Methacrylate)/Tungsten (VI) Oxide Composites. Mater. Chem. Phys. 2020, 239, 121986. DOI: 10.1016/j.matchemphys.2019.121986.
  • Muthamma, M. V.; Bubbly, S. G.; Gudennavar, S. B. Attenuation Parameters of Polyvinyl Alcohol-Tungsten Oxide Composites at the Photon Energies 5.895, 6.490, 59.54 and 0.662 MeV. Polish J. Med. Phys. Eng. 2020, 26, 77–85. DOI: 10.2478/pjmpe-2020-0009.
  • Tekin, H. O.; Kaçal, M. R.; Issa, S. A.; Polat, H.; Susoy, G.; Akman, F.; Kilicoglu, O.; Gillette, V. H. Sodium Dodecatungstophosphate Hydrate-Filled Polymer Composites for Nuclear Radiation Shielding. Mater. Chem. Phys 2020, 256, 123667. DOI: 10.1016/j.matchemphys.2020.123667.
  • Wu, Y.; Cao, Y.; Wu, Y.; Li, D. Mechanical Properties and Gamma-Ray Shielding Performance of 3D-Printed Poly-Ether-Ether-Ketone/Tungsten Composites. Mater. 2020, 13, 4475. DOI: 10.3390/ma13204475.
  • Abdolahzadeh, T.; Morshedian, J.; Ahmadi, S.; Ay, M. R.; Mohammadi, O. Introducing a Novel Polyvinyl Chloride/Tungsten Composite for Shielding against Gamma and X-Ray Radiations. Iran. J. Nucl. Med. 2021, 29, 58–64.
  • Al Hassan, M.; Wang, Z.; Liu, W. B.; Wang, J.; Zhigang, Y.; Khan, M.; Ali, M. M.; Geldiyev, R.; Diaby, M.; Derradji, M. Thermal Stability and Gamma Ray Shielding Properties of Tungsten Borides/Epoxy Micro-Composites. Radiat. Phys. Chem. 2021, 189, 109769. DOI: 10.1016/j.radphyschem.2021.109769.
  • Almurayshid, M.; Alsagabi, S.; Alssalim, Y.; Alotaibi, Z.; Almsalam, R. Feasibility of Polymer-Based Composite Materials as Radiation Shield. Radiat. Phys. Chem. 2021, 183, 109425. DOI: 10.1016/j.radphyschem.2021.109425.
  • Cherkashina, N. I.; Pavlenko, V. I.; Noskov, A. V.; Sirota, V. V.; Zaitsev, S. V.; Prokhorenkov, D. S.; Sidelnikov, R. V. Gamma Radiation Attenuation Characteristics of Polyimide Composite with WO2. Prog. Nucl. Energy 2021, 137, 103795. DOI: 10.1016/j.pnucene.2021.103795.
  • Karabul, Y.; İçelli, O. The Assessment of Usage of Epoxy Based Micro and Nano-Structured Composites Enriched with Bi2O3 and WO3 Particles for Radiation Shielding. Results Phys. 2021, 26, 104423. DOI: 10.1016/j.rinp.2021.104423.
  • Körpınar, B.; Canbaz, B.; Çam, F.; Akat, H. Gamma Radiation Shielding and Thermal Properties of the Polystyrene/Tungsten (VI) Oxide Composites. Erzincan Univ. J. Sci. Technol. 2021, 14, 395–407. DOI: 10.18185/erzifbed.875739.
  • Alavian, H.; Tavakoli-Anbaran, H. Study on Gamma Shielding Polymer Composites Reinforced with Different Sizes and Proportions of Tungsten Particles Using MCNP Code. Prog. Nucl. Energy 2019, 115, 91–98. DOI: 10.1016/j.pnucene.2019.03.033.
  • Azman, N. N.; Siddiqui, S. A.; Low, I. M. Characterisation of Micro-Sized and Nano-Sized Tungsten Oxide-Epoxy Composites for Radiation Shielding of Diagnostic X-Rays. Mater. Sci. Eng. C Mater. Biol. Appl. 2013, 33, 4952–4957. DOI: 10.1016/j.msec.2013.08.023.
  • Chai, H.; Tang, X.; Ni, M.; Chen, F.; Zhang, Y.; Chen, D.; Qiu, Y. Preparation and Properties of Novel, Flexible, Lead‐Free X‐Ray‐Shielding Materials Containing Tungsten and Bismuth (III) Oxide. J. Appl. Poly. Sci. 2016, 133, 43012 – 43018. DOI: 10.1002/app.43012.
  • Shik, N. A.; Gholamzadeh, L. X-Ray Shielding Performance of the EPVC Composites with Micro- or Nanoparticles of WO3, PbO or Bi2O3 . Appl. Radiat. Isot. 2018, 139, 61–65. DOI: 10.1016/j.apradiso.2018.03.025.
  • Sun, Y. S.; Chang, J. H.; Huang, H. H. Corrosion Resistance and Biocompatibility of Titanium Surface Coated with Amorphous Tantalum Pentoxide. Thin Solid Films 2013, 528, 130–135. https://doiorg/101016/jtsf201206088. DOI: 10.1016/j.tsf.2012.06.088.
  • Chakravarty, S.; Hix, J. M.; Wiewiora, K. A.; Volk, M. C.; Kenyon, E.; Shuboni-Mulligan, D. D.; Blanco-Fernandez, B.; Kiupel, M.; Thomas, J.; Sempere, L. F.; Shapiro, E. M. Tantalum Oxide Nanoparticles as Versatile Contrast Agents for X-Ray Computed Tomography. Nanoscale 2020, 12, 7720–7734. https://doiorg/101039/D0NR01234C. DOI: 10.1039/d0nr01234c.
  • Künzel, R.; Okuno, E. Effects of the Particle Sizes and Concentrations on the X-Ray Absorption by CuO Compounds. Appl. Radiat. Isot. 2012, 70, 781–784. DOI: 10.1016/j.apradiso.2011.12.040.
  • Fontainha, C. C. P.; Baptista Neto, A. T.; Santos, A. P.; Faria, L. O. D. P(VDF-TrFE)/ZrO2 Polymer-Composites for X-Ray Shielding. Mat. Res. 2016, 19, 426–433. DOI: 10.1590/1980-5373-MR-2015-0576.
  • Kadhim, K. J.; Agool, I. R.; Hashim, A. Enhancement in Optical Properties of (PVA-PEG-PVP) Blend by the Addition of Titanium Oxide Nanoparticles for Biological Application. Adv, Environ. Biol. 2016, 10, 81–88.
  • Hashim, A.; Jassim, A. Novel of Biodegradable Polymers-Inorganic Nanoparticles: structural, Optical and Electrical Properties as Humidity Sensors and Gamma Radiation Shielding for Biological Applications. J. Bionanosci. 2018, 12, 170–176. DOI: 10.1166/jbns.2018.1518.
  • El-Khatib, A. M.; Abbas, M. I.; Abd Elzaher, M.; Badawi, M. S.; Alabsy, M. T.; Alharshan, G. A.; Aloraini, D. A. Gamma Attenuation Coefficients of Nano Cadmium Oxide/High Density Polyethylene Composites. Sci. Rep. 2019, 9, 1–11. DOI: 10.1038/s41598-019-52220-7.
  • Kacal, M. R.; Polat, H.; Oltulu, M.; Akman, F.; Agar, O.; Tekin, H. O. Gamma Shielding and Compressive Strength Analyses of Polyester Composites Reinforced with Zinc: An Experiment, Theoretical, and Simulation-Based Study. Appl. Phys. A 2020, 126, 1–15. DOI: 10.1007/s00339-020-3382-2.
  • Tekin, H. O.; Akman, F.; Issa, S. A.; Kaçal, M. R.; Kilicoglu, O.; Polat, H. Two-Step Investigation on Fabrication and Characterization of Iron-Reinforced Novel Composite Materials for Nuclear-Radiation Shielding Applications. J. Phys. Chem. Solids 2020, 146, 109604. DOI: 10.1016/j.jpcs.2020.109604.
  • Abdali, K. Crystal Structural, Morphological and Gamma Ray Shielding (γ-S) Efficiency of PVA/PAAm/PAA Polymer Blend Loaded with Silver Nanoparticles via Casting Method, Research Square; 2021. DOI: 10.21203/rs.3.rs-1050050/v1.
  • Abdullah, E. H.; Hashim, A.; Hussien, H. A. J.; Habeeb, M. A. Fabrication of Lightweight and Low-Cost Shields for Gamma Ray Attenuation. nq. 2021, 19, 158–160. DOI: 10.14704/nq.2021.19.11.NQ21186.
  • ALMisned, G.; Akman, F.; AbuShanab, W. S.; Tekin, H. O.; Kaçal, M. R.; Issa, S. A.; Polat, H.; Oltulu, M.; Ene, A.; Zakaly, H. M. Novel Cu/Zn Reinforced Polymer Composites: Experimental Characterization for Radiation Protection Efficiency (RPE) and Shielding Properties for Alpha, Proton, Neutron, and Gamma Radiations. Polym 2021, 13, 3157. DOI: 10.3390/polym13183157.
  • Almurayshid, M.; Alssalim, Y.; Aksouh, F.; Almsalam, R.; ALQahtani, M.; Sayyed, M. I.; Almasoud, F. Development of New Lead-Free Composite Materials as Potential Radiation Shields. Mater. 2021, 14, 4957. DOI: 10.3390/ma14174957.
  • Dilsiz, K.; Ogul, H.; Akman, F.; Agar, O.; Kaçal, M. R.; Polat, H.; Dursun, İ. Evaluation of CdS Doped Polyester Composites regarding Gamma and Neutron Shielding Properties. 103865. Prog. Nucl. Energy 2021, 139, 103865. DOI: 10.1016/j.pnucene.2021.103865.
  • Ozel, F.; Akman, F.; Kaçal, M. R.; Ozen, A.; Arslan, H.; Polat, H.; Yurtcan, S.; Agar, O. Production of Microstructured BaZrO3 and Ba2P2O7-Based Polymer Shields for Protection against Ionizing Photons. J. Phys. Chem. Solids 2021, 158, 110238. DOI: 10.1016/j.jpcs.2021.110238.
  • Saudi, H. A.; Gomaa, H. M.; El-Mosallamy, E. S. H.; Elkatlawy, S. M. Optimal Radiation Shielding Capacity and Thermal Properties of Poly (Methyl Methacrylate) Films Enhanced with Different Metal Complexes. Polym. Polym. Compos 2021, 29, S223–S228. DOI: 10.1177/0967391121998490.
  • Abdali, K. Structural, Morphological, and Gamma Ray Shielding (GRS) Characterization of HVCMC/PVP/PEG Polymer Blend Encapsulated with Silicon Dioxide Nanoparticles. Silicon 2022, 14, 1–6. DOI: 10.1007/s12633-022-01678-8.
  • Akman, F.; Ogul, H.; Ozkan, I.; Kaçal, M. R.; Agar, O.; Polat, H.; Dilsiz, K. Study on Gamma Radiation Attenuation and Non-Ionizing Shielding Effectiveness of Niobium-Reinforced Novel Polymer Composite. Nucl. Eng. Technol. 2022, 54, 283–292. DOI: 10.1016/j.net.2021.07.006.
  • Abdo, A. E. S.; El-Sarraf, M. A.; Gaber, F. A. Utilization of Ilmenite/Epoxy Composite for Neutrons and Gamma Rays Attenuation. Ann. Nucl. Energy 2003, 30, 175–187. DOI: 10.1016/S0306-4549(02)00052-X.
  • El-Sarraf, M. A.; Abdo, A. E. S. Influence of Magnetite, Ilmenite and Boron Carbide on Radiation Attenuation of Polyester Composites. Radiat. Phys. Chem 2013, 88, 21–26. DOI: 10.1016/j.radphyschem.2013.03.003.
  • Al-Dhuhaibat, M. R. Study of the Shielding Properties for Some Composite Materials Manufactured from Polymer Epoxy Supported by Cement, Aluminum, Iron and Lead against Gamma Rays of the Cobalt Radioactive Source (60Co). Int. J. Appl. Eng. Management 2015, 4, 90–98.
  • Badawy, S. M.; Abd El‐Latif, A. A. Synthesis and Characterizations of Magnetite Nanocomposite Films for Radiation Shielding. Polym. Compos. 2017, 38, 974–980. DOI: 10.1002/pc.23660.
  • Jubier, N. J. Estimation of Radiation Shielding Properties for Composites Material Based Unsaturated Polyester Filled with Granite and Iron Particles. J. Multidiscip. Eng. Sci. Stud 2017, 3, 1309–1316. http://www.jmess.org/wp-content/uploads/2017/01/JMESSP13420267.pdf.
  • Srinivasan, K.; Samuel, E. J. J. Evaluation of Radiation Shielding Properties of the Polyvinyl Alcohol/Iron Oxide Polymer Composite. J. Med. Phys. 2017, 42, 273. DOI: 10.4103/jmp.JMP_54_17.
  • Hashim, A.; Agool, I. R.; Kadhim, K. J. Novel of (Polymer blend-Fe3O4) Magnetic Nanocomposites: Preparation and Characterization for Thermal Energy Storage and Release, Gamma Ray Shielding, Antibacterial Activity and Humidity Sensors Applications. J. Mater. Sci: Mater. Electron. 2018, 29, 10369–10394. DOI: 10.1007/s10854-018-9095-z.
  • Kathem, H. O.; Resen, M. J.; Jubier, N. J. Characterization of Radiation Attenuation Properties of 0.662 MeV Gamma Ray Energy for Epoxy Fe3O4 Composite Shields. Indian J. Nat. Sci. 2018, 9, 14609–14615.
  • Haque, M. M.; Shamsuzzaman, M.; Uddin, M. B.; Salahuddin, A. Z. M.; Khan, R. A. Fabrication and Characterization of Shielding Properties of Heavy Mineral Reinforced Polymer Composite Materials for Radiation Protection. EJERS. 2019, 4, 15–20. DOI: 10.24018/ejers.2019.4.3.1132.
  • Kara, H.; Karabul, Y.; Kılıç, M.; İçelli, O.; Özdemir, Z. G. Volcanic Rock Reinforced Epoxy Composites for Gamma Ray Shielding. Eur. J. Sci. Technol. 2019, 15, 552–560. DOI: 10.31590/ejosat.521516.
  • Akman, F.; Ozkan, I.; Kaçal, M. R.; Polat, H.; Issa, S. A.; Tekin, H. O.; Agar, O. Shielding Features, to Non-Ionizing and Ionizing Photons, of FeCr-Based Composites. Appl. Radiat. Isot. 2021, 167, 109470. DOI: 10.1016/j.apradiso.2020.109470.
  • Fahri, A. N.; Ilyas, S.; Ansar, A.; Abdullah, B.; Tahir, D. Study on Optical Phonon Vibration and Gamma Ray Shielding Properties of Composite Geopolymer Fly Ash-Metal. Radiat. Phys. Chem. 2021, 180, 109250. DOI: 10.1016/j.radphyschem.2020.109250.
  • Darmawan, Z. T.; Heryanto, H.; Mutmainna, I.; Abdullah, B.; Tahir, D. Effect of Magnesium (Mg) to the Optical and Absorption Gamma-Ray Properties of Composite Shield Cassava Starch/Fe3O4/Mg. Radiat. Phys. Chem 2022, 191, 109843. DOI: 10.1016/j.radphyschem.2021.109843.
  • Farahani, M.; Eichmiller, F. C.; McLaughlin, W. L. Metal-Polysiloxane Shields for Radiation Therapy of Maxillo-Facial Tumors. Med. Phys. 1991, 18, 273–278. DOI: 10.1118/1.596724.
  • Abdulla, R.; Fidha, M.; Rao, B. S.; Kudkuli, J.; Rekha, P. D.; Sharma, S. D. Attenuation of 60Co Gamma Rays by Barium Acrylic Resin Composite Shields. Radiat. Prot. Environ. 2015, 38, 151. DOI: 10.4103/0972-0464.176157.
  • Agool, I. R.; Kadhim, K. J.; Hashim, A. Synthesis of (PVA–PEG–PVP–ZrO2) Nanocomposites for Energy Release and Gamma Shielding Applications. Int. J. Plast. Technol. 2017, 21, 444–453. DOI: 10.1007/s12588-017-9196-1.
  • Alfahed, R. F.; Mohammad, K. K.; Majeed, M. S.; Badran, H. A.; Ali, K. M.; Kadem, B. Y. Preparation, Morphological, and Mechanical Characterization of Titanium Dioxide (TiO2)/Polyvinyl Alcohol (PVA) Composite for Gamma-Rays Radiation Shielding. J. Phys: Conf. Ser. 2019, 1279, 012019. DOI: 10.1088/1742-6596/1279/1/012019.
  • Guo-hui, W.; Man-li, H.; Fan-chao, C.; Jun-dong, F.; Yao-dong, D. Enhancement of Flame Retardancy and Radiation Shielding Properties of Ethylene Vinyl Acetate-Based Radiation Shielding Composites by EB Irradiation. Prog. Nucl. Energy 2019, 112, 225–232. DOI: 10.1016/j.pnucene.2019.01.001.
  • Akman, F.; Ogul, H.; Kaçal, M. R.; Polat, H.; Dilsiz, K.; Agar, O. Gamma Attenuation Characteristics of CdTe-Doped Polyester Composites. 103608. Prog. Nucl. Energy 2021, 131, 103608. DOI: 10.1016/j.pnucene.2020.103608.
  • Akkurt, I.; Malidarre, R. B.; Kartal, I.; Gunoglu, K. Monte Carlo Simulations Study on Gamma Ray–Neutron Shielding Characteristics for Vinyl Ester Composites. Polym. Compos. 2021, 42, 4764–4774. DOI: 10.1002/pc.26185.
  • Asal, S.; Erenturk, S. A.; Haciyakupoglu, S. Bentonite Based Ceramic Materials from a Perspective of Gamma-Ray Shielding: Preparation, Characterization and Performance Evaluation. Nucl. Eng. Technol. 2021, 53, 1634–1641. DOI: 10.1016/j.net.2020.11.009.
  • El‐Sharkawy, R. M.; Allam, E. A.; El‐Taher, A.; Shaaban, E. R.; Mahmoud, M. E. Synergistic Effect of Nano‐Bentonite and Nanocadmium Oxide Doping Concentrations on Assembly, Characterization, and Enhanced Gamma‐Rays Shielding Properties of Polypropylene Ternary Nanocomposites. Int. J. Energy Res. 2021, 45, 8942–8959. DOI: 10.1002/er.6427.
  • Issa, S. A.; Zakaly, H. M.; Pyshkina, M.; Mostafa, M. Y.; Rashad, M.; Soliman, T. S. Structure, Optical, and Radiation Shielding Properties of PVA–BaTiO3 Nanocomposite Films: An Experimental Investigation. Radiat. Phys. Chem 2021, 180, 109281. DOI: 10.1016/j.radphyschem.2020.109281.
  • Kaçal, M. R.; Dilsiz, K.; Akman, F.; Polat, H. Analysis of Radiation Attenuation Properties for Polyester/Li2WO4 Composites. Radiat. Phys. Chem. 2021, 179, 109257. DOI: 10.1016/j.radphyschem.2020.109257.
  • Şahin, N.; Bozkurt, M.; Karabul, Y.; Kılıç, M.; Özdemir, Z. G. Low Cost Radiation Shielding Material for Low Energy Radiation Applications: Epoxy/Yahyali Stone Composites. Prog. Nucl. Energy 2021, 135, 103703. DOI: 10.1016/j.pnucene.2021.103703.
  • Erol, A.; Pocan, I.; Yanbay, E.; Ersoz, O. A.; Lambrecht, F. Y. Radiation Shielding of Polymer Composite Materials with Wolfram Carbide and Boron Carbide. Radiat. Prot. Environ. 2016, 39, 3. DOI: 10.4103/0972-0464.185147.
  • Hager, I. Z.; Rammah, Y. S.; Othman, H. A.; Ibrahim, E. M.; Hassan, S. F.; Sallam, F. H. Nano-Structured Natural Bentonite Clay Coated by Polyvinyl Alcohol Polymer for Gamma Rays Attenuation. J. Theor. Appl. Phys. 2019, 13, 141–153. DOI: 10.1007/s40094-019-0332-5.
  • Liu, L.; He, L.; Yang, C.; Zhang, W.; Jin, R. G.; Zhang, L. Q. In Situ Reaction and Radiation Protection Properties of Gd(AA)3/NR Composites. Macromol. Rapid Commun. 2004, 25, 1197–1202. DOI: 10.1002/marc.200400077.
  • Mao, Y.; Zhi, X.; Hu, S.; Ma, X.; Wen, S.; Fong, H.; Liu, L. Preparation of Gd2O3 Nano-Flakes and Fabrication/Evaluation of Their X-Ray Shielding Rubber Nanocomposites with Improved Mechanical Properties. J. Compos. Mater 2015, 49, 1989–1994. DOI: 10.1177/0021998314541309.
  • Wang, H.; Zhang, H.; Su, Y.; Liu, T.; Yu, H.; Yang, Y.; Li, X.; Guo, B. Preparation and Radiation Shielding Properties of Gd2O3/PEEK Composites. Polym. Compos. 2015, 36, 651–659. DOI: 10.1002/pc.22983.
  • Wang, P.; Tang, X.; Chai, H.; Chen, D.; Qiu, Y. Design, Fabrication, and Properties of a Continuous Carbon-Fiber Reinforced Sm2O3/Polyimide Gamma Ray/Neutron Shielding Material. Fusion Eng. Des 2015, 101, 218–225. DOI: 10.1016/j.fusengdes.2015.09.007.
  • Jayakumar, S.; Saravanan, T.; Philip, J. Preparation, Characterization and X-Ray Attenuation Property of Gd2O3-Based Nanocomposites. Appl. Nanosci. 2017, 7, 919–931. DOI: 10.1007/s13204-017-0631-6.
  • Li, R.; Gu, Y.; Wang, Y.; Yang, Z.; Li, M.; Zhang, Z. Effect of Particle Size on Gamma Radiation Shielding Property of Gadolinium Oxide Dispersed Epoxy Resin Matrix Composite. Mater. Res. Express 2017, 4, 035035. DOI: 10.1088/2053-1591/aa6651.
  • Li, R.; Gu, Y.; Yang, Z.; Li, M.; Hou, Y.; Zhang, Z. Gamma Ray Shielding Property, Shielding Mechanism and Predicting Model of Continuous Basalt Fiber Reinforced Polymer Matrix Composite Containing Functional Filler. Mater. Des 2017, 124, 121–130. DOI: 10.1016/j.matdes.2017.03.045.
  • Sambhudevan, S.; Shankar, B.; Saritha, A.; Joseph, K.; Philip, J.; Saravanan, T. Development of X-Ray Protective Garments from Rare Earth-Modified Natural Rubber Composites. J. Elastom. Polym. 2017, 49, 527–544. DOI: 10.1177/0095244316676866.
  • İrim, ŞG.; Wis, A. A.; Keskin, M. A.; Baykara, O.; Ozkoc, G.; Avcı, A.; Doğru, M.; Karakoç, M. Physical, Mechanical and Neutron Shielding Properties of h-BN/Gd2O3/HDPE Ternary Nanocomposites. Radiat. Phys. Chem 2018, 144, 434–443. DOI: 10.1016/j.radphyschem.2017.10.007.
  • Thakur, S.; Kaur, P.; Singh, L. Investigation of Polymethyl Methacrylate Incorporated Neodymium Oxide for Gamma-Ray and Neutron Shielding Behaviour. AIP Conf. Proceed. 2019, 2142, 120007. DOI: 10.1063/1.5122503.
  • Baykara, O.; İrim, ŞG.; Wis, A. A.; Keskin, M. A.; Ozkoc, G.; Avcı, A.; Doğru, M. Polyimide Nanocomposites in Ternary Structure: A Novel Simultaneous Neutron and Gamma‐Ray Shielding Material. Polym. Adv. Technol. 2020, 31, 2466–2479. DOI: 10.1002/pat.4962.
  • Wang, Y.; Wang, G.; Hu, T.; Wen, S.; Hu, S.; Liu, L. Enhanced Photon Shielding Efficiency of a Flexible and Lightweight Rare Earth/Polymer Composite: A Monte Carlo Simulation Study. Nucl. Eng. Technol. 2020, 52, 1565–1570. DOI: 10.1016/j.net.2019.12.028.
  • Korkut, T.; Gencel, O.; Kam, E.; Brostow, W. X-Ray, Gamma, and Neutron Radiation Tests on Epoxy-Ferrochromium Slag Composites by Experiments and Monte Carlo Simulations. Int. J. Polym. Anal. Ch. 2013, 18, 224–231. DOI: 10.1080/1023666X.2013.755658.
  • Dong, M.; Xue, X.; Yang, H.; Liu, D.; Wang, C.; Li, Z. A Novel Comprehensive Utilization of Vanadium Slag: As Gamma Ray Shielding Material. J. Hazard. Mater. 2016, 318, 751–757. DOI: 10.1016/j.jhazmat.2016.06.012.
  • Dong, M.; Xue, X.; Yang, H.; Li, Z. Highly Cost-Effective Shielding Composite Made from Vanadium Slag and Boron-Rich Slag and Its Properties. Radiat. Phys. Chem. 2017, 141, 239–244. DOI: 10.1016/j.radphyschem.2017.07.023.
  • Kavanoz, H. B.; Akçalı, Ö.; Toker, O.; Bilmez, B.; Çağlar, M.; İçelli, O. A Novel Comprehensive Utilization of Vanadium Slag/Epoxy Resin/Antimony Trioxide Ternary Composite as Gamma Ray Shielding Material by MCNP 6.2 and BXCOM. Radiat. Phys. Chem. 2019, 165, 108446. DOI: 10.1016/j.radphyschem.2019.108446.
  • Verma, S.; Mili, M.; Bajpai, H.; Hashmi, S.; Srivastava, A. K. Advanced Lead Free, Multi-Constituent-Based Composite Materials for Shielding against Diagnostic X-Rays. Plast. Rubber Compos. 2021, 50, 48–60. DOI: 10.1080/14658011.2020.1831264.
  • Parlar, Z.; Abdlhamed, A.; Akkurt, İ. Gamma-Ray-Shielding Properties of Composite Materials Made of Recycled Sport Footwear. Int. J. Environ. Sci. Technol. 2019, 16, 5113–5116. DOI: 10.1007/s13762-018-1876-7.
  • Zegaoui, A.; Derradji, M.; Medjahed, A.; Ghouti, H. A.; Cai, W. A.; Liu, W. B.; Dayo, A. Q.; Wang, J.; Liu, Y. G. Exploring the Hybrid Effects of Short Glass/Basalt Fibers on the Mechanical, Thermal and Gamma-Radiation Shielding Properties of DCBA/BA-a Resin Composites. Polym. Plast. Technol. Mater. 2020, 59, 311–322. DOI: 10.1080/25740881.2019.1647237.
  • McCaffrey, J. P.; Mainegra‐Hing, E.; Shen, H. Optimizing Non-Pb Radiation Shielding Materials Using Bilayers. Med. Phys. 2009, 36, 5586–5594. DOI: 10.1118/1.3260839.
  • Sazali, M. A.; Rashid, N. K. A. M.; Hamzah, K. A Review on Multilayer Radiation Shielding. In IOP Conference Series: Materials Science and Engineering, 2019, 555, 012008. DOI: 10.1088/1757-899X/555/1/012008.
  • Zhang, H. X.; Chang, S. Q.; Kang, B.; Sheng, B.; Dai, Y. D. Preparation of Functional Particles Modified Epoxy Multilayer Composite and Their Radiation Shielding Properties. AMR. 2014, 900, 150–153. DOI: 10.4028/www.scientific.net/AMR.900.150.
  • Kim, Y.; Park, S.; Seo, Y. Enhanced X-Ray Shielding Ability of Polymer–Nonleaded Metal Composites by Multilayer Structuring. Ind. Eng. Chem. Res. 2015, 54, 5968–5973. DOI: 10.1021/acs.iecr.5b00425.
  • Cherkashina, N. I.; Pavlenko, V. I.; Noskov, A. V.; Novosadov, N. I.; Samoilova, E. S. Using Multilayer Polymer PI/Pb Composites for Protection against X-Ray Bremsstrahlung in Outer Space. Acta Astronaut 2020, 170, 499–508. DOI: 10.1016/j.actaastro.2020.02.022.
  • Prabhu, S.; Jayaram, S.; Bubbly, S. G.; Gudennavar, S. B. A Simple Software for Swift Computation of Photon and Charged Particle Interaction Parameters: PAGEX. Appl. Radiat. Isot. 2021, 176, 109903. DOI: 10.1016/j.apradiso.2021.109903.
  • Density of polymers (by density). https://scipoly.com/density-of-polymers-by-density/. (Accessed March 21, 2022).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.