6,143
Views
3
CrossRef citations to date
0
Altmetric
Reviews

Nanocellulose and PEDOT:PSS composites and their applications

ORCID Icon, ORCID Icon, , , , , , , , , ORCID Icon & show all
Pages 437-477 | Received 04 Mar 2022, Accepted 21 Jul 2022, Published online: 16 Aug 2022

References

  • Lupo, D.; Clemens, W.; Breitung, S.; Hecker, K. OE-A Roadmap for Organic and Printed Electronics. In Applications of Organic and Printed Electronics. Integrated Circuits and Systems; Cantatore, E., Ed. Boston: Springer: New York, NY, 2013; pp 1–26.
  • Kim, J.; Kumar, R.; Bandodkar, A. J.; Wang, J. Advanced Materials for Printed Wearable Electrochemical Devices: A Review. Adv. Electron. Mater. 2017, 3, 1600260–1600215. DOI: 10.1002/aelm.201600260.
  • O’ Mahony, C.; Haq, E.U.; Silien, C.; Tofail, S.A.M. Rheological Issues in Carbon-Based Inks for Additive Manufacturing. Micromachines 2019, 10, 1–24. DOI: 10.3390/mi10020099.
  • Saidina, D. S.; Eawwiboonthanakit, N.; Mariatti, M.; Fontana, S.; Hérold, C. Recent Development of Graphene-Based Ink and Other Conductive Material-Based Inks for Flexible Electronics. J. Elec. Mater. 2019, 48, 3428–3450. DOI: 10.1007/s11664-019-07183-w.
  • Dai, L.; Cheng, T.; Duan, C.; Zhao, W.; Zhang, W.; Zou, X.; Aspler, J.; Ni, Y. 3D Printing Using Plant-Derived Cellulose and Its Derivatives: A Review. Carbohydr. Polym. 2019, 203, 71–86. DOI: 10.1016/j.carbpol.2018.09.027.
  • Ventura, C.; Pinto, F.; Lourenço, A. F.; Ferreira, P. J. T.; Louro, H.; Silva, M. J. On the Toxicity of Cellulose Nanocrystals and Nanofibrils in Animal and Cellular Models. Cellulose 2020, 27, 5509–5544. DOI: 10.1007/s10570-020-03176-9.
  • Sabo, R.; Yermakov, A.; Law, C. T.; Elhajjar, R. Nanocellulose-Enabled Electronics, Energy Harvesting Devices, Smart Materials and Sensors: A Review. J. Renew. Mater. 2016, 4, 297–312. DOI: 10.7569/JRM.2016.6341.
  • Sharma, A.; Thakur, M.; Bhattacharya, M.; Mandal, T.; Goswami, S. Commercial Application of Cellulose Nano-Composites – a Review. Biotechnol Rep (Amst) 2019, 21, e00316–e00316. DOI: 10.1016/j.btre.2019.e00316.
  • Ooi, Y.; Hanasaki, I.; Mizumura, D.; Matsuda, Y. Suppressing the Coffee-Ring Effect of Colloidal Droplets by Dispersed Cellulose Nanofibers. Sci. Technol. Adv. Mater. 2017, 18, 316–324. DOI: 10.1080/14686996.2017.1314776.
  • Nordenström, M.; Fall, A.; Nyström, G.; Wågberg, L. Formation of Colloidal Nanocellulose Glasses and Gels. Langmuir 2017, 33, 9772–9780. DOI: 10.1021/acs.langmuir.7b01832.
  • Fall, A. B.; Lindström, S. B.; Sundman, O.; Ödberg, L.; Wågberg, L. Colloidal Stability of Aqueous Nanofibrillated Cellulose Dispersions. Langmuir 2011, 27, 11332–11338. DOI: 10.1021/la201947x.
  • Klar, V.; Pere, J.; Turpeinen, T.; Kärki, P.; Orelma, H.; Kuosmanen, P. Shape Fidelity and Structure of 3D Printed High Consistency Nanocellulose. Sci. Rep. 2019, 9, 1–10. DOI: 10.1038/s41598-019-40469-x.
  • Hoeng, F.; Bras, J.; Gicquel, E.; Krosnicki, G.; Denneulin, A. Inkjet Printing of Nanocellulose-Silver Ink onto Nanocellulose Coated Cardboard. RSC Adv. 2017, 7, 15372–15381. DOI: 10.1039/C6RA23667G.
  • Jiao, S.; Zhou, A.; Wu, M.; Hu, H. Kirigami Patterning of MXene/Bacterial Cellulose Composite Paper for All-Solid-State Stretchable Micro-Supercapacitor Arrays. Adv Sci (Weinh) 2019, 6, 1900529. DOI: 10.1002/advs.201900529.
  • Hamedi, M. M.; Hajian, A.; Fall, A. B.; Håkansson, K.; Salajkova, M.; Lundell, F.; Wågberg, L.; Berglund, L. A. Highly Conducting, Strong Nanocomposites Based on Nanocellulose-Assisted Aqueous Dispersions of Single-Wall Carbon Nanotubes. ACS Nano. 2014, 8, 2467–2476. DOI: 10.1021/nn4060368.
  • Lay, M.; Méndez, J. A.; Pèlach, M. À.; Bun, K. N.; Vilaseca, F. Combined Effect of Carbon Nanotubes and Polypyrrole on the Electrical Properties of Cellulose-Nanopaper. Cellulose 2016, 23, 3925–3937. DOI: 10.1007/s10570-016-1060-5.
  • Bacakova, L.; Pajorova, J.; Tomkova, M.; Matejka, R.; Broz, A.; Stepanovska, J.; Prazak, S.; Skogberg, A.; Siljander, S.; Kallio, P. Applications of Nanocellulose/Nanocarbon Composites: Focus on Biotechnology and Medicine. Nanomaterials 2020, 10, 196–134. DOI: 10.3390/nano10020196.
  • Dias, O. A. T.; Konar, S.; Leão, A. L.; Yang, W.; Tjong, J.; Sain, M. Current State of Applications of Nanocellulose in Flexible Energy and Electronic Devices. Front. Chem. 2020, 8, 420. DOI: 10.3389/fchem.2020.00420.
  • Nyström, G.; Mihranyan, A.; Razaq, A.; Lindström, T.; Nyholm, L.; Strømme, M. A Nanocellulose Polypyrrole Composite Based on Microfibrillated Cellulose from Wood. J. Phys. Chem. B 2010, 114, 4178–4182. DOI: 10.1021/jp911272m.
  • Muller, D.; Rambo, C. R.; Porto, L. M.; Schreiner, W. H.; Barra, G. M. O. Structure and Properties of Polypyrrole/Bacterial Cellulose Nanocomposites. Carbohydr. Polym. 2013, 94, 655–662. DOI: 10.1016/j.carbpol.2013.01.041.
  • Hu, W.; Chen, S.; Yang, Z.; Liu, L.; Wang, H. Flexible Electrically Conductive Nanocomposite Membrane Based on Bacterial Cellulose and Polyaniline. J. Phys. Chem. B 2011, 115, 8453–8457. DOI: 10.1021/jp204422v.
  • Gopakumar, D. A.; Pai, A. R.; Pottathara, Y. B.; Pasquini, D.; Carlos de Morais, L.; Luke, M.; Kalarikkal, N.; Grohens, Y.; Thomas, S. Cellulose Nanofiber-Based Polyaniline Flexible Papers as Sustainable Microwave Absorbers in the X-Band. ACS Appl. Mater. Interfaces. 2018, 10, 20032–20043. DOI: 10.1021/acsami.8b04549.
  • Mantione, D.; del Agua, I.; Sanchez-Sanchez, A.; Mecerreyes, D. Poly(3,4-Ethylenedioxythiophene) (PEDOT) Derivatives: Innovative Conductive Polymers for Bioelectronics. Polymers 2017, 9, 354. DOI: 10.3390/polym9080354.
  • Montibon, E.; Järnström, L.; Lestelius, M. Characterization of Poly(3,4-Ethylenedioxythiophene)/Poly(Styrene Sulfonate) (PEDOT:PSS) Adsorption on Cellulosic Materials. Cellulose 2009, 16, 807–815. DOI: 10.1007/s10570-009-9303-3.
  • Malti, A.; Edberg, J.; Granberg, H.; Khan, Z. U.; Andreasen, J. W.; Liu, X.; Zhao, D.; Zhang, H.; Yao, Y.; Brill, J. W.; et al. An Organic Mixed Ion–Electron Conductor for Power Electronics. Adv Sci (Weinh) 2016, 3, 1500305. DOI: 10.1002/advs.201500305.
  • Lay, M.; Pèlach, M. À.; Pellicer, N.; Tarrés, J. A.; Bun, K. N.; Vilaseca, F. Smart Nanopaper Based on Cellulose Nanofibers with Hybrid PEDOT:PSS/Polypyrrole for Energy Storage Devices. Carbohydr. Polym. 2017, 165, 86–95. DOI: 10.1016/j.carbpol.2017.02.043.
  • Say, M. G.; Brooke, R.; Edberg, J.; Grimoldi, A.; Belaineh, D.; Engquist, I.; Berggren, M. Spray-Coated Paper Supercapacitors. NPJ Flex. Electron. 2020, 4, 14. DOI: 10.1038/s41528-020-0079-8.
  • Du, X.; Zhang, Z.; Liu, W.; Deng, Y. Nanocellulose-Based Conductive Materials and Their Emerging Applications in Energy devices - A Review. Nano Energy 2017, 35, 299–320. DOI: 10.1016/j.nanoen.2017.04.001.
  • Fang, Z.; Hou, G.; Chen, C.; Hu, L. Nanocellulose-Based Films and Their Emerging Applications. Curr. Opin. Solid State Mater. Sci. 2019, 23, 100764–100764. DOI: 10.1016/j.cossms.2019.07.003.
  • Stříteský, S.; Marková, A.; Víteček, J.; Šafaříková, E.; Hrabal, M.; Kubáč, L.; Kubala, L.; Weiter, M.; Vala, M. Printing Inks of Electroactive Polymer PEDOT:PSS: The Study of Biocompatibility, Stability, and Electrical Properties. J. Biomed. Mater. Res. A 2018, 106, 1121–1128. DOI: 10.1002/jbm.a.36314.
  • Wang, W. C.; Cheng, Y. T.; Estroff, B. Electrostatic Self-Assembly of Composite Nanofiber Yarn. Polymers 2020, 13, 12–19. DOI: 10.3390/polym13010012.
  • Kargarzadeh, H.; Mariano, M.; Gopakumar, D.; Ahmad, I.; Thomas, S.; Dufresne, A.; Huang, J.; Lin, N. Advances in Cellulose Nanomaterials. Vol. 25; Springer Netherlands: Dordrecht, Netherlands, 2018; pp 2151–2189. DOI: 10.1007/s10570-018-1723-5.
  • Bayer, T.; Cunning, B. V.; Šmíd, B.; Selyanchyn, R.; Fujikawa, S.; Sasaki, K.; Lyth, S. M. Spray Deposition of Sulfonated Cellulose Nanofibers as Electrolyte Membranes in Fuel Cells. Cellulose 2021, 28, 1355–1367. DOI: 10.1007/s10570-020-03593-w.
  • Li, J.; Li, J.; Feng, D.; Zhao, J.; Sun, J.; Li, D. Excellent Rheological Performance and Impact Toughness of Cellulose Nanofibers/PLA/Ionomer Composite. RSC Adv. 2017, 7, 28889–28897. DOI: 10.1039/C7RA04302C.
  • Lay, M.; González, I.; Tarrés, J. A.; Pellicer, N.; Bun, K. N.; Vilaseca, F. High Electrical and Electrochemical Properties in Bacterial Cellulose/Polypyrrole Membranes. Eur. Polym. J. 2017, 91, 1–9. DOI: 10.1016/j.eurpolymj.2017.03.021.
  • Belaineh, D.; Andreasen, J. W.; Palisaitis, J.; Malti, A.; Håkansson, K.; Wågberg, L.; Crispin, X.; Engquist, I.; Berggren, M. Controlling the Organization of PEDOT:PSS on Cellulose Structures. ACS Appl. Polym. Mater. 2019, 1, 2342–2351. DOI: 10.1021/acsapm.9b00444.
  • Nascimento, D. M.; Nunes, Y. L.; Figueirêdo, M. C. B.; de Azeredo, H. M. C.; Aouada, F. A.; Feitosa, J. P. A.; Rosa, M. F.; Dufresne, A. Nanocellulose Nanocomposite Hydrogels: Technological and Environmental Issues. Green Chem. 2018, 20, 2428–2448. DOI: 10.1039/C8GC00205C.
  • Lin, N.; Dufresne, A. Nanocellulose in Biomedicine: Current Status and Future Prospect. Eur. Polym. J. 2014, 59, 302–325. DOI: 10.1016/j.eurpolymj.2014.07.025.
  • Habibi, Y.; Lucia, L. A.; Rojas, O. J. Cellulose Nanocrystals: Chemistry, Self-Assembly, and Applications. Chem. Rev. 2010, 110, 3479–3500. DOI: 10.1021/cr900339w.
  • De France, K. J.; Hoare, T.; Cranston, E. D. Review of Hydrogels and Aerogels Containing Nanocellulose. Chem. Mater. 2017, 29, 4609–4631. DOI: 10.1021/acs.chemmater.7b00531.
  • de Amorim, J. D. P.; de Souza, K. C.; Duarte, C. R.; da Silva Duarte, I.; de Assis Sales Ribeiro, F.; Silva, G. S.; de Farias, P. M. A.; Stingl, A.; Costa, A. F. S.; Vinhas, G. M.; et al. Plant and Bacterial Nanocellulose: Production, Properties and Applications in Medicine, Food, Cosmetics, Electronics and Engineering. A Review. Environ. Chem. Lett. 2020, 18, 851–869. DOI: 10.1007/s10311-020-00989-9.
  • Fry, S. C. Plant Cell Walls. From Chemistry to Biology. Ann. Bot. 2011, 108, viii–viix. DOI: 10.1093/aob/mcr128.
  • Larsson, P. A.; Riazanova, A. V.; Cinar Ciftci, G.; Rojas, R.; Øvrebø, H. H.; Wågberg, L.; Berglund, L. A. Towards Optimised Size Distribution in Commercial Microfibrillated Cellulose: A Fractionation Approach. Cellulose 2019, 26, 1565–1575. DOI: 10.1007/s10570-018-2214-4.
  • Li, T.; Chen, C.; Brozena, A. H.; Zhu, J. Y.; Xu, L.; Driemeier, C.; Dai, J.; Rojas, O. J.; Isogai, A.; Wågberg, L.; et al. Developing Fibrillated Cellulose as a Sustainable Technological Material. Nature 2021, 590, 47–56. DOI: 10.1038/s41586-020-03167-7.
  • Stelte, W.; Sanadi, A. R. Preparation and Characterization of Cellulose Nanofibers from Two Commercial Hardwood and Softwood Pulps. Ind. Eng. Chem. Res. 2009, 48, 11211–11219. DOI: 10.1021/ie9011672.
  • Nehra, P.; Chauhan, R. P. Eco-Friendly Nanocellulose and Its Biomedical Applications: Current Status and Future Prospect. J. Biomater. Sci. Polym. Ed. 2021, 32, 112–149. DOI: 10.1080/09205063.2020.1817706.
  • Usov, I.; Nyström, G.; Adamcik, J.; Handschin, S.; Schütz, C.; Fall, A.; Bergström, L.; Mezzenga, R. Understanding Nanocellulose Chirality and Structure–Properties Relationship at the Single Fibril Level. Nat. Commun. 2015, 6, 7564. DOI: 10.1038/ncomms8564.
  • Dourado, F.; Fontão, A. I.; Leal, M.; Rodrigues, A. C.; Gama, M. In Process Modelling and Techno-Economic Evaluation of an Industrial Airlift Bacterial Cellulose Fermentation Process; Lee, K.-Y. Ed.; CRC Press: Boca Raton, FL, 2018; p 1–16.
  • Moon, S. M.; Heo, J. E.; Jeon, J.; Eom, T.; Jang, D.; Her, K.; Cho, W.; Woo, K.; Wie, J. J.; Shim, B. S. High Crystallinity of Tunicate Cellulose Nanofibers for High-Performance Engineering Films. Carbohydr. Polym. 2021, 254, 117470–117470. DOI: 10.1016/j.carbpol.2020.117470.
  • Vicente, A. T.; Araújo, A.; Mendes, M. J.; Nunes, D.; Oliveira, M. J.; Sanchez-Sobrado, O.; Ferreira, M. P.; Águas, H.; Fortunato E.; Martins, R. Multifunctional Cellulose-Paper for Light Harvesting and Smart Sensing Applications. J. Mater. Chem. C 2018, 6, 3143–3181. DOI: 10.1039/C7TC05271.
  • Zinge, C.; Kandasubramanian, B. Nanocellulose Based Biodegradable Polymers. Eur. Polym. J. 2020, 133, 109758–109758. DOI: 10.1016/j.eurpolymj.2020.109758.
  • Heise, K.; Kontturi, E.; Allahverdiyeva, Y.; Tammelin, T.; Linder, M. B.; Ikkala, O. Nanocellulose: Recent Fundamental Advances and Emerging Biological and Biomimicking Applications. Adv. Mater. 2021, 33, 2004349. DOI: 10.1002/adma.202004349.
  • Huang, J.; Ma, X.; Yang, G.; Alain, D. Introduction to Nanocellulose. In Nanocellulose; Huang, J., Dufresne, A., Lin, N. Eds.; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2019; pp 1–20.
  • Rietzler, B.; Ek, M. Adding Value to Spruce Bark by the Isolation of Nanocellulose in a Biorefinery Concept. ACS Sustain. Chem. Eng. 2021, 9, 1398–1405. DOI: 10.1021/acssuschemeng.0c08429.
  • Yang, X.; Biswas, S. K.; Han, J.; Tanpichai, S.; Li, M.; Chen, C.; Zhu, S.; Das, A. K.; Yano, H. Surface and Interface Engineering for Nanocellulosic Advanced Materials. Adv. Mater. 2021, 33, 2002264. DOI: 10.1002/adma.202002264.
  • Santmartí, A.; Lee, K.-Y. Crystallinity and Thermal Stability of Nanocellulose. In Nanocellulose and Sustainability; Lee, K.-Y. Ed.; New York, NY, 2018; pp 67–86.
  • Cinar Ciftci, G.; Larsson, P. A.; Riazanova, A. V.; Øvrebø, H. H.; Wågberg, L.; Berglund, L. A. Tailoring of Rheological Properties and Structural Polydispersity Effects in Microfibrillated Cellulose Suspensions. Cellulose 2020, 27, 9227–9241. DOI: 10.1007/s10570-020-03438-6.
  • Banvillet, G.; Gatt, E.; Belgacem, N.; Bras, J. Cellulose Fibers Deconstruction by Twin-Screw Extrusion with in Situ Enzymatic Hydrolysis via Bioextrusion. Bioresour. Technol. 2021, 327, 124819–124819. DOI: 10.1016/j.biortech.2021.124819.
  • Isogai, A. Emerging Nanocellulose Technologies: Recent Developments. Adv. Mater. 2021, 33, 2000630–2000610. DOI: 10.1002/adma.202000630.
  • Koga, H.; Saito, T.; Kitaoka, T.; Nogi, M.; Suganuma, K.; Isogai, A. Transparent, Conductive, and Printable Composites Consisting of TEMPO-Oxidized Nanocellulose and Carbon Nanotube. Biomacromolecules 2013, 14, 1160–1165. DOI: 10.1021/bm400075f.
  • Saito, T.; Okita, Y.; Nge, T. T.; Sugiyama, J.; Isogai, A. TEMPO-Mediated Oxidation of Native Cellulose: Microscopic Analysis of Fibrous Fractions in the Oxidized Products. Carbohydr. Polym. 2006, 65, 435–440. DOI: 10.1016/j.carbpol.2006.01.034.
  • Kádár, R.; Spirk, S.; Nypelö, T. Cellulose Nanocrystal Liquid Crystal Phases: Progress and Challenges in Characterization Using Rheology Coupled to Optics, Scattering, and Spectroscopy. ACS Nano. 2021, 15, 7931–7945. DOI: 10.1021/acsnano.0c09829.
  • Abitbol, T.; Kloser, E.; Gray, D. G. Estimation of the Surface Sulfur Content of Cellulose Nanocrystals Prepared by Sulfuric Acid Hydrolysis. Cellulose 2013, 20, 785–794. DOI: 10.1007/s10570-013-9871-0.
  • Czaja, W. K.; Young, D. J.; Kawecki, M.; Brown, R. M. The Future Prospects of Microbial Cellulose in Biomedical Applications. Biomacromolecules 2007, 8, 1–12. DOI: 10.1021/bm060620d.
  • Zhong, C. Industrial-Scale Production and Applications of Bacterial Cellulose. Front. Bioeng. Biotechnol. 2020, 8, 1–19. DOI: 10.3389/fbioe.2020.605374.
  • Ullah, M. W.; Manan, S.; Kiprono, S. J.; Ul-Islam, M.; Yang, G. Synthesis, Structure, and Properties of Bacterial Cellulose. In Nanocellulose; Huang, J.; Dufresne, A.; Lin, N.; Eds. Wiley Online Library. 2019. Doi: 10.1002/9783527807437.ch4.
  • Abol-Fotouh, D.; Hassan, M. A.; Shokry, H.; Roig, A.; Azab, M. S.; Kashyout, A. E.-H. B. Bacterial Nanocellulose from Agro-Industrial Wastes: Low-Cost and Enhanced Production by Komagataeibacter saccharivorans MD1. Sci. Rep. 2020, 10, 1–14. DOI: 10.1038/s41598-020-60315-9.
  • Kaushik, M.; Moores, A. Review: Nanocelluloses as Versatile Supports for Metal Nanoparticles and Their Applications in Catalysis. Green Chem. 2016, 18, 622–637. DOI: 10.1039/C5GC02500A.
  • Miyashiro, D.; Hamano, R.; Umemura, K. A Review of Applications Using Mixed Materials of Cellulose, Nanocellulose and Carbon Nanotubes. Nanomaterials 2020, 10, 186. DOI: 10.3390/nano10020186.
  • Aleshin, A. N.; Williams, S. R.; Heeger, A. J. Transport Properties of Poly (3,4-Ethylenedioxythiophene)/Poly (Styrenesulfonate). Synth. Met. 1998, 94, 173–177. DOI: 10.1016/S0379-6779(97)04167-2.
  • Naveen, M. H.; Gurudatt, N. G.; Shim, Y.-B. Applications of Conducting Polymer Composites to Electrochemical Sensors: A Review. Appl. Mater. Today 2017, 9, 419–433. DOI: 10.1016/j.apmt.2017.09.001.
  • Gueye, M. N.; Carella, A.; Faure-Vincent, J.; Demadrille, R.; Simonato, J.-P. Progress in Understanding Structure and Transport Properties of PEDOT-Based Materials: A Critical Review. Prog. Mater. Sci. 2020, 108, 100616–100616. DOI: 10.1016/j.pmatsci.2019.100616.
  • Brooke, R.; Cottis, P.; Talemi, P.; Fabretto, M.; Murphy, P.; Evans, D. Recent Advances in the Synthesis of Conducting Polymers from the Vapour Phase. Prog. Mater. Sci. 2017, 86, 127–146. DOI: 10.1016/j.pmatsci.2017.01.004.
  • Hu, L.; Song, J.; Yin, X.; Su, Z.; Li, Z. Research Progress on Polymer Solar Cells Based on PEDOT: PSS Electrodes. Polymers 2020, 12, 145. DOI: 10.3390/polym12010145.
  • Yang, Y.; Deng, H.; Fu, Q. Recent Progress on PEDOT: PSS Based Polymer Blends and Composites for Flexible Electronics and Thermoelectric Devices. Mater. Chem. Front. 2020, 4, 3130–3152. DOI: 10.1039/D0QM00308E.
  • Fabretto, M. V.; Evans, D. R.; Mueller, M.; Zuber, K.; Hojati-Talemi, P.; Short, R. D.; Wallace, G. G.; Murphy, P. J. Polymeric Material with Metal-Like Conductivity for Next Generation Organic Electronic Devices. Chem. Mater. 2012, 24, 3998–4003. DOI: 10.1021/cm302899v.
  • Bubnova, O.; Khan, Z. U.; Wang, H.; Braun, S.; Evans, D. R.; Fabretto, M.; Hojati-Talemi, P.; Dagnelund, D.; Arlin, J.-B.; Geerts, Y. H.; et al. Semi-Metallic Polymers. Nat. Mater. 2014, 13, 190–194. DOI: 10.1038/nmat3824.
  • Edberg, J.; Iandolo, D.; Brooke, R.; Liu, X.; Musumeci, C.; Andreasen, J. W.; Simon, D. T.; Evans, D.; Engquist, I.; Berggren, M. Patterning and Conductivity Modulation of Conductive Polymers by UV Light Exposure. Adv. Funct. Mater. 2016, 26, 6950–6960. DOI: 10.1002/adfm.201601794.
  • Wei, T. C.; Chen, S. H.; Chen, C. Y. Highly Conductive PEDOT:PSS Film Made with Ethylene-Glycol Addition and Heated-Stir Treatment for Enhanced Photovoltaic Performances. Mater. Chem. Front. 2020, 4, 3302–3309. DOI: 10.1039/D0QM00529K.
  • Sun, K.; Zhang, S.; Li, P.; Xia, Y.; Zhang, X.; Du, D.; Isikgor, F. H.; Ouyang, J. Review on Application of PEDOTs and PEDOT:PSS in Energy Conversion and Storage Devices. J. Mater. Sci. Mater. Electron. 2015, 26, 4438–4462. DOI: 10.1007/s10854-015-2895-5.
  • Han, Y. Enhanced Electrical Properties of PEDOT:PSS via Synergistic Effect. Soft Mater. 2018, 16, 31–36. DOI: 10.1080/1539445X.2017.1387151.
  • Wen, N.; Fan, Z.; Yang, S.; Zhao, Y.; Cong, T.; Xu, S.; Zhang, H.; Wang, J.; Huang, H.; Li, C.; et al. Highly Conductive, Ultra-Flexible and Continuously Processable PEDOT:PSS Fibers with High Thermoelectric Properties for Wearable Energy Harvesting. Nano Energy 2020, 78, 105361–105361. DOI: 10.1016/j.nanoen.2020.105361.
  • Zhou, S.; Qiu, Z.; Strømme, M.; Wang, Z. Highly Crystalline PEDOT Nanofiber Templated by Highly Crystalline Nanocellulose. Adv. Funct. Mater. 2020, 30, 2005757–2005759. DOI: 10.1002/adfm.202005757.
  • Dong, J.; Portale, G. Role of the Processing Solvent on the Electrical Conductivity of PEDOT:PSS. Adv. Mater. Interfaces 2020, 7, 2000641. DOI: 10.1002/admi.202000641.
  • Kee, S.; Kim, N.; Park, H.; Kim, B. S.; Teo, M. Y.; Lee, S.; Kim, J.; Lee, K. Tuning the Mechanical and Electrical Properties of Stretchable PEDOT:PSS/Ionic Liquid Conductors. Macromol. Chem. Phys. 2020, 221, 2000291–2000298. DOI: 10.1002/macp.202000291.
  • Bae, E. J.; Kang, Y. H.; Jang, K.-S.; Cho, S. Y. Enhancement of Thermoelectric Properties of PEDOT:PSS and Tellurium-PEDOT:PSS Hybrid Composites by Simple Chemical Treatment. Sci. Rep. 2016, 6, 18805–18810. DOI: 10.1038/srep18805.
  • Zhou, J.; Kimura, M. Electromechanical Actuation of Highly Conductive PEDOT/PSS-Coated Cellulose Papers. Sen-i. Gakkaishi 2011, 67, 125–131. DOI: 10.2115/fiber.67.125.
  • Kim, S.-S.; Jeon, J.-H.; Kee, C.-D.; Oh, I.-K. Electro-Active Hybrid Actuators Based on Freeze-Dried Bacterial Cellulose and PEDOT:PSS. Smart Mater. Struct. 2013, 22, 085026. DOI: 10.1088/0964-1726/22/8/085026.
  • Malti, A.; Brooke, R.; Liu, X.; Zhao, D.; Andersson Ersman, P.; Fahlman, M.; Jonsson, M. P.; Berggren, M.; Crispin, X. Freestanding Electrochromic Paper. J. Mater. Chem. C 2016, 4, 9680–9686. DOI: 10.1039/C6TC03542F.
  • Basavaraja, C.; Park, J. Y.; Huh, D. S. Degradable and Electrically Conductive Poly(3,4-Ethylenedioxythiophene)/Sigma Cell Cellulose Polymer Composites. Polym. Compos. 2017, 38, 1864–1872. DOI: 10.1002/pc.23756.
  • Han, S.; Jiao, F.; Khan, Z. U.; Edberg, J.; Fabiano, S.; Crispin, X. Thermoelectric Polymer Aerogels for Pressure–Temperature Sensing Applications. Adv. Funct. Mater. 2017, 27, 1703549. DOI: 10.1002/adfm.201703549.
  • Edberg, J.; Inganäs, O.; Engquist, I.; Berggren, M. Boosting the Capacity of All-Organic Paper Supercapacitors Using Wood Derivatives. J. Mater. Chem. A 2018, 6, 145–152. DOI: 10.1039/C7TA06810G.
  • Jain, K.; Reid, M. S.; Larsson, P. A.; Wågberg, L. On the Interaction between PEDOT:PSS and Cellulose: Adsorption Mechanisms and Controlling Factors. Carbohydr. Polym. 2021, 260, 117818. DOI: 10.1016/j.carbpol.2021.117818.
  • Latonen, R.-M.; Cabrera, J. A. W.; Lund, S.; Kosourov, S.; Vajravel, S.; Boeva, Z.; Wang, X.; Xu, C.; Allahverdiyeva, Y. Electrospinning of Electroconductive Water-Resistant Nanofibers of PEDOT-PSS, Cellulose Nanofibrils and PEO: Fabrication, Characterization, and Cytocompatibility. ACS Appl. Bio Mater. 2021, 4, 483–493. DOI: 10.1021/acsabm.0c00989.
  • Feng, X.; Wang, X.; Wang, M.; Zhou, S.; Dang, C.; Zhang, C.; Chen, Y.; Qi, H. Novel PEDOT Dispersion by in-Situ Polymerization Based on Sulfated Nanocellulose. Chem. Eng. J. 2021, 418, 129533. DOI: 10.1016/j.cej.2021.129533.
  • Lars, W.; Lars, O. Polymer Adsorption on Cellulosic Fibers. Nordic Pulp Paper Res. J. 1989, 4, 135–140. DOI: 10.3183/npprj-1989-04-02-p135-140.
  • Edberg, J.; Malti, A.; Granberg, H.; Hamedi, M. M.; Crispin, X.; Engquist, I.; Berggren, M. Electrochemical Circuits from ‘Cut and Stick’ PEDOT:PSS-Nanocellulose Composite. Flex. Print. Electron. 2017, 2, 045010. DOI: 10.1088/2058-8585/aa8027.
  • Wang, X.; Grimoldi, A.; Håkansson, K.; Fall, A.; Granberg, H.; Mengistie, D.; Edberg, J.; Engquist, I.; Nilsson, D.; Berggren, M.; et al. Anisotropic Conductivity of Cellulose-PEDOT:PSS Composite Materials Studied with a Generic 3D Four-Point Probe Tool. Org. Electron. 2019, 66, 258–264. DOI: 10.1016/j.orgel.2018.12.023.
  • Mehandzhiyski, A. Y.; Zozoulenko, I. Computational Microscopy of PEDOT:PSS/Cellulose Composite Paper. ACS Appl. Energy Mater. 2019, 2, 3568–3577. DOI: 10.1021/acsaem.9b00307.
  • Zhou, J.; Hsieh, Y.-L. Conductive Polymer Protonated Nanocellulose Aerogels for Tunable and Linearly Responsive Strain Sensors. ACS Appl. Mater. Interfaces. 2018, 10, 27902–27910. DOI: 10.1021/acsami.8b10239.
  • Alam, K. M.; Kar, P.; Thakur, U. K.; Kisslinger, R.; Mahdi, N.; Mohammadpour, A.; Baheti P. A.; Kumar P.; Shankar, K. Remarkable Self-Organization and Unusual Conductivity Behavior in Cellulose nanocrystal-PEDOT: PSS Nanocomposites. J. Mater. Sci. Mater. Electron. 2019, 30, 1390–1399. DOI: 10.1007/s10854-018-0409-y.
  • Medronho, B.; Romano, A.; Miguel, M. G.; Stigsson, L.; Lindman, B. Rationalizing Cellulose (in)Solubility: Reviewing Basic Physicochemical Aspects and Role of Hydrophobic Interactions. Cellulose 2012, 19, 581–587. DOI: 10.1007/s10570-011-9644-6.
  • Kong, F.; Liu, C.; Song, H.; Xu, J.; Huang, Y.; Zhu, H.; Wang, J. Effect of Solution pH Value on Thermoelectric Performance of Free-Standing PEDOT:PSS Films. Synth. Met. 2013, 185–186, 31–37. DOI: 10.1016/j.synthmet.2013.09.046.
  • Mochizuki, Y.; Horii, T.; Okuzaki, H. Effect of pH on Structure and Conductivity of PEDOT/PSS. Trans. Mat. Res. Soc. Japan 2012, 37, 307–310. DOI: 10.14723/tmrsj.37.307.
  • Modarresi, M.; Franco-gonzalez, J. F.; Zozoulenko, I. Computational Microscopy Study of the Granular Structure and pH Dependence of PEDOT: PSS. Phys. Chem. Chem. Phys. 2019, 21, 34–36. DOI: 10.1039/C8CP07141A.
  • Brett, C. J.; Forslund, O. K.; Nocerino, E.; Kreuzer, L. P.; Widmann, T.; Porcar, L.; Yamada, N. L.; Matsubara, N.; Månsson, M.; Müller-Buschbaum, P.; et al. Humidity-Induced Nanoscale Restructuring in PEDOT:PSS and Cellulose Nanofibrils Reinforced Biobased Organic Electronics. Adv. Electron. Mater. 2021, 7, 2100137. DOI: 10.1002/aelm.202100137.
  • Chae, H.; Jung, M.; Cheong, H.; Soum, V.; Jo, S.; Kim, H.; Kim, T.; Kim, K.; Jeon, S.; Kwon, O. S.; Shin, K. Thermoelectric Temperature Sensors by Printing with a Simple Office Inkjet Printer. 2016, 4, 151–155. https://briefs.techconnect.org/wp-content/volumes/TCB2016v4/pdf/911.pdf
  • Terasawa, N.; Asaka, K. Self-Standing Cellulose Nanofiber/Poly(3,4-Ethylenedioxythiophene):Poly(4-Styrenesulfonate)/Ionic Liquid Actuators with Superior Performance. RSC Adv. 2018, 8, 33149–33155. DOI: 10.1039/c8ra06981f.
  • Brooke, R.; Edberg, J.; Say, M. G.; Sawatdee, A.; Grimoldi, A.; Åhlin, J.; Gustafsson, G.; Berggren, M.; Engquist, I. Supercapacitors on Demand: all-Printed Energy Storage Devices with Adaptable Design. Flex. Print. Electron. 2019, 4, 015006. DOI: 10.1088/2058-8585/aafc4f.
  • Inácio, P. M.; Medeiros, M. C.; Carvalho, T.; Félix, R. C.; Mestre, A.; Hubbard, P. C.; Ferreira, Q.; Morgado, J.; Charas, A.; Freire, C. S.; et al. Ultra-Low Noise PEDOT:PSS Electrodes on Bacterial Cellulose: A Sensor to Access Bioelectrical Signals in Non-Electrogenic Cells. Org. Electron. 2020, 85, 105882. DOI: 10.1016/j.orgel.2020.105882.
  • Wang, X.; Gao, K.; Shao, Z.; Peng, X.; Wu, X.; Wang, F. Layer-by-Layer Assembled Hybrid Multilayer Thin Film Electrodes Based on Transparent Cellulose Nanofibers Paper for Flexible Supercapacitors Applications. J. Power Sources 2014, 249, 148–155. DOI: 10.1016/j.jpowsour.2013.09.130.
  • Ko, Y.; Kim, D.; Kim, U.-J.; You, J. Vacuum-Assisted Bilayer PEDOT:PSS/Cellulose Nanofiber Composite Film for Self-Standing, Flexible, Conductive Electrodes. Carbohydr. Polym. 2017, 173, 383–391. DOI: 10.1016/j.carbpol.2017.05.096.
  • Ravit, R.; Azman, N. H. N.; Kulandaivalu, S.; Abdullah, J.; Ahmad, I.; Sulaiman, Y. Cauliflower-like Poly(3,4-Ethylenedioxythipohene)/Nanocrystalline Cellulose/Manganese Oxide Ternary Nanocomposite for Supercapacitor. J. Appl. Polym. Sci. 2020, 137, 49162. DOI: 10.1002/app.49162.
  • Ravit, R.; Abdullah, J.; Ahmad, I.; Sulaiman, Y. Electrochemical Performance of Poly(3, 4-Ethylenedioxythipohene)/Nanocrystalline Cellulose (PEDOT/NCC) Film for Supercapacitor. Carbohydr. Polym. 2019, 203, 128–138. DOI: 10.1016/j.carbpol.2018.09.043.
  • Jiao, F.; Edberg, J.; Zhao, D.; Puzinas, S.; Khan, Z. U.; Mäkie, P.; Naderi, A.; Lindström, T.; Odén, M.; Engquist, I.; et al. Nanofibrillated Cellulose-Based Electrolyte and Electrode for Paper-Based Supercapacitors. Adv. Sustainable Syst. 2018, 2, 1700121. DOI: 10.1002/adsu.201700121.
  • Rosén, T.; Hsiao, B. S.; Söderberg, L. D. Elucidating the Opportunities and Challenges for Nanocellulose Spinning. Adv. Mater. 2021, 33, 2001238. DOI: 10.1002/adma.202001238.
  • Darabi, S.; Hummel, M.; Rantasalo, S.; Rissanen, M.; Öberg Månsson, I.; Hilke, H.; Hwang, B.; Skrifvars, M.; Hamedi, M. M.; Sixta, H.; et al. Green Conducting Cellulose Yarns for Machine-Sewn Electronic Textiles. ACS Appl. Mater. Interfaces. 2020, 12, 56403–56412. DOI: 10.1021/acsami.0c15399.
  • Zhang, J.; Seyedin, S.; Qin, S.; Lynch, P. A.; Wang, Z.; Yang, W.; Wang, X.; Razal, J. M. Fast and Scalable Wet-Spinning of Highly Conductive PEDOT:PSS Fibers Enables Versatile Applications. J. Mater. Chem. A 2019, 7, 6401–6410. DOI: 10.1039/C9TA00022D.
  • Sarabia-Riquelme, R.; Andrews, R.; Anthony, J. E.; Weisenberger, M. C. Highly Conductive Wet-Spun PEDOT:PSS Fibers for Applications in Electronic Textiles. J. Mater. Chem. C 2020, 8, 11618–11630. DOI: 10.1039/D0TC02558E.
  • Lim, T.; Kim, Y.; Jeong, S.-M.; Kim, C.-H.; Kim, S.-M.; Park, S. Y.; Yoon, M.-H.; Ju, S. Human Sweat Monitoring Using Polymer-Based Fiber. Sci. Rep. 2019, 9, 1–9. DOI: 10.1038/s41598-019-53677-2.
  • Lund, A.; van der Velden, N. M.; Persson, N.-K.; Hamedi, M. M.; Müller, C. Electrically Conducting Fibres for e-Textiles: An Open Playground for Conjugated Polymers and Carbon Nanomaterials. Mater. Sci. Eng. R Rep. 2018, 126, 1–29. DOI: 10.1016/j.mser.2018.03.001.
  • Ryan, J. D.; Mengistie, D. A.; Gabrielsson, R.; Lund, A.; Müller, C. Machine-Washable PEDOT:PSS Dyed Silk Yarns for Electronic Textiles. ACS Appl. Mater. Interfaces. 2017, 9, 9045–9050. DOI: 10.1021/acsami.7b00530.
  • Gonçalves, C.; Ferreira da Silva, A.; Gomes, J.; Simoes, R. Wearable e-Textile Technologies: A Review on Sensors, Actuators and Control Elements. Inventions 2018, 3, 14–13. DOI: 10.3390/inventions3010014.
  • Iwamoto, S.; Isogai, A.; Iwata, T. Structure and Mechanical Properties of Wet-Spun Fibers Made from Natural Cellulose Nanofibers. Biomacromolecules 2011, 12, 831–836. DOI: 10.1021/bm101510r.
  • Walther, A.; Timonen, J. V. I.; Díez, I.; Laukkanen, A.; Ikkala, O. Multifunctional High-Performance Biofibers Based on Wet-Extrusion of Renewable Native Cellulose Nanofibrils. Adv. Mater. 2011, 23, 2924–2928. DOI: 10.1002/adma.201100580.
  • Håkansson, K. M. O.; Fall, A. B.; Lundell, F.; Yu, S.; Krywka, C.; Roth, S. V.; Santoro, G.; Kvick, M.; Prahl Wittberg, L.; Wågberg, L.; et al. Hydrodynamic Alignment and Assembly of Nanofibrils Resulting in Strong Cellulose Filaments. Nat. Commun. 2014, 5, 4018. DOI: 10.1038/ncomms5018.
  • Mittal, N.; Ansari, F.; Gowda V, K.; Brouzet, C.; Chen, P.; Larsson, P. T.; Roth, S. V.; Lundell, F.; Wågberg, L.; Kotov, N. A.; et al. Multiscale Control of Nanocellulose Assembly: Transferring Remarkable Nanoscale Fibril Mechanics to Macroscale Fibers. ACS Nano. 2018, 12, 6378–6388. DOI: 10.1021/acsnano.8b01084.
  • Wei, J.; Geng, S.; Hedlund, J.; Oksman, K. Lightweight, Flexible, and Multifunctional Anisotropic Nanocellulose-Based Aerogels for CO2 Adsorption. Cellulose 2020, 27, 2695–2707. DOI: 10.1007/s10570-019-02935-7.
  • Revin, V. V.; Nazarova, N. B.; Tsareva, E. E.; Liyaskina, E. V.; Revin, V. D.; Pestov, N. A. Production of Bacterial Cellulose Aerogels with Improved Physico-Mechanical Properties and Antibacterial Effect. Front. Bioeng. Biotechnol. 2020, 8, 1–19. DOI: 10.3389/fbioe.2020.603407.
  • Sun, Y.; Chu, Y.; Wu, W.; Xiao, H. Nanocellulose-Based Lightweight Porous Materials: A Review. Carbohydr. Polym. 2021, 255, 117489–117489. DOI: 10.1016/j.carbpol.2020.117489.
  • Françon, H.; Wang, Z.; Marais, A.; Mystek, K.; Piper, A.; Granberg, H.; Malti, A.; Gatenholm, P.; Larsson, P. A.; Wågberg, L.; et al. Ambient-Dried, 3D-Printable and Electrically Conducting Cellulose Nanofiber Aerogels by Inclusion of Functional Polymers. Adv. Funct. Mater. 2020, 30, 1909383. DOI: 10.1002/adfm.201909383.
  • Abdul Khalil, H. P. S.; Adnan, A. S.; Yahya, E. B.; Olaiya, N. G.; Safrida, S.; Hossain, M. S.; Balakrishnan, V.; Gopakumar, D. A.; Abdullah, C. K.; Oyekanmi, A. A.; et al. A Review on Plant Cellulose Nanofibre-Based Aerogels for Biomedical Applications. Polymers 2020, 12, 1759. DOI: 10.3390/polym12081759.
  • Chen, Y.; Zhang, L.; Yang, Y.; Pang, B.; Xu, W.; Duan, G.; Jiang, S.; Zhang, K. Recent Progress on Nanocellulose Aerogels: Preparation, Modification, Composite Fabrication, Applications. Adv. Mater. 2021, 33, 2005569. DOI: 10.1002/adma.202005569.
  • Li, V. C. F.; Mulyadi, A.; Dunn, C. K.; Deng, Y.; Qi, H. J. Direct Ink Write 3D Printed Cellulose Nanofiber Aerogel Structures with Highly Deformable, Shape Recoverable, and Functionalizable Properties. ACS Sustainable Chem. Eng. 2018, 6, 2011–2022. DOI: 10.1021/acssuschemeng.7b03439.
  • Han, S.; Alvi, N. U. H.; Granlöf, L.; Granberg, H.; Berggren, M.; Fabiano, S.; Crispin, X. A Multiparameter Pressure–Temperature–Humidity Sensor Based on Mixed Ionic–Electronic Cellulose Aerogels. Adv Sci (Weinh) 2019, 6, 1802128. DOI: 10.1002/advs.201802128.
  • Han, S.; Ruoko, T.; Gladisch, J.; Erlandsson, J.; Wågberg, L.; Crispin, X.; Fabiano, S. Cellulose-Conducting Polymer Aerogels for Efficient Solar Steam Generation. Adv. Sustainable Syst. 2020, 4, 2000004. DOI: 10.1002/adsu.202000004.
  • Cheng, H.; Du, Y.; Wang, B.; Mao, Z.; Xu, H.; Zhang, L.; Zhong, Y.; Jiang, W.; Wang, L.; Sui, X.; et al. Flexible Cellulose-Based Thermoelectric Sponge towards Wearable Pressure Sensor and Energy Harvesting. Chem. Eng. J. 2018, 338, 1–7. DOI: 10.1016/j.cej.2017.12.134.
  • Hamedi, M.; Karabulut, E.; Marais, A.; Herland, A.; Nyström, G.; Wågberg, L. Nanocellulose Aerogels Functionalized by Rapid Layer-by-Layer Assembly for High Charge Storage and Beyond. Angew. Chem. Int. Ed. Engl. 2013, 52, 12038–12042. DOI: 10.1002/anie.201305137.
  • Sai, T.; Fujita, K. A Review of Pulmonary Toxicity Studies of Nanocellulose. Inhal. Toxicol. 2020, 32, 231–239. DOI: 10.1080/08958378.2020.1770901.
  • Trache, D.; Tarchoun, A. F.; Derradji, M.; Hamidon, T. S.; Masruchin, N.; Brosse, N.; Hussin, M. H. Nanocellulose: From Fundamentals to Advanced Applications. 2020, 8, 392. DOI: 10.3389/fchem.2020.00392.
  • Rajesh, M.; Raj, C. J.; Manikandan, R.; Kim, B. C.; Park, S. Y.; Yu, K. H. A High Performance PEDOT/PEDOT Symmetric Supercapacitor by Facile in-Situ Hydrothermal Polymerization of PEDOT Nanostructures on Flexible Carbon Fibre Cloth Electrodes. Mater. Today Energy 2017, 6, 96–104. DOI: 10.1016/j.mtener.2017.09.003.
  • Wang, Z.; Tammela, P.; Huo, J.; Zhang, P.; Strømme, M.; Nyholm, L. Solution-Processed Poly(3,4-Ethylenedioxythiophene) Nanocomposite Paper Electrodes for High-Capacitance Flexible Supercapacitors. J. Mater. Chem. A 2016, 4, 1714–1722. DOI: 10.1039/C5TA10122K.
  • Sahalianov, I.; Say, M. G.; Abdullaeva, O. S.; Ahmed, F.; Glowacki, E.; Engquist, I.; Berggren, M.; Zozoulenko, I. Volumetric Double-Layer Charge Storage in Composites Based on Conducting Polymer PEDOT and Cellulose. ACS Appl. Energy Mater. 2021, 4, 8629–8640. DOI: 10.1021/acsaem.1c01850.
  • Anothumakkool, B.; Soni, R.; Bhange, S. N.; Kurungot, S. Novel Scalable Synthesis of Highly Conducting and Robust PEDOT Paper for a High Performance Flexible Solid Supercapacitor. Energy Environ. Sci. 2015, 8, 1339–1347. DOI: 10.1039/C5EE00142K.
  • Li, B.; Lopez-Beltran, H.; Siu, C.; Skorenko, K. H.; Zhou, H.; Bernier, W. E.; Whittingham, M. S.; Jones, W. E. Vaper Phase Polymerized PEDOT/Cellulose Paper Composite for Flexible Solid-State Supercapacitor. ACS Appl. Energy Mater. 2020, 3, 1559–1568. DOI: 10.1021/acsaem.9b02044.
  • Zhou, H.; Liu, G.; Liu, J.; Wang, Y.; Ai, Q.; Huang, J.; Yuan, Z.; Tan, L.; Chen, Y. Effective Network Formation of PEDOT by in-Situ Polymerization Using Novel Organic Template and Nanocomposite Supercapacitor. Electrochim. Acta 2017, 247, 871–879. DOI: 10.1016/j.electacta.2017.07.078.
  • Kuang, Y.; Chen, C.; Pastel, G.; Li, Y.; Song, J.; Mi, R.; Kong, W.; Liu, B.; Jiang, Y.; Yang, K.; et al. Conductive Cellulose Nanofiber Enabled Thick Electrode for Compact and Flexible Energy Storage Devices. Adv. Energy Mater. 2018, 8, 1802398. DOI: 10.1002/aenm.201802398.
  • Edberg, J.; Brooke, R.; Granberg, H.; Engquist, I.; Berggren, M. Improving the Performance of Paper Supercapacitors Using Redox Molecules from Plants. Adv. Sustain. Syst. 2019, 3, 1900050. DOI: 10.1002/adsu.201900050.
  • Kurra, N.; Park, J.; Alshareef, H. N. A Conducting Polymer Nucleation Scheme for Efficient Solid-State Supercapacitors on Paper. J. Mater. Chem. A 2014, 2, 17058–17065. DOI: 10.1039/C4TA03603D.
  • Bu, Y.; Cao, M.; Jiang, Y.; Gao, L.; Shi, Z.; Xiao, X.; Wang, M.; Yang, G.; Zhou, Y.; Shen, Y.; et al. Ultra-Thin Bacterial Cellulose/Poly(Ethylenedioxythiophene) Nanofibers Paper Electrodes for All-Solid-State Flexible Supercapacitors. Electrochim. Acta 2018, 271, 624–631. DOI: 10.1016/j.electacta.2018.03.155.
  • Ghosh, S.; Das, S.; Mosquera, M. E. G. Conducting Polymer-Based Nanohybrids for Fuel Cell Application. Polymers 2020, 12, 2993–2919. DOI: 10.3390/polym12122993.
  • Chen, C.; Kuang, Y.; Zhu, S.; Burgert, I.; Keplinger, T.; Gong, A.; Li, T.; Berglund, L.; Eichhorn, S. J.; Hu, L.; et al. Structure–Property–Function Relationships of Natural and Engineered Wood. Nat. Rev. Mater. 2020, 5, 642–666. DOI: 10.1038/s41578-020-0195-z.
  • Vilela, C.; Morais, J. D.; Silva, A. C. Q.; Muñoz-Gil, D.; Figueiredo, F. M. L.; Silvestre, A. J. D.; Freire, C. S. R. Flexible Nanocellulose/Lignosulfonates Ion-Conducting Separators for Polymer Electrolyte Fuel Cells. Nanomaterials (Basel 2020, 10, 1713. DOI: 10.3390/nano10091713.
  • Vilela, C.; Silvestre, A. J. D.; Figueiredo, F. M. L.; Freire, C. S. R. Nanocellulose-Based Materials as Components of Polymer Electrolyte Fuel Cells. J. Mater. Chem. A 2019, 7, 20045–20074. DOI: 10.1039/C9TA07466J.
  • Mitraka, E.; Vagin, M.; Sjöstedt, A.; Berggren, M.; Håkansson, K. M. O.; Jonsson, M. P.; Crispin, X. PEDOT-Cellulose Gas Diffusion Electrodes for Disposable Fuel Cells. Adv. Sustainable Syst. 2019, 3, 1900097–1900098. DOI: 10.1002/adsu.201900097.
  • Zhang, Q.; Sun, Y.; Xu, W.; Zhu, D. Organic Thermoelectric Materials: Emerging Green Energy Materials Converting Heat to Electricity Directly and Efficiently. Adv. Mater. 2014, 26, 6829–6851. DOI: 10.1002/adma.201305371.
  • Zhang, L.; Shi, X.-L.; Yang, Y.-L.; Chen, Z.-G. Flexible Thermoelectric Materials and Devices: From Materials to Applications. Mater. Today 2021, 46, 62–108. DOI: 10.1016/j.mattod.2021.02.016.
  • Xu, S.; Hong, M.; Shi, X.-L.; Wang, Y.; Ge, L.; Bai, Y.; Wang, L.; Dargusch, M.; Zou, J.; Chen, Z.-G.; et al. High-Performance PEDOT:PSS Flexible Thermoelectric Materials and Their Devices by Triple Post-Treatments. Chem. Mater. 2019, 31, 5238–5244. DOI: 10.1021/acs.chemmater.9b01500.
  • Fan, Z.; Li, P.; Du, D.; Ouyang, J. Significantly Enhanced Thermoelectric Properties of PEDOT: PSS Films through Sequential Post-Treatments with Common Acids and Bases. Adv. Sci. News 2017, 7, 1602116–1602116. DOI: 10.1002/aenm.201602116.
  • Fan, Z.; Du, D.; Guan, X.; Ouyang, J. Polymer Films with Ultrahigh Thermoelectric Properties Arising from Significant Seebeck Coefficient Enhancement by Ion Accumulation on Surface. Nano Energy 2018, 51, 481–488. DOI: 10.1016/j.nanoen.2018.07.002.
  • Zhao, D.; Fabiano, S.; Berggren, M.; Crispin, X. Ionic Thermoelectric Gating Organic Transistors. Nat. Commun. 2017, 8, 14214. DOI: 10.1038/ncomms14214.
  • Wang, H.; Zhao, D.; Khan, Z. U.; Puzinas, S.; Jonsson, M. P.; Berggren, M.; Crispin, X. Ionic Thermoelectric Figure of Merit for Charging of Supercapacitors. Adv. Electron. Mater. 2017, 3, 1700013. DOI: 10.1002/aelm.201700013.
  • Brill, J. W.; Shahi, M.; Payne, M. M.; Edberg, J.; Yao, Y.; Crispin, X.; Anthony, J. E. Frequency-Dependent Photothermal Measurement of Transverse Thermal Diffusivity of Organic Semiconductors. J. Appl. Phys. 2015, 118, 235501. DOI: 10.1063/1.4937565.
  • van de Ruit, K.; Katsouras, I.; Bollen, D.; van Mol, T.; Janssen, R. A. J.; de Leeuw, D. M.; Kemerink, M. The Curious Out-of-Plane Conductivity of PEDOT:PSS. Adv. Funct. Mater. 2013, 23, 5787–5793. DOI: 10.1002/adfm.201301175.
  • The international Energy Agency, Data and Statistics. 2021. https://www.iea.org/data-and-statistics?country=WORLD&fuel=Energy%20supply&indicator=CoalProdByType.
  • Gao, L.; Chao, L.; Hou, M.; Liang, J.; Chen, Y.; Yu, H.-D.; Huang, W. Flexible, Transparent Nanocellulose Paper-Based Perovskite Solar Cells. NPJ Flex. Electron. 2019, 3, 4. DOI: 10.1038/s41528-019-0048-2.
  • Méhes, G.; Vagin, M.; Mulla, M. Y.; Granberg, H.; Che, C.; Beni, V.; Crispin, X.; Berggren, M.; Stavrinidou, E.; Simon, D. T.; et al. Solar Heat-Enhanced Energy Conversion in Devices Based on Photosynthetic Membranes and PEDOT:PSS-Nanocellulose Electrodes. Adv. Sustain. Syst. 2020, 4, 1900100. DOI: 10.1002/adsu.201900100.
  • Liana, D. D.; Raguse, B.; Gooding, J. J.; Chow, E. Recent Advances in Paper-Based Sensors. Sensors (Basel) 2012, 12, 11505–11526. DOI: 10.3390/s120911505.
  • Khiabani, P. S.; Soeriyadi, A. H.; Reece, P. J.; Gooding, J. J. Paper-Based Sensor for Monitoring Sun Exposure. ACS Sens. 2016, 1, 775–780. DOI: 10.1021/acssensors.6b00244.
  • Morais, R. M.; Klem, M. D. S.; Nogueira, G. L.; Gomes, T. C.; Alves, N. Low Cost Humidity Sensor Based on PANI/PEDOT:PSS Printed on Paper. IEEE Sensors J. 2018, 18, 2647–2651. DOI: 10.1109/JSEN.2018.2803018.
  • Ruecha, N.; Chailapakul, O.; Suzuki, K.; Citterio, D. Fully Inkjet-Printed Paper-Based Potentiometric Ion-Sensing Devices. Anal. Chem. 2017, 89, 10608–10616. DOI: 10.1021/acs.analchem.7b03177.
  • Khan, Z. U.; Edberg, J.; Hamedi, M. M.; Gabrielsson, R.; Granberg, H.; Wågberg, L.; Engquist, I.; Berggren, M.; Crispin, X. Thermoelectric Polymers and Their Elastic Aerogels. Adv. Mater. 2016, 28, 4556–4562. DOI: 10.1002/adma.201505364.
  • Kim, J.; Yun, S.; Mahadeva, S. K.; Yun, K.; Yang, S. Y.; Maniruzzaman, M. Paper Actuators Made with Cellulose and Hybrid Materials. Sensors (Basel) 2010, 10, 1473–1485. DOI: 10.3390/s100301473.
  • Hamedi, M. M.; Campbell, V. E.; Rothemund, P.; Güder, F.; Christodouleas, D. C.; Bloch, J.-F.; Whitesides, G. M. Electrically Activated Paper Actuators. Adv. Funct. Mater. 2016, 26, 2446–2453. DOI: 10.1002/adfm.201505123.
  • Mahadeva, S. K.; Kim, J. Effect of Polyelectrolyte Nanocoating on the Performance and Durability of Cellulose Electro-Active Paper Actuator. J. Nanosci. Nanotechnol. 2009, 9, 5757–5763. DOI: 10.1166/jnn.2009.1241.
  • Nan, M.; Wang, F.; Kim, S.; Li, H.; Jin, Z.; Bang, D.; Kim, C.-S.; Park, J.-O.; Choi, E. Ecofriendly High-Performance Ionic Soft Actuators Based on Graphene-Mediated Cellulose Acetate. Sens. Actuators, B 2019, 301, 127127. DOI: 10.1016/j.snb.2019.127127.
  • Wang, F.; Jeon, J.-H.; Park, S.; Kee, C.-D.; Kim, S.-J.; Oh, I.-K. A Soft Biomolecule Actuator Based on a Highly Functionalized Bacterial Cellulose Nano-Fiber Network with Carboxylic Acid Groups. Soft Matter. 2016, 12, 246–254. DOI: 10.1039/c5sm00707k.
  • Terasawa, N. Effect of Ruthenium on Superior Performance of Cellulose Nanofibers/Poly(3,4-Ethylenedioxythiophene):Poly(4-Styrenesulfonate)/Ruthenium Oxide/Ionic Liquid Actuators. Synth. Met. 2020, 261, 116306. DOI: 10.1016/j.synthmet.2020.116306.
  • Hu, F.; Xue, Y.; Xu, J.; Lu, B. PEDOT-Based Conducting Polymer Actuators. Front. Robot. AI 2019, 6, 114. DOI: 10.3389/frobt.2019.00114.
  • Helenius, G.; Bäckdahl, H.; Bodin, A.; Nannmark, U.; Gatenholm, P.; Risberg, B. In Vivo Biocompatibility of Bacterial Cellulose. J. Biomed. Mater. Res. A 2006, 76, 431–438. DOI: 10.1002/jbm.a.30570.
  • Chen, C.; Zhang, T.; Zhang, Q.; Feng, Z.; Zhu, C.; Yu, Y.; Li, K.; Zhao, M.; Yang, J.; Liu, J.; et al. Three-Dimensional BC/PEDOT Composite Nanofibers with High Performance for Electrode–Cell Interface. ACS Appl. Mater. Interfaces. 2015, 7, 28244–28253. DOI: 10.1021/acsami.5b07273.
  • Chen, C.; Yu, Y.; Li, K.; Zhao, M.; Liu, L.; Yang, J.; Liu, J.; Sun, D. Facile Approach to the Fabrication of 3D Electroconductive Nanofibers with Controlled Size and Conductivity Templated by Bacterial Cellulose. Cellulose 2015, 22, 3929–3939. DOI: 10.1007/s10570-015-0770-4.
  • Chen, C.; Zhang, T.; Zhang, Q.; Chen, X.; Zhu, C.; Xu, Y.; Yang, J.; Liu, J.; Sun, D. Biointerface by Cell Growth on Graphene Oxide Doped Bacterial Cellulose/Poly(3,4-Ethylenedioxythiophene) Nanofibers. ACS Appl. Mater. Interfaces. 2016, 8, 10183–10192. DOI: 10.1021/acsami.6b01243.
  • Fu, X.; Wang, J. K.; Ramírez-Pérez, A. C.; Choong, C.; Lisak, G. Flexible Conducting Polymer-Based Cellulose Substrates for on-Skin Applications. Mater. Sci. Eng. C Mater. Biol. Appl. 2020, 108, 110392. DOI: 10.1016/j.msec.2019.110392.
  • Chen, C.; Chen, X.; Zhang, H.; Zhang, Q.; Wang, L.; Li, C.; Dai, B.; Yang, J.; Liu, J.; Sun, D.; et al. Electrically-Responsive Core-Shell Hybrid Microfibers for Controlled Drug Release and Cell Culture. Acta Biomater. 2017, 55, 434–442. DOI: 10.1016/j.actbio.2017.04.005.