2,381
Views
1
CrossRef citations to date
0
Altmetric
Reviews

Tailor-Made Biosystems - Bacterial Cellulose-Based Films with Plant Cell Wall Polysaccharides

, &
Pages 40-66 | Received 05 Oct 2021, Accepted 11 Apr 2022, Published online: 27 Apr 2022

References

  • Ramana, K. V.; Tomar, A.; Singh, L. Effect of Various Carbon and Nitrogen Sources on Cellulose Synthesis by Acetobacter Xylinum. World J. Microbiol. Biotechnol 2000, 16, 245–248. . DOI: 10.1023/A:1008958014270.
  • Heo, M.-S.; Son, H.-J. Development of an Optimized, Simple Chemically Defined Medium for Bacterial Cellulose Production by Acetobacter Sp. A9 in Shaking Cultures. Biotechnol. Appl. Biochem. 2002, 36, 41–45. DOI: 10.1042/ba20020018.
  • Martínez-Sanz, M.; Pettolino, F.; Flanagan, B.; Gidley, M. J.; Gilbert, E. P. Structure of Cellulose Microfibrils in Mature Cotton Fibres. Carbohydr. Polym. 2017, 175, 450–463. DOI: 10.1016/j.carbpol.2017.07.090.
  • Yamanaka, S.; Watanabe, K.; Kitamura, N.; Iguchi, M.; Mitsuhashi, S.; Nishi, Y.; Uryu, M. The Structure and Mechanical Properties of Sheets Prepared from Bacterial Cellulose. J. Mater. Sci. 1989, 24, 3141–3145. DOI: 10.1007/BF01139032.
  • Reiniati, I.; Hrymak, A. N.; Margaritis, A. Recent Developments in the Production and Applications of Bacterial Cellulose Fibers and Nanocrystals. Crit. Rev. Biotechnol. 2017, 37, 510–524. DOI: 10.1080/07388551.2016.1189871.
  • Jonas, R.; Farah, L. F. Production and Application of Microbial Cellulose. Polym. Degrad. Stab 1998, 59, 101–106. DOI: 10.1016/S0141-3910(97)00197-3.
  • Lee, K. Y.; Buldum, G.; Mantalaris, A.; Bismarck, A. More than Meets the Eye in Bacterial Cellulose: Biosynthesis, Bioprocessing, and Applications in Advanced Fiber Composites. Macromol. Biosci. 2014, 14, 10–32. DOI: 10.1002/mabi.201300298.
  • Gregory, D. A.; Tripathi, L.; Fricker, A. T. R.; Asare, E.; Orlando, I.; Raghavendran, V.; Roy, I. Bacterial Cellulose: A Smart Biomaterial with Diverse Applications. Mater. Sci. Eng. R Reports 2021, 145, 100623. DOI: 10.1016/j.mser.2021.100623.
  • Iguchi, M.; Yamanaka, S.; Budhiono, A. Bacterial Cellulose - a Masterpiece of Nature’s Arts. J. Mater. Sci. 2000, 35, 261–270. DOI: 10.1023/A:1004775229149.
  • Chinga-Carrasco, G. Microscopy and Computerized Image Analysis of Wood Pulp Fibres Multi-Scale Structures. In Microscopy: Science, Technology, Applications and Education; A. Méndez-Vilas, J. Díaz; Formatex: Badajoz, 2010, 2182–2189.
  • Chinga-Carrasco, G. Cellulose Fibres, Nanofibrils and Microfibrils: The Morphological Sequence of MFC Components from a Plant Physiology and Fibre Technology Point of View. Nanoscale Res. Lett. 2011, 6, 417–417. DOI: 10.1186/1556-276X-6-417.
  • Czaja, W.; Romanovicz, D.; Brown, R. m. Structural Investigations of Microbial Cellulose Produced in Stationary and Agitated Culture. Cellulose 2004, 11, 403–411. DOI: 10.1023/B:CELL.0000046412.11983.61.
  • Wan, W. K.; Hutter, J. L.; Milion, L.; Guhados, G. Bacterial Cellulose and Its Nanocomposites for Biomedical Applications. ACS Symp. Ser. 2006, 938, 221–241. DOI: 10.1021/bk-2006-0938.ch015.
  • Huang, Y.; Zhu, C.; Yang, J.; Nie, Y.; Chen, C.; Sun, D. Recent Advances in Bacterial Cellulose. Cellulose 2014, 21, 1–30. DOI: 10.1007/s10570-013-0088-z.
  • Cazón, P.; Vázquez, M. Improving Bacterial Cellulose Films by Ex-Situ and in-Situ Modifications: A Review. Food Hydrocoll. 2021, 113, 106514. DOI: 10.1016/j.foodhyd.2020.106514.
  • Klemm, D.; Schumann, D.; Udhardt, U.; Marsch, S. Bacterial Synthesized Cellulose - Artificial Blood Vessels for Microsurgery. Prog. Polym. Sci 2001, 26, 1561–1603. DOI: 10.1016/S0079-6700(01)00021-1.
  • Castro, C.; Zuluaga, R.; Putaux, J. L.; Caro, G.; Mondragon, I.; Gañán, P. Structural Characterization of Bacterial Cellulose Produced by Gluconacetobacter Swingsii Sp. from Colombian Agroindustrial Wastes. Carbohydr. Polym 2011, 84, 96–102. DOI: 10.1016/j.carbpol.2010.10.072.
  • Machado, R. T. A.; Gutierrez, J.; Tercjak, A.; Trovatti, E.; Uahib, F. G. M.; Moreno, GdP.; Nascimento, A. P.; Berreta, A. A.; Ribeiro, S. J. L.; Barud, H. S. Komagataeibacter Rhaeticus as an Alternative Bacteria for Cellulose Production. Carbohydr. Polym. 2016, 152, 841–849. DOI: 10.1016/j.carbpol.2016.06.049.
  • Portela, R.; Leal, C. R.; Almeida, P. L.; Sobral, R. G. Bacterial Cellulose: A Versatile Biopolymer for Wound Dressing Applications. Microb. Biotechnol. 2019, 12, 586–610. DOI: 10.1111/1751-7915.13392.
  • Esa, F.; Tasirin, S. M.; Rahman, N. A. Overview of Bacterial Cellulose Production and Application. Agric. Agric. Sci. Procedia 2014, 2, 113–119. DOI: 10.1016/j.aaspro.2014.11.017.
  • Zhang, L. K.; Du, S.; Wang, X.; Jiao, Y.; Yin, L.; Zhang, Y.; Guan, Y. Q. Bacterial Cellulose Based Composites Enhanced Transdermal Drug Targeting for Breast Cancer Treatment. Chem. Eng. J. 2019, 370, 749–759. DOI: 10.1016/j.cej.2019.03.216.
  • Kwak, M. H.; Kim, J. E.; Go, J.; Koh, E. K.; Song, S. H.; Son, H. J.; Kim, H. S.; Yun, Y. H.; Jung, Y. J.; Hwang, D. Y. Bacterial Cellulose Membrane Produced by Acetobacter Sp. A10 for Burn Wound Dressing Applications. Carbohydr. Polym. 2015, 122, 387–398. DOI: 10.1016/j.carbpol.2014.10.049.
  • Liu, J.; Chinga-Carrasco, G.; Cheng, F.; Xu, W.; Willför, S.; Syverud, K.; Xu, C. Hemicellulose-Reinforced Nanocellulose Hydrogels for Wound Healing Application. Cellulose 2016, 23, 3129–3143. DOI: 10.1007/s10570-016-1038-3.
  • Zhao, J.; Sun, H.; Yang, B.; Weng, Y. Hemicellulose-Based Film: Potential Green Films for Food Packaging. Polymers (Basel )2020, 12, 1775. DOI: 10.3390/polym12081775.
  • Cazón, P.; Velázquez, G.; Vázquez, M. Bacterial Cellulose Films: Evaluation of the Water Interaction. Food Packag. Shelf Life 2020, 25, 100526. DOI: 10.1016/j.fpsl.2020.100526.
  • Chen, S. Q.; Lopez-Sanchez, P.; Wang, D.; Mikkelsen, D.; Gidley, M. J. Mechanical Properties of Bacterial Cellulose Synthesised by Diverse Strains of the Genus Komagataeibacter. Food Hydrocoll. 2018, 81, 87–95. DOI: 10.1016/j.foodhyd.2018.02.031.
  • Brown, R. M. Cellulose and Other Natural Polymer Systems: Biogenesis, Structure, and Degradation, 1st ed.; Springer: US, 1982. DOI: 10.1007/978-1-4684-1116-4.
  • Haigler, C. H.; White, A. R.; Brown, R. M.; Cooper, K. M. Alteration of in Vivo Cellulose Ribbon Assembly by Carboxymethylcellulose and Other Cellulose Derivatives. J. Cell Biol. 1982, 94, 64–69. DOI: 10.1083/jcb.94.1.64.
  • Astley, O. M.; Chanliaud, E.; Donald, A. M.; Gidley, M. J. Tensile Deformation of Bacterial Cellulose Composites. Int. J. Biol. Macromol. 2003, 32, 28–35. DOI: 10.1016/S0141-8130(03)00022-9.
  • Dayal, M. S.; Catchmark, J. M. Mechanical and Structural Property Analysis of Bacterial Cellulose Composites. Carbohydr. Polym. 2016, 144, 447–453. DOI: 10.1016/j.carbpol.2016.02.055.
  • Whitney, S. E. C.; Gothard, M. G. E.; Mitchell, J. T.; Gidley, M. J. Roles of Cellulose and Xyloglucan in Determining the Mechanical Properties of Primary Plant Cell Walls. Plant Physiol. 1999, 121, 657–663. DOI: 10.1104/pp.121.2.657.
  • Cybulska, J.; Vanstreels, E.; Ho, Q. T.; Courtin, C. M.; Craeyveld, V.; Van; Nicolaï, B.; Zdunek, A.; Konstankiewicz, K. Mechanical Characteristics of Artificial Cell Walls. J. Food Eng. 2010, 96, 287–294. DOI: 10.1016/j.jfoodeng.2009.08.001.
  • Gu, J.; Catchmark, J. M. Impact of Hemicelluloses and Pectin on Sphere-like Bacterial Cellulose Assembly. Carbohydr. Polym. 2012, 88, 547–557. DOI: 10.1016/j.carbpol.2011.12.040.
  • Szymańska-Chargot, M.; Chylińska, M.; Cybulska, J.; Kozioł, A.; Pieczywek, P. M.; Zdunek, A. Simultaneous Influence of Pectin and Xyloglucan on Structure and Mechanical Properties of Bacterial Cellulose Composites. Carbohydr. Polym. 2017, 174, 970–979. DOI: 10.1016/j.carbpol.2017.07.004.
  • Popper, Z. A. The Plant Cell Wall: Materials and Protocols;Humana Press: Totowa, New Jersey, 2011. DOI: 10.1007/978-1-61779-008-9.
  • Kochumalayil J., J. Xyloglucan-Based Polymers and Nanocomposites – Modification, Properties and Barrier Film Applications. Doctoral dissertation, KTH Royal Institute of Technology: Stockholm, Sweden, 2012.
  • Cosgrove, D. J.; Jarvis, M. C. Comparative Structure and Biomechanics of Plant Primary and Secondary Cell Walls. Front. Plant Sci. 2012, 3, 204–206. DOI: 10.3389/fpls.2012.00204.
  • Zykwinska, A.; Thibault, J. F.; Ralet, M. C. Competitive Binding of Pectin and Xyloglucan with Primary Cell Wall Cellulose. Carbohydr. Polym. 2008, 74, 957–961. DOI: 10.1016/j.carbpol.2008.05.004.
  • Park, Y. B.; Cosgrove, D. J. Changes in Cell Wall Biomechanical Properties in the Xyloglucan-Deficient Xxt1/Xxt2 Mutant of Arabidopsis. Plant Physiol. 2012, 158, 465–475. DOI: 10.1104/pp.111.189779.
  • Whitney, S. A. C. The Interaction of Cellulose with Xyloglucan and Other Glucan-Binding Polymers. Doctoral dissertation, University of Stirling: Stirling, Scotland, 1996.
  • He, X.; Meng, H.; Song, H.; Deng, S.; He, T.; Wang, S.; Wei, D.; Zhang, Z. Novel Bacterial Cellulose Membrane Biosynthesized by a New and Highly Efficient Producer Komagataeibacter Rhaeticus TJPU03. Carbohydr. Res. 2020, 493, 108030. DOI: 10.1016/j.carres.2020.108030.
  • Chi, K.; Catchmark, J. M. The Influences of Added Polysaccharides on the Properties of Bacterial Crystalline Nanocellulose. Nanoscale 2017, 9, 15144–15158. DOI: 10.1039/c7nr05615j.
  • Andrade, F.K.; Pertile, R.A.N.; Dourado F.; Gama, F.M. Bacterial Cellulose: Properties, Production and Applications. In Cellulose: Structure and Properties, Derivatives and Industrial Uses; A. Lejeune, T. Deprez; Nova Science Publishers: Hauppauge, New York, 2010, 427–458.
  • Hestrin, S.; Schramm, M. Synthesis of Cellulose by Acetobacter Xylinum. II. Preparation of Freeze-Dried Cells Capable of Polymerizing Glucose to Cellulose. Biochem. J. 1954, 58, 345–352. DOI: 10.1042/bj0580345.
  • Pecoraro, É.; Manzani, D.; Messaddeq, Y.; Ribeiro, S. J. L. Bacterial Cellulose from Glucanacetobacter Xylinus: Preparation, Properties and Applications. In Monomers, Polymers and Composites from Renewable Resources; M. N. Belgacem, A. Gandini; Elsevier: Amsterdam, 2008, 369–383. DOI: 10.1016/B978-0-08-045316-3.00017-X.
  • Embuscado, M. E.; Marks, J. S.; BeMiller, J. N. Bacterial Cellulose. II. Optimization of Cellulose Production by Acetobacter Xylinum through Response Surface Methodology. Top. Catal 1994, 8, 419–430. DOI: 10.1016/S0268-005X(09)80085-4.
  • Volova, T. G.; Prudnikova, S. V.; Sukovatyi, A. G.; Shishatskaya, E. I. Production and properties of bacterial cellulose by the strain Komagataeibacter xylinus B-12068. Appl. Microbiol. Biotechnol. 2018, 102(17), 7417–7428. DOI: 10.1007/s00253-018-9198-8.
  • Lin, S. P.; Loira Calvar, I.; Catchmark, J. M.; Liu, J. R.; Demirci, A.; Cheng, K. C. Biosynthesis, Production and Applications of Bacterial Cellulose. Cellulose 2013, 20, 2191–2219. DOI: 10.1007/s10570-013-9994-3.
  • Silvestre, A. J. D.; Freire, C. S. R.; Neto, C. P. Do Bacterial Cellulose Membranes Have Potential in Drug-Delivery Systems? Expert Opin. Drug Deliv. 2014, 11, 1113–1124. DOI: 10.1517/17425247.2014.920819.
  • Okiyama, A.; Motoki, M.; Yamanaka, S. Bacterial Cellulose II. Processing of the Gelatinous Cellulose for Food Materials. Top. Catal 1992, 6, 479–487. DOI: 10.1016/S0268-005X(09)80033-7.
  • Watanabe, K.; Tabuchi, M.; Morinaga, Y.; Yoshinaga, F. Structural Features and Properties of Bacterial Cellulose Produced in Agitated Culture. Cellulose 1998, 5, 187–200. . DOI: 10.1023/A:1009272904582.
  • Sanchavanakit, N.; Sangrungraungroj, W.; Kaomongkolgit, R.; Banaprasert, T.; Pavasant, P.; Phisalaphong, M. Growth of Human Keratinocytes and Fibroblasts on Bacterial Cellulose Film. Biotechnol. Prog. 2006, 22, 1194–1199. DOI: 10.1021/bp060035o.
  • Rambo, C. R.; Recouvreux, D. O. S.; Carminatti, C. A.; Pitlovanciv, A. K.; Antônio, R. V.; Porto, L. M. Template Assisted Synthesis of Porous Nanofibrous Cellulose Membranes for Tissue Engineering. Mater. Sci. Eng. C. 2008, 28, 549–554. DOI: 10.1016/j.msec.2007.11.011.
  • McKenna, B. A.; Mikkelsen, D.; Wehr, J. B.; Gidley, M. J.; Menzies, N. W. Mechanical and Structural Properties of Native and Alkali-Treated Bacterial Cellulose Produced by Gluconacetobacter Xylinus Strain ATCC 53524. Cellulose 2009, 16, 1047–1055. DOI: 10.1007/s10570-009-9340-y.
  • Zhijiang, C.; Guang, Y. Optical Nanocomposites Prepared by Incorporating Bacterial Cellulose Nanofibrils into Poly(3-Hydroxybutyrate). Mater. Lett. 2011, 65, 182–184. DOI: 10.1016/j.matlet.2010.09.055.
  • Wang, S.; Li, T.; Chen, C.; Kong, W.; Zhu, S.; Dai, J.; Diaz, A. J.; Hitz, E.; Solares, S. D.; Li, T.; Hu, L. Transparent, Anisotropic Biofilm with Aligned Bacterial Cellulose Nanofibers. Adv. Funct. Mater. 2018, 28, 1707491. DOI: 10.1002/adfm.201707491.
  • Sederavičiūtė, F.; Bekampienė, P.; Domskienė, J. Effect of Pretreatment Procedure on Properties of Kombucha Fermented Bacterial Cellulose Membrane. Polym. Test 2019, 78, 105941. DOI: 10.1016/j.polymertesting.2019.105941.
  • Bendaoud, A.; Kehrbusch, R.; Baranov, A.; Duchemin, B.; Maigret, J. E.; Falourd, X.; Staiger, M. P.; Cathala, B.; Lourdin, D.; Leroy, E. Nanostructured Cellulose-Xyloglucan Blends via Ionic Liquid/Water Processing. Carbohydr. Polym. 2017, 168, 163–172. DOI: 10.1016/j.carbpol.2017.03.080.
  • Gröndahl, M.; Gatenholm, P. Oxygen Barrier Films Based on Xylans Isolated from Biomass. ACS Symp. Ser. 2007, 954, 137–152. DOI: 10.1021/bk-2007-0954.ch009.
  • York, W. S.; Darvill, A. G.; McNeil, M.; Stevenson, T. T.; Albersheim, P. Isolation and Characterization of Plant Cell Walls and Cell Wall Components. Methods Enzymol. 1986, 118, 3–40. DOI: 10.1016/0076-6879(86)18062-1.
  • Gabrielii, I.; Gatenholm, P.; Glasser, W. G.; Jain, R. K.; Kenne, L. Separation, Characterization and Hydrogel-Formation of Hemicellulose from Aspen Wood. Carbohydr. Polym 2000, 43, 367–374. DOI: 10.1016/S0144-8617(00)00181-8.
  • Tuomivaara, S. T.; Yaoi, K.; O'Neill, M. A.; York, W. S. Generation and Structural Validation of a Library of Diverse Xyloglucan-Derived Oligosaccharides, Including an Update on Xyloglucan Nomenclature. Carbohydr. Res. 2015, 402, 56–66. DOI: 10.1016/j.carres.2014.06.031.
  • Hoffman, M.; Jia, Z.; Peña, M. J.; Cash, M.; Harper, A.; Blackburn, A. R.; Darvill, A.; York, W. S. Structural Analysis of Xyloglucans in the Primary Cell Walls of Plants in the Subclass Asteridae. Carbohydr. Res. 2005, 340, 1826–1840. DOI: 10.1016/j.carres.2005.04.016.
  • York, W. S.; van Halbeek, H.; Darvill, A. G.; Albersheim, P. Structural Analysis of Xyloglucan Oligosaccharides by 1H-n.m.r. Spectroscopy and Fast-Atom-Bombardment Mass Spectrometry. Carbohydr. Res. 1990, 200, 9–31. DOI: 10.1016/0008-6215(90)84179-X.
  • McDougall, G. J.; Fry, S. C. Structure-Activity Relationships for Xyloglucan Oligosaccharides with Antiauxin Activity. Plant Physiol. 1989, 89, 883–887. DOI: 10.1104/pp.89.3.883.
  • Lima, D. U.; Loh, W.; Buckeridge, M. S. Xyloglucan-Cellulose Interaction Depends on the Sidechains and Molecular Weight of Xyloglucan. Plant Physiol. Biochem. 2004, 42, 389–394. DOI: 10.1016/j.plaphy.2004.03.003.
  • Zhou, Q.; Rutland, M. W.; Teeri, T. T.; Brumer, H. Xyloglucan in Cellulose Modification. Cellulose 2007, 14, 625–641. DOI: 10.1007/s10570-007-9109-0.
  • Faik, A. Xylan Biosynthesis: News from the Grass. Plant Physiol. 2010, 153, 396–402. DOI: 10.1104/pp.110.154237.
  • Rennie, E. A.; Scheller, H. V. Xylan Biosynthesis. Curr. Opin. Biotechnol. 2014, 26, 100–107. DOI: 10.1016/j.copbio.2013.11.013.
  • Moreira, L. R. S.; Filho, E. X. F. An Overview of Mannan Structure and Mannan-Degrading Enzyme Systems. Appl. Microbiol. Biotechnol. 2008, 79, 165–178. DOI: 10.1007/s00253-008-1423-4.
  • Takigami, S. Konjac Mannan; Woodhead Publishing Limited: Sawston, Cambridge, 2009. DOI: 10.1533/9781845695873.889.
  • Schröder, R.; Atkinson, R. G.; Redgwell, R. J. Re-In terpreting the Role of Endo-Beta-Mannanases as Mannan Endotransglycosylase/Hydrolases in the Plant Cell Wall. Ann. Bot. 2009, 104, 197–204. DOI: 10.1093/aob/mcp120.
  • Berglund, J. Wood Hemicelluloses-Fundamental Insights on Biological and Technical Properties. Doctoral dissertation, KTH Royal Institute of Technology: Stockholm, Sweden, 2018.
  • Katsuraya, K.; Okuyama, K.; Hatanaka, K.; Oshima, R.; Sato, T.; Matsuzaki, K. Constitution of Konjac Glucomannan: Chemical Analysis and 13C NMR Spectroscopy. Carbohydr. Polym. 2003, 53, 183–189. DOI: 10.1016/S0144-8617(03)00039-0.
  • Zhang, Y.; Li, J.; Lindström, M. E.; Stepan, A.; Gatenholm, P. Spruce Glucomannan: Preparation, Structural Characteristics and Basic Film Forming Ability. Nord. Pulp Pap. Res. J. 2013, 28, 323–330. DOI: 10.3183/npprj-2013-28-03-p323-330.
  • Ropitaux, M.; Bernard, S.; Follet-Gueye, M. L.; Vicré, M.; Boulogne, I.; Driouich, A. Xyloglucan and Cellulose Form Molecular Cross-Bridges Connecting Root Border Cells in Pea (Pisum Sativum). Plant Physiol. Biochem. 2019, 139, 191–196. DOI: 10.1016/j.plaphy.2019.03.023.
  • Gröndahl, M.; Eriksson, L.; Gatenholm, P. Material Properties of Plasticized Hardwood Xylans for Potential Application as Oxygen Barrier Films. Biomacromolecules 2004, 5, 1528–1535. DOI: 10.1021/bm049925n.
  • Grabber, J. H. How Do Lignin Composition, Structure, and Cross-Linking Affect Degradability? A Review of Cell Wall Model Studies. Crop Sci. 2005, 45, 820–831. DOI: 10.2135/cropsci2004.0191.
  • Zhang, S. Y.; Wang, C. G.; Fei, B. H.; Yu, Y.; Cheng, H. T.; Tian, G. L. Mechanical Function of Lignin and Hemicelluloses in Wood Cell Wall Revealed with Microtension of Single Wood Fiber. BioResources 2013, 8, 2376–2385. DOI: 10.15376/biores.8.2.2376-2385.
  • Kochumalayil, J.; Sehaqui, H.; Zhou, Q.; Berglund, L. A. Tamarind Seed Xyloglucan - A Thermostable High-Performance Biopolymer from Non-Food Feedstock. J. Mater. Chem. 2010, 20, 4321–4327. DOI: 10.1039/c0jm00367k.
  • Kochumalayil, J. J.; Zhou, Q.; Kasai, W.; Berglund, L. A. Regioselective Modification of a Xyloglucan Hemicellulose for High-Performance Biopolymer Barrier Films. Carbohydr. Polym. 2013, 93, 466–472. DOI: 10.1016/j.carbpol.2012.12.041.
  • Kochumalayil, J. J.; Bergenstråhle-Wohlert, M.; Utsel, S.; Wågberg, L.; Zhou, Q.; Berglund, L. A. Bioinspired and Highly Oriented Clay Nanocomposites with a Xyloglucan Biopolymer Matrix: Extending the Range of Mechanical and Barrier Properties. Biomacromolecules 2013, 14, 84–91. DOI: 10.1021/bm301382d.
  • Kochumalayil, J. J.; Berglund, L. Xyloglucan film. US patent 20160251488A1, filed October 23, 2014.
  • Rodrigues, D. C.; Cunha, A. P.; Silva, L. M. A.; Rodrigues, T. H. S.; Gallão, M. I.; Azeredo, H. M. C. Emulsion Films from Tamarind Kernel Xyloglucan and Sesame Seed Oil by Different Emulsification Techniques. Food Hydrocoll. 2018, 77, 270–276. DOI: 10.1016/j.foodhyd.2017.10.003.
  • Gabrielii, I.; Gatenholm, P. Preparation and Properties of Hydrogels Based on Hemicellulose. J. Appl. Polym. Sci 1998, 69, 1661–1667. DOI: 10.1002/(sici)1097-4628(19980822)69:8 < 1661::aid-app19 > 3.3.co;2-k.
  • Fredon, E.; Granet, R.; Zerrouki, R.; Krausz, P.; Saulnier, L.; Thibault, J. F.; Rosier, J.; Petit, C. Hydrophobic Films from Maize Bran Hemicelluloses. Carbohydr. Polym 2002, 49, 1–12. DOI: 10.1016/S0144-8617(01)00312-5.
  • Goksu, E. I.; Karamanlioglu, M.; Bakir, U.; Yilmaz, L.; Yilmazer, U. Production and Characterization of Films from Cotton Stalk Xylan. J. Agric. Food Chem. 2007, 55, 10685–10691. DOI: 10.1021/jf071893i.
  • Rao, J.; Gao, H.; Guan, Y.; Li, W. q.; Liu, Q. Fabrication of Hemicelluloses Films with Enhanced Mechanical Properties by Graphene Oxide for Humidity Sensing. Carbohydr. Polym. 2019, 208, 513–520. DOI: 10.1016/j.carbpol.2018.12.099.
  • Morais De Carvalho, D.; Marchand, C.; Berglund, J.; Lindström, M. E.; Vilaplana, F.; Sevastyanova, O. Impact of Birch Xylan Composition and Structure on Film Formation and Properties. Holzforschung 2020, 74, 184–196. DOI: 10.1515/hf-2018-0224.
  • Plengnok, U.; Jarukumjorn, K. Preparation and Characterization of Nanocellulose from Sugarcane Bagasse. Biointerface Res. Appl. Chem. 2020, 10, 5675–5678. DOI: 10.33263/BRIAC103.675678.
  • Bahcegul, E.; Özkan, N.; Bakir, U. Production of Hemicellulose-Based Biodegradable Films from Agricultural Wastes. N. Biotechnol. 2009, 25, S278–S278. DOI: 10.1016/j.nbt.2009.06.626.
  • Péroval, C.; Debeaufort, F.; Despré, D.; Voilley, A. Edible Arabinoxylan-Based Films. 1. Effects of Lipid Type on Water Vapor Permeability, Film Structure, and Other Physical Characteristics. J. Agric. Food Chem. 2002, 50, 3977–3983. DOI: 10.1021/jf0116449.
  • Zhang, P.; Whistler, R. L. Mechanical Properties and Water Vapor Permeability of Thin Film from Corn Hull Arabinoxylan. J. Appl. Polym. Sci 2004, 93, 2896–2902. DOI: 10.1002/app.20910.
  • Höije, A.; Gröndahl, M.; Tømmeraas, K.; Gatenholm, P. Isolation and Characterization of Physicochemical and Material Properties of Arabinoxylans from Barley Husks. Carbohydr. Polym. 2005, 61, 266–275. DOI: 10.1016/j.carbpol.2005.02.009.
  • Höije, A.; Sternemalm, E.; Heikkinen, S.; Tenkanen, M.; Gatenholm, P. Material Properties of Films from Enzymatically Tailored Arabinoxylans. Biomacromolecules 2008, 9, 2042–2047. DOI: 10.1021/bm800290m.
  • Mikkonen, K. S.; Heikkinen, S.; Soovre, A.; Peura, M.; Serimaa, R.; Talja, R.; Helen, H.; Hyvonen, L.; Tenkanen, M. Films from Oat Spelt Arabinoxylan Plasticized with Glycerol and Sorbitol. Cellulose 2012, 19, 467–480. DOI: 10.1002/app.
  • Sárossy, Z. Production and Utilization of Hemicelluloses from Renewable Resources for Sustainable Advanced Products. Doctoral Dissertation, Technical University of Denmark: Kongens Lyngby, Denmark, 2011.
  • Sárossy, Z.; Blomfeldt, T. O. J.; Hedenqvist, M. S.; Koch, C. B.; Ray, S. S.; Plackett, D. Composite Films of Arabinoxylan and Fibrous Sepiolite: Morphological, Mechanical, and Barrier Properties. ACS Appl. Mater. Interfaces 2012, 4, 3378–3386. DOI: 10.1021/am3002956.
  • Mikkonen, K. S.; Pitkänen, L.; Liljeström, V.; Mabasa Bergström, E.; Serimaa, R.; Salmén, L.; Tenkanen, M. Arabinoxylan Structure Affects the Reinforcement of Films by Microfibrillated Cellulose. Cellulose 2012, 19, 467–480. DOI: 10.1007/s10570-012-9655-y.
  • Stevanic, J. S.; Bergström, E. M.; Gatenholm, P.; Berglund, L.; Salmén, L. Arabinoxylan/Nanofibrillated Cellulose Composite Films. J. Mater. Sci. 2012, 47, 6724–6732. DOI: 10.1007/s10853-012-6615-8.
  • Ying, R.; Rondeau-Mouro, C.; Barron, C.; Mabille, F.; Perronnet, A.; Saulnier, L. Hydration and Mechanical Properties of Arabinoxylans and β-d-Glucans Films. Carbohydr. Polym. 2013, 96, 31–38. DOI: 10.1016/j.carbpol.2013.03.090.
  • Sárossy, Z.; Tenkanen, M.; Pitkänen, L.; Bjerre, A. B.; Plackett, D. Extraction and Chemical Characterization of Rye Arabinoxylan and the Effect of β-Glucan on the Mechanical and Barrier Properties of Cast Arabinoxylan Films. Food Hydrocoll. 2013, 30, 206–216. DOI: 10.1016/j.foodhyd.2012.05.022.
  • Stepan, A. M.; Ansari, F.; Berglund, L.; Gatenholm, P. Nanofibrillated Cellulose Reinforced Acetylated Arabinoxylan Films. Compos. Sci. Technol. 2014, 98, 72–78. DOI: 10.1016/j.compscitech.2014.04.010.
  • Egüés, I.; Stepan, A. M.; Eceiza, A.; Toriz, G.; Gatenholm, P.; Labidi, J. Corncob Arabinoxylan for New Materials. Carbohydr. Polym. 2014, 102, 12–20. DOI: 10.1016/j.carbpol.2013.11.011.
  • Ying, R.; Saulnier, L.; Bouchet, B.; Barron, C.; Ji, S.; Rondeau-Mouro, C. Multiscale Characterization of Arabinoxylan and β-Glucan Composite Films. Carbohydr. Polym. 2015, 122, 248–254. DOI: 10.1016/j.carbpol.2015.01.014.
  • Heikkinen, S. Biodegradable films from cereal arabinoxylans. Doctoral dissertation, University of Helsinki: Helsinki, Finland, 2016.
  • Stoklosa, R. J.; Latona, R. J.; Bonnaillie, L. M.; Yadav, M. P. Evaluation of Arabinoxylan Isolated from Sorghum Bran, Biomass, and Bagasse for Film Formation. Carbohydr. Polym. 2019, 213, 382–392. DOI: 10.1016/j.carbpol.2019.03.018.
  • Xiao, C.; Gao, S.; Wang, H.; Zhang, L. Blend Films from Chitosan and Konjac Glucomannan Solutions. J. Appl. Polym. Sci. 2000, 76, 509–515. DOI: 10.1002/(SICI)1097-4628(20000425)76:4 < 509::AID-APP8 > 3.0.CO;2-2.
  • Xiao, C.; Gao, S.; Zhang, L. Blend Films from Konjac Glucomannan and Sodium Alginate Solutions and Their Preservative Effect. J. Appl. Polym. Sci 2000, 77, 617–626. DOI: 10.1002/(SICI)1097-4628(20000718)77:3 < 617::AID-APP17 > 3.0.CO;2-1.
  • Cheng, L. H.; Abd Karim, A.; Seow, C. C. Effects of Acid Modification on Physical Properties of Konjac Glucomannan (KGM) Films. Food Chem 2007, 103, 994–1002. DOI: 10.1016/j.foodchem.2006.09.052.
  • Mikkonen, K. S.; Mathew, A. P.; Pirkkalainen, K.; Serimaa, R.; Xu, C.; Willför, S.; Oksman, K.; Tenkanen, M. Glucomannan Composite Films with Cellulose Nanowhiskers. Cellulose 2010, 17, 69–81. DOI: 10.1007/s10570-009-9380-3.
  • Wu, C.; Peng, S.; Wen, C.; Wang, X.; Fan, L.; Deng, R.; Pang, J. Structural Characterization and Properties of Konjac Glucomannan/Curdlan Blend Films. Carbohydr. Polym. 2012, 89, 497–503. DOI: 10.1016/j.carbpol.2012.03.034.
  • Wei, X.; Pang, J.; Zhang, C.; Yu, C.; Chen, H.; Xie, B. Structure and Properties of Moisture-Resistant Konjac Glucomannan Films Coated with Shellac/Stearic Acid Coating. Carbohydr. Polym. 2015, 118, 119–125. DOI: 10.1016/j.carbpol.2014.11.009.
  • Wu, C.; Li, Y.; Du, Y.; Wang, L.; Tong, C.; Hu, Y.; Pang, J.; Yan, Z. Preparation and Characterization of Konjac Glucomannan-Based Bionanocomposite Film for Active Food Packaging. Food Hydrocoll 2019, 89, 682–690. DOI: 10.1016/j.foodhyd.2018.11.001.
  • Wang, L.; Lin, L.; Chen, X.; Tong, C.; Pang, J. Synthesis and Characteristics of Konjac Glucomannan Films Incorporated with Functionalized Microcrystalline Cellulose. Colloids Surfaces A Physicochem. Eng. Asp 2019, 563, 237–245. DOI: 10.1016/j.colsurfa.2018.12.015.
  • Liu, Z.; Shen, R.; Yang, X.; Lin, D. Characterization of a Novel Konjac Glucomannan Film Incorporated with Pickering Emulsions: Effect of the Emulsion Particle Sizes. Int. J. Biol. Macromol. 2021, 179, 377–387. DOI: 10.1016/j.ijbiomac.2021.02.188.
  • De Souza, C. F.; Lucyszyn, N.; Woehl, M. A.; Riegel-Vidotti, I. C.; Borsali, R.; Sierakowski, M. R. Property Evaluations of Dry-Cast Reconstituted Bacterial Cellulose/Tamarind Xyloglucan Biocomposites. Carbohydr. Polym. 2013, 93, 144–153. DOI: 10.1016/j.carbpol.2012.04.062.
  • Lucyszyn, N.; Ono, L.; Lubambo, A. F.; Woehl, M. A.; Sens, C. V.; de Souza, C. F.; Sierakowski, M. R. Physicochemical and in Vitro Biocompatibility of Films Combining Reconstituted Bacterial Cellulose with Arabinogalactan and Xyloglucan. Carbohydr. Polym. 2016, 151, 889–898. DOI: 10.1016/j.carbpol.2016.06.027.
  • Whitney, S. E. C.; Brigham, J. E.; Darke, A. H.; Reid, J. S. G.; Gidley, M. J. In Vitro Assembly of Cellulose/Xyloglucan Networks: Ultrastructural and Molecular Aspects. Plant J. 1995, 8, 491–504. DOI: 10.1046/j.1365-313X.1995.8040491.x.
  • Zheng, Y.; Wang, X.; Chen, Y.; Wagner, E.; Cosgrove, D. J. Xyloglucan in the Primary Cell Wall: Assessment by FESEM, Selective Enzyme Digestions and Nanogold Affinity Tags. Plant J. 2018, 93, 211–226. DOI: 10.1111/tpj.13778.
  • Herburger, K.; Franková, L.; Pičmanová, M.; Loh, J. W.; Valenzuela-Ortega, M.; Meulewaeter, F.; Hudson, A. D.; French, C. E.; Fry, S. C. Hetero-Trans-β-Glucanase Produces Cellulose-Xyloglucan Covalent Bonds in the Cell Walls of Structural Plant Tissues and Is Stimulated by Expansin. Mol. Plant 2020, 13, 1047–1062. DOI: 10.1016/j.molp.2020.04.011.
  • Chanliaud, E.; Burrows, K. M.; Jeronimidis, G.; Gidley, M. J. Mechanical Properties of Primary Plant Cell Wall Analogues. Planta 2002, 215, 989–996. DOI: 10.1007/s00425-002-0783-8.
  • Whitney, S. E. C.; Wilson, E.; Webster, J.; Bacic, A.; Grant Reid, J. S.; Gidley, M. J. Effects of Structural Variation in Xyloglucan Polymers on Interactions with Bacterial Cellulose. Am. J. Bot. 2006, 93, 1402–1414. DOI: 10.3732/ajb.93.10.1402.
  • Gu, J.; Catchmark, J. M. Roles of Xyloglucan and Pectin on the Mechanical Properties of Bacterial Cellulose Composite Films. Cellulose 2014, 21, 275–289. DOI: 10.1007/s10570-013-0115-0.
  • Lopez-Sanchez, P.; Cersosimo, J.; Wang, D.; Flanagan, B.; Stokes, J. R.; Gidley, M. J. Poroelastic Mechanical Effects of Hemicelluloses on Cellulosic Hydrogels under Compression. PLoS One 2015, 10, e0122132–19. DOI: 10.1371/journal.pone.0122132.
  • Lopez, M.; Bizot, H.; Chambat, G.; Marais, M. F.; Zykwinska, A.; Ralet, M. C.; Driguez, H.; Buléon, A. Enthalpic Studies of Xyloglucan-Cellulose Interactions. Biomacromolecules 2010, 11, 1417–1428. DOI: 10.1021/bm1002762.
  • Hirai, A.; Tsuji, M.; Yamamoto, H.; Horii, F. Situ Crystallization of Bacterial Cellulose III. Influences of Different Polymeric Additives on the Formation of Microfibrils as Revealed by Transmission Electron Microscopy. Cellulose 1998, 5, 201–213. DOI: 10.1023/A:1009233323237.
  • Penttilä, P. A.; Imai, T.; Hemming, J.; Willför, S.; Sugiyama, J. Enzymatic Hydrolysis of Biomimetic Bacterial Cellulose-Hemicellulose Composites. Carbohydr. Polym. 2018, 190, 95–102. DOI: 10.1016/j.carbpol.2018.02.051.
  • Martínez-Sanz, M.; Lopez-Sanchez, P.; Gidley, M. J.; Gilbert, E. P. Evidence for Differential Interaction Mechanism of Plant Cell Wall Matrix Polysaccharides in Hierarchically-Structured Bacterial Cellulose. Cellulose 2015, 22, 1541–1563. DOI: 10.1007/s10570-015-0614-2.
  • Hansen, N. M. L.; Blomfeldt, T. O. J.; Hedenqvist, M. S.; Plackett, D. V. Properties of Plasticized Composite Films Prepared from Nanofibrillated Cellulose and Birch Wood Xylan. Cellulose 2012, 19, 2015–2031. DOI: 10.1007/s10570-012-9764-7.
  • Yu, J.; Zhu, Y.; Ma, H.; Liu, L.; Hu, Y.; Xu, J.; Wang, Z.; Fan, Y. Contribution of Hemicellulose to Cellulose Nanofiber-Based Nanocomposite Films with Enhanced Strength, Flexibility and UV-Blocking Properties. Cellulose 2019, 26, 6023–6034. DOI: 10.1007/s10570-019-02518-6.
  • Linder, A.; Bergman, R.; Bodin, A.; Gatenholm, P. Mechanism of Assembly of Xylan onto Cellulose Surfaces. Langmuir 2003, 19, 5072–5077. DOI: 10.1021/la0341355.
  • Long, L.; Shen, F.; Wang, F.; Tian, D.; Hu, J. Synthesis, Characterization and Enzymatic Surface Roughing of Cellulose/Xylan Composite Films. Carbohydr. Polym. 2019, 213, 121–127. DOI: 10.1016/j.carbpol.2019.02.086.
  • Gordobil, O.; Egüés, I.; Urruzola, I.; Labidi, J. Xylan-Cellulose Films: Improvement of Hydrophobicity, Thermal and Mechanical Properties. Carbohydr. Polym. 2014, 112, 56–62. DOI: 10.1016/j.carbpol.2014.05.060.
  • Martínez-Sanz, M.; Gidley, M. J.; Gilbert, E. P. Hierarchical Architecture of Bacterial Cellulose and Composite Plant Cell Wall Polysaccharide Hydrogels Using Small Angle Neutron Scattering. Soft Matter 2016, 12, 1534–1549. DOI: 10.1039/c5sm02085a.
  • Winter, H.; Barakat, A.; Cathala, B.; Saake, B. Preparation of Arabinoxylan and Its Sorption on Bacterial Cellulose during Cultivation. Macromol. Symp 2005, 232, 74–84. DOI: 10.1002/masy.200551409.
  • Egüés, I.; Eceiza, A.; Labidi, J. Effect of Different Hemicelluloses Characteristics on Film Forming Properties. Ind. Crops Prod 2013, 47, 331–338. DOI: 10.1016/j.indcrop.2013.03.031.
  • Sundberg, J.; Toriz, G.; Gatenholm, P. Effect of Xylan Content on Mechanical Properties in Regenerated Cellulose/Xylan Blend Films from Ionic Liquid. Cellulose 2015, 22, 1943–1953. DOI: 10.1007/s10570-015-0606-2.
  • Uhlin, K. I.; Atalla, R. H.; Thompson, N. S. Influence of Hemicelluloses on the Aggregation Patterns of Bacterial Cellulose. Cellulose 1995, 2, 129–144. DOI: 10.1007/BF00816385.
  • Lucenius, J.; Valle-Delgado, J. J.; Parikka, K.; Österberg, M. Understanding Hemicellulose-Cellulose Interactions in Cellulose Nanofibril-Based Composites. J. Colloid Interface Sci. 2019, 555, 104–114. DOI: 10.1016/j.jcis.2019.07.053.
  • Fengel, D. Ideas on the Ultrastructural Organization of the Cell Wall Components. J. Polym. Sci., C Polym. Symp. 1971, 36, 383–392. DOI: 10.1002/polc.5070360127.
  • Whitney, S. E. C.; Brigham, J. E.; Darke, A. H.; Reid, J. S. G.; Gidley, M. J. Structural Aspects of the Interaction of Mannanbased Polysaccharides with Bacterial Cellulose. Carbohydr. Res 1998, 307, 299–309. DOI: 10.1016/S0008-6215(98)00004-4.
  • Tokoh, C.; Takabe, K.; Fujita, M.; Saiki, H. Cellulose Synthesized by Acetobacter Xylinum in the Presence of Acetyl Glucomannan. Cellulose 1998, 5, 249–261. DOI: 10.1023/A:1009211927183.
  • Eronen, P.; Österberg, M.; Heikkinen, S.; Tenkanen, M.; Laine, J. Interactions of Structurally Different Hemicelluloses with Nanofibrillar Cellulose. Carbohydr. Polym. 2011, 86, 1281–1290. DOI: 10.1016/j.carbpol.2011.06.031.
  • Caffall, K. H.; Mohnen, D. The Structure, Function, and Biosynthesis of Plant Cell Wall Pectic Polysaccharides. Carbohydr. Res. 2009, 344, 1879–1900. DOI: 10.1016/j.carres.2009.05.021.
  • Lin, D.; Lopez-Sanchez, P.; Selway, N.; Gidley, M. J. Viscoelastic Properties of Pectin/Cellulose Composites Studied by QCM-D and Oscillatory Shear Rheology. Food Hydrocoll 2018, 79, 13–19. DOI: 10.1016/j.foodhyd.2017.12.019.
  • Uhlin, K. I. The Influence of Hemicelluloses on the Structure of Bacterial Cellulose. Doctoral dissertation, Institute of Paper Science and Technology: Atlanta, USA, 1990.
  • Tokoh, C.; Takabe, K.; Sugiyama, J.; Fujita, M. CP/MAS 13C NMR and Electron Diffraction Study of Bacterial Cellulose Structure Affected by. Cell Wall Polysaccharides. Cellulose 2002, 9, 351–360. DOI: 10.1023/A:1021150520953..
  • Broxterman, S.E. The architecture of the primary plant cell wall: the role of pectin reconsidered. Doctoral dissertation, Wageningen University: Wageningen, The Netherlands, 2018.
  • Haas, K. T.; Wightman, R.; Meyerowitz, E. M.; Peaucelle, A. Pectin Homogalacturonan Nanofilament Expansion Drives Morphogenesis in Plant Epidermal Cells. Science 2020, 367, 1003–1007. DOI: 10.1126/science.aaz5103.
  • Popper, Z. A.; Fry, S. C. Xyloglucan-Pectin Linkages Are Formed Intra-Protoplasmically, Contribute to Wall-Assembly, and Remain Stable in the Cell Wall. Planta 2008, 227, 781–794. DOI: 10.1007/s00425-007-0656-2.
  • Dyson, R. J.; Band, L. R.; Jensen, O. E. A Model of Crosslink Kinetics in the Expanding Plant Cell Wall: Yield Stress and Enzyme Action. J. Theor. Biol. 2012, 307, 125–136. DOI: 10.1016/j.jtbi.2012.04.035.
  • Wang, T.; Hong, M. Solid-State NMR Investigations of Cellulose Structure and Interactions with Matrix Polysaccharides in Plant Primary Cell Walls. J. Exp. Bot. 2016, 67, 503–514. DOI: 10.1093/jxb/erv416.
  • Fanta, S. W.; Vanderlinden, W.; Abera, M. K.; Verboven, P.; Karki, R.; Ho, Q. T.; De Feyter, S.; Carmeliet, J.; Nicolaï, B. M. Water Transport Properties of Artificial Cell Walls. J. Food Eng. 2012, 108, 393–402. DOI: 10.1016/j.jfoodeng.2011.09.010.
  • Cybulska, J.; Konstankiewicz, K.; Zdunek, A.; Skrzypiec, K. Nanostructure of Natural and Model Cell Wall Materials. Int Agrophys 2010, 24(2), 107–114.
  • Gu, J.; Catchmark, J. M. The Impact of Cellulose Structure on Binding Interactions with Hemicellulose and Pectin. Cellulose 2013, 20, 1613–1627. DOI: 10.1007/s10570-013-9965-8.
  • Szymańska-Chargot, M.; Cybulska, J.; Zdunek, A. Sensing the Structural Differences in Cellulose from Apple and Bacterial Cell Wall Materials by Raman and FT-IR Spectroscopy. Sensors (Basel) 2011, 11, 5543–5560. DOI: 10.3390/s110605543.