5,698
Views
2
CrossRef citations to date
0
Altmetric
Reviews

Textile Fiber Production of Biopolymers – A Review of Spinning Techniques for Polyhydroxyalkanoates in Biomedical Applications

, &
Pages 200-245 | Received 20 Sep 2021, Accepted 07 May 2022, Published online: 25 May 2022

References

  • Crawford, M. E. Chapter 20 - Autografts, Allografts and Xenografts in Cutaneous Surgery; In: Lower Extremity Soft Tissue & Cutaneous Plastic Surgery. Dockery, G. D. and Crawford, M. E., Eds.; W.B. Saunders: Oxford, 2012; pp. 225–230
  • Amini, A. R.; Laurencin, C. T.; Nukavarapu, S. P. Bone Tissue Engineering: Recent Advances and Challenges. Crit. Rev. Biomed. Eng. 2012, 40, 363–408. DOI: 10.1615/critrevbiomedeng.v40.i5.10.
  • Mani, M. P.; Jaganathan, S. K.; Khudzari, A. Z. M. Evaluation of Electrospun Polyurethane Scaffolds Loaded with Cerium Oxide for Bone Tissue Engineering. J. Ind. Text. 2021, 152808372110066. DOI: 10.1177/15280837211006668.
  • Madiwale, P.; Singh, G. P.; Biranje, S.; Adivarekar, R. Advances of Textiles in Tissue Engineering Scaffolds; In: Advances in Functional Finishing of Textiles. Shahid, MAdivarekar, R., Eds.; Springer Singapore: Singapore, 2020; pp. 169–194
  • Abbah, S. A.; Delgado, L. M.; Azeem, A.; Fuller, K.; Shologu, N.; Keeney, M.; Biggs, M. J.; Pandit, A.; Zeugolis, D. I. Harnessing Hierarchical Nano- and Micro-Fabrication Technologies for Musculoskeletal Tissue Engineering. Adv. Healthc. Mater. 2015, 4, 2488–2499. DOI: 10.1002/adhm.201500004.
  • Miao, S.; Zhu, W.; Castro, N. J.; Leng, J.; Zhang, L. G. Four-Dimensional Printing Hierarchy Scaffolds with Highly Biocompatible Smart Polymers for Tissue Engineering Applications. Tissue Eng. Part C Methods 2016, 22, 952–963. DOI: 10.1089/ten.tec.2015.0542.
  • Fallahi, A.; Khademhosseini, A.; Tamayol, A. Textile Processes for Engineering Tissues with Biomimetic Architectures and Properties. Trends Biotechnol. 2016, 34, 683–685. DOI: 10.1016/j.tibtech.2016.07.001.
  • Chanda, A.; Callaway, C. Tissue Anisotropy Modeling Using Soft Composite Materials. Appl. Bionics Biomech. 2018, 2018, 4838157. DOI: 10.1155/2018/4838157.
  • Jiang, C.; Wang, K.; Liu, Y.; Zhang, C.; Wang, B. Application of Textile Technology in Tissue Engineering: A Review. Acta Biomater. 2021, 128, 60–76 DOI: 10.1016/j.actbio.2021.04.047.
  • Wang, X.; Xu, S.; Zhou, S.; Xu, W.; Leary, M.; Choong, P.; Qian, M.; Brandt, M.; Xie, Y. M. Topological Design and Additive Manufacturing of Porous Metals for Bone Scaffolds and Orthopaedic Implants: A Review. Biomaterials 2016, 83, 127–141. DOI: 10.1016/j.biomaterials.2016.01.012.
  • Basnett, P.; Ching, K. Y.; Stolz, M.; Knowles, J. C.; Boccaccini, A. R.; Smith, C.; Locke, I. C.; Keshavarz, T.; Roy, I. Novel Poly(3-Hydroxyoctanoate)/Poly(3-Hydroxybutyrate) Blends for Medical Applications. React. Funct. Polym 2013, 73, 1340–1348. DOI: 10.1016/j.reactfunctpolym.2013.03.019.
  • Martin, D. P.; Williams, S. F. Medical Applications of Poly-4-Hydroxybutyrate: A Strong Flexible Absorbable Biomaterial. Biochem. Eng. J. 2003, 16, 97–105. DOI: 10.1016/S1369-703X(03)00040-8.
  • Blanton, P. L.; Biggs, N. L. Ultimate Tensile Strength of Fetal and Adult Human Tendons. J. Biomech. 1970, 3, 181–189. DOI: 10.1016/0021-9290(70)90005-9.
  • Gallagher, A. J.; Ní Anniadh, A.; Bruyere, K.; Otténio, M.; Xie, H.; Gilchrist, M. D. Dynamic Tensile Properties of Human Skin. 2012 IRCOBI Conference Proceedings 2012, 12, 494–502.
  • Schleifenbaum, S.; Schmidt, M.; Möbius, R.; Wolfskämpf, T.; Schröder, C.; Grunert, R.; Hammer, N.; Prietzel, T. Load and Failure Behavior of Human Muscle Samples in the Context of Proximal Femur Replacement. BMC Musculoskelet. Disord. 2016, 17, 149–149. DOI. 10.1186/s12891-016-0998-7
  • Kerns, J.; Piponov, H.; Helder, C.; Amirouche, F.; Solitro, G.; Gonzalez, M. Mechanical Properties of the Human Tibial and Peroneal Nerves following Stretch with Histological Correlations. Anat. Rec. (Hoboken) 2019, 302, 2030–2039. DOI: 10.1002/ar.24250.
  • Tanaka, T.; Yabe, T.; Teramachi, S.; Iwata, T. Mechanical Properties and Enzymatic Degradation of Poly[(R)-3-Hydroxybutyrate] Fibers Stretched after Isothermal Crystallization near Tg. Polym. Degrad. Stab. 2007, 92, 1016–1024. DOI: 10.1016/j.polymdegradstab.2007.02.017.
  • Tamayol, A.; Akbari, M.; Annabi, N.; Paul, A.; Khademhosseini, A.; Juncker, D. Fiber-Based Tissue Engineering: Progress, Challenges, and Opportunities. Biotechnol. Adv. 2013, 31, 669–687. DOI: 10.1016/j.biotechadv.2012.11.007.
  • Qin, Y. 6 - Superabsorbent Polymers and Their Medical Applications; In: Medical Textile Materials. Qin, Y., Eds.; Woodhead Publishing: Cambridge, UK, 2016; pp. 71–88
  • Brunetti, L.; Degli Esposti, M.; Morselli, D.; Boccaccini, A. R.; Fabbri, P.; Liverani, L. Poly(Hydroxyalkanoate)s Meet Benign Solvents for Electrospinning. Mater. Lett. 2020, 278, 128389. DOI: 10.1016/j.matlet.2020.128389.
  • Gupta, B. S.; Moghe, A. K. 2 - Nanofiber Structures for Medical Biotextiles; In: Biotextiles as Medical Implants. King, M. W., Gupta, B. S. and Guidoin, R., Eds.; Woodhead Publishing: Cambridge, UK, 2013; pp. 48–90
  • Kaniuk, Ł.; Stachewicz, U. Development and Advantages of Biodegradable PHA Polymers Based on Electrospun PHBV Fibers for Tissue Engineering and Other Biomedical Applications. ACS Biomater. Sci. Eng. 2021, 7, 5339–5362. DOI: 10.1021/acsbiomaterials.1c00757.
  • Zhao, X.-H.; Niu, Y.-N.; Mi, C.-H.; Gong, H.-L.; Yang, X.-Y.; Cheng, J.-S.-Y.; Zhou, Z.-Q.; Liu, J.-X.; Peng, X.-L.; Wei, D.-X. Electrospinning Nanofibers of Microbial Polyhydroxyalkanoates for Applications in Medical Tissue Engineering. J. Polym. Sci. 2021, 59, 1994–2013. DOI: 10.1002/pol.20210418.
  • Laycock, B.; Halley, P.; Pratt, S.; Werker, A.; Lant, P. The Chemomechanical Properties of Microbial Polyhydroxyalkanoates. Prog. Polym. Sci. 2013, 38, 536–583. DOI: 10.1016/j.progpolymsci.2012.06.003.
  • Kabe, T.; Hongo, C.; Tanaka, T.; Hikima, T.; Takata, M.; Iwata, T. High Tensile Strength Fiber of Poly[(R)-3-Hydroxybutyrate-co-(R)-3-Hydroxyhexanoate] Processed by Two-Step Drawing with Intermediate Annealing. J. Appl. Polym. Sci. 2015, 132, 41258. DOI: 10.1002/app.41258.
  • Sharma, V.; Sehgal, R.; Gupta, R. Polyhydroxyalkanoate (PHA): Properties and Modifications. Polymer 2021, 212, 123161. DOI: 10.1016/j.polymer.2020.123161.
  • Mitra, R.; Xu, T.; Xiang, H.; Han, J. Current Developments on Polyhydroxyalkanoates Synthesis by Using Halophiles as a Promising Cell Factory. Microb. Cell Fact. 2020, 19, 86. DOI: 10.1186/s12934-020-01342-z.
  • Karthik, T.; Rathinamoorthy, R. 8 - Sustainable Synthetic Fibre Production; In: Sustainable Fibres and Textiles. Muthu, S. S., Eds.;Woodhead Publishing: Duxford, United Kingdom, 2017; pp. 191–240
  • Rehm, B. H. A. Polyester Synthases: Natural Catalysts for Plastics. Biochem. J. 2003, 376, 15–33. DOI: 10.1042/BJ20031254.
  • Grigore, M. E.; Grigorescu, R. M.; Iancu, L.; Ion, R.-M.; Zaharia, C.; Andrei, E. R. Methods of Synthesis, Properties and Biomedical Applications of Polyhydroxyalkanoates: A Review. J. Biomater. Sci. Polym. Ed. 2019, 30, 695–712. DOI: 10.1080/09205063.2019.1605866.
  • Anderson, A. J.; Dawes, E. A. Occurrence, Metabolism, Metabolic Role, and Industrial Uses of Bacterial Polyhydroxyalkanoates. Microbiol. Rev. 1990, 54, 450–472. DOI: 10.1128/mr.54.4.450-472.1990.
  • Sudesh, K.; Abe, H. Background; In Practical Guide to Microbial Polyhydroxyalkanoates. Eds.; Smithers Rapa: Shawbury, 2010; pp. 1–2
  • Sudesh, K.; Abe, H. Polyhydroxyalkanoates (PHA) Types; In: Practical Guide to Microbial Polyhydroxyalkanoates. Eds.; Smithers Rapa: Shawbury 2010; pp. 5–12
  • Degeratu, C. N.; Mabilleau, G.; Aguado, E.; Mallet, R.; Chappard, D.; Cincu, C.; Stancu, I. C. Polyhydroxyalkanoate (PHBV) Fibers Obtained by a Wet Spinning Method: Good in Vitro Cytocompatibility but Absence of in Vivo Biocompatibility When Used as a Bone Graft. Morphologie 2019, 103, 94–102. DOI: 10.1016/j.morpho.2019.02.003.
  • Steinbüchel, A.; Hein, S. Biochemical and Molecular Basis of Microbial Synthesis of Polyhydroxyalkanoates in Microorganisms; In: Biopolyesters. Babel, W. and Steinbüchel, A., Eds.; Springer Berlin Heidelberg: Berlin, Heidelberg, 2001; pp. 81–123
  • Kim, Y. B.; Lenz, R. W. Polyesters from Microorganisms; In: Biopolyesters. Babel, W. and Steinbüchel, A., Eds.; Springer Berlin Heidelberg: Berlin, Heidelberg, 2001; pp. 51–79
  • Kurian, N. S.; Das, B. Comparative Analysis of Various Extraction Processes Based on Economy, Eco-Friendly, Purity and Recovery of Polyhydroxyalkanoate: A Review. Int. J. Biol. Macromol. 2021, 183, 1881–1890. DOI: 10.1016/j.ijbiomac.2021.06.007.
  • Steinbüchel, A.; Valentin, H. E. Diversity of Bacterial Polyhydroxyalkanoic Acids. FEMS Microbiol. Lett. 1995, 128, 219–228. DOI: 10.1016/0378-1097(95)00125-O.
  • Lee, S. Y. Bacterial Polyhydroxyalkanoates. Biotechnol. Bioeng. 1996, 49, 1–14. DOI: 10.1002/(SICI)1097-0290(19960105)49:1 < 1::AID-BIT1 > 3.0.CO;2-P.
  • Raza, Z. A.; Abid, S.; Banat, I. M. Polyhydroxyalkanoates: Characteristics, Production, Recent Developments and Applications. Int. Biodeterior. Biodegrad. 2018, 126, 45–56. DOI: 10.1016/j.ibiod.2017.10.001.
  • Raza, Z. A.; Khalil, S.; Abid, S. Recent Progress in Development and Chemical Modification of Poly(Hydroxybutyrate)-Based Blends for Potential Medical Applications. Int. J. Biol. Macromol. 2020, 160, 77–100. DOI: 10.1016/j.ijbiomac.2020.05.114.
  • Alcântara, J. M. G.; Distante, F.; Storti, G.; Moscatelli, D.; Morbidelli, M.; Sponchioni, M. Current Trends in the Production of Biodegradable Bioplastics: The Case of Polyhydroxyalkanoates. Biotechnol. Adv. 2020, 42, 107582. DOI: 10.1016/j.biotechadv.2020.107582.
  • Larrañaga, A.; Fernández, J.; Vega, A.; Etxeberria, A.; Ronchel, C.; Adrio, J. L.; Sarasua, J. R. Crystallization and Its Effect on the Mechanical Properties of a Medium Chain Length Polyhydroxyalkanoate. J. Mech. Behav. Biomed. Mater. 2014, 39, 87–94. DOI: 10.1016/j.jmbbm.2014.07.020.
  • Williams, S. F.; Martin, D. P.; Horowitz, D. M.; Peoples, O. P. PHA Applications: Addressing the Price Performance Issue: I. Tissue Engineering. Int. J. Biol. Macromol. 1999, 25, 111–121. DOI: 10.1016/S0141-8130(99)00022-7.
  • Kunasundari, B.; Sudesh, K. Isolation and Recovery of Microbial Polyhydroxyalkanoates. Express Polym. Lett. 2011, 5, 620–634. DOI: 10.3144/expresspolymlett.2011.60.
  • Puppi, D.; Pecorini, G.; Chiellini, F. Biomedical Processing of Polyhydroxyalkanoates. Bioengineering 2019, 6, 108. DOI: 10.3390/bioengineering6040108.
  • Rodriguez-Contreras Recent Advances in the Use of Polyhydroyalkanoates in Biomedicine. Bioengineering 2019, 6, 82. DOI: 10.3390/bioengineering6030082.
  • Rai, R.; Keshavarz, T.; Roether, J. A.; Boccaccini, A. R.; Roy, I. Medium Chain Length Polyhydroxyalkanoates, Promising New Biomedical Materials for the Future. Mater. Sci. Eng. R Rep. 2011, 72, 29–47. DOI: 10.1016/j.mser.2010.11.002.
  • Chen, G.-Q.; Wu, Q. The Application of Polyhydroxyalkanoates as Tissue Engineering Materials. Biomaterials 2005, 26, 6565–6578. DOI: 10.1016/j.biomaterials.2005.04.036.
  • Vogel, R.; Tändler, B.; Voigt, D.; Jehnichen, D.; Häussler, L.; Peitzsch, L.; Brünig, H. Melt Spinning of Bacterial Aliphatic Polyester Using Reactive Extrusion for Improvement of Crystallization. Macromol. Biosci. 2007, 7, 820–828. DOI: 10.1002/mabi.200700041.
  • Iftikhar, A.; Nazia, J. Polyhydroxyalkanoates: Current Applications in the Medical Field. Front. Biol. 2016, 11, 19–27. DOI: 10.1007/s11515-016-1389-z.
  • Manavitehrani, I.; Fathi, A.; Badr, H.; Daly, S.; Negahi Shirazi, A.; Dehghani, F. Biomedical Applications of Biodegradable Polyesters. Polymers 2016, 8, 20. DOI: 10.3390/polym8010020.
  • Puppi, D.; Morelli, A.; Chiellini, F. Additive Manufacturing of Poly(3-Hydroxybutyrate-co-3-Hydroxyhexanoate)/Poly(ε-Caprolactone) Blend Scaffolds for Tissue Engineering. Bioengineering 2017, 4, 49. DOI: 10.3390/bioengineering4020049.
  • Chiono, V.; Ciardelli, G.; Vozzi, G.; Sotgiu, M. G.; Vinci, B.; Domenici, C.; Giusti, P. Poly(3-Hydroxybutyrate-co-3-Hydroxyvalerate)/Poly(Epsilon-Caprolactone) Blends for Tissue Engineering Applications in the Form of Hollow Fibers. J. Biomed. Mater. Res. A 2008, 85, 938–953. DOI: 10.1002/jbm.a.3151310.1002/jbm.a.31513.
  • Mármol, G.; Gauss, C.; Fangueiro, R. Potential of Cellulose Microfibers for PHA and PLA Biopolymers Reinforcement. Molecules 2020, 25, 4653–4670. DOI: 10.3390/molecules25204653.
  • Alagoz, A.; Rodríguez-Cabello, J.; Hasirci, V. PHBV Wet Spun Scaffold Coated with ELR-REDV Improves Vascularization for Bone Tissue Engineering. Biomed. Mater. 2018, 13, 055010. DOI: 10.1088/1748-605X/aad139.
  • Williams, S. F.; Rizk, S.; Martin, D. P. Poly-4-Hydroxybutyrate (P4HB): A New Generation of Resorbable Medical Devices for Tissue Repair and Regeneration. Biomed. Tech. (Berl) 2013, 58, 439–452. DOI: 10.1515/bmt-2013-0009.
  • Brandi, H.; Bachofen, R.; Mayer, J.; Wintermantel, E. Degradation and Applications of Polyhydroxyalkanoates. Can. J. Microbiol. 1995, 41, 143–153. DOI: 10.1139/m95-181.
  • Jendrossek, D.; Handrick, R. Microbial Degradation of Polyhydroxyalkanoates. Annu. Rev. Microbiol. 2002, 56, 403–432. DOI: 10.1146/annurev.micro.56.012302.160838.
  • Hufenus, R.; Reifler, F. A.; Fernández-Ronco, M. P.; Heuberger, M. Molecular Orientation in Melt-Spun Poly(3-Hydroxybutyrate) Fibers: Effect of Additives, Drawing and Stress-Annealing. Eur. Polym. J. 2015, 71, 12–26. DOI: 10.1016/j.eurpolymj.2015.07.039.
  • Gopi, S.; Kontopoulou, M.; Ramsay, B. A.; Ramsay, J. A. Manipulating the Structure of Medium-Chain-Length Polyhydroxyalkanoate (MCL-PHA) to Enhance Thermal Properties and Crystallization Kinetics. Int. J. Biol. Macromol. 2018, 119, 1248–1255. DOI: 10.1016/j.ijbiomac.2018.08.016.
  • Abe, H.; Ishii, N.; Sato, S.; Tsuge, T. Thermal Properties and Crystallization Behaviors of Medium-Chain-Length Poly(3-Hydroxyalkanoate)s. Polymer 2012, 53, 3026–3034. DOI: 10.1016/j.polymer.2012.04.043.
  • Rogers, W. J. 7 - Sterilisation Techniques for Polymers; In: Sterilisation of Biomaterials and Medical Devices.  Lerouge, S. and Simmons, A., Eds.; Woodhead Publishing: Cambridge, UK, 2012; pp. 151–211
  • Shalaby, S. W.; Nagatomi, S. D.; Powell, E. F. 6 - Sterilization Techniques for Biotextiles for Medical Applications; In: Biotextiles as Medical Implants. King, M. W., Gupta, B. S. and Guidoin, R., Eds.; Cambridge, UK: Woodhead Publishing, 2013; pp. 157–168
  • Shahid, S.; Razzaq, S.; Farooq, R.; Nazli, Z-i-H. Polyhydroxyalkanoates: Next Generation Natural Biomolecules and a Solution for the World's Future Economy. Int. J. Biol. Macromol. 2021, 166, 297–321. DOI: 10.1016/j.ijbiomac.2020.10.187.
  • Lee, G. N.; Na, J. Future of Microbial Polyesters. Microb. Cell Fact. 2013, 12, 54–54. DOI: 10.1186/1475-2859-12-54.
  • Andler, R.; Vivod, R.; Steinbüchel, A. Synthesis of Polyhydroxyalkanoates through the Biodegradation of Poly(Cis-1,4-Isoprene) Rubber. J. Biosci. Bioeng. 2019, 127, 360–365. DOI: 10.1016/j.jbiosc.2018.08.015.
  • Sinclair, R. Chapter 1 - Understanding Textile Fibres and Their Properties: What is a Textile Fibre?; In: Textiles and Fashion. Sinclair, R., Eds.; Woodhead Publishing: Cambridge,UK, 2015; pp. 3–27
  • Kikutani, T. 5 - Structure Development in Synthetic Fiber Production; In: Handbook of Textile Fibre Structure. Eichhorn, S. J., Hearle, J. W. S., Jaffe, M. and Kikutani, T., Eds.; Woodhead Publishing: Cambridge, UK, 2009; 12, pp. 157–180
  • Devaux, E. 2 - Understanding the Behaviour of Synthetic Polymer Fibres during Spinning; In: Advances in Filament Yarn Spinning of Textiles and Polymers. Zhang, D., Eds.; Woodhead Publishing: Cambridge, UK, 2014; pp. 31–47
  • Rawal, A.; Mukhopadhyay, S. 4 - Melt Spinning of Synthetic Polymeric Filaments; In: Advances in Filament Yarn Spinning of Textiles and Polymers. Zhang, D., Eds.; Woodhead Publishing: Cambridge, UK, 2014; pp. 75–99
  • Wu, G.; Li, Q.; Cuculo, J. A. Fiber Structure and Properties of Poly(Ethylene-2,6-Naphthalate) Obtained by High-Speed Melt Spinning. Polymer 2000, 41, 8139–8150. DOI: 10.1016/S0032-3861(00)00122-1.
  • Qin, Q.; Takarada, W.; Kikutani, T. Fiber Structure Formation in Melt Spinning of Bio-Based Aliphatic co-Polyesters. Proceedings of PPS-30: The 30th International Conference of the Polymer Processing Society - Conference Papers 2014, 1664 . DOI: 10.1063/1.4918460.
  • Qin, Y. 14 - Biocompatibility Testing for Medical Textile Products; In: Medical Textile Materials.  Qin, Y., Eds.; Woodhead Publishing: Cambridge, UK, 2016; pp. 191–201
  • Hufenus, R.; Yan, Y.; Dauner, M.; Kikutani, T. Melt-Spun Fibers for Textile Applications. Materials 2020, 13, 4298. DOI: 10.3390/ma13194298.
  • Rawal, A., Mukhopadhyay, S. 4 - Melt spinning of synthetic polymeric filaments; In: Advances in Filament Yarn Spinning of Textiles and Poymers. Deopura, B. L., Alagirusamy, R., Joshi, M. and Gupta, B., Eds.; Woodhead Publishing: Cambridge, UK, 2014; pp. 77.
  • Sinclair, K. D.; Webb, K.; Brown, P. J. The Effect of Various Denier Capillary Channel Polymer Fibers on the Alignment of NHDF Cells and Type I Collagen. J. Biomed. Mater. Res. A 2010, 95, 1194–1202. DOI: 10.1002/jbm.a.32941.
  • Hinüber, C.; Häussler, L.; Vogel, R.; Brünig, H.; Werner, C. Hollow Poly(3-Hydroxybutyrate) Fibers Produced by Melt Spinning. Macromol. Mater. Eng. 2010, 295, 585–594. DOI: 10.1002/mame.201000023.
  • Hufenus, R.; Reifler, F. A.; Maniura-Weber, K.; Spierings, A.; Zinn, M. Biodegradable Bicomponent Fibers from Renewable Sources: Melt-Spinning of Poly(Lactic Acid) and Poly[(3-Hydroxybutyrate)-co-(3-Hydroxyvalerate)]. Macromol. Mater. Eng. 2012, 297, 75–84. DOI: 10.1002/mame.201100063.
  • Barham, P. J.; Keller, A. The Relationship between Microstructure and Mode of Fracture in Polyhydroxybutyrate. J. Polym. Sci. B Polym. Phys 1986, 24, 69–77. DOI: 10.1002/polb.1986.180240108.
  • Xiang, H.; Chen, Z.; Zheng, N.; Zhang, X.; Zhu, L.; Zhou, Z.; Zhu, M. Melt-Spun Microbial Poly(3-Hydroxybutyrate-co-3-Hydroxyvalerate) Fibers with Enhanced Toughness: Synergistic Effect of Heterogeneous Nucleation, Long-Chain Branching and Drawing Process. Int. J. Biol. Macromol. 2019, 122, 1136–1143. DOI: 10.1016/j.ijbiomac.2018.09.063.
  • Gupta, B. S. Manufactured Textile Fibers; In: Handbook of Industrial Chemistry and Biotechnology. Kent, J. A., Bommaraju, T. V. and Barnicki, S. D., Eds.; Springer International Publishing: Cham, 2017; pp. 1325–1396
  • Ozipek, B.; Karakas, H. 9 - Wet Spinning of Synthetic Polymer Fibers; In: Advances in Filament Yarn Spinning of Textiles and Polymers. Zhang, D., Eds.; Woodhead Publishing: Cambridge, UK, 2014; pp. 174–186
  • Gupta, V. B. Solution-Spinning Processes; In: Manufactured Fibre Technology. Gupta, V. B. and Kothari, V. K., Eds.; Springer Netherlands: Dordrecht, 1997; pp. 124–138
  • Vogel, R.; Tändler, B.; Häussler, L.; Jehnichen, D.; Brünig, H. Melt Spinning of poly(3-hydroxybutyrate) fibers for tissue engineering using alpha-cyclodextrin/polymer inclusion complexes as the nucleation agent . Macromol. Biosci. 2006, 6, 730–736. DOI: 10.1002/mabi.200600116.
  • Shah, D. T.; Tran, M.; Berger, P. A.; Aggarwal, P.; Asrar, J.; Madden, L. A.; Anderson, A. J. Synthesis and Properties of Hydroxy-Terminated Poly(Hydroxyalkanoate)s. Macromolecules 2000, 33, 2875–2880. DOI: 10.1021/ma991773e.
  • Singh, A. K.; Srivastava, J. K.; Chandel, A. K.; Sharma, L.; Mallick, N.; Singh, S. P. Biomedical Applications of Microbially Engineered Polyhydroxyalkanoates: An Insight into Recent Advances, Bottlenecks, and Solutions. Appl. Microbiol. Biotechnol. 2019, 103, 2007–2032. DOI: 10.1007/s00253-018-09604-y.
  • Iwata, T.; Tanaka, T. Manufacturing of PHA as Fibers; In: Plastics from Bacteria. Chen, G. G.-Q., Eds.; Springer Berlin Heidelberg: Berlin, Heidelberg, 2010; pp. 257–282
  • Gordeyev, S. A.; Nekrasov, Y. P. Processing and Mechanical Properties of Oriented Poly(β-Hydroxybutyrate) Fibers. J. Mater. Sci. Lett. 1999, 18, 1691–1692. DOI: 10.1023/A:1006629800491.
  • Schmack, G.; Jehnichen, D.; Vogel, R.; Tändler, B. Biodegradable Fibers of Poly(3-Hydroxybutyrate) Produced by High-Speed Melt Spinning and Spin Drawing. J. Polym. Sci. B Polym. Phys. 2000, 38, 2841–2850. # DOI: 10.1002/1099-0488(20001101)38:21 < 2841::AID-POLB130 > 3.0.CO;2-.
  • Gordeyev, S. A.; Nekrasov, Y. P.; Shilton, S. J. Processing of Gel-Spun Poly(β-Hydroxybutyrate) Fibers. J. Appl. Polym. Sci. 2001, 81, 2260–2264. DOI: 10.1002/app.1665.
  • Furuhashi, Y.; Imamura, Y.; Jikihara, Y.; Yamane, H. Higher Order Structures and Mechanical Properties of Bacterial Homo Poly(3-Hydroxybutyrate) Fibers Prepared by Cold-Drawing and Annealing Processes. Polymer 2004, 45, 5703–5712. DOI: 10.1016/j.polymer.2004.05.069.
  • Qin, Q.; Takarada, W.; Kikutani, T. Fiber Structure Development of PHBH through Stress-Induced Crystallization in High-Speed Melt Spinning Process. JFST 2017, 73, 49–60. DOI: 10.2115/fiberst.2017-0007.
  • Miyao, Y.; Takarada, W.; Kikutani, T. Improvement of Mechanical Properties of Biodegradable PHBH Fibers through High-Speed Melt Spinning Process Equipped with a Liquid Isothermal Bath. Europe-Africa Regional Conference of the Polymer Processing Society 2019, 2289, 020038. DOI: 10.1063/5.0028686.
  • Iwata, T.; Tanaka, T.; Yoshiharu, D. High-Strength Fiber of Biodegradable Aliphatic Polyester and Process for Producing the Same. Internationalb 13 April 2006, Patent No.: US 7,938,999B2.
  • Hong, C.; Iwata, T.; Tamura, M. Biodegradable polyester fiber having exvellent thermal stability and strength, and method for producing same. Internationalb US 2014/0088288 A1, Mar. 27, 2014.
  • Martin, D. P.; Rizk, S.; Ahuja, A.; Williams, S. F. Process of Making Polyhydroxyalkanoate Medical Textiles. Internationalb 24 June 2014, Patent No.: US 8,758,657B2.
  • Iwata, T.; Aoyagi, Y.; Fujita, M.; Yamane, H.; Doi, Y.; Suzuki, Y.; Takeuchi, A.; Uesugi, K. Processing of a Strong Biodegradable Poly[(R)-3-Hydroxybutyrate] Fiber and a New Fiber Structure Revealed by Micro-Beam X-Ray Diffraction with Synchrotron Radiation. Macromol. Rapid. Commun. 2004, 25, 1100–1104. DOI: 10.1002/marc.200400110.
  • Puente, J. A. S.; Esposito, A.; Chivrac, F.; Dargent, E. Effect of Boron Nitride as a Nucleating Agent on the Crystallization of Bacterial Poly(3-Hydroxybutyrate). J. Appl. Polym. Sci. 2013, 128, 2586–2594. DOI: 10.1002/app.38182.
  • Zhang, J.; Wang, L.; Sun, J.; Jiang, S.; Li, H.; Zhang, S.; Yang, W.; Gu, X.; Qiao, H. A Novel Hollow Microsphere Acting on Crystallization, Mechanical, and Thermal Performance of Poly(3-Hydroxybutyrate-co-4-Hydroxybutyrate). Polym. Cryst. 2021, 4, e10204. DOI: 10.1002/pcr2.10204.
  • Qian, J.; Zhu, L.; Zhang, J.; Whitehouse, R. S. Comparison of Different Nucleating Agents on Crystallization of Poly(3-Hydroxybutyrate-co-3-Hydroxyvalerates). J. Polym. Sci. B Polym. Phys. 2007, 45, 1564–1577. DOI: 10.1002/polb.21157.
  • Kai, W.; He, Y.; Inoue, Y. Fast Crystallization of Poly(3-Hydroxybutyrate) and Poly(3-Hydroxybutyrate-co-3-Hydroxyvalerate) with Talc and Boron Nitride as Nucleating Agents. Polym. Int. 2005, 54, 780–789. DOI: 10.1002/pi.1758.
  • Yamane, H.; Terao, K.; Hiki, S.; Kimura, Y. Mechanical Properties and Higher Order Structure of Bacterial Homo Poly(3-Hydroxybutyrate) Melt Spun Fibers. Polymer 2001, 42, 3241–3248. DOI: 10.1016/S0032-3861(00)00598-X.
  • Yamamoto, T.; Kimizu, M.; Kikutani, T.; Furuhashi, Y.; Cakmak, M. The Effect of Drawing and Annealing Conditions on the Structure and Properties of Bacterial Poly(3-Hydroxybutyrate-co-3 Hydroxyvalerate) Fibers. Int. Polym. Process 1997, 12, 29–37. DOI: 10.3139/217.970029.
  • Liu, W. J.; Yang, H. L.; Wang, Z.; Dong, L. S.; Liu, J. J. Effect of Nucleating Agents on the Crystallization of Poly(3-Hydroxybutyrate-co-3-Hydroxyvalerate). J. Appl. Polym. Sci. 2002, 86, 2145–2152. DOI: 10.1002/app.11023.
  • Vogel, R.; Voigt, D.; Tändler, B.; Gohs, U.; Häussler, L.; Brünig, H. Melt Spinning of Poly(3-Hydroxybutyrate) for Tissue Engineering Using Electron-Beam-Irradiated Poly(3-Hydroxybutyrate) as Nucleation Agent. Macromol. Biosci. 2008, 8, 426–431. DOI: 10.1002/mabi.200700225.
  • Tanaka, T.; Fujita, M.; Takeuchi, A.; Suzuki, Y.; Uesugi, K.; Ito, K.; Fujisawa, T.; Doi, Y.; Iwata, T. Formation of Highly Ordered Structure in Poly[(R)-3-Hydroxybutyrate-co-(R)-3-Hydroxyvalerate] High-Strength Fibers. Macromolecules 2006, 39, 2940–2946. DOI: 10.1021/ma0527505.
  • Bunsell, A. R. 1 - Introduction to the Science of Fibers; In: Handbook of Properties of Textile and Technical Fibres. Bunsell, A. R., Eds.; Woodhead Publishing: Duxford, United Kingdom, 2018; pp. 1–20
  • Ohura, T.; Aoyagi, Y.; Takagi, K-i.; Yoshida, Y.; Kasuya, K-i.; Doi, Y. Biodegradation of Poly(3-Hydroxyalkanoic Acids) Fibers and Isolation of Poly(3-Hydroxybutyric Acid)-Degrading Microorganisms under Aquatic Environments. Polym. Degrad. Stab. 1999, 63, 23–29. DOI: 10.1016/S0141-3910(98)00057-3.
  • Chen, Z.; Zhao, Z.; Hong, J.; Pan, Z. Novel Bioresource-Based Poly(3-Hydroxybutyrate-co-4-Hydroxybutyrate)/Poly(LacticAcid) Blend Fibers with High Strength and Toughness via Melt-Spinning. J Appl. Polym. Sci. 2020, 137, 48956. DOI: 10.1002/app.48956.
  • Li, L.; Huang, W.; Wang, B.; Wei, W.; Gu, Q.; Chen, P. Properties and Structure of Polylactide/Poly (3-Hydroxybutyrate-co-3-Hydroxyvalerate) (PLA/PHBV) Blend Fibers. Polymer 2015, 68, 183–194. DOI: 10.1016/j.polymer.2015.05.024.
  • Iwata, T.; Aoyagi, Y.; Tanaka, T.; Fujita, M.; Takeuchi, A.; Suzuki, Y.; Uesugi, K. Microbeam X-Ray Diffraction and Enzymatic Degradation of Poly[(R)-3-Hydroxybutyrate] Fibers with Two Kinds of Molecular Conformations. Macromolecules 2006, 39, 5789–5795. DOI: 10.1021/ma060908v.
  • Hinüber, C.; Häussler, L.; Vogel, R.; Brünig, H.; Heinrich, G.; Werner, C. Hollow Fibers Made from a Poly(3-Hydroxybutyrate)/Poly-ε-Caprolactone Blend. Express Polym. Lett. 2011, 5, 643–652. DOI: 10.3144/expresspolymlett.2011.62.
  • Battiston, B.; Geuna, S.; Ferrero, M.; Tos, P. Nerve Repair by means of Tubulization: Literature Review and Personal Clinical Experience Comparing Biological and Synthetic Conduits for Sensory Nerve Repair. Microsurgery 2005, 25, 258–267. DOI: 10.1002/micr.20127.
  • Gilmore, J.; Yin, F.; Burg, K. J. L. Evaluation of Permeability and Fluid Wicking in Woven Fiber Bone Scaffolds. J. Biomed. Mater. Res. B Appl. Biomater. 2019, 107, 306–313. DOI: 10.1002/jbm.b.34122.
  • Kundrat, V.; Matouskova, P.; Marova, I. Facile Preparation of Porous Microfiber from Poly-3-(R)-Hydroxybutyrate and Its Application. Materials 2019, 13, 86. DOI: 10.3390/ma13010086.
  • Li, Z.; Zhou, P.; Zhou, F.; Zhao, Y.; Ren, L.; Yuan, X. Antimicrobial Eugenol-Loaded Electrospun Membranes of Poly(ε-Caprolactone)/Gelatin Incorporated with REDV for Vascular Graft Applications. Colloids Surf. B Biointerfaces 2018, 162, 335–344. DOI: 10.1016/j.colsurfb.2017.12.004.
  • Bierbaum, S.; Hintze, V.; Scharnweber, D. 2.8 Artificial Extracellular Matrices to Functionalize Biomaterial Surfaces; In: Comprehensive Biomaterials II. Ducheyne, P., Eds.; Elsevier: Oxford, 2017; pp. 147–178
  • Bose, S.; Roy, M.; Bandyopadhyay, A. Recent Advances in Bone Tissue Engineering Scaffolds. Trends Biotechnol. 2012, 30, 546–554. DOI: 10.1016/j.tibtech.2012.07.005.
  • Singhi, B.; Ford, E. N.; King, M. W. The Effect of Wet Spinning Conditions on the Structure and Properties of Poly-4-Hydroxybutyrate Fibers. J. Biomed. Mater. Res. - B Appl. Biomater. 2020, 109, e34763–e34763. DOI: 10.1002/jbm.b.34763.
  • Schultze-Gebhardt, F.; Herlinger, K.-H. Fibers, 1. Survey. In: Ullmann's Fibers; Wiley-VCH: Weinheim, 2008 pp. 16
  • Vehviläinen, M.; Kamppuri, T.; Rom, M.; Janicki, J.; Ciechańska, D.; Grönqvist, S.; Siika-Aho, M.; Elg Christoffersson, K.; Nousiainen, P. Effect of Wet Spinning Parameters on the Properties of Novel Cellulosic Fibres. Cellulose 2008, 15, 671–680. DOI: 10.1007/s10570-008-9219-3.
  • Polyák, P.; Bartha, K.; Pukánszky, B. Quantitative Determination of Release Kinetics from Fibrous Poly(3-Hydroxybutyrate) Scaffolds. Mater. Sci. Eng. C Mater. Biol. Appl. 2020, 114, 111026. DOI: 10.1016/j.msec.2020.111026.
  • Mota, C.; Wang, S.-Y.; Puppi, D.; Gazzarri, M.; Migone, C.; Chiellini, F.; Chen, G.-Q.; Chiellini, E. Additive Manufacturing of Poly[(R)-3-Hydroxybutyrate-co-(R)-3-Hydroxyhexanoate] Scaffolds for Engineered Bone Development. J. Tissue Eng. Regen. Med. 2017, 11, 175–186. DOI: 10.1002/term.1897.
  • Puppi, D.; Chiellini, F. Wet-Spinning of Biomedical Polymers: From Single-Fibre Production to Additive Manufacturing of Three-Dimensional Scaffolds. Polym. Int 2017, 66, 1690–1696. DOI: 10.1002/pi.5332.
  • Puppi, D.; Mota, C.; Gazzarri, M.; Dinucci, D.; Gloria, A.; Myrzabekova, M.; Ambrosio, L.; Chiellini, F. Additive Manufacturing of Wet-Spun Polymeric Scaffolds for Bone Tissue Engineering. Biomed. Microdevices 2012, 14, 1115–1127. DOI: 10.1007/s10544-012-9677-0.
  • Gupta, B. S. 1 - Manufacture, Types and Properties of Biotextiles for Medical Applications; In: Biotextiles as Medical Implants. King, M. W., Gupta, B. S. and Guidoin, R., Eds.; Woodhead Publishing: Cambridge, UK, 2013; pp. 3–47
  • D'Elia, E. Self-Healing organic/inorganic composites. Doctor of Philosophy, Department of Materials, Imperial College London, U.K., 2015.
  • Crangle, A. 1 - Types of Polyolefin Fibres; In: Polyolefin Fibres . Ugbolue, S. C. O., Eds.; Woodhead Publishing: Duxford, United Kingdom, 2009; pp. 3–34
  • Cowie, J. M. G.; Arrighi, V. Introduction; In: Polymers: Chemistry and Physics of Modern Materals, third edition.  Eds.; Taylor and Francis Group: Boca Raton, 2007; pp. 14, 20
  • Barham, P. J.; Keller, A.; Otun, E. L.; Holmes, P. A. Crystallization and Morphology of a Bacterial Thermoplastic: Poly-3-Hydroxybutyrate. J. Mater. Sci. 1984, 19, 2781–2794. DOI: 10.1007/BF01026954.
  • Ugbolue, S. 3 - The Structural Mechanics of Polyolefin Fibrous Materials and Nanocomposites; In: Polyolefin Fibres. Ugbolue, S. C. O., Eds.; Woodhead Publishing: Duxford, United Kingdom, 2009; pp. 57–80
  • Mehrpouya, M.; Vahabi, H.; Barletta, M.; Laheurte, P.; Langlois, V. Additive Manufacturing of Polyhydroxyalkanoates (PHAs) Biopolymers: Materials, Printing Techniques, and Applications. Mater. Sci. Eng. C Mater. Biol. Appl. 2021, 127, 112216. DOI: 10.1016/j.msec.2021.112216.
  • Cowie, J. M. G.; Arrighi, V. The Glassy State and Glass Transition; In: Polymers: Chemistry and Physics of Modern Materials, third edition Eds.; Taylor and Francis Group: Boca Raton, 2007; pp. 329–340.
  • Chen, Y.; Chou, I.-N.; Tsai, Y.-H.; Wu, H.-S. Thermal Degradation of Poly(3-Hydroxybutyrate) and Poly(3-Hydroxybutyrate-co-3-Hydroxyvalerate) in Drying Treatment. J. Appl. Polym. Sci. 2013, 130, 3659–3667. DOI: 10.1002/app.39616.
  • Esmizadeh, E.; Tzoganakis, C.; Mekonnen, T. H. Degradation Behavior of Polypropylene during Reprocessing and Its Biocomposites: Thermal and Oxidative Degradation Kinetics. Polymers 2020, 12, 1627. DOI: 10.3390/polym12081627.
  • Aboulkas, A.; El harfi, K.; El Bouadili, A. Thermal Degradation Behaviors of Polyethylene and Polypropylene. Part I: Pyrolysis Kinetics and Mechanisms. Energy Convers. Manag. 2010, 51, 1363–1369. DOI: 10.1016/j.enconman.2009.12.017.
  • Richaud, E.; Fayolle, B.; Davies, P. 14 - Tensile Properties of Polypropylene Fibers; In: Handbook of Properties of Textile and Technical Fibres.  Bunsell, A. R., Eds.; Woodhead Publishing: Duxford, United Kingdom, 2018; pp. 515–543
  • Bugnicourt, E.; Cinelli, P.; Lazzeri, A.; Alvarez, V. Polyhydroxyalkanoate (PHA): Review of Synthesis, Characteristics, Processing and Potential Applications in Packaging. Express Polym. Lett. 2014, 8, 791–808. DOI: 10.3144/expresspolymlett.2014.82.
  • Ugbolue, S. 10 - Testing and Quality Control of Polyolefins; In: Polyolefin Fibres. Ugbolue, S. C. O., Eds.; Woodhead Publishing: Duxford, United Kingdom, 2009; pp. 316–340
  • Mather, R. R. 2 - The Structural and Chemical Properties of Polyolefin Fibres; In: Polyolefin Fibres. Ugbolue, S. C. O., Eds.; Woodhead Publishing: Duxford, Uunited Kingdom, 2009; pp. 35–56
  • Tokiwa, Y.; Calabia, B. P.; Ugwu, C. U.; Aiba, S. Biodegradability of Plastics. IJMS 2009, 10, 3722–3742. DOI: 10.3390/ijms10093722.
  • Hufenus, R.; Reifler, F. 2016 Effect of Stress and Temperature on the Molecular Orientation of Melt-Spun Poly(3-Hydroxybutyrate) Fibers. Fiber Society 2016 Spring Conference: Textile Innovations- Opportunities and Challenges.
  • Gooch, J. W. Sonic Modulus; In: Encyclopedic Dictionary of Polymers. Gooch, J. W., Eds.; Springer New York: New York, NY, 2011; pp. 683–683