1,660
Views
1
CrossRef citations to date
0
Altmetric
Reviews

A Review on Flame-Retardant Polyvinyl Alcohol: Additives and Technologies

, , , , , , & show all
Pages 324-364 | Received 14 Nov 2021, Accepted 07 May 2022, Published online: 18 May 2022

References

  • Geyer, R.; Jambeck, J. R.; Law, K. L. Production, Use, and Fate of All Plastics Ever Made. Sci. Adv. 2017, 3, e1700782.
  • Wu, H.; Fahy, W. P.; Kim, S.; Kim, H.; Zhao, N.; Pilato, L.; Kafi, A.; Bateman, S.; Koo, J. H. Recent Developments in Polymers/Polymer Nanocomposites for Additive Manufacturing. Prog. Mater. Sci. 2020, 111, 100638. DOI: 10.1016/j.pmatsci.2020.100638.
  • Wang, S.; Wang, X.; Wang, X.; Li, H.; Sun, J.; Sun, W.; Yao, Y.; Gu, X.; Zhang, S. Surface Coated Rigid Polyurethane Foam with Durable Flame Retardancy and Improved Mechanical Property. Chem. Eng. J. 2020, 385, 123755. DOI: 10.1016/j.cej.2019.123755.
  • Iwata, T. Biodegradable and Bio-Based Polymers: Future Prospects of Eco-Friendly Plastics. Angew. Chem. Int. Ed. Engl. 2015, 54, 3210–3215. DOI: 10.1002/anie.201410770.
  • Finch, C. A. Polyvinyl Alcohol; Properties and Applications; New York, USA: John Wiley & Sons, 1973.
  • Haehnel, W.; Herrmann, W. German Pat. no. 450.286 to Consort F. elecktrochem Inc., GmbH, 1924.
  • Thong, C. C.; Teo, D. C. L.; Ng, C. K. Application of Polyvinyl Alcohol (PVA) in Cement-Based Composite Materials: A Review of Its Engineering Properties and Microstructure Behavior. Constr. Build. Mater. 2016, 107, 172–180. DOI: 10.1016/j.conbuildmat.2015.12.188.
  • Tang, X. Z.; Alavi, S. Recent Advances in Starch, Polyvinyl Alcohol Based Polymer Blends, Nanocomposites and Their Biodegradability. Carbohydr. Polym. 2011, 85, 7–16. DOI: 10.1016/j.carbpol.2011.01.030.
  • Wade, B. Vinyl Acetal Polymers. In Encyclopedia of Polymer Science Technology; 2002; pp 1–22. New York, USA: John wiley & Sons Inc.
  • Russo, M. A. L.; O’Sullivan, C.; Rounsefell, B.; Halley, P. J.; Truss, R.; Clarke, W. P. The Anaerobic Degradability of Thermoplastic Starch: Polyvinyl Alcohol Blends: Potential Biodegradable Food Packaging Materials. J. Bioresour. Technol. 2009, 100, 1705–1710. DOI: 10.1016/j.biortech.2008.09.026.
  • Kawai, F.; Hu, X. P. Biochemistry of Microbial Polyvinyl Alcohol Degradation. Appl. Microbiol. Biotechnol. 2009, 84, 227–237. DOI: 10.1007/s00253-009-2113-6.
  • DeMerlis, C. C.; Schoneker, D. R. Review of the Oral Toxicity of Polyvinyl Alcohol (PVA). Food Chem. Toxicol. 2003, 41, 319–326. DOI: 10.1016/S0278-6915(02)00258-2.
  • Fukae, R.; Fujii, T.; Takeo, M.; Yamamoto, T.; Sato, T.; Maeda, Y.; Sangen, O. Biodegradation of Poly (Vinyl Alcohol) with High Isotacticity. Polym. J. 1994, 26, 1381–1386. DOI: 10.1295/polymj.26.1381.
  • Zhang, C. X.; Li, H. W.; Wu, Y. Q. Polyvinyl Alcohol-Supported AuAgNCs-CDs Film as a Selective Sensor for Gas Hydrogen Sulfide Detection in Air. Macromol. Rapid Commun. 2020, 41, 2000120. DOI: 10.1002/marc.202000120.
  • Mathew, S.; Jayakumar, A.; Kumar, V. P.; Mathew, J.; Radhakrishnan, E. K. One-Step Synthesis of Eco-Friendly Boiled Rice Starch Blended Polyvinyl Alcohol Bionanocomposite Films Decorated with In Situ Generated Silver Nanoparticles for Food Packaging Purpose. Int. J. Biol. Macromol. 2019, 139, 475–485. DOI: 10.1016/j.ijbiomac.2019.07.187.
  • Lu, H.; Luo, J.; Liu, Y.; Zhong, Y.; Wang, J.; Zhang, Y. Highly Performance Flexible Polymer Solar Cells by Flipping the Bilayer Film of Ag Nanowires and Polyvinyl Alcohol on Polyethylene Terephthalate as Transparent Conductive Electrodes. IEEE J. Photovolt. 2019, 9, 710–714. DOI: 10.1109/JPHOTOV.2019.2899469.
  • Khan, S. A.; Zain, Z. M.; Mansoor, M.; Mahfuz, M. M. H.; Rahman, A.; Rashid, M. A. N.; Rais, M. S. Performance Investigation of ZnO/PVA Nanocomposite Film for Organic Solar Cell. Mater. Today: Proc. 2021, 47, 2615–2621. DOI: 10.1016/j.matpr.2021.05.197.
  • Gouda, M. H.; Elessawy, N. A.; Toghan, A. Development of Effectively Costed and Performant Novel Cation Exchange Ceramic Nanocomposite Membrane Based Sulfonated PVA for Direct Borohydride Fuel Cells. J. Ind. Eng. Chem. 2021, 100, 212–219. DOI: 10.1016/j.jiec.2021.05.021.
  • Aiswarya, S. K.; Joseph, S. Synthesis of Methanol Blocking PVA-TiO2 Cation Exchange Membrane for Direct Methanol Alkaline Fuel Cell. Synth. Met. 2020, 266, 116442. DOI: 10.1016/j.synthmet.2020.116442.
  • Higa, M.; Mehdizadeh, S.; Feng, S.; Endo, N.; Kakihana, Y. Cell Performance of Direct Methanol Alkaline Fuel Cell (DMAFC) Using Anion Exchange Membranes Prepared from PVA-Based Block Copolymer. J. Membr. Sci. 2020, 597, 117618. DOI: 10.1016/j.memsci.2019.117618.
  • Nabipour, H.; Nie, S. B.; Wang, X.; Song, L.; Hu, Y. Zeolitic Imidazolate Framework-8/Polyvinyl Alcohol Hybrid Aerogels with Excellent Flame Retardancy. Compos. A: Appl. Sci. Manuf. 2020, 129, 105720. DOI: 10.1016/j.compositesa.2019.105720.
  • Lazar, S. T.; Kolibaba, T. J.; Grunlan, J. C. Flame-Retardant Surface Treatments. Nat. Rev. Mater. 2020, 5, 259–275. DOI: 10.1038/s41578-019-0164-6.
  • Wang, X.; Ji, S. L.; Wang, X. Q.; Bian, H. Y.; Lin, L. R.; Dai, H. Q.; Xiao, H. N. Thermally Conductive, Super Flexible and Flame-Retardant BN-OH/PVA Composite Film Reinforced by Lignin Nanoparticles. J. Mater. Chem. C 2019, 7, 14159–14169. DOI: 10.1039/C9TC04961D.
  • Guo, D.; Wang, Q.; Bai, S. B. Poly(Vinyl Alcohol)/Melamine Phosphate Composites Prepared through Thermal Processing: Thermal Stability and Flame Retardancy. Polym. Adv. Technol. 2013, 24, 339–347. DOI: 10.1002/pat.3089.
  • Liu, P. J.; Chen, W. H.; Liu, Y.; Bai, S. B.; Wang, Q. Thermal Melt Processing to Prepare Halogen-Free Flame Retardant Poly(Vinyl Alcohol). Polym. Degrad. Stab. 2014, 109, 261–269. DOI: 10.1016/j.polymdegradstab.2014.07.021.
  • Liu, B. W.; Chen, L.; Guo, D. M.; Liu, X. F.; Lei, Y. F.; Ding, X. M.; Wang, Y. Z. Fire-Safe Polyesters Enabled by End-Group Capturing Chemistry. Angew. Chem. Int. Ed. Engl. 2019, 58, 9188–9193. DOI: 10.1002/anie.201900356.
  • Xi, K.; Li, J.; Guo, M.; Liu, Y. Redeposition and Densification of Pyrolysis Products of Polymer Composites in Char Layer. Polym. Degrad. Stab. 2019, 166, 238–247. DOI: 10.1016/j.polymdegradstab.2019.06.004.
  • Watanabe, I.; Sakai, S-i. Environmental Release and Behavior of Brominated Flame Retardants. Environ. Int. 2003, 29, 665–682. DOI: 10.1016/s0160-4120(03)00123-5.
  • Wang, X.; Sun, J.; Liu, X.; Jiang, S.; Wang, J.; Li, H.; Bourbigot, S.; Gu, X.; Zhang, S. An Effective Flame Retardant Containing Hypophosphorous Acid for Poly (Lactic Acid): Fire Performance, Thermal Stability and Mechanical Properties. Polym. Test. 2019, 78, 105940. DOI: 10.1016/j.polymertesting.2019.105940.
  • Nazir, R.; Gaan, S. Recent Developments in P(O/S)-N Containing Flame Retardants. J. Appl. Polym. Sci. 2020, 137, 47910. DOI: 10.1002/app.47910.
  • Feng, Z.; Guo, J.; Yan, Y.; Sun, J.; Zhang, S.; Wang, W.; Gu, X.; Li, H. Modification of Mesoporous Silica with Phosphotungstic Acid and Its Effects on the Combustion and Thermal Behavior of Polylactic Acid Composites. Polym. Degrad. Stab. 2019, 160, 24–34. DOI: 10.1016/j.polymdegradstab.2018.12.004.
  • Tawiah, B.; Zhou, Y.; Yuen, R. K.; Sun, J.; Fei, B. Microporous Boron Based Intumescent Macrocycle Flame Retardant for Poly (Lactic Acid) with Excellent UV Protection. Chem. Eng. J. 2020, 402, 126209. DOI: 10.1016/j.cej.2020.126209.
  • Nabipour, H.; Wang, X.; Song, L.; Hu, Y. Metal-Organic Frameworks for Flame Retardant Polymers Application: A Critical Review. Compos. A: Appl. Sci. Manuf. 2020, 139, 106113. DOI: 10.1016/j.compositesa.2020.106113.
  • Watson, D. A. V.; Schiraldi, D. A. Biomolecules as Flame Retardant Additives for Polymers: A Review. Polymers 2020, 12, 849. DOI: 10.3390/polym12040849.
  • He, W.; Song, P.; Yu, B.; Fang, Z.; Wang, H. Flame Retardant Polymeric Nanocomposites through the Combination of Nanomaterials and Conventional Flame Retardants. Prog. Mater. Sci. 2020, 114, 100687. DOI: 10.1016/j.pmatsci.2020.100687.
  • Abitbol, T.; Johnstone, T.; Quinn, T. M.; Gray, D. G. Reinforcement with Cellulose Nanocrystals of Poly(Vinyl Alcohol) Hydrogels Prepared by Cyclic Freezing and Thawing. Soft Matter 2011, 7, 2373–2379. DOI: 10.1039/c0sm01172j.
  • Tang, G.; Zhang, R.; Wang, X.; Wang, B.; Song, L.; Hu, Y.; Gong, X. Enhancement of Flame Retardant Performance of Bio-Based Polylactic Acid Composites with the Incorporation of Aluminum Hypophosphite and Expanded Graphite. J. Macromol. Sci.: A – Chem. 2013, 50, 255–269. DOI: 10.1080/10601325.2013.742835.
  • Lu, J.; Wang, T.; Drzal, L. T. Preparation and Properties of Microfibrillated Cellulose Polyvinyl Alcohol Composite Materials. Compos. A: Appl. Sci. Manuf. 2008, 39, 738–746. DOI: 10.1016/j.compositesa.2008.02.003.
  • Wan, W.; Tao, M.; Cao, H.; Zhao, Y.; Luo, J.; Yang, J.; Qiu, T. Enhanced Dielectric Properties of Homogeneous Ti3C2Tx MXene@SiO2/Polyvinyl Alcohol Composite Films. Ceram. Int. 2020, 46, 13862–13868. DOI: 10.1016/j.ceramint.2020.02.179.
  • Wang, X.; Wu, P. Highly Thermally Conductive Fluorinated Graphene Films with Superior Electrical Insulation and Mechanical Flexibility. ACS Appl. Mater. Interfaces 2019, 11, 21946–21954. DOI: 10.1021/acsami.9b07377.
  • Yang, W.; He, X.; Luzi, F.; Dong, W.; Zheng, T.; Kenny, J. M.; Puglia, D.; Ma, P. Thermomechanical, Antioxidant and Moisture Behaviour of PVA Films in Presence of Citric Acid Esterified Cellulose Nanocrystals. Int. J. Biol. Macromol. 2020, 161, 617–626. DOI: 10.1016/j.ijbiomac.2020.06.082.
  • Narasagoudr, S. S.; Hegde, V. G.; Chougale, R. B.; Masti, S. P.; Dixit, S. Influence of Boswellic Acid on Multifunctional Properties of Chitosan/Poly (Vinyl Alcohol) Films for Active Food Packaging. Int. J. Biol. Macromol. 2020, 154, 48–61. DOI: 10.1016/j.ijbiomac.2020.03.073.
  • Wang, D. L.; Liu, Y.; Wang, D. Y.; Zhao, C. X.; Mou, Y. R.; Wang, Y. Z. A Novel Intumescent Flame-Retardant System Containing Metal Chelates for Polyvinyl Alcohol. Polym. Degrad. Stab. 2007, 92, 1555–1564. DOI: 10.1016/j.polymdegradstab.2007.05.001.
  • Chen, W. L.; Fu, X. W.; Ge, W. B.; Xu, J. J.; Jiang, M. J. Microencapsulation of Bisneopentyl Glycol Dithiopyrophosphate and Its Flame Retardant Effect on Polyvinyl Alcohol. Polym. Degrad. Stab. 2014, 102, 81–87. DOI: 10.1016/j.polymdegradstab.2014.02.004.
  • Lu, H. D.; Wilkie, C. A.; Ding, M.; Song, L. Flammability Performance of Poly(Vinyl Alcohol) Nanocomposites with Zirconium Phosphate and Layered Silicates. Polym. Degrad. Stab. 2011, 96, 1219–1224. DOI: 10.1016/j.polymdegradstab.2011.04.014.
  • Xu, L. F.; Lei, C. H.; Xu, R. J.; Zhang, X. Q.; Zhang, F. Hybridization of Alpha-Zirconium Phosphate with Hexachlorocyclotriphosphazene and Its Application in the Flame Retardant Poly(Vinyl Alcohol) Composites. Polym. Degrad. Stab. 2016, 133, 378–388. DOI: 10.1016/j.polymdegradstab.2016.09.025.
  • Liu, L.; Liu, Y. S.; Liu, Y.; Wang, Q. Efficient Flame Retardant Polyvinyl Alcohol Membrane through Surface Graft Method. RSC Adv. 2016, 6, 35051–35057. DOI: 10.1039/C5RA27105C.
  • Peng, S.; Zhou, M.; Liu, F. Y.; Zhang, C.; Liu, X. Q.; Liu, J. Y.; Zou, L. Y.; Chen, J. Flame-Retardant Polyvinyl Alcohol Membrane with High Transparency Based on a Reactive Phosphorus-Containing Compound. R. Soc. Open Sci. 2017, 4, 170512–170528. DOI: 10.1098/rsos.170512.
  • Lin, J. S.; Chen, L.; Liu, Y.; Wang, Y. Z. Flame-Retardant and Physical Properties of Poly(Vinyl Alcohol) Chemically Modified by Diethyl Chlorophosphate. J. Appl. Polym. Sci. 2012, 125, 3517–3523. DOI: 10.1002/app.34958.
  • Pan, H. F.; Qian, X. D.; Ma, L. Y.; Song, L.; Hu, Y.; Liew, K. M. Preparation of a Novel Biobased Flame Retardant Containing Phosphorus and Nitrogen and Its Performance on the Flame Retardancy and Thermal Stability of Poly(Vinyl Alcohol). Polym. Degrad. Stab. 2014, 106, 47–53. DOI: 10.1016/j.polymdegradstab.2014.02.020.
  • Pan, Y.; Liu, L. X.; Song, L.; Hu, Y.; Jiang, S. D.; Zhao, H. T. Reinforcement of Layer-by-Layer Self-Assembly Coating Modified Cellulose Nanofibers to Reduce the Flammability of Polyvinyl Alcohol. Cellulose 2019, 26, 3183–3192. DOI: 10.1007/s10570-019-02298-z.
  • Hu, S.; Song, L.; Pan, H. F.; Hu, Y. Thermal Properties and Combustion Behaviors of Chitosan Based Flame Retardant Combining Phosphorus and Nickel. Ind. Eng. Chem. Res. 2012, 51, 3663–3669. DOI: 10.1021/ie2022527.
  • Hu, S.; Song, L.; Pan, H.; Hu, Y. Effect of a Novel Chitosan-Based Flame Retardant on Thermal and Flammability Properties of Polyvinyl Alcohol. J. Therm. Anal. Calorim. 2013, 112, 859–864. DOI: 10.1007/s10973-012-2686-7.
  • Zhou, K. Q.; Gui, Z.; Hu, Y. Facile Synthesis of LDH Nanoplates as Reinforcing Agents in PVA Nanocomposites. Polym. Adv. Technol. 2017, 28, 386–392. DOI: 10.1002/pat.3900.
  • Wang, W.; Kan, Y. C.; Pan, H. F.; Pan, Y.; Li, B. G.; Liew, K. M.; Hu, Y. Phosphorylated Cellulose Applied for the Exfoliation of LDH: An Advanced Reinforcement for Polyvinyl Alcohol. Compos. A: Appl. Sci. Manuf. 2017, 94, 170–177. DOI: 10.1016/j.compositesa.2016.11.031.
  • Jiang, S. D.; Tang, G.; Bai, Z. M.; Wang, Y. Y.; Hu, Y.; Song, L. Surface Functionalization of MoS2 with POSS for Enhancing Thermal, Flame-Retardant and Mechanical Properties in PVA Composites. RSC Adv. 2014, 4, 3253–3262. DOI: 10.1039/C3RA45911J.
  • Zhou, K. Q.; Gao, R.; Gui, Z.; Hu, Y. The Effective Reinforcements of Functionalized MoS2 Nanosheets in Polymer Hybrid Composites by Sol-Gel Technique. Compos. A: Appl. Sci. Manuf. 2017, 94, 1–9. DOI: 10.1016/j.compositesa.2016.12.010.
  • Chen, W. H.; Liu, P. J.; Min, L. Z.; Zhou, Y. M.; Liu, Y.; Wang, Q.; Duan, W. F. Non-Covalently Functionalized Graphene Oxide-Based Coating to Enhance Thermal Stability and Flame Retardancy of PVA Film. Nano-Micro Lett. 2018, 10,39. DOI: 10.1007/s40820-018-0190-8.
  • Ming, P.; Song, Z. F.; Gong, S. S.; Zhang, Y. Y.; Duan, J. L.; Zhang, Q.; Jiang, L.; Cheng, Q. F. Nacre-Inspired Integrated Nanocomposites with Fire Retardant Properties by Graphene Oxide and Montmorillonite. J. Mater. Chem. A 2015, 3, 21194–21200. DOI: 10.1039/C5TA05742F.
  • Yang, W.; Xia, Y.; Liu, X. C.; Yang, J.; Liu, Y. J. Layered Double Hydroxides/Reduced Graphene Oxide Nanocomposites with Enhanced Barrier Properties. Polym. Compos. 2018, 39, 3841–3848. DOI: 10.1002/pc.24414.
  • Wang, P. J.; Zhang, M. Y.; Liu, Y.; Wang, L. Q.; Lv, Q. L.; Xu, D. X.; Liu, X.; Wang, G. T.; Yang, W.; Wang, P. C.; et al. One-Step Synthesis of Hydrophilic Graphene-Fe3O4-PVA Composite Film: Micromorphology and Performance. J. Appl. Polym. Sci. 2019, 136, 48174. DOI: 10.1002/app.48174.
  • Cai, W.; Zhang, D. C.; Wang, B. B.; Shi, Y. Q.; Pan, Y.; Wang, J. L.; Hu, W. Z.; Hu, Y. Scalable One-Step Synthesis of Hydroxylated Boron Nitride Nanosheets for Obtaining Multifunctional Polyvinyl Alcohol Nanocomposite Films: Multi-Azimuth Properties Improvement. Compos. Sci. Technol. 2018, 168, 74–80. DOI: 10.1016/j.compscitech.2018.09.004.
  • Wang, X.; Yin, Y.; Li, M.; Hu, Y. Hexagonal Boron Nitride@ZnFe2O4 Hybrid Nanosheet: An Ecofriendly Flame Retardant for Polyvinyl Alcohol. J. Solid State Chem. 2020, 287, 121366. DOI: 10.1016/j.jssc.2020.121366.
  • Pan, Y.; Fu, L.; Zhou, Q. W.; Wen, Z. N.; Lin, C. T.; Yu, J. H.; Wang, W. M.; Zhao, H. T. Flammability, Thermal Stability and Mechanical Properties of Polyvinyl Alcohol Nanocomposites Reinforced with Delaminated Ti3C2Tx (MXene). Polym. Compos. 2020, 41, 210–218. DOI: 10.1002/pc.25361.
  • Jin, X. X.; Wang, J. F.; Dai, L. Z.; Liu, X. Y.; Li, L.; Yang, Y. Y.; Cao, Y. X.; Wang, W. J.; Wu, H.; Guo, S. Y. Flame-Retardant Poly(Vinyl Alcohol)/MXene Multilayered Films with Outstanding Electromagnetic Interference Shielding and Thermal Conductive Performances. Chem. Eng. J. 2020, 380, 122475. DOI: 10.1016/j.cej.2019.122475.
  • Wang, M.; Han, X. W.; Liu, L.; Zeng, X. F.; Zou, H. K.; Wang, J. X.; Chen, J. F. Transparent Aqueous Mg(OH)(2) Nanodispersion for Transparent and Flexible Polymer Film with Enhanced Flame-Retardant Property. Ind. Eng. Chem. Res. 2015, 54, 12805–12812. DOI: 10.1021/acs.iecr.5b03172.
  • Wang, X. D.; Yu, M. Q.; Li, L.; Fan, X. Synthesis and Morphology Control of Nano-Scaled Magnesium Hydroxide and Its Influence on the Mechanical Property and Flame Retardancy of Polyvinyl Alcohol. Mater. Express 2019, 9, 675–680. DOI: 10.1166/mex.2019.1545.
  • Ghanbari, D.; Salavati-Niasari, M.; Sabet, M. Preparation of Flower-like Magnesium Hydroxide Nanostructure and Its Influence on the Thermal Stability of Poly Vinyl Acetate and Poly Vinyl Alcohol. Compos. B: Eng. 2013, 45, 550–555. DOI: 10.1016/j.compositesb.2012.09.007.
  • Xie, W.; Han, Z. Q.; Zhang, Z. D.; Liu, Y.; Wang, Q. Hydrogen Bond Complexasion to Prepare Guanidine Phosphate Flame Retardant Poly(Vinyl Alcohol) Membrane with High Transparency. Compos. B: Eng. 2019, 176, 107265. DOI: 10.1016/j.compositesb.2019.107265.
  • Wang, X. M.; Peng, P. R.; Hu, Q.; Lin, L. P.; Zou, L. Y.; Wei, W. J.; Cao, Y. C.; Liu, J. Y. The Preparation of Highly Transparent Flame-Retardant Membrane Based on Poly-Vinyl Alcohol and Polyphosphonate. In International Conference on Design, Manufacturing and Mechatronics; Shahhosseini, A. M. Ed.; :Advanced Science and Engineering Technology Institute (ASET), Wuhan, 2016; pp 1036–1042.
  • Shabanian, M.; Khoobi, M.; Hemati, F.; Khonakdar, H. A.; Faghihi, K.; Wagenknecht, U.; Ebrahimi, S. E. S.; Shafiee, A. Effects of Polyethyleneimine-Functionalized MCM-41 on Flame Retardancy and Thermal Stability of Polyvinyl Alcohol. Particuology 2015, 19, 14–21. DOI: 10.1016/j.partic.2014.04.004.
  • Ren, M.; Yang, M.; Li, S.; Chen, G.; Yuan, Q. High Throughput Preparation of Magnesium Hydroxide Flame Retardant via Microreaction Technology. RSC Adv. 2016, 6, 92670–92681. DOI: 10.1039/C6RA20020F.
  • Wang, Q.; Li, C.; Guo, M.; Sun, L.; Hu, C. Hydrothermal Synthesis of Hexagonal Magnesium Hydroxide Nanoflakes. Mater. Res. Bull. 2014, 51, 35–39. DOI: 10.1016/j.materresbull.2013.11.041.
  • Shahid ul, I.; Shahid, M.; Mohammad, F. Perspectives for Natural Product Based Agents Derived from Industrial Plants in Textile Applications – A Review. J. Cleaner Prod. 2013, 57, 2–18. DOI: 10.1016/j.jclepro.2013.06.004.
  • Chen, C.; Gu, X.; Jin, X.; Sun, J.; Zhang, S. The Effect of Chitosan on the Flammability and Thermal Stability of Polylactic Acid/Ammonium Polyphosphate Biocomposites. Carbohydr. Polym. 2017, 157, 1586–1593. DOI: 10.1016/j.carbpol.2016.11.035.
  • Feng, J. X.; Zhang, X. M.; Ma, S. Q.; Xiong, Z.; Zhang, C. Z.; Jiang, Y. H.; Zhu, J. Syntheses of Metallic Cyclodextrins and Their Use as Synergists in a Poly(Vinyl Alcohol)/Intumescent Flame Retardant System. Ind. Eng. Chem. Res. 2013, 52, 2784–2792. DOI: 10.1021/ie303652f.
  • Maqsood, M.; Seide, G. Biodegradable Flame Retardants for Biodegradable Polymer. Biomolecules 2020, 10, 1038. DOI: 10.3390/biom10071038.
  • Feng, J.-X.; Su, S.-P.; Zhu, J. An Intumescent Flame Retardant System Using β-Cyclodextrin as a Carbon Source in Polylactic Acid (PLA). Polym. Adv. Technol. 2011, 22, 1115–1120. DOI: 10.1002/pat.1954.
  • Gilman, J. W. Flammability and Thermal Stability Studies of Polymer Layered-Silicate (Clay) Nanocomposites. Appl. Clay Sci. 1999, 15, 31–49. DOI: 10.1016/S0169-1317(99)00019-8.
  • Zhou, K. Q.; Gui, Z.; Hu, Y. Ultrathin 2D VOPO4 Nanosheets: A Novel Reinforcing Agent in Polymeric Composites. RSC Adv. 2016, 6, 100344–100351. DOI: 10.1039/C6RA24111E.
  • Kiliaris, P.; Papaspyrides, C. D. Polymer/Layered Silicate (Clay) Nanocomposites: An Overview of Flame Retardancy. Prog. Polym. Sci. 2010, 35, 902–958. DOI: 10.1016/j.progpolymsci.2010.03.001.
  • Lin, J. S.; Liu, Y.; Wang, D. Y.; Qin, Q.; Wang, Y. Z. Poly(Vinyl Alcohol)/Ammonium Polyphosphate Systems Improved Simultaneously Both Fire Retardancy and Mechanical Properties by Montmorillonite. Ind. Eng. Chem. Res. 2011, 50, 9998–10005. DOI: 10.1021/ie100674s.
  • Morgan, A. B. Flame Retarded Polymer Layered Silicate Nanocomposites: A Review of Commercial and Open Literature Systems. Polym. Adv. Technol. 2006, 17, 206–217. DOI: 10.1002/pat.685.
  • Kong, Q.; Wu, T.; Zhang, H.; Zhang, Y.; Zhang, M.; Si, T.; Yang, L.; Zhang, J. Improving Flame Retardancy of IFR/PP Composites through the Synergistic Effect of Organic Montmorillonite Intercalation Cobalt Hydroxides Modified by Acidified Chitosan. Appl. Clay Sci. 2017, 146, 230–237. DOI: 10.1016/j.clay.2017.05.048.
  • Liu, X.; Guo, J.; Tang, W.; Li, H.; Gu, X.; Sun, J.; Zhang, S. Enhancing the Flame Retardancy of Thermoplastic Polyurethane by Introducing Montmorillonite Nanosheets Modified with Phosphorylated Chitosan. Compos. A: Appl. Sci. Manuf. 2019, 119, 291–298. DOI: 10.1016/j.compositesa.2019.02.009.
  • Lu, H.; Wilkie, C. A. The Influence of α﹝Irconium Phosphate on Fire Performance of EVA and PS Composites. Polym. Adv. Technol. 2011, 22, 1123–1130. DOI: 10.1002/pat.1923.
  • Yang, D.; Hu, Y.; Song, L.; Nie, S.; He, S.; Cai, Y. Catalyzing Carbonization Function of a-ZrP Based Intumescent Fire Retardant Polypropylene Nanocomposites. Polym. Degrad. Stab. 2008, 93, 2014–2018. DOI: 10.1016/j.polymdegradstab.2008.02.012.
  • Zhao, C. X.; Liu, Y.; Wang, D. Y.; Wang, D. L.; Wang, Y. Z. Synergistic Effect of Ammonium Polyphosphate and Layered Double Hydroxide on Flame Retardant Properties of Poly(Vinyl Alcohol). Polym. Degrad. Stab. 2008, 93, 1323–1331. DOI: 10.1016/j.polymdegradstab.2008.04.002.
  • Tang, Z.; Wei, Q.; Guo, B. A Generic Solvent Exchange Method to Disperse MoS2 in Organic Solvents to Ease the Solution Process. Chem. Commun. (Camb.) 2014, 50, 3934–3937. DOI: 10.1039/c4cc00425f.
  • Sang, B.; Li, Z.-w.; Li, X.-h.; Yu, L.-g.; Zhang, Z.-j. Graphene-Based Flame Retardants: A Review. J. Mater. Sci. 2016, 51, 8271–8295. DOI: 10.1007/s10853-016-0124-0.
  • Liu, J.; Zhang, H. B.; Sun, R.; Liu, Y.; Liu, Z.; Zhou, A.; Yu, Z. Z. Hydrophobic, Flexible, and Lightweight MXene Foams for High‐Performance Electromagnetic‐Interference Shielding. Adv. Mater. 2017, 29, 1702367. DOI: 10.1002/adma.201702367.
  • Bu, F.; Zagho, M. M.; Ibrahim, Y.; Ma, B.; Elzatahry, A.; Zhao, D. Porous MXenes: Synthesis, Structures, and Applications. Nano Today 2020, 30, 100803. DOI: 10.1016/j.nantod.2019.100803.
  • Shen, J.; Zhu, Y.; Jiang, H.; Li, C. 2D Nanosheets-Based Novel Architectures: Synthesis, Assembly and Applications. Nano Today 2016, 11, 483–520. DOI: 10.1016/j.nantod.2016.07.005.
  • Liu, R.; Li, W. High-Thermal-Stability and High-Thermal-Conductivity Ti3C2Tx MXene/Poly(vinyl alcohol) (PVA) Composites. ACS Omega. 2018, 3, 2609–2617. DOI: 10.1021/acsomega.7b02001.
  • Hou, Y.; Qiu, S.; Hu, Y.; Kundu, C. K.; Gui, Z.; Hu, W. Construction of Bimetallic ZIF-Derived Co-Ni LDHs on the Surfaces of GO or CNTs with a Recyclable Method: Toward Reduced Toxicity of Gaseous Thermal Decomposition Products of Unsaturated Polyester Resin. ACS Appl. Mater. Interfaces 2018, 10, 18359–18371. DOI: 10.1021/acsami.8b04340.
  • Sheng, Z.; Yan, Y.; Wang, W.; Gu, X.; Li, H.; Li, J.; Sun, J. Intercalation of Phosphotungstic Acid into Layered Double Hydroxides by Reconstruction Method and Its Application in Intumescent Flame Retardant Poly (Lactic Acid) Composites. Polym. Degrad. Stab. 2018, 147, 142–150. DOI: 10.1016/j.polymdegradstab.2017.12.004.
  • Tang, W.; Li, H.; Zhang, S.; Sun, J.; Gu, X. The Intercalation of Ammonium Sulfamate into Kaolinite and Its Effect on the Fire Performance of Polypropylene. J. Thermoplast. Compos. Mater. 2018, 31, 1352–1370. DOI: 10.1177/0892705717738291.
  • Meng, X.; Qi, P.; Sun, J.; Li, H.; Zhang, S.; Liu, X.; Gu, X. Fabrication of Transparent Clay-Polymer Hybrid Coatings on PET Film to Enhance Flame Retardancy and Oxygen Barrier Properties. Prog. Org. Coat. 2020, 147, 105788. DOI: 10.1016/j.porgcoat.2020.105788.
  • Zhou, X.; Yang, J.; Zhong, M.; Xia, Q.; Li, B.; Duan, X.; Wei, Z. Intercalation of Two-Dimensional Layered Materials. Chem. Res. Chin. Univ. 2020, 36, 584–596. DOI: 10.1007/s40242-020-0185-0.
  • Guin, T.; Krecker, M.; Milhorn, A.; Hagen, D. A.; Stevens, B.; Grunlan, J. C. Exceptional Flame Resistance and Gas Barrier with Thick Multilayer Nanobrick Wall Thin Films. Adv. Mater. Interfaces 2015, 2, 1500214. DOI: 10.1002/admi.201500214.
  • Zhao, S.; Malfait, W.; Guerrero-Alburquerque, N.; Koebel, M.; Nyström, G. Biopolymer Aerogels and Foams: Chemistry, Properties and Applications. Angew. Chem. Int. Ed. Engl. 2018, 57, 2–31.
  • Shen, J.; Zhang, P.; Song, L.; Li, J.; Ji, B.; Li, J.; Chen, L. Polyethylene Glycol Supported by Phosphorylated Polyvinyl Alcohol/Graphene Aerogel as a High Thermal Stability Phase Change Material. Compos. B: Eng. 2019, 179, 107545. DOI: 10.1016/j.compositesb.2019.107545.
  • Zhang, H.; Zhang, J. The Preparation of Novel Polyvinyl Alcohol (PVA)-Based Nanoparticle/Carbon Nanotubes (PNP/CNTs) Aerogel for Solvents Adsorption Application. J. Colloid Interface Sci. 2020, 569, 254–266. DOI: 10.1016/j.jcis.2020.02.053.
  • Bandi, S.; Schiraldi, D. A. Glass Transition Behavior of Clay Aerogel/Poly(Vinyl Alcohol) Composites. Macromolecules 2006, 39, 6537–6545. DOI: 10.1021/ma0611826.
  • Alhassan, S. M.; Qutubuddin, S.; Schiraldi, D. Influence of Electrolyte and Polymer Loadings on Mechanical Properties of Clay Aerogels. Langmuir 2010, 26, 12198–12202. DOI: 10.1021/la100874r.
  • Yan, T.; Zou, Y.; Zhang, X.; Li, D.; Guo, X.; Yang, D. Hydrogen Bond Interpenetrated Agarose/PVA Network: A Highly Ionic Conductive and Flame-Retardant Gel Polymer Electrolyte. ACS Appl. Mater. Interfaces 2021, 13, 9856–9864. DOI: 10.1021/acsami.0c20702.
  • Ye, T.; Zou, Y.; Xu, W.; Zhan, T.; Sun, J.; Xia, Y.; Zhang, X.; Yang, D. Poorly-Crystallized Poly(Vinyl Alcohol)/Carrageenan Matrix: Highly Ionic Conductive and Flame-Retardant Gel Polymer Electrolytes for Safe and Flexible Solid-State Supercapacitors. J. Power Sour. 2020, 475, 228688. DOI: 10.1016/j.jpowsour.2020.228688.
  • Nishikawa, R.; Aridome, N.; Ojima, N.; Yamaguchi, M. Structure and Properties of Fiber-Reinforced Polypropylene Prepared by Direct Incorporation of Aqueous Solution of Poly(Vinyl Alcohol). Polymer 2020, 199, 122566. DOI: 10.1016/j.polymer.2020.122566.
  • Chen, H. B.; Wang, Y. Z.; Schiraldi, D. A. Preparation and Flammability of Poly(Vinyl Alcohol) Composite Aerogels. ACS Appl. Mater Interfaces 2014, 6, 6790–6796. DOI: 10.1021/am500583x.
  • Wang, L.; Sánchez-Soto, M.; Maspoch, M. L. Polymer/Clay Aerogel Composites with Flame Retardant Agents: Mechanical, Thermal and Fire Behavior. Mater. Des. (1980–2015) 2013, 52, 609–614. DOI: 10.1016/j.matdes.2013.05.096.
  • Wang, Y. T.; Liao, S. F.; Shang, K.; Chen, M. J.; Huang, J. Q.; Wang, Y. Z.; Schiraldi, D. A. Efficient Approach to Improving the Flame Retardancy of Poly(Vinyl Alcohol)/Clay Aerogels: Incorporating Piperazine-Modified Ammonium Polyphosphate. ACS Appl. Mater. Interfaces 2015, 7, 1780–1786. DOI: 10.1021/am507409d.
  • Guo, W.; Liu, J.; Zhang, P.; Song, L.; Wang, X.; Hu, Y. Multi-Functional Hydroxyapatite/Polyvinyl Alcohol Composite Aerogels with Self-Cleaning, Superior Fire Resistance and Low Thermal Conductivity. Compos. Sci. Technol. 2018, 158, 128–136. DOI: 10.1016/j.compscitech.2018.01.020.
  • Kang, A. H.; Shang, K.; Ye, D. D.; Wang, Y. T.; Wang, H.; Zhu, Z. M.; Liao, W.; Xu, S. M.; Wang, Y. Z.; Schiraldi, D. A. Rejuvenated Fly Ash in Poly(Vinyl Alcohol)-Based Composite Aerogels with High Fire Safety and Smoke Suppression. Chem. Eng. J. 2017, 327, 992–999. DOI: 10.1016/j.cej.2017.06.158.
  • Luo, Y.; Xie, D. L.; Chen, Y. F.; Han, T.; Chen, R. J.; Sheng, X. X.; Mei, Y. Synergistic Effect of Ammonium Polyphosphate and Alpha-Zirconium Phosphate in Flame-Retardant Poly(Vinyl Alcohol) Aerogels. Polym. Degrad. Stab. 2019, 170, 109019. DOI: 10.1016/j.polymdegradstab.2019.109019.
  • Sheng, X. X.; Li, S. H.; Zhao, Y. F.; Zhai, D. S.; Zhang, L.; Lu, X. Synergistic Effects of Two-Dimensional MXene and Ammonium Polyphosphate on Enhancing the Fire Safety of Polyvinyl Alcohol Composite Aerogels. Polymers 2019, 11, 1964. DOI: 10.3390/polym11121964.
  • Zhang, Q. R.; Wang, X. Y.; Tao, X. J.; Li, Z. W.; Li, X. H.; Zhang, Z. J. Polyvinyl Alcohol Composite Aerogel with Remarkable Flame Retardancy, Chemical Durability and Self-Cleaning Property. Compos. Commun. 2019, 15, 96–102. DOI: 10.1016/j.coco.2019.07.003.
  • Chen, H. B.; Liu, B.; Huang, W.; Wang, J. S.; Zeng, G.; Wu, W. H.; Schiraldi, D. A. Fabrication and Properties of Irradiation-Cross-Linked Poly(Vinyl Alcohol)/Clay Aerogel Composites. ACS Appl. Mater. Interfaces 2014, 6, 16227–16236. DOI: 10.1021/am504418w.
  • Shang, K.; Ye, D. D.; Kang, A. H.; Wang, Y. T.; Liao, W.; Xu, S. M.; Wang, Y. Z. Robust and Fire Retardant Borate-Crosslinked Poly (Vinyl Alcohol)/Montmorillonite Aerogel via Melt-Crosslink. Polymer 2017, 131, 111–119. DOI: 10.1016/j.polymer.2017.07.022.
  • Shang, K.; Yang, J. C.; Cao, Z. J.; Liao, W.; Wang, Y. Z.; Schiraldi, D. A. Novel Polymer Aerogel toward High Dimensional Stability, Mechanical Property, and Fire Safety. ACS Appl. Mater. Interfaces 2017, 9, 22985–22993. DOI: 10.1021/acsami.7b06096.
  • Wu, N. J.; Niu, F. K.; Lang, W. C.; Xia, M. F. Highly Efficient Flame-Retardant and Low-Smoke-Toxicity Poly(Vinyl Alcohol)/Alginate/ Montmorillonite Composite Aerogels by Two-Step Crosslinking Strategy. Carbohydr. Polym. 2019, 221, 221–230. DOI: 10.1016/j.carbpol.2019.06.007.
  • Wang, Y. T.; Zhao, H. B.; Degracia, K.; Han, L. X.; Sun, H.; Sun, M. Z.; Wang, Y. Z.; Schiraldi, D. A. Green Approach to Improving the Strength and Flame Retardancy of Poly(Vinyl Alcohol)/Clay Aerogels: Incorporating Biobased Gelatin. ACS Appl. Mater. Interfaces 2017, 9, 42258–42265. DOI: 10.1021/acsami.7b14958.
  • Sun, H.; Schiraldi, D. A.; Chen, D.; Wang, D.; Sanchez-Soto, M. Tough Polymer Aerogels Incorporating a Conformal Inorganic Coating for Low Flammability and Durable Hydrophobicity. ACS Appl. Mater. Interfaces 2016, 8, 13051–13057. DOI: 10.1021/acsami.6b02829.
  • Kucko, N. W.; Petre, D.-G.; de Ruiter, M.; Herber, R.-P.; Leeuwenburgh, C. Micro- and Macromechanical Characterization of the Influence of Surface-Modification of Poly(Vinyl Alcohol) Fibers on the Reinforcement of Calcium Phosphate Cements. J. Mech. Behav. Biomed. Mater. 2020, 109, 103776. DOI: 10.1016/j.jmbbm.2020.103776.
  • Yacoob, C.; Liu, W.; Adanur, S. Properties and Flammability of Electrospun PVA and PVA/Laponite (R) Membranes. J. Ind. Text. 2010, 40, 33–48. DOI: 10.1177/1528083709347119.
  • Abdel-Baset, T. A. Dielectric and Optical Properties of PVA/PAN Doped TiO2 NPs. J. Mater. Sci.: Mater. Electron. 2020, 31, 15960–15967. DOI: 10.1007/s10854-020-04157-1.
  • Yuan, H.-K.; Ren, J.; Ma, X.-H.; Xu, Z.-L. Dehydration of Ethyl Acetate Aqueous Solution by Pervaporation Using PVA/PAN Hollow Fiber Composite Membrane. Desalination 2011, 280, 252–258. DOI: 10.1016/j.desal.2011.07.002.
  • Zhou, W. L.; Yan, X.; Jiang, M. J.; Liu, P. Q.; Xu, J. J. Study of Flame-Resistant Acrylic Fibers Reinforced by Poly(Vinyl Alcohol). J. Appl. Polym. Sci. 2016, 133,43006. DOI: 10.1002/app.43006.
  • Ren, Y. L.; Tian, T.; Jiang, L. N.; Liu, X. H.; Han, Z. B. Polyvinyl Alcohol Reinforced Flame-Retardant Polyacrylonitrile Composite Fiber Prepared by Boric Acid Cross-Linking and Phosphorylation. Materials 2018, 11, 2391. DOI: 10.3390/ma11122391.
  • Zhou, W. L.; Ji, S. S.; Liu, P. Q.; Jiang, M. J.; Xu, J. J. A Novel Method to Prepare a Flame-Retardant Polyvinyl Alcohol Fiber with Modified Acrylonitrile Coatings. RSC Adv. 2016, 6, 31059–31068. DOI: 10.1039/C6RA03357A.
  • Jiang, Y.; Zhou, W.; Jiang, M.; Liu, P.; Xu, J. Flame Retardant Study of Formalized Polyvinyl Alcohol Fiber Coated with Melamine Formaldehyde Resins and the Synergistic Effect of Copper Ions. Polym. Degrad. Stab. 2017, 144, 331–343. DOI: 10.1016/j.polymdegradstab.2017.08.014.
  • Li, H.-Z.; Chen, S.-C.; Wang, Y.-Z. Thermoplastic PVA/PLA Blends with Improved Processability and Hydrophobicity. Ind. Eng. Chem. Res. 2014, 53, 17355–17361. DOI: 10.1021/ie502531w.
  • Abdullah, Z. W.; Dong, Y.; Davies, I. J.; Barbhuiya, S. PVA, PVA Blends, and Their Nanocomposites for Biodegradable Packaging Application. Polym.-Plast. Technol. Eng. 2017, 56, 1307–1344. DOI: 10.1080/03602559.2016.1275684.
  • Huang, G. B.; Gao, J. R.; Wang, X.; Liang, H. D.; Ge, C. H. How Can Graphene Reduce the Flammability of Polymer Nanocomposites? Mater. Lett. 2012, 66, 187–189. DOI: 10.1016/j.matlet.2011.08.063.
  • Huang, G. B.; Chen, S. Q.; Liang, H. D.; Wang, X.; Gao, J. R. Combination of Graphene and Montmorillonite Reduces the Flammability of Poly(Vinyl Alcohol) Nanocomposites. Appl. Clay Sci. 2013, 80-81, 433–437. DOI: 10.1016/j.clay.2013.01.005.
  • Chang, Y.-I. M.; Kuo, C.-Y.; Cheng, W.-Y.; Jang, L. The Feasibility of Reusing Recycled Wastewater in PVA Sponge Manufacturing Process – Case Study. J. Taiwan Inst. Chem. Eng. 2020, 111, 283–292. DOI: 10.1016/j.jtice.2020.04.019.
  • Wang, R.; Wang, Q.; Li, L. Evaporation Behaviour of Water and Its Plasticizing Effect in Modified Poly(Vinyl Alcohol) Systems. Polym. Int. 2003, 52, 1820–1826. DOI: 10.1002/pi.1385.
  • Saroj, A. L.; Singh, R. K. Thermal, Dielectric and Conductivity Studies on PVA/Ionic Liquid [EMIM][EtSO4] Based Polymer Electrolytes. J. Phys. Chem. Solids 2012, 73, 162–168. DOI: 10.1016/j.jpcs.2011.11.012.
  • Saroj, A. L.; Singh, R. K.; Chandra, S. Thermal, Vibrational, and Dielectric Studies on PVP/LiBF4 + Ionic Liquid [EMIM][BF4]-Based Polymer Electrolyte Films. J. Phys. Chem. Solids 2014, 75, 849–857. DOI: 10.1016/j.jpcs.2014.02.005.
  • Guo, D.; Bai, S. B.; Wang, Q. A Novel Halogen-Free Flame Retardant Poly (Vinyl Alcohol) Foam with Intrinsic Flame Retardant Characteristics Prepared through Continuous Extrusion. J. Cell. Plast. 2015, 51, 145–163. DOI: 10.1177/0021955X14529296.
  • Liu, P. J.; Bai, S. B.; Wang, Q. Preparation of Aluminum Hydroxide/Aluminum Phosphinate Flame-Retardant Poly(Vinyl Alcohol) Foam through Thermal Processing. J. Appl. Polym. Sci. 2015, 132, 42020. DOI: 10.1002/app.42020.
  • Guoxing; Chao, J. Flame Retardant Effect of Cytosine Pyrophosphate and Pentaerythritol on Polypropylene. Compos. B: Eng. 2020, 180, 107520.
  • Li, B.; Xu, M. Effect of a Novel Charring-Foaming Agent on Flame Retardancy and Thermal Degradation of Intumescent Flame Retardant Polypropylene. Polym. Degrad. Stab. 2006, 91,1380-1386.
  • Huang, G.; Liang, H.; Wang, Y.; Xu, W.; Gao, J.; Fei, Z. Combination Effect of Melamine Polyphosphate and Graphene on Flame Retardant Properties of Poly(Vinyl Alcohol). Mater. Chem. Phys. 2012, 132, 520–528. DOI: 10.1016/j.matchemphys.2011.11.064.
  • Li, Q.-L.; Wang, X.-L.; Wang, D.-Y.; Wang, Y.-Z.; Feng, X.-N.; Zheng, G.-H. Durable Flame Retardant Finishing of PET/Cotton Blends Using a Novel PVA-Based Phosphorus-Nitrogen Polymer. J. Appl. Polym. Sci. 2011, 122, 342–353. DOI: 10.1002/app.34182.
  • Liu, S.; Huang, S.; Chen, Y.; Wan, C.; Zhang, G. A High Molecular Weight Formaldehyde-Free Polymer Flame Retardant Made from Polyvinyl Alcohol for Cellulose. Int. J. Biol. Macromol. 2021, 166, 117–126. DOI: 10.1016/j.ijbiomac.2020.10.103.
  • Saucă, S.; Giamberini, M.; Reina, J. A. Flame Retardant Phosphorous-Containing Polymers Obtained by Chemically Modifying Poly(Vinyl Alcohol). Polym. Degrad. Stab. 2013, 98, 453–463. DOI: 10.1016/j.polymdegradstab.2012.07.045.
  • Sauca, S.; Giamberini, M.; Cerruti, P.; Malinconico, M.; Reina, J. A. Effect of Phosphorous-Containing Modified Poly(Vinyl Alcohol) on the Mechanical and Flame Retardant Properties of Polypropylene. Express Polym. Lett. 2015, 9, 330–343. DOI: 10.3144/expresspolymlett.2015.31.
  • Kijowska, D.; Jankowski, P.; Wierzbicka, E. Halloysite Modified by Melamine Cyanurate and Its Compositions Based on PA6. Polimery 2019, 64, 259–266. DOI: 10.14314/polimery.2019.4.3.
  • Shah, A. U. R.; Prabhakar, M. N.; Wang, H.; Song, J. I. The Influence of Particle Size and Surface Treatment of Filler on the Properties of Oyster Shell Powder Filled Polypropylene Composites. Polym. Compos. 2018, 39, 2420–2430. DOI: 10.1002/pc.24225.
  • Xu, D. M.; Liu, X.; Feng, J.; Hao, J. W. Preparation of Boron-Coated Expandable Graphite and Its Application in Flame Retardant Rigid Polyurethane Foam. Chem. Res. Chin. Univ. 2015, 31, 315–320. DOI: 10.1007/s40242-015-4101-y.
  • Lin, M.; Yang, Y.; Xi, P.; Chen, S. L. Microencapsulation of Water-Soluble Flame Retardant Containing Organophosphorus and Its Application on Fabric. J. Appl. Polym. Sci. 2006, 102, 4915–4920. DOI: 10.1002/app.24898.
  • Jang, W.; Chung, I. J.; Kim, J.; Seo, S.; Park, Y. T.; Choi, K. Improving Fire Resistance of Cotton Fabric through Layer-by-Layer Assembled Graphene Multilayer Nanocoating. J. Korean Phys. Soc. 2018, 72, 1052–1057. DOI: 10.3938/jkps.72.1052.
  • Shen, Y. W.; Gu, J. Y.; Tan, H. Y.; Lv, S. S.; Zhang, Y. H. Preparation and Properties of a Polyvinyl Alcohol Toughened Urea-Formaldehyde Foam for Thermal Insulation Applications. Constr. Build. Mater. 2016, 120, 104–111. DOI: 10.1016/j.conbuildmat.2016.05.096.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.